Виды схем электроснабжения: Виды схем электроснабжения промышленных предприятий | СРС

Виды схем электроснабжения промышленных предприятий | СРС

Электроснабжение от энергосистемы можно осуществить по двум схемам (рис. 1):
глубокого ввода двойной магистрали напряжением 35…220 кВ на территорию предприятия с подключением отпайкой от обеих испей нескольких пар трансформаторов;
с одной мощной ГПП на все предприятие. Первая схема (см. рис. 1, а) применяется на крупных предприятиях, занимающих большие территории и располагающих площадями для прохождения линии напряжением 35…220 кВ. Вторую схему (см. рис. 1, б) применяют на предприятиях средней мощности с концентрированным расположением нагрузок. Эти схемы являются основными электротехническими чертежами проекта, на основании которых выполняют все другие чертежи, производятся расчеты сетей и выбор основного электрооборудования.


Рис. 1. Схемы внешнего электроснабжения для крупных (а) и средних (б) предприятий

При проектировании электроснабжения промышленных пред приятии на схемах высокого напряжения должны быть показаны источники питания, распределительные пункты и трансформа торные подстанции со сборными шинами, основная коммутационная аппаратура (масляные или воздушные выключатели, реакторы), размещение устройств АВР, все трансформаторы и электроприемники высокого напряжения (высоковольтные электродвигатели, преобразовательные агрегаты, электропечи и др.). Ря дом с соответствующими графическими обозначениями нужно указать номинальное напряжение сборных шин, типы выключателей, номинальные токи и реактивные сопротивления реакторов, номинальные мощности и напряжения обмоток трансформаторов и схемы их соединения, номинальные выпрямленные токи и напряжения преобразовательных агрегатов, номинальные мощности электродвигателей. Около изображений кабельных и воздушных линий указывают их длину, а также марки и сечения кабелей, материал (медь или алюминий) и сечения проводов воз душных линий и токопроводов.


Рис. 2. Магистральные схемы электроснабжения:
а — одиночная; б — сквозная с двусторонним питанием; в — кольцевая; г — двойная; ТП1—ТП6 — трансформаторные подстанции

Напряжение 110 кВ наиболее широко применяют для электроснабжения предприятий от энергосистемы. Рост мощностей промышленных предприятий, снижение минимальной мощности трансформаторов на 110/6… 10 кВ до 2500 кВ А способствуют использованию напряжения 110 кВ для питания предприятий не только средней, но и небольшой мощности.
Напряжение 220 кВ применяют для электроснабжения от энергосистемы крупных предприятий, создания глубоких вводов с разукрупнением подстанций. В некоторых случаях применению напряжения 220 к В в СЭС способствует близкое расстояние от предприятия до трассы линий напряжением 220 кВ энергосистемы.
Распределительная сеть напряжением 6 (10) кВ (реже 35 кВ) — это внутренняя сеть предприятия, служащая для передачи электроэнергии с шин ГПП и ПГВ в распределительные и трансформаторные пункты по воздушным, кабельным линиям и токопроводам. В зависимости от категории нагрузок и от их расположения распределительная сеть от одного или двух независимых источников строится по радиальной, магистральной или смешанной схеме.

Магистральные схемы могут быть одиночными, сквозными с двусторонним питанием, кольцевыми и двойными.
Одиночную схему (рис. 2, а) применяют для потребителей третьей категории. При этой схеме требуется меньшее число линий и выключателей. К одной магистрали подключают два-три трансформатора ТП мощностью 1000… 1600 кВ • А или четыре-пять трансформаторов мощностью 250…630 кВ А (ограничение вносит чувствительность релейной защиты). Недостаток схемы — отсутствие резервного канала электроснабжения на случай повреждения линии. Поэтому для кабельных линий такую схему не применяют, так как время отыскания мест повреждений и ремонта кабелей может превышать 24 ч.
Более надежна сквозная схема с двусторонним питанием (рис. 2, б). Магистраль присоединяют к разным источникам питания. В нормальных условиях она разомкнута на одной из подстанций. Схема применяется для питания потребителей второй категории.
Кольцевая схема (рис. 2, в) создается путем соединения двух одиночных магистралей перемычкой на напряжение 6 (10) кВ. Схема применяется для питания по воздушным линиям потребителей второй категории. В нормальном режиме кольцо разомкнуто и питание подстанций осуществляется по одиночным магистралям. Но при выходе любого участка сети питание ТП прерывается лишь на время операций по отключению в ремонт поврежденного участка и включению разъединителя перемычки.
Двойная схема (рис. 2, г) достаточно надежна, так как при любом повреждении на линии или в трансформаторе все потребители (в том числе первой категории) могут получать электроэнергию но второй магистрали. Ввод резервного питания происходит автоматически с помощью устройств АВР. Данная схема дороже, чем рассмотренные выше, так как расходы на сооружение линий удваиваются.


Рис. 3. Радиальные схемы электроснабжения для питания потребителей третьей (а), второй (б) и первой (в) категорий надежности электроснабжения

Радиальные схемы (рис. 3) применяют для питания сосредоточенных нагрузок и мощных электродвигателей. Для потребителей первой и второй категорий предусматривают двухцепные радиальные схемы, а для потребителей третьей категории — одноцепные схемы. Радиальные схемы надежнее и легче автоматизируются, чем магистральные.
Схема, показанная на рис. 3, а, предназначена для потребителей третьей категории. При подключении устройства автоматического повторного включения (АПВ) воздушной линии эту схему можно применять для потребителей второй категории, а при наличии аварийных источников питания — и для потребителей первой категории.
Схему, показанную на рис. 3, б, используют для потребителей второй категории. В некоторых случаях ее можно применять и для потребителей первой категории. При исчезновении напряжения на одной из секций шин часть потребителей, присоединенных к другой секции, остается в работе.
Схему, приведенную на рис. 3, в, применяют для потребителей первой категории. Питание потребителей при исчезновении напряжения на одной из секций шин восстанавливается автоматическим включением секционного выключателя.

Рис. 4. Смешанная схема электроснабжения
осуществляется по радиальным линиям, а резервное — по одной сквозной магистрали, показанной на рис. 4  штриховой линией.
На всех приведенных схемах секционные аппараты в нормальном режиме находятся в отключенном состоянии. В основном в распределительных сетях

Смешанные схемы сочетают элементы магистральных и радиальных схем (рис. 4). Основное питание каждого из потребителей
применяют разомкнутые схемы, отвечающие требованиям ограничения токов короткого замыкания и независимого режима работы секций.
Замкнутые сети применяют редко, так как в них значительно (до двух раз) повышаются токи короткого замыкания, требуются выключатели на обоих концах линий, усложняются релейные защиты. Однако замкнутые сети имеют ряд преимуществ: большую надежность питания приемников, которые всегда подключены к двум (или более) источникам питания; меньшие потери энергии благодаря более равномерной загрузки сети; меньшее падение напряжения. Эти достоинства особенно существенны при электроснабжении крупных установок. В таких установках пуск мощного электродвигателя может вызвать при разомкнутой схеме большие отклонения напряжения, делающие пуск и самозапуск двигателя под нагрузкой невозможными, поскольку пусковой момент становится ниже момента сопротивления на валу двигателя.
Включение трансформаторов и линий на параллельную работу резко (почти вдвое) уменьшает эквивалентное сопротивление сети питания и обеспечивает успешный пуск двигателя. В некоторых случаях такое включение используется только на время пуска основных двигателей (например, на крупных насосных, компрессорных станциях, где применяются двигатели соизмеримой с трансформаторами мощности).
Электроснабжение металлургических заводов, имеющих полный цикл производства (доменный, сталеплавильный и прокатный цехи), осуществляют, как правило, от ближайшей энергосистемы через подстанцию энергосистемы при напряжении 110 или 220 кВ и от местной заводской ТЭЦ (рис. 5). Местная заводская ТЭЦ обычно имеет связь с энергосистемой напряжением 110 кВ (220 кВ).
Ударные нагрузки прокатных цехов должны восприниматься энергосистемой. Это необходимо учитывать при разработке проекта электроснабжения металлургического завода. Энергосистема должна быть мощной, чтобы обеспечить минимальный допустимый уровень колебаний напряжения в питающей сети 110 кВ (220 кВ).
Для ограничения вредного влияния ударных циклических нагрузок на качество электроэнергии в системе электроснабжения рекомендуются следующие мероприятия.

  1. Ограничение реактивной мощности, потребляемой вентильными преобразователями при их работе с глубоким регулированием.
  2. Разработка и внедрение электроприводов с пониженным потреблением реактивной мощности.


Рис. 5. Структурная схема электроснабжения блюминга 1150 (ионный привод)

3. Приближение источников питания к электроприемникам с ударной нагрузкой; питание дуговых электропечей при повышенном напряжении; питание крупных электродвигателей непосредственно от ГПП или ПГВ, минуя соответствующую цеховую подстанцию, и т.п.
4. Уменьшение реактивного сопротивления линий, питающих крупные электроприемники, за счет применения кабелей и токопроводов с пониженной реактивностью, уменьшения реактивности реакторов и т.п.; применение выключателей с повышенным предельным отключаемым током.

 


Рис. 6. Схемы питания ДСП с использованием сдвоенного реактора

5. Присоединение ударных и спокойных нагрузок к разным ветвям сдвоенного реактора (рис. 6), параметры которого должны быть выбраны исходя из условий стабилизации напряжения на ветви реактора, питающей электроприемники со спокойным режимом работы.

    1. Применение на ГПП и ПГВ трансформаторов, имеющих расщепленные обмотки вторичного напряжения с коэффициентом расщепления Кр > 3,5, при выделении на одну из обмоток питания резкопеременных ударных нагрузок.
    2. Питание групп электроприемников с ударными нагрузками (при значительной их мощности) через отдельные трансформаторы.
    3. Применение синхронных компенсаторов с быстродействующим (тиристорным) возбуждением, а также синхронных электродвигателей, имеющих свободную реактивную мощность для ограничения влияния ударных и вентильных нагрузок.

Для синхронных электродвигателей, получающих питание от общих шин с ударными нагрузками, следует применять автоматические быстродействующие регуляторы возбуждения.
Из перечисленных схем наиболее широкое применение, особенно для предприятий средней мощности, находят схемы с расщепленными обмотками трансформаторов ГПП и сдвоенными реакторами (см. рис. 6).
Колебания напряжения на секциях со спокойной нагрузкой под влиянием резкопеременной нагрузки на других секциях будут меньше, чем при подключении всех нагрузок к одной секции шин.

Какими бывают виды схем электроснабжения? • Energy-Systems

Какие виды схем электроснабжения применяются на практике?

Одной из г

лавных задач проектировщика является обеспечение максимальной безопасности, надежности, а также возможности автономной работы отдельных линий подачи питания. Исходя из этого, могут выбираться различные виды схем электроснабжения, которые соответствуют конкретному случаю. Существуют две разновидности принципов организации подключения электроприборов. Наиболее распространенными являются магистральные линии, которые снабжают энергией несколько устройств, расположенных на одной линии относительного подстанции или иного источника питания. Радиальные линии допускают подключение только одного прибора к каждому кабелю.

Основные понятия, которые включает в себя определенные виды схемы электроснабжения

Магистралью называется линия, которая имеет относительно большую протяженность и объединяет в себе несколько потребителей. Именно такой принцип устройства подразумевает проект электропроводки для квартиры, где приборы освещения и точки подключения размещаются на общем кабеле. Провод, с помощью которого осуществляется связь прибора и магистрали, называется ответвлением. Если же говорить о линии, которая соединяет районную электрическую сеть со щитом, трансформатором или подстанцией, то ее любые виды схем электроснабжения обозначают, как фидер.

Объекты, для которых происходит разработка проектов, делятся на три категории. Для первой устанавливается наивысшая степень важности, соответствующая необходимости поддержания жизнеобеспечения человека или целостности ценного оборудования. Если город, в котором разрабатывается электропроект – Москва, то таковыми могут считаться котельные, медицинские и детские образовательные учреждения, предприятия коммунального транспорта.

Пример проекта детского электроснабжения сада

Назад

1из15

Вперед

Эти объекты всегда соединяются с двумя фидерами и оснащены автоматикой переключения. Для потребителей второй категории переключение производится вручную, а для третьей категории резервного источника питания не предусмотрено.

Преимущества и сфера применения для определенных видов схем электроснабжения

Магистральная сеть намного удобнее в организации, так как она не требует прокладывания множества проводов, а также расходов на закупку материалов. Вместе с тем она создает большую нагрузку на каждое подключение и обладает меньшей надежностью. Радиальная компоновка используется, когда каждый прибор, подключаемый к источнику питания, обладает достаточно высокой мощностью и относится к категории повышенной важности.

Однако на практике данные виды схем электроснабжения очень редко встречаются в чистом виде, в большинстве случаев применяются их комбинации. Примером может служить электрический проект промышленного предприятия, где распределение энергии между цехами организовано по магистральному признаку, а от внутрицехового щита – по радиальному.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости проектирования сетей электроснабжения:

Онлайн расчет стоимости проектирования

Схемы электроснабжения. Схема питающих и распределительных сетей предприятия, производства.

Схема электроснабжения строительной площадки показывает связь между источниками питания и приемниками электроэнергии. В качестве источника электроснабжения района, как правило, выбирается государственная или районная энергосистема. Передача электроэнергии к распределительным пунктам или подстанциям осуществляется по питающим линиям.

На рис. 1, а показана схема электроснабжения строительства крупного промышленного предприятия, включающая ГПП и несколько потребительских подстанций (ТП). Источником питания является энергосистема. Электроснабжение может осуществляться от подстанции районной энергосистемы (рис. 1, б).  Распределение  электроэнергии  к  электроприемникам  на  напряжение  до 1000  B  осуществляется  по  распределительным  сетям  низкого  напряжения (рис. 1, в).

Рис. 1. Схемы электроснабжения строительных площадок: а – от энергосистемы; б – от районной энергосистемы; в – от потребительской подстанции: ЭС – энергосистема; РЭС – районная система; ГПП – главная понизительная подстанция; ТП – потребительская трансформаторная подстанция; М – нагрузка

Возможно электроснабжение строительных площадок и производств от смежных источников питания, например, от энергосистемы и от собственной электростанции (рис. 2). В качестве собственной электростанции может использоваться энергопоезд.

Напряжение на шинах РП от энергосистемы и собственной электростанции при   этом должно совпадать (рис. 2, а). При несовпадении напряжений применяется трансформация напряжения от энергосистемы через трансформаторы Т1 и Т2 (рис. 2, б). Возможно электроснабжение при двухстороннем питании.

Схемы электроснабжения с двухсторонним питанием повышают надежность электроснабжения, так как при повреждении одной из линий электроснабжение потребителей, питающихся от поврежденной линии, восстанавливается от второй линии через секционный выключатель на стороне низшего напряжения.

Рис. 2. Схема электроснабжения от энергосистемы и собственной электростанции: а – на одинаковом напряжении; б – с трансформацией напряжения; С – энергосистема; Г – генератор электростанции; РП – распределительный пункт; Т1, Т2 – понижающие трансформаторы; ТП – потребительская трансформаторная подстанция

Напряжение электрических сетей в системе внутреннего электроснабжения может быть 6, 10 и 20 кВ. Наиболее распространенным является напряжение 10 кВ. Оно является более экономичным по сравнению с напряжением 6 кВ по уровню потерь мощности и напряжения в сетях.

Рис. 3. Схемы распределения электроэнергии: а – радиальная; б – магистральная

Напряжение 6 кВ используется в системах, где переход на напряжение 10 кВ считается не рациональным в связи с заменой трансформаторов и электроприемников (например, электродвигателей). Напряжение 20 кВ пока применяется только в сетях, близких от ТЭЦ с генераторным напряжением 20 кВ.

Передача электроэнергии от ИП к распределительным пунктам (РП), ТП или  отдельным  электроприемникам  может  осуществляться  по  радиальным

(рис. 3, а), магистральным (рис. 3, б) или смешанным схемам, сочетающим элементы радиальных и магистральных схем.

Радиальные схемы обладают высокой надежностью. Линии электропередач по этим схемам отходят от источника питания «по радиусам» к РП или ТП. Недостатком схемы является то, что при аварийном отключении питающей линии может оказаться обесточенной большая группа потребителей. Этот недостаток устраняется применением резервирования.

При магистральной схеме одна питающая магистраль обслуживает несколько ТП или РП.  Распределение энергии осуществляется путем выполнения ответвлений от воздушной линии к отдельным подстанциям. Питание ТП можно осуществить путем поочередного ввода ЛЭП сначала от РП к одной ТП, затем от нее к другой ТП и т. д. При магистральных схемах уменьшается протяженность сетей, количество выключателей на РП, снижаются потери мощности в сетях, затраты на сооружение сетей.

Недостатком магистральных схем является снижение надежности по сравнению с радиальными схемами, так как при повреждении магистрали обесточенными оказываются все потребители, питающиеся от нее.

Рис. 4. Распределение электроэнергии по сквозным двойным магистралям: РП – распределительный пункт; ТП – трансформаторная подстанция; АВР – устройство автоматического резервирования

Надежность электроснабжения повышается при применении двухтрансформаторных  подстанций  и  использовании  сквозных  двойных  магистралей (рис. 4). В этом случае от каждой секции РП две магистрали заводятся поочередно на каждую секцию двухтрансформаторной подстанции ТП. Если на шинах низкого напряжения ТП применить устройство автоматического резервирования, например, на автоматических выключателях, то при выходе из строя любой питающей магистрали высшего напряжения электроэнергия будет подаваться потребителям по второй магистрали путем автоматического переключения на секциях шин низкого напряжения. Такие переключения называются автоматическим включением резерва (АВР).

Распределение электроэнергии в сетях до 1 кВ. Схема электроснабжения  объектов строительства зависит от их категории по надежности и бесперебойности электроснабжения. Для электроснабжения производственных электроприемников применяются радиальные, магистральные и смешанные схемы. Магистральная схема применяется для питания нескольких электроприемников отдельного технологического агрегата, или небольшого количества мелких электроприемников, не  связанных технологическим процессом (рис. 5,  а). По радиальной схеме подключаются наиболее мощные электроприемники или отдельные распределительные пункты.

Только радиальные или магистральные схемы применяются редко. Наибольшее распространение получили смешанные схемы, сочетающие и радиальные и магистральные признаки (рис. 5, б).

Рис. 5. Схемы электроснабжения производственных потребителей: а) – магистральная; б) – смешанная; ТП – трансформаторная подстанция; Т1, Т2 – трансформаторы двухтрансформаторной ТП

Схемы осветительных сетей. Электроснабжение светильников общего освещения зданий осуществляется при напряжении 380/220 В переменного тока при заземленной нейтрали и при напряжении 220 В при изолированной нейтрали. Для светильников местного освещения с лампами накаливания применяется напряжение не более 220 В в помещениях без повышенной опасности и не более 42 В в помещениях с повышенной опасностью. Для переносных ручных светильников в помещениях с повышенной опасностью применяется напряжение до 42 В. При стесненных условиях работы питание переносных светильников должно быть при напряжении до 12 В через специально предназначенные трансформаторы.

Схемы электроснабжения осветительной нагрузки в системе электроснабжения цеха (фермы) любого предприятия соответствуют схемам электроснабжения силовой нагрузки, которые рассматривались выше.

При этом к схемам электроснабжения осветительных нагрузок предъявляются следующие требования:

—          электроснабжение осветительной нагрузки должно обеспечиваться совместно с электроснабжением силовой нагрузки или раздельно от электроснабжения силовой нагрузки. Целесообразность совмещения питания электроприемников силовой и осветительной нагрузок должна подтверждаться техникоэкономическими расчетами;

—          схемы питания осветительных установок в зданиях (ремонтные цехи и мастерские, бетонные и растворные заводы, административные помещения) должны допускать автоматизированное управление освещением;

—          схемы питания осветительных установок должны обеспечивать надежность и безопасность электроснабжения.

Аварийное освещение требует создания для него самостоятельной системы электроснабжения, независимой от сети рабочего освещения. Независимым источником питания аварийного освещения является трансформатор, получающий питание от шин, не связанных с шинами рабочего освещения, генератор, приводимый каким-либо первичным двигателем или аккумуляторная батарея.

Схемы питания осветительных сетей показаны на рис. 6 – 8.

Рис. 6.  Схема совместного питания силовой и осветительной нагрузок от двух подстанций (ТП-1, ТП-2)

На рис. 6 приведена схема совместного питания силовой и осветительной нагрузки от двух однотрансформаторных подстанций. Схема совмещенного питания силовой и осветительной нагрузок от одного трансформатора снижает количество трансформаторов по сравнению со схемой раздельного питания этих нагрузок.

На рис 7 приведена схема питания светильников в производственных цехах (ремонтно-механический, столярный, арматурный) от двух трансформаторов.

Рис. 7.  Схема питания осветительной нагрузки в цехе от двух трансформаторов

В этой схеме чередуются ряды светильников, питающихся от разных трансформаторов. При исчезновении напряжения на одном из трансформаторов потеряет питание половина светильников. Освещенность в цехе снизится на 50%. Это позволяет продолжать работу, выполнять определенные технологические операции, не требующие высокой освещенности.

Схемы наружного и уличного освещения. Электроснабжение светильников  наружного  и  уличного  освещения  осуществляется  по  магистральной схеме с равномерной загрузкой фаз (рис. 8).

Рис. 8. Схема наружного и уличного электроснабжения

 

Схемы электроснабжения напряжением до 1 кВ —

Соединение трансформаторов со сборными шинами распределительных устройств низкого напряжения могут осуществляться без применения коммутационных аппаратов (рис. 13.9, а), с применением неавтоматических аппаратов, например рубильников (рис. 13.9, б, в), если на трансформатор не может быть подано напряжение со стороны низкого напряжения, но требуется ручное отключение нагрузки или ручное отключение трансформатора. Такие схемы применяются очень редко.

На промышленных предприятиях, в портах и гидросооружениях присоединения выполняются через автоматические выключатели напряжением до 1 кВ (рис. 13.9, г). Если на двухтрансформаторных подстанциях предусматривается параллельная работа секций шин или автоматическое подключение любой из секций шин низкого напряжения при выходе из строя одного из трансформаторов, то на низковольтной стороне необходимо устанавливать автоматические выключатели для подачи питания при аварии с одним из трансформаторов (рис. 13.9, д).

Присоединение отходящих линий НН выполняется через плавкие предохранители (рис. 13.10, а, б, в) и через автоматические выключатели (рис. 13.10, г, д, е). Схемы обеспечивают отключение электроприемников и сетей НН при профилактическом обслуживании и автоматическое отключение при коротких замыканиях за установленными аппаратами.

Электрические сети напряжением до 1 кВ могут выполняться радиальными, магистральными, смешанными. Участок сети, питающий отдельные электроприемники (ЭП), называется ответвителем, а питающий группу ЭП или группу распределительных шкафов —магистралью.

На рис. 13.11, а приведена схема простейшей радиальной сети; на рис. 13.11, б — радиальная сеть с вторичными магистралями, когда от распределительного щита 1 ТП отходят две радиальные линии к главным шкафам 2, от которых идут вторичные магистрали к распределительным шкафам 3 и от последних — ответвления к отдельным ЭП 4.

Внутрицеховые сети часто выполняются по схеме блок «трансформатор—магистраль». При такой схеме на ТП распределительный щит не ставится, магистраль подводится через разъединитель или автоматический выключатель FS прямо в цех, а от нее ответвлениями питаются ЭП. При расположении подстанции в центре нагрузки получила распространение схема блок «трансформатор—магистраль» с вторичными магистралями (рис. 13.12).

Схема цепочки (рис. 13.13) применяется при малых мощностях электроприемников, количестве их не более четырех и стабильном расположении на площади. При нестабильном расположении технологического оборудования цепочка является неудобной и может применяться только для питания электродвигателей мощностью 1—2 кВт.



Осветительные сети разделяются на два вида: питающие (магистральные), прокладываемые от трансформаторов до групповых щитков, и групповые — идущие от щитков до светильников и штепсельных розеток. Схема групповых сетей для трехфазной сети с глухо- заземленной изолированной нейтралью приведена на рис. 13.14.

Распределительные пункты имеют в качестве аппаратов управления и защиты автоматы или рубильники с предохранителями. В сетях с заземленной нейтралью и нулевым проводом предохранители и автоматы устанавливаются только в фазных проводах, а в нулевом проводе в целях безопасности их установка не допускается.

Схемы питания осветительных установок составляются с учетом требований надежности, вытекающих из степени ответственности и освещенности объектов и учета целесообразности совмещения питания силовых и осветительных сетей.

Освещение может быть рабочее и аварийное. Рабочее освещение создает нормированные уровни освещенности при нормальной эксплуатации; аварийное — обеспечивает условия видения, необходимые для временного продолжения деятельности персонала или для безопасного выхода людей из помещения в случае погасания светильников рабочего освещения.

На схеме питания силовой и осветительной нагрузок от двух ТП (рис. 13.15) аварийное освещение получает питание от оставшейся л двух в работе ТГ1.

Схема питания освещения в помещении с автоматическим переключением осветительной сети с одного трансформатора на другой (рис. 13.16, а) отличается от схемы питания осветительной сети с автоматическим переключением питания с источника переменного тока на источник постоянного тока (рис, 13.16,6).

Напряжение для осветительных установок выбирается одновременно с напряжением для силовых электроприемников. Для светильников общего освещения рекомендуется напряжение 380/220 В переменного тока при заземленной нейтрали и не выше 220 В переменного тока при изолированной нейтрали. Напряжение 380 В допускается для светильников с лампами, выпускаемыми на это напряжение (лампы ДРЛ мощностью 2000 Вт), и для светильников, электрические схемы которых требуют применения этого напряжения. Электроснабжение рабочего освещения, как правило, выполняется самостоятельными линиями от щитков подстанций. При этом электроэнергия от подстанций передается питающими линиями на осветительные магистральные пункты или щитки, а от них — групповым осветительным щиткам. Источники света получают питание от групповых щитков по групповым линиям. Допускается также питание освещения от силовых магистралей при схеме блок «трансформатор—магистраль», если колебания напряжения и отклонения напряжения не превышают норм, установленных для осветительных сетей. Запрещается присоединение сетей освещения всех видов к распределительной силовой сети.

Если по условиям колебаний или отклонения напряжения совместное питание силовой и осветительной нагрузок невозможно, то используют отдельный трансформатор для питания только осветительной нагрузки (см. гл. 20).

Принципиальная Схема Электроснабжения — tokzamer.ru

Поэтому в городских электросетях применяют устройства телемеханики, подающие сигнал на соответствующий диспетчерский пункт об изменении положения в РП указателей сигнализации замыканий на землю, положения выключателей, и позволяющие производить измерения нагрузки и напряжения контролируемых объектов, а также телеуправление выключателями.


При нормальной работе пропускная способность линий составляет не менее половины расчетных нагрузок предприятия.

Программа автоматически определит тип комплектного устройства, рассчитает его стоимость, выполнит размещение оборудования.
Однолинейная схема электроснабжения предприятия. Часть 2.

Существуют компьютерные приложения, позволяющие самостоятельно разработать соответствующую ГОСТам схему.

Схемы питания должны выполняться отдельно для питающей и распределительной сетей.

В замкнутых кабельных сетях все кабельные линии напряжением до В включены параллельно замкнуты , а в трансформаторных подстанциях на силовых трансформаторах со стороны низшего напряжения установлены автоматы обратной мощности, отключающие трансформаторы от сети при повреждении распределительных кабелей напряжением выше В, или специальные предохранители, обеспечивающие селективное отключение поврежденного участка. Для электроприемников первой категории выполняют автоматику АВР на вводно-распределительных устройствах или в распределительных сетях, отходящих от вводно-распределительных устройств, и в этом случае электроснабжение осуществляется несколькими не менее двух линиями напряжением до 1 кВ от различных трансформаторов.

Такое подключение отлично демонстрирует однолинейная схема трансформатора КТП: Фото — однолинейная схема трансформатора ктп Примеры того, что должна включать однолинейная типовая схема электроснабжения поликлиники, квартиры, загородного или дачного дома, завода или прочих помещений: Точку, где объект подключается к электрической сети; Все ВРУ вводно-распределительные устройства ; Точку и марку прибора, который используется для подключения помещения в большинстве случаев, нужны также параметры щита ; Нужно не только начертить кабель питания, но и отметить на схеме его сечение и марку, иногда мастера помечают номинал; Проект должен содержать данные про номинальные и максимальные токи оборудования, которое используется на объекте.

Цифра в такой схеме отвечает за определение количества фаз, а перечеркнутая косыми отрезками линия — это определение фазы. Пример оформления однолинейной схемы электроснабжения промышленного предприятия Виды однолинейных электрических схем В зависимости от того, на каком этапе выполнения работ по созданию электрической сети объекта составляется однолинейная схема, зависит её вид и прямое предназначение.

Как читать Элекрические схемы

Принципиальные схемы электроснабжения

В особенности она необходима для подключения к локальной сети дома с АВР: Фото — дом с авр Чтобы бесплатно разработать однолинейную схему электроснабжения детского учреждения, частных построек гаражей, домов, квартир, киосков , многоэтажного жилого здания, завода СНТ , вахтовых вагонов, Вам понадобится ЕСКД. Порядок получения технических условий на подключение к электрическим сетям регламентирован рядом документов. При самостоятельном выполнении данной задачи необходимо помнить, что чертеж должен четко репрезентировать основные параметры электросети.

Программа XL Pro распространяется бесплатно и доступна для загрузки зарегистрированными пользователями Extranet. Назначение однолинейной схемы..

До точки подключения эксплуатационную ответственность несет поставщик электроэнергии владелец сетей , после нее — потребитель электроэнергии. Однолинейная схема должна быть информативной Как мы видим, однолинейная схема является одним из основополагающих документов в проекте электроснабжения.

К распределительной сети относятся также цепи всех назначений, связывающие первичные приборы и датчики с вторичными приборами и регулирующими устройствами. Граница балансовой принадлежности..

В замкнутых кабельных сетях все кабельные линии напряжением до В включены параллельно замкнуты , а в трансформаторных подстанциях на силовых трансформаторах со стороны низшего напряжения установлены автоматы обратной мощности, отключающие трансформаторы от сети при повреждении распределительных кабелей напряжением выше В, или специальные предохранители, обеспечивающие селективное отключение поврежденного участка. Высокая степень интерактивности интерфейса позволяет получать ответы на вопросы, часто возникающие в процессе создания схемы.

При нормальной работе пропускная способность линий составляет не менее половины расчетных нагрузок предприятия.

Высокая степень интерактивности интерфейса позволяет получать ответы на вопросы, часто возникающие в процессе создания схемы.
Как читать электрические схемы

Читайте дополнительно: Ту на укладку лэп под землю

Что такое однолинейная схема электроснабжения?

Почему схема однолинейная? Такие мероприятия необходимы для того, чтобы в дальнейшем не возникло ситуаций, которые приведут к материальным потерям предприятия.

Изображение должно содержать три фазы, питающие помещение, отходящие от них электролинии групповых сетей, данные о выключателях и устройствах защитного отключения, кабелях питания. Основное предназначение подобной исполнительной документации — информативность и предоставление визуального восприятия о конфигурации электрической сети объекта, необходимого для принятия решений при эксплуатации энергетического хозяйства.

Основные характеристики аппаратов схемы питания записываются в перечень, который оформляется в виде таблицы, заполняемой сверху вниз. Но все они как правило сложны в освоении, если Вы не занимаетесь этим профессионально. Главное, соблюсти некоторые основные требования, чтобы получившийся рисунок был понятен и нёс в себе максимум полезной информации.

Почему схема однолинейная? В схему в обязательном порядке нужно включить не только основные её составляющие кабеля ввода, заземления, УЗО , но и розетки, выключатели света в комнатах. Условные обозначения, используемые при составлении однолинейных схем Условные обозначения Визуальное представление различных элементов, составляющих систему энергоснабжения, регламентируется нормативными источниками. Однолинейная схема — это та же принципиальная схема, только выполненная в упрощенном виде: все линии однофазных и трехфазных сетей изображаются одной линией, отсюда и название.

Граница зоны ответственности отображается в Договоре на электроснабжение конкретного объекта. Какие сведения должны быть указаны на однолинейной схеме?


Монтажные — согласовываются с архитектурными нюансами с указанием всех точных данных по кабелям, размерам оборудования, элементам крепежа и другим. Все очень просто: возле линии, которая определяет многофазное питание ставится цифра и перечеркнутый штрих, как на фото ниже. Пример оформления однолинейной схемы жилого дома представлен на рис. Магистральные щитовые элементы имеют горизонтальную черту, отсекающую небольшой фрагмент внизу.

Также есть возможность создавать персональный каталог из устройств, которых нет в базе данных программы. В программе есть режим автоматического подбора ячейки нужной конфигурации с учетом ранее заданных критериев. Эти сети обеспечивают надежное электроснабжение потребителей, так как при отключении участка сети 6 — 10 кВ напряжение у потребителей сохраняется, но из-за сложности защиты от коротких замыканий в нашей стране применяются редко.

В большинстве случаев, электроснабжение предприятий осуществляется от энергосистем. Расчётная схема квартирного щита загородного дома На этапе эксплуатации объекта составляются однолинейные исполнительные схемы, на которых отображаются все изменения, вносимые в конфигурацию электрической сети в процессе её использования. В связи с этим все работы по проектированию схемы электроснабжения можно разбить на несколько этапов: Запрос и получение технических условий; Разработка однолинейной схемы электроснабжения на основании полученных документов; Согласование разработанной документации в организации, выдавшей технические условия.
Схема электрическая принципиальная

2.5. Принципиальные электрические схемы питания

Для проектируемых новых объектов выполняется расчетная однолинейная схема.

Сначала от заявителя требуется оформление запроса к компании, оказывающей услуги по электроснабжению, на выдачу технических условий на реализацию данной задачи.

С удалением связей то же были проблемы какие-то не удалялись. Такие учреждения есть в Белгороде, Москве, Санкт-Петербурге и других крупных и средних населенных пунктах.

К ним относят сооружения с массовым скоплением людей театры, стадионы, универмаги , электрифицированный транспорт метрополитен, железные дороги , больницы, предприятия связи, высотные здания, группы городских потребителей с суммарной нагрузкой выше кВА, некоторые силовые установки вращающиеся печи с дутьем. Вместо них используется определение фазы по количеству штрихов.

Статья по теме: Прокладка кабеля в земле гост

В чем нарисовать однолинейную электрическую схему

Также есть возможность создавать персональный каталог из устройств, которых нет в базе данных программы. У изображений рубильников, выключателей, автоматов, предохранителей схем распределительной сети их технические характеристики не проставляются. Её назначение скорее необходимо для выявления недочётов и нарушений и применяется при модернизации и перерасчёте электросети. В любом случае имеется следующее, что можно ограничить расчет небольшой базой типов оборудования и кабелей и менять уже по факту после расчетов.

Программа на русском языке. Поскольку в документе есть главное — информация. При маркировке схем рекомендуется цепям питания присваивать группы цифр от до Многие начинающие электрики могут усомниться в эффективности таких чертежей, ведь кажется, что непонятно, как их отобразить тогда трехфазное или двухфазное питание. Условные обозначения, используемые при составлении однолинейных схем Условные обозначения Визуальное представление различных элементов, составляющих систему энергоснабжения, регламентируется нормативными источниками.

Что такое однолинейная схема электроснабжения и зачем нужна

Монтажный проект требует согласования с архитектурно-конструкторскими решениями и строгого указания диаметров проводов и габаритов оборудования. Отнеситесь к оформлению однолинейной схемы со всей ответственностью и тогда у вас не будет проблем с согласованием и утверждением проекта.

Но при этом однофазная проводка обозначается одной линией с одним штрихом. Для однолинейных схем электроснабжения обозначения приборов, пускателей, контакторов, выключателей, розеток и прочих элементов применяют согласно ГОСТ 2. На схеме распределительной сети показываются: аппараты управления рубильники, выключатели, переключатели ; аппараты защиты автоматы, предохранители ; преобразователи выпрямители, трансформаторы, стабилизаторы и т. Сечения проводников питающей и распределительной сетей системы электропитания КИП и СА должны выбираться по условиям нагревания электрическим током и механической прочности с последующей проверкой по потере напряжения.
Автоматическая прорисовка однолинейной схемы

Основные типы схем электрических сетей внутреннего электроснабжения

Характерные схемы внутреннего электроснабжения

Схемы электроснабжения, обеспечивающие питание предприятия на его территории, из-за большой разветвленности, большого количества аппара­тов должны быть значительно дешевле и надежнее, чем схемы внешнего электроснабжения. Это положение обеспечивается тем, что в зависимости от конкретных требований обеспечения питания приемников и потребителей применяют различные схемы питания.

Схемы радиального питания. Радиальными являются схемы, в которых электроэнергию от центра питания передают прямо к цеховой под­станции без ответвлений на пути для питания других потребителей. Применять радиальные схемы следует только для питания достаточно мощных потребителей.

Схема на рис. 9.14, а предназначена для питания потребителей 3-й категории или потребителей 2-й категории с пониженной ответственностью. Схема на рис. 9.14,б предназначена для потребителей 2-й категории. Схема на рис. 9.14, в предназначена для электроснабжения потребителей 1-й категории, но ее используют и для питания потребителей 2-й ка­тегории, перерыв в питании которых влечет за собой недоотпуск про­дукции и которые имеют народнохозяйственное значение в масштабе страны.

Схема магистрального питания. Магистральные схемы применяют в системе внутреннего электроснабжения предприятий в том случае, когда потребителей достаточно много и радильные схемы питания явно неце­лесообразны. На рис. 9.15 приведена схема магистрального питания. Эти схемы характеризуются пониженной надежностью питания, но дают возможность уменьшить число отключающих аппаратов и более удачно скомпоновать потребителей для питания.

Когда необходимо сохранить преимущества магистральных схем и обеспечить высокую надежность питания, применяют систему транзитных (сквозных) магистралей (рис. 9.16). В этой схеме при повреждении любой из питающих магистралей высшего напряжения питание надежно обеспе­чивают по второй магистрали путем автоматического переключения по­требителей на секцию шин низшего напряжения трансформатора, остав­шегося в работе.



Схемы смешанного питания. В прак­тике проектирования и эксплуатации систем электроснабжения промышлен­ных предприятий редко встречаются схемы, построенные только по радиаль­ному или только магистральному прин­ципу. Обычно крупные и ответственные потребители или приемники питают по радиальной схеме. На рис. 9.17 приведена такая схема смешанного питания.

 

Схема электроснабжения объекта

Как оформляется и зачем нужна схема электроснабжения объекта?

Для осуществления технологического присоединения может потребоваться несколько видов различной документации. Проект электроснабжения — один из таких видов. Как правило, под схемой электроснабжения понимают однолинейную схему, в то время как проектная документация имеет более сложный вид и состоит из большого количества дополнительной документации.

Однолинейная схема также объединяет под своим названием большое количество различных схем электроснабжения, включая расчетные и исполнительные. Как и любая другая документация по электроснабжению, однолинейная схема подчиняется действующему законодательству и даже ГОСТам. Следовательно, набросать ее от руки не получится. Для того, чтобы такую схему приняли в сетевой компании, ее должен разработать специалист с допуском СРО и необходимой квалификацией.

В нашей сегодняшней статье мы поговорим о том, какой может быть схема электроснабжения объекта и как ее заказать.

×

 

Хотите узнать точную стоимость необходимых услуг?

Звоните! +7 (812) 648-50-05

 

Расчетная и исполнительная схема электроснабжения объекта: в чем разница?

Однолинейная схема – это та же принципиальная схема, только выполненная в упрощенном виде: все линии однофазных и трехфазных сетей изображаются одной линией, отсюда и название.
Различают исполнительную и расчетную однолинейную схему.

Разница между видами схем такова:

  • Для находящихся в эксплуатации электроустановок используется исполнительная схема. Она выполняется тогда, когда возникает необходимость ввести серьезные изменения в проект по результатам обследования действующей электроустановки и выявления несоответствий существующим нормативам и правилам.
  • Для проектируемых новых объектов выполняется расчетная однолинейная схема. Она выполняется после расчетов электрических нагрузок, выбора защитно-коммутационных аппаратов и кабельной продукции. Расчетная однолинейная схема является основой для разработки электрических принципиальных и электромонтажных схем, необходимых для выполнения монтажных работ.

Какой может быть расчетная и исполнительная схема электроснабжения объекта?

Исполнительная схема электроснабжения применяется с целью перерасчета существующей системы подачи электроснабжения, чаще всего, это делают для того, чтобы серьезно обновить уже готовый проект. Исполнительная схема электроснабжения – это документ, который включает в себя такие данные:

  • текущее состояние сетей;
  • приборов, которые входят в сети;
  • рекомендации по устранению тех или иных недостатков, выявленных в ходе проведения тех или иных технических мероприятий

Расчетная однолинейная схема электроснабжения чаще всего применяется после окончательного просчета нагрузок, которые требуются для электропитания одного помещения. Часто такую схему проектируют уже после того, как были совершены просчеты по проводам и кабелям. Расчетная однолинейная схема включает в себе следующее: структурная электрическая;

  • функциональная электросхема;
  • монтажная электросхема;
  • кабельные планы;
  • чертежи;
  • проект пожарной безопасности

Структурные – содержат общие данные про электроустановку, которая выражается в указании связей силовых элементов, в частности, трансформаторов, линий электропередач, точек врезки и многого другого;

Функциональные – их делают преимущественно с целью абстрактной передачи действий механизмов, к которым присоединяется электроснабжение, также указывается их взаимодействие друг с другом и то, как они влияют на общее положение дел с точки зрения безопасности. Такие схемы в основном применяются для проектирования промышленных объектов с большим количеством машин, механизмов и оборудования, которые тоже нужно наносить на схему;

Принципиальные – чаще всего выполняются согласно ГОСТ и других стандартов той или иной страны, например, IEC, ANSI, DIN и т.д.;

Монтажные – должны четко быть согласованными с теми или иными архитектурными решениями и строительными конструкциями, в частности, несущими. Каких-то специальных требований к их оформлению нет, то размеры оборудования и сечение проводов нужно указывать четко, также нужно указывать точно диаметры кабелей и четкие размеры элементов крепежа и прочих аксессуаров.

Схема электроснабжения объекта в компании “ЭнергоКонсалт”.

Как видно из всего вышесказанного, разработать схему электроснабжения объекта не так просто, как может показаться на первый взгляд. Необходимо учесть множество нюансов, а также правильно выбрать вид требуемой схемы.

Кроме того, в некоторых случаях могут потребоваться также дополнительные согласования или помощь специалистов в решении возникающих споров. Если вам нужна качественная схема электроснабжения, которая будет отвечать всем актуальным требованиям контролирующих организаций и действующим стандартам, компания “ЭнергоКонсалт” рада предоставить вам всю необходимую помощь.

Мы работаем с 2002 года, и за это время уже решили множество самых сложных вопросов по электроснабжению. Посмотреть, кому и чем конкретно мы помогли, вы можете в специальном разделе нашего сайта. Для того, чтобы заказать схему электроснабжения или получить бесплатную консультацию нашего специалиста по любому вопросу, вам достаточно просто связаться с нами любым удобным для вас способом, мы обязательно вам поможем!

БАЗОВЫЕ БЛОКИ ПИТАНИЯ — Электроника с длиной волны

Теория нерегулируемого источника питания

Поскольку нерегулируемые источники питания не имеют встроенных регуляторов напряжения, они обычно предназначены для выработки определенного напряжения при определенном максимальном выходном токе нагрузки. Обычно это блочные настенные зарядные устройства, которые превращают переменный ток в небольшую струйку постоянного тока и часто используются для питания таких устройств, как бытовая электроника. Они являются наиболее распространенными адаптерами питания и получили прозвище «настенная бородавка».

Выходное напряжение постоянного тока зависит от внутреннего понижающего трансформатора напряжения и должно быть максимально приближено к току, необходимому для нагрузки. Обычно выходное напряжение уменьшается по мере увеличения тока, подаваемого на нагрузку.

При нерегулируемом источнике питания постоянного тока выходное напряжение зависит от размера нагрузки. Обычно он состоит из выпрямителя и конденсатора сглаживания, но без регулятора для стабилизации напряжения. Он может иметь цепи безопасности и лучше всего подходит для приложений, не требующих точности.

Рисунок 4: Блок-схема — нерегулируемая линейная подача

Преимущества нерегулируемых источников питания в том, что они долговечны и могут стоить недорого. Однако их лучше всего использовать, когда точность не является требованием. Они имеют остаточную пульсацию, аналогичную показанной на рисунке 3.

ПРИМЕЧАНИЕ: Wavelength не рекомендует использовать нерегулируемые источники питания с какими-либо из наших продуктов.

Теория регулируемых источников питания

Стабилизированный источник питания постоянного тока — это, по сути, нерегулируемый источник питания с добавлением регулятора напряжения.Это позволяет напряжению оставаться стабильным независимо от величины тока, потребляемого нагрузкой, при условии, что предварительно определенные пределы не превышаются.

Рисунок 5: Блок-схема — Регулируемая поставка

В регулируемых источниках питания схема непрерывно производит выборку части выходного напряжения и регулирует систему, чтобы поддерживать выходное напряжение на требуемом значении. Во многих случаях включается дополнительная схема для обеспечения ограничений по току или напряжению, фильтрации шума и регулировки выхода.

Линейный, переключаемый или аккумуляторный?

Существует три подгруппы регулируемых источников питания: линейные, переключаемые и аккумуляторные. Из трех основных конструкций регулируемых источников питания линейная является наименее сложной системой, но переключаемое и аккумуляторное питание имеет свои преимущества.

Линейный источник питания
Линейный источник питания используется, когда наиболее важным является точное регулирование и устранение шума. Хотя они не являются наиболее эффективными источниками питания, они обеспечивают лучшую производительность.Название происходит от того факта, что они не используют переключатель для регулирования выходного напряжения.

Линейные источники питания доступны в течение многих лет, и их использование широко распространено и надежно. Они также относительно бесшумны и коммерчески доступны. Недостатком линейных источников питания является то, что они требуют более крупных компонентов, следовательно, они больше и рассеивают больше тепла, чем импульсные источники питания. По сравнению с импульсными источниками питания и батареями они также менее эффективны, иногда демонстрируя лишь 50% эффективности.

Импульсный источник питания
Импульсный источник питания (SMPS) сложнее сконструировать, но он отличается большей универсальностью по полярности и при правильной конструкции может иметь КПД 80% и более. Хотя в них больше компонентов, они меньше и дешевле, чем линейные источники питания.

Рисунок 6: Блок-схема — Регулируемое импульсное питание

Одно из преимуществ коммутируемого режима — меньшие потери на коммутаторе.Поскольку SMPS работают на более высоких частотах, они могут излучать шум и создавать помехи для других цепей. Необходимо принять меры по подавлению помех, такие как экранирование и соблюдение протоколов компоновки.

Преимущества импульсных источников питания заключаются в том, что они, как правило, небольшие и легкие, имеют широкий диапазон входного напряжения и более высокий выходной диапазон, а также намного более эффективны, чем линейные источники питания. Однако SMPS имеет сложную схему, может загрязнять сеть переменного тока, является более шумным и работает на высоких частотах, требующих уменьшения помех.

Аккумуляторный
Аккумуляторный источник питания — это третий тип источника питания, по сути, мобильный накопитель энергии. Питание от батарей производит незначительный шум, мешающий работе электроники, но теряет емкость и не обеспечивает постоянное напряжение по мере разряда батарей. В большинстве случаев, когда используются лазерные диоды, батареи являются наименее эффективным методом питания оборудования. Для большинства батарей трудно подобрать правильное напряжение для нагрузки. Использование батареи, которая может превышать внутреннюю рассеиваемую мощность драйвера или контроллера, может повредить ваше устройство.

Выбор источника питания
  • При выборе блока питания необходимо учитывать несколько требований.
  • Требования к мощности нагрузки или цепи, включая
  • Функции безопасности, такие как ограничения по напряжению и току для защиты нагрузки.
  • Физический размер и эффективность.
  • Помехозащищенность системы.
Цепи питания

| Практические аналоговые полупроводниковые схемы

Существует три основных типа источников питания: нерегулируемый (также называемый грубой силой ), линейный регулируемый и переключающий .Четвертый тип схемы источника питания, называемый с регулируемой пульсацией , представляет собой гибрид между схемами «грубой силы» и «переключением» и заслуживает отдельного раздела.

нерегулируемый

Нерегулируемый источник питания — самый примитивный тип, состоящий из трансформатора , выпрямителя и фильтра нижних частот . Эти источники питания обычно демонстрируют большое количество пульсаций напряжения (то есть быстро меняющуюся нестабильность) и другие «шумы» переменного тока, накладываемые на мощность постоянного тока.Если входное напряжение изменяется, выходное напряжение будет изменяться пропорционально. Преимущество нерегулируемых поставок в том, что они дешевы, просты и эффективны.

линейно регулируемый

Линейный регулируемый источник питания — это просто «грубый» (нерегулируемый) источник питания, за которым следует транзисторная схема, работающая в «активном» или «линейном» режиме, отсюда и название «линейный стабилизатор ». (В ретроспективе это очевидно, не так ли?) Типичный линейный регулятор предназначен для вывода фиксированного напряжения для широкого диапазона входных напряжений, и он просто сбрасывает любое избыточное входное напряжение, чтобы обеспечить максимальное выходное напряжение на нагрузку.Это чрезмерное падение напряжения приводит к значительному рассеиванию мощности в виде тепла. Если входное напряжение станет слишком низким, транзисторная схема потеряет стабилизацию, что означает, что она не сможет поддерживать постоянное напряжение. Он может только снизить избыточное напряжение, но не восполнить недостаток напряжения в цепи грубой силы. Следовательно, вы должны поддерживать входное напряжение как минимум на 1–3 вольт выше желаемого выходного напряжения, в зависимости от типа регулятора. Это означает, что эквивалент мощности не менее от 1 до 3 вольт, умноженный на ток полной нагрузки, будет рассеиваться схемой регулятора, выделяя много тепла.Это делает источники питания с линейной регулировкой неэффективными. Кроме того, чтобы избавиться от всего этого тепла, они должны использовать большие радиаторы, которые делают их большими, тяжелыми и дорогими.

Переключение

Импульсный регулируемый источник питания («переключатель») — это попытка реализовать преимущества схем с прямым и линейным регулированием (компактность, эффективность и дешевизна, но также «чистое» стабильное выходное напряжение). Импульсные источники питания работают по принципу выпрямления входящего переменного напряжения линии электропередачи в постоянный ток, преобразования его в высокочастотный прямоугольный переменный ток через транзисторы, работающие как переключатели включения / выключения, повышая или понижая это напряжение переменного тока с помощью легкого веса. трансформатор, затем выпрямляет выход переменного тока трансформатора в постоянный ток и фильтрует его для конечного выхода.Регулировка напряжения достигается изменением «рабочего цикла» инверсии постоянного тока в переменный на первичной стороне трансформатора. В дополнение к более легкому весу из-за меньшего сердечника трансформатора, коммутаторы имеют еще одно огромное преимущество перед двумя предыдущими конструкциями: этот источник питания типа может быть сделан настолько независимым от входного напряжения, что он может работать в любой системе электроснабжения в России. мир; они называются «универсальными» источниками питания. Обратной стороной коммутаторов является то, что они более сложны и из-за своей работы имеют тенденцию генерировать много высокочастотного «шума» переменного тока в линии электропередачи.Большинство коммутаторов также имеют на своих выходах значительные пульсации напряжения. У более дешевых типов этот шум и пульсации могут быть такими же сильными, как и для нерегулируемого источника питания; Такие коммутаторы начального уровня не бесполезны, потому что они по-прежнему обеспечивают стабильное среднее выходное напряжение, и есть «универсальные» входные возможности. Дорогие переключатели не имеют пульсаций и имеют почти такой же низкий уровень шума, как и некоторые линейные переключатели; эти переключатели обычно столь же дороги, как и линейные источники питания. Причина использования дорогого коммутатора вместо хорошего линейного в том, что вам нужна универсальная совместимость с энергосистемой или высокая эффективность.Высокая эффективность, легкий вес и небольшие размеры — вот причины, по которым импульсные источники питания почти повсеместно используются для питания цифровых компьютерных схем.

Регулируемая пульсация

Источник питания с пульсирующим регулированием является альтернативой линейно регулируемой проектной схеме: источник питания «грубой силы» (трансформатор, выпрямитель, фильтр) составляет «входной конец» схемы, но транзистор работает строго в его включенном состоянии. В режиме выключения (насыщение / отсечка) мощность постоянного тока передается на большой конденсатор по мере необходимости для поддержания выходного напряжения между высокой и низкой уставкой.Как и в переключателях, транзистор в стабилизаторе пульсаций никогда не пропускает ток, находясь в «активном» или «линейном» режиме в течение значительного промежутка времени, что означает, что очень мало энергии будет потрачено впустую в виде тепла. Однако самым большим недостатком этой схемы регулирования является необходимое присутствие некоторой пульсации напряжения на выходе, поскольку напряжение постоянного тока изменяется между двумя уставками управления напряжением. Кроме того, это пульсирующее напряжение изменяется по частоте в зависимости от тока нагрузки, что затрудняет окончательную фильтрацию постоянного тока.Цепи регулятора пульсаций, как правило, немного проще, чем схемы переключателя, и им не нужно обрабатывать высокие напряжения в линии питания, с которыми должны работать переключающие транзисторы, что делает их более безопасными в эксплуатации.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Классификация источников питания

и их различные типы

Блок питания — это часть оборудования, которое используется для преобразования мощности, подаваемой из розетки, в полезную для многих частей внутри электрического устройства. Каждый источник энергии должен управлять своей нагрузкой, которая к нему подключена.В зависимости от конструкции блок питания может получать энергию от различных типов источников энергии, таких как системы передачи электроэнергии, электромеханические системы, такие как генераторы и генераторы переменного тока, преобразователи солнечной энергии, устройства хранения энергии, такие как аккумулятор и топливные элементы, или другие источник питания. Существуют источники питания двух типов: постоянного и переменного тока. В зависимости от электрических характеристик электрического устройства оно может использовать питание переменного или постоянного тока.


Что такое блок питания?

Источник питания можно определить как электрическое устройство, используемое для подачи электроэнергии на электрические нагрузки.Основная функция этого устройства — изменение электрического тока от источника на точное напряжение, частоту и ток для питания нагрузки. Иногда эти блоки питания можно назвать преобразователями электроэнергии. Некоторые типы расходных материалов представляют собой отдельные части грузов, тогда как другие изготавливаются из устройств, которыми они управляют.

Блок-схема источника питания

Схема источника питания используется в различных электрических и электронных устройствах.Цепи питания подразделяются на различные типы в зависимости от мощности, которую они используют для обеспечения цепей или устройств. Например, схемы на основе микроконтроллера обычно представляют собой схемы регулируемого источника питания (RPS) 5 В постоянного тока, которые могут быть спроектированы с помощью различных методов для изменения мощности с 230 В переменного тока на 5 В постоянного тока.

Блок-схема источника питания и пошаговое преобразование 230 В переменного тока в 12 В постоянного тока обсуждаются ниже.

  • Понижающий трансформатор преобразует 230 В переменного тока в 12 В.
  • Мостовой выпрямитель используется для преобразования переменного тока в постоянный.
  • Конденсатор используется для фильтрации пульсаций переменного тока и подает их на регулятор напряжения.
  • Наконец, регулятор напряжения регулирует напряжение до 5 В и, наконец, используется блокирующий диод для измерения пульсирующей формы волны.
Блок-схема источника питания

Классификация источников питания и их различные типы

Здесь мы обсудим различные типы источников питания, которые существовали на рынке.В таблице ниже указаны основные типы источников питания для следующих условий.

ВЫХОД = DC

ВЫХОД = AC

INPUT = AC

  • Зарядное устройство для батареи
  • Настенная витрина
  • Изолирующий трансформатор
  • Переменный источник питания переменного тока
  • Преобразователь частоты

ВХОД = DC

Переменный источник питания переменного тока

Напряжения переменного тока генерируются различными напряжениями переменного тока. трансформатор.Трансформатор может иметь несколько обмоток или ответвлений, и в этом случае прибор использует переключатели для выбора различных уровней напряжения. В качестве альтернативы можно использовать регулируемый трансформатор (регулируемый автотрансформатор) для непрерывного изменения напряжения. Некоторые источники переменного тока включают измерители для контроля напряжения, тока и / или мощности.


Переменный источник питания переменного тока

Нерегулируемый линейный источник питания

Нерегулируемый источник питания содержит понижающий трансформатор, выпрямитель, конденсатор фильтра и спускной резистор.Этот тип источника питания из-за простоты является наименее дорогостоящим и наиболее надежным для требований низкого энергопотребления. Главный недостаток — непостоянство выходного напряжения. Оно будет варьироваться в зависимости от входного напряжения и тока нагрузки, и пульсации не подходят для электронных приложений. Пульсации можно уменьшить, заменив конденсатор фильтра на фильтр LC (катушка индуктивности-конденсатор), но стоимость будет выше.

Нерегулируемый линейный источник питания
Входной трансформатор

Входной трансформатор используется для преобразования входящего линейного напряжения до необходимого уровня источника питания.Он также изолирует выходную цепь от сети. Здесь мы используем понижающий трансформатор.

Выпрямитель

Выпрямитель, используемый для преобразования входящего сигнала из формата переменного тока в необработанный постоянный ток. Пожалуйста, обратитесь по этим ссылкам. Доступны различные типы выпрямителей: однополупериодный и двухполупериодный выпрямители.

Фильтр-конденсатор

Пульсирующий постоянный ток от выпрямителя подается на сглаживающий конденсатор. Это устранит нежелательную рябь в пульсирующем постоянном токе.

Сглаживающий резистор
Сглаживающий резистор

также известен как резистор стока источника питания. Он подключается к конденсаторам фильтра для отвода накопленного заряда, поэтому питание системы не представляет опасности.

Программируемый источник питания

Этот тип источника питания позволяет дистанционно управлять его работой через аналоговый вход или цифровые интерфейсы, такие как GPIB или RS232. Контролируемые свойства этого источника питания включают ток, напряжение, частоту.Эти типы расходных материалов используются в широком спектре приложений, таких как производство полупроводников, генераторов рентгеновского излучения, мониторинг роста кристаллов, автоматическое тестирование оборудования.

Как правило, в этих типах источников питания используется микрокомпьютер, необходимый для управления и контроля работы источника питания. Блок питания, снабженный интерфейсом компьютера, использует стандартные (или) проприетарные протоколы связи и язык управления устройством, такой как SCPI (стандартные команды для программируемых инструментов)

Блок питания компьютера

Блок питания в Компьютер — это часть оборудования, которая используется для преобразования мощности, подаваемой из розетки, в полезную мощность для нескольких частей компьютера.Он преобразует переменный ток в постоянный.

Он также контролирует перегрев с помощью управляющего напряжения, которое может изменяться вручную или автоматически в зависимости от источника питания. Блок питания или блок питания также называют преобразователем мощности или блоком питания.

В компьютере внутренние компоненты, такие как корпуса, материнские платы и блоки питания, доступны в различных конфигурациях, размеры которых известны как форм-фактор. Все эти три компонента должны быть хорошо согласованы, чтобы правильно работать вместе.

Регулируемый линейный источник питания

Регулируемый линейный источник питания аналогичен нерегулируемому линейному источнику питания, за исключением того, что вместо резистора утечки используется трехконтактный стабилизатор. Основная цель этого источника питания — обеспечить требуемый уровень мощности постоянного тока для нагрузки. Источник питания постоянного тока использует источник переменного тока в качестве входа. Для разных приложений требуются разные уровни атрибутов напряжения, но в настоящее время источники питания постоянного тока обеспечивают точное выходное напряжение. И это напряжение регулируется электронной схемой, так что оно обеспечивает постоянное выходное напряжение в широком диапазоне выходных нагрузок.Блок-схема регулируемого источника питания

Здесь представлена ​​основная принципиальная схема регулируемого линейного источника питания, представленная ниже.

Регулируемый линейный источник питания

Основными особенностями этого источника питания являются следующие.

  • КПД этого источника питания колеблется от 20 до 25%.
  • В качестве магнитных материалов, используемых в этом источнике питания, используются сердечники из CRGO или стали.
  • Он более надежный, менее сложный и громоздкий.
  • Дает более быстрый ответ.

К основным преимуществам линейного источника питания можно отнести надежность, простоту, дешевизну и низкий уровень шума.Наряду с этими преимуществами есть некоторые недостатки, такие как

. Они лучше всего подходят для нескольких приложений с низким энергопотреблением, в результате, когда требуется высокая мощность; недостатки становятся более очевидными. К недостаткам этого источника питания можно отнести большие потери тепла, габариты и низкий КПД. Когда линейный источник питания используется в приложениях большой мощности; для управления мощностью требуются большие компоненты.

Сглаживание

После выпрямления из сигнала переменного тока необходимо сглаживать постоянный ток, чтобы удалить изменяющийся уровень напряжения.Для этой цели обычно используются конденсаторы большой емкости.

Регулятор напряжения

Линейный регулятор имеет активное (BJT или MOSFET) проходное устройство (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным опорным напряжением и регулирует проходное устройство для поддержания постоянного уровня выходного напряжения. Есть два основных типа линейных источников питания. Узнайте больше о различных типах регуляторов напряжения с принципом работы.

Регулятор серии

Это наиболее широко используемые регуляторы для линейных источников питания.Как следует из названия, в схему помещается последовательный элемент, как показано на рисунке ниже, и его сопротивление изменяется с помощью управляющей электроники, чтобы гарантировать, что правильное выходное напряжение генерируется для потребляемого тока.

Концепция последовательного регулятора напряжения или последовательного регулятора прохода
Шунтирующий регулятор

Шунтирующий регулятор менее широко используется в качестве основного элемента в регуляторе напряжения. При этом переменный элемент размещается поперек нагрузки, как показано ниже. Сопротивление истока установлено последовательно со входом, а шунтирующий регулятор регулируется, чтобы гарантировать, что напряжение на нагрузке остается постоянным.

Шунтирующий регулятор напряжения с обратной связью

Импульсный источник питания (SMPS)

SMPS имеет выпрямитель, фильтрующий конденсатор, последовательный транзистор, регулятор, трансформатор, но он более сложен, чем другие источники питания, которые мы обсуждали.

Импульсный источник питания

Показанная выше схема представляет собой простую блок-схему. Напряжение переменного тока выпрямляется до нерегулируемого постоянного напряжения с помощью последовательного транзистора и регулятора. Этот постоянный ток прерывается до постоянного высокочастотного напряжения, что позволяет значительно уменьшить размер трансформатора и позволяет использовать источник питания гораздо меньшего размера.Недостатки этого типа источника питания состоят в том, что все трансформаторы должны изготавливаться по индивидуальному заказу, а сложность источника питания не подходит для низкопроизводительных или экономичных применений с низким энергопотреблением. Пожалуйста, перейдите по этой ссылке, чтобы узнать все о SMPS.

Импульсный источник питания (SMPS)

Источник бесперебойного питания (ИБП)

ИБП — это резервный источник питания, который в случае сбоя или колебаний напряжения дает достаточно времени для правильного отключения системы или для резервного генератора. запускать.ИБП обычно состоит из группы аккумуляторных батарей и схем измерения и кондиционирования мощности. Кроме того, ознакомьтесь с принципиальной схемой ИБП и различными типами, пожалуйста, перейдите по этой ссылке, чтобы узнать больше о принципиальной схеме и работе ИБП.

Источник бесперебойного питания (ИБП)

Источник питания постоянного тока

Источник постоянного тока — это источник постоянного напряжения, обеспечивающий постоянное напряжение на нагрузке. Согласно его плану, источник питания постоянного тока может управляться от источника постоянного тока или от источника переменного тока, такого как сеть электропитания.

Источник питания постоянного тока

Это все о различных типах источников питания, в том числе линейных источниках питания, импульсных источниках питания, источниках бесперебойного питания. Кроме того, для реализации проектов в области электроники и электротехники или любой информации о типах источников питания вы можете оставить свой отзыв, чтобы дать свои предложения, комментарии в разделе комментариев ниже.

Цепи, разные типы и их работа

Источник питания является важным компонентом любой электрической или электронной системы.Существуют различные требования, которые необходимо учитывать при выборе точного источника питания, например: Потребности в питании цепи или нагрузки в основном включают напряжение и ток. Функции безопасности цепи питания, такие как ограничения по току и напряжению для защиты нагрузки, КПД, физические размеры и помехоустойчивость системы. В этой статье мы рассмотрим определение источника питания , различных типов источников питания и то, как они работают. Эти источники питания в основном используются для измерений, технического обслуживания, тестирования и расширения ассортимента продукции.

Что такое блок питания?

Источник питания может быть , определен как , поскольку это электрическое устройство, используемое для подачи электроэнергии на электрические нагрузки. Основная функция этого устройства — изменение электрического тока от источника на точное напряжение, частоту и ток для питания нагрузки. Иногда эти блоки питания можно назвать преобразователями электроэнергии. Некоторые типы расходных материалов представляют собой отдельные части грузов, тогда как другие изготавливаются из устройств, которыми они управляют.

Цепь электропитания

Цепь источника питания используется в различных электрических и электронных устройствах. Цепи питания подразделяются на различные типы в зависимости от мощности, которую они используют для обеспечения цепей или устройств. Например, схемы на основе микроконтроллера обычно представляют собой схемы регулируемого источника питания (RPS) 5 В постоянного тока, которые могут быть спроектированы с помощью различных методов для изменения мощности с 230 В переменного тока на 5 В постоянного тока.

Схема источника питания показана выше, а пошаговое преобразование 230 В переменного тока в 12 В постоянного тока обсуждается ниже.

  • Понижающий трансформатор преобразует 230 В переменного тока в 12 В.
  • Мостовой выпрямитель используется для преобразования переменного тока в постоянный
  • Конденсатор используется для фильтрации пульсаций переменного тока, подаваемых на регулятор напряжения.
  • Наконец, регулятор напряжения регулирует напряжение до 5 В и, наконец, используется блокирующий диод для измерения пульсирующей формы волны.

Блок-схема источника питания

Различные типы источников питания

Различные типы источников питания классифицируются следующим образом.

1) Импульсный источник питания — импульсный источник питания

Блок питания SMPS или компьютерный блок питания — это один из типов блоков питания, который включает в себя импульсный стабилизатор для мощного преобразования электроэнергии. Подобно другим источникам питания, этот источник питания передает мощность от источника постоянного или переменного тока на нагрузки постоянного тока, такие как ПК (персональный компьютер), изменяя при этом характеристики тока и напряжения. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о Know All about Switch Mode Power Supply

SMPS — импульсный источник питания

2) Источник бесперебойного питания

ИБП (источник бесперебойного питания) — это электрическое устройство, которое позволяет ПК продолжать работать в течение некоторого времени при отключении основного источника питания.Это устройство также защищено от перетока энергии.

ИБП — Источник бесперебойного питания

ИБП включает аккумулятор для хранения энергии, когда устройство обнаруживает потерю мощности от основного источника. Например, если вы используете ПК, когда источник бесперебойного питания обнаруживает потерю мощности, вам необходимо сохранить данные до того, как ИБП (вторичный источник питания) разрядится.

Когда оба источника питания исчерпаны, как первичный, так и вторичный, все данные в оперативной памяти (оперативной памяти) вашего ПК стираются.Когда происходит потеря мощности, вторичный источник питания останавливает потерю мощности, чтобы не повредить персональный компьютер. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о принципиальной схеме источника бесперебойного питания и работе

3) Источник питания переменного тока

Обычно источник питания переменного тока получает напряжение от сети, и напряжение может повышаться или понижаться с помощью трансформатора до требуемого напряжения, и может иметь место некоторая фильтрация. Различные типы источников питания переменного тока предназначены для обеспечения почти стабильного тока, и напряжение п / п может изменяться в зависимости от импеданса нагрузки.В некоторых случаях, поскольку источником питания является постоянный ток, для преобразования его в переменный ток могут использоваться повышающий трансформатор и инвертор. Некоторые виды изменения мощности переменного тока не используют трансформатор.

Блок питания переменного тока

Если входное и выходное напряжения одинаковы, основная функция устройства — фильтрация переменного тока. Если устройство предназначено для обеспечения резервного питания, то его можно назвать источником бесперебойного питания (ИБП). В настоящее время источники питания переменного тока подразделяются на два типа: однофазные системы и трехфазные системы.Основное различие между ними — надежность доставки. Эти источники могут также применяться для изменения напряжения, а также частоты.

4) Источник питания постоянного тока

Источник питания постоянного тока — это источник постоянного напряжения, обеспечивающий его нагрузку постоянным напряжением. Согласно его плану, источник питания постоянного тока может управляться от источника постоянного тока или от источника переменного тока, такого как сеть электропитания.

Источник питания постоянного тока

5) Регулируемый блок питания

RPS (стабилизированный источник питания) — это фиксированная схема, используемая для преобразования нерегулируемого переменного тока в стабильный постоянный ток.

Здесь выпрямитель используется для изменения источника переменного тока на постоянный, и его основная функция состоит в том, чтобы подавать стабильное напряжение на устройство или схему, которые должны работать в определенных пределах источника питания. Выход RPS может быть изменяющимся (или) однонаправленным, но всегда DC (постоянный ток).

Регулируемый источник питания

Тип используемой стабилизации можно контролировать, чтобы гарантировать, что o / p остается в определенных ограничениях при различных условиях нагрузки.

6) Программируемый блок питания

Этот тип источника питания позволяет дистанционно управлять его работой через аналоговый вход или цифровые интерфейсы, такие как GPIB или RS232.Контролируемые свойства этого источника питания включают ток, напряжение, частоту. Эти типы расходных материалов используются в широком спектре приложений, таких как производство полупроводников, генераторов рентгеновского излучения, мониторинг роста кристаллов, автоматическое тестирование оборудования.

Как правило, в этих типах источников питания используется необходимый микрокомпьютер для управления, а также мониторинга работы источника питания. Блок питания, снабженный интерфейсом компьютера, использует стандартные (или) проприетарные протоколы связи и язык управления устройством, такой как SCPI (стандартные команды для программируемых инструментов)

7) Блок питания компьютера

Блок питания в компьютере — это часть аппаратного обеспечения, которое используется для преобразования мощности, подаваемой из розетки, в полезную мощность для нескольких частей компьютера.Преобразует переменный ток в постоянный

Он также контролирует перегрев посредством управления напряжением, которое может изменяться вручную или автоматически в зависимости от источника питания. Блок питания или блок питания также называют преобразователем мощности или блоком питания.

В компьютере внутренние компоненты, такие как корпуса, материнские платы и блоки питания, доступны в различных конфигурациях, размеры которых известны как форм-фактор. Все эти три компонента должны быть хорошо согласованы, чтобы правильно работать вместе.

8) Линейный источник питания

Схема LPS (линейный источник питания) или LR (линейный регулятор) используется в различных электрических и электронных схемах для подачи постоянного тока на всю цепь. Линейный источник питания в основном включает в себя понижающий трансформатор, выпрямитель, схему фильтра и регулятор напряжения. Основная функция этой схемы — во-первых; понижает напряжение переменного тока, а затем преобразует его в постоянный ток. К основным характеристикам этого блока питания можно отнести следующее.

  • КПД данного блока питания составляет от 20 до 25%
  • Магнитные материалы, используемые в этом источнике питания, представляют собой сердечник из CRGO или нержавеющий сплав.
  • Он более надежный, менее сложный и громоздкий.
  • Дает более быстрый ответ.

К основным преимуществам линейного источника питания можно отнести надежность, простоту, дешевизну и низкий уровень шума. Наряду с этими преимуществами есть и недостатки, такие как

Они лучше всего подходят для нескольких приложений с низким энергопотреблением, поскольку требуется высокая мощность; недостатки становятся более очевидными.К недостаткам этого источника питания можно отнести большие потери тепла, габариты и низкий КПД. Когда линейный источник питания используется в приложениях большой мощности; для управления мощностью требуются большие компоненты.

Таким образом, речь идет о разных типах источников питания, которые используются для эффективного обеспечения питания различных систем. Источники питания являются важными компонентами каждой системы, обеспечивающими электрическую энергию для работы. Таким образом, некоторые аспекты источника питания, такие как дизайн или разработка, имеют более важное значение.Потому что с каждым днем ​​изобретение технологий, а также источников питания расширяются для обеспечения защиты электрических и электронных устройств.

Базовая электроника

— различные типы источников питания

В предыдущих статьях мы обсуждали пассивные электронные компоненты, такие как резисторы, конденсаторы, катушки индуктивности и трансформаторы. Пассивные компоненты особенно полезны при разработке различных аналоговых схем.

Настоящее развлечение современной электроники начинается с полупроводников и цифровой электроники.Электроника — это все, что связано с сигналами (в форме напряжения или тока) и обработкой сигналов компонентами и схемами. Полупроводниковая электроника стала возможной благодаря обработке электронных сигналов как двоичных значений (0 и 1 или Low и High). Это применение полупроводниковой электроники для обработки сигналов как двоичных значений приводит к реализации булевой логики в форме цифровой электроники. Так началось использование электроники для «вычислений». Вскоре инженеры и исследователи разработали способы измерения различных физических величин путем преобразования их в аналоговые электрические сигналы и оцифровки этих аналоговых сигналов в цифровые значения.Они также разработали способы преобразования цифровых сигналов в эквивалентные аналоговые электрические сигналы. Теперь компьютеры также могут взаимодействовать и реагировать на физический мир.

Большая часть современной электроники связана с «электронными вычислениями» и их приложениями в реальном мире. Электронные вычисления в сочетании с технологиями отображения и электронными устройствами ввода / вывода приводят к развитию компьютеров общего назначения. Электронные вычисления в сочетании с различными коммуникационными технологиями приводят к развитию телекоммуникационных, телевизионных и интернет-технологий.Электронные вычисления в сочетании с беспроводной связью и датчиками привели к развитию мобильной электроники и носимых устройств. Электронные вычисления в сочетании с датчиками и исполнительными механизмами приводят к развитию таких приложений, как встроенные системы, робототехника и автоматизация.

Но, прежде чем мы начнем нескончаемый путь полупроводников и цифровой электроники, будет лучше иметь некоторое базовое представление об источниках питания. Это источник питания, дающий жизнь любой электронной схеме или устройству.Каждая электронная схема или устройство, по сути, должна иметь секцию источника питания или может потребоваться подключение в качестве нагрузки к внешней цепи источника питания.

Источником электроэнергии могут быть линии электропередачи (электрическая сеть), электромеханические системы (генераторы и генераторы переменного тока), солнечная энергия или устройства хранения, такие как элементы и батареи. Источники питания — это преобразователи мощности, которые преобразуют электрическую энергию от источника в напряжение, ток и частоту, подходящие для цепи нагрузки.Источником электроэнергии может быть переменный или постоянный ток. Как и генераторы и сеть, электричество обеспечивает питание переменного тока, а батареи и солнечные устройства — источник постоянного тока. Схема источника питания может вводить мощность от источника переменного или постоянного тока и выводить мощность переменного или постоянного тока, преобразованную в соответствии с нагрузкой. Таким образом, цепи питания можно разделить на блоки питания переменного тока, переменного тока, постоянного тока и постоянного тока.

Различные источники питания переменного тока включают источники переменного тока переменного тока, изолирующие трансформаторы и преобразователи частоты. Источники питания переменного тока в постоянный являются наиболее распространенными.Некоторые из источников питания переменного тока в постоянный включают нерегулируемый линейный источник постоянного тока, линейный регулируемый источник постоянного тока (настольный источник питания), импульсные регулируемые источники питания и источник питания с пульсационной стабилизацией. Источники питания на батарейках, солнечные источники питания и преобразователи постоянного тока в постоянный являются примерами источников питания постоянного тока. Источники питания на батарейках и солнечные источники питания используются для непосредственного питания электронных схем, в то время как преобразователи постоянного тока в постоянный обычно используются для преобразования входного постоянного тока на разные уровни для питания разных цепей в одном и том же устройстве, а не для использования разных переменных переменного тока. Источники постоянного тока для получения различных уровней напряжения / тока.Инверторы, генераторы и ИБП обычно используются в качестве источников питания постоянного тока.

Переменный источник питания переменного тока
Переменный источник питания переменного тока разработан с использованием трансформаторов или регулируемых автотрансформаторов. Они используются для преобразования уровней напряжения переменного тока в переменный. Для разработки такого источника питания можно использовать трансформатор с несколькими обмотками или ответвлениями, в противном случае можно использовать регулируемый автотрансформатор. Эти источники питания преобразуют уровни переменного напряжения и тока, в то время как частота источника питания остается неизменной.

Преобразователи частоты
Преобразователи частоты используются для преобразования частоты переменного тока. Они могут быть спроектированы с использованием электромеханических устройств, таких как мотор-генератор, или с помощью выпрямительно-инверторного комплекта. Выпрямитель сначала преобразует переменный ток в постоянный, а затем инвертор преобразует постоянный ток обратно в переменный ток разных частот.

Изолирующие трансформаторы
Изолирующие трансформаторы используются для питания переменного тока, когда требуется согласование импеданса между источником питания и цепью нагрузки.Изолирующие трансформаторы обычно не преобразуют уровни напряжения или частоту источника питания. Они полезны при подключении симметричных и несимметричных цепей.

Этот изолирующий трансформатор используется для повышения или понижения напряжения, сохраняя при этом сетевую и выходные цепи изолированными с помощью усиленной изоляции, сертифицированной CE. (Изображение: преобразователь сигналов)

Нерегулируемый линейный источник питания
Нерегулируемый линейный источник питания — это простые источники питания переменного тока в постоянный.Они разработаны с использованием понижающего трансформатора, выпрямителя, конденсатора фильтра и резистора утечки. Сначала трансформатор преобразует напряжение в сети до необходимого уровня переменного тока. Пониженное напряжение переменного тока затем преобразуется в напряжение постоянного тока с помощью полуволнового или двухполупериодного выпрямителя. Выпрямитель выполнен на диодах. Пульсирующий постоянный ток выпрямителя сглаживается конденсаторами фильтра. Для защиты параллельно конденсатору фильтра может быть подключен резистор утечки.

Нерегулируемые блоки питания просты и надежны.Однако их выходное напряжение может изменяться из-за изменения входного напряжения или тока нагрузки. Так что они не очень надежны. Кроме того, они могут быть предназначены только для вывода фиксированного напряжения и тока.

Линейно-регулируемый источник питания
Линейно-регулируемый источник питания — это источники питания переменного тока в постоянный. Это то же самое, что и нерегулируемые (грубая сила) источники питания, за исключением того, что они используют транзисторную схему, работающую в активной или линейной области, вместо истекающего резистора. Этот активный транзисторный каскад позволяет выводить на разные точные уровни постоянного напряжения.Доступно несколько ИС регуляторов напряжения, в которые встроена активная транзисторная схема. Источники питания с линейным регулированием стабильны, безопасны, надежны и бесшумны. Существуют микросхемы регуляторов напряжения, доступные для широкого диапазона входных и выходных напряжений, и они выдают фиксированные напряжения постоянного тока. Основными недостатками этих расходных материалов являются их стоимость, размер и энергоэффективность. Эти блоки питания теряют много энергии из-за рассеивания мощности, и может потребоваться использование радиатора с интегральными схемами регулятора.

Линейный источник питания от Acopian Power Supplies (вверху) в десять раз больше и тяжелее, чем сопоставимый импульсный источник питания (внизу), который также от Acopian, но линейный блок имеет преимущества, которым не может соответствовать питание коммутатора.

Импульсный регулируемый источник питания
Импульсный регулируемый источник питания — это комплексные источники питания переменного тока в постоянный, сочетающие в себе преимущества нерегулируемых и регулируемых источников питания. В SMPS линейное напряжение выпрямляется в постоянное, а затем снова преобразуется в прямоугольный переменный ток с помощью переключающих транзисторов.Эта высокочастотная прямоугольная волна затем понижается или повышается, а затем снова выпрямляется. Выпрямленное постоянное напряжение фильтруется перед подачей его на нагрузку.

Источник питания, регулируемый пульсацией
Источник питания, регулируемый пульсацией, представляет собой улучшенный вариант нерегулируемого источника питания переменного тока в постоянный. Он разработан путем объединения нерегулируемого источника питания с транзисторной схемой, работающей в области насыщения. Схема транзистора передает мощность постоянного тока на конденсатор для поддержания уровня напряжения.Основным преимуществом пульсирующего источника питания является его энергоэффективность.

Регулируемые регулируемые источники питания
Линейно регулируемые источники питания могут быть модифицированы для обеспечения диапазона регулируемых напряжений с помощью переменного резистора на оконечном каскаде. Переменный резистор может понижать выходное напряжение до регулируемых значений. Такой регулируемый источник питания может затем подавать напряжения в диапазоне от нуля до максимального напряжения, регулируемого источником. Симметричные линейные регулируемые источники питания также могут быть модифицированы для подачи напряжения отрицательной полярности.

Батареи и блоки питания от солнечных батарей
Батареи, элементы и солнечные панели обеспечивают питание постоянного тока. Энергия от накопителей или солнечных панелей должна быть сначала отфильтрована, чтобы удалить пульсирующую рябь. Затем его можно регулировать до желаемых уровней постоянного напряжения с помощью микросхем регулятора напряжения. Если необходимо увеличить напряжение питания от батареи или солнечной панели, это можно сделать с помощью транзисторов в качестве усилителей.

Преобразователи постоянного тока в постоянный
Преобразователи постоянного тока в постоянный используются для повышения или понижения напряжения постоянного тока.Преобразователи постоянного тока в постоянный ток могут быть полупроводниковыми, электромеханическими или электрохимическими. ИИП постоянного тока, такие как двухтактный преобразователь, понижающий преобразователь, повышающий преобразователь, понижающий-повышающий преобразователь, являются некоторыми примерами преобразователей постоянного тока полупроводникового типа. Эти источники обычно используются для преобразования постоянного тока (выпрямленного из электросети или другого источника переменного тока) для обеспечения различных уровней постоянного тока вместо использования множества источников переменного тока в постоянный в устройстве.

Пример блока питания постоянного / постоянного тока мощностью 2 Вт в SMD (Изображение: Recom).

Источники питания постоянного тока в переменный
Эти типы источников питания обычно используются для резервного питания. Инверторы, ИБП и генераторы являются примерами таких систем электроснабжения.

Инженеры и любители электроники чаще всего используют источники питания с линейным регулированием и батарейные источники питания. Другие типы источников питания обычно разрабатываются и производятся для конкретных приложений или схем. Для некоторых схем может потребоваться проектирование источника питания с использованием солнечных панелей.

Для новичков всегда удобно начать с линейно регулируемого источника питания, обеспечивающего обычно используемые напряжения постоянного тока, такие как 12 В, 9 В, 5 В и 3 В. Для переносных схем такие же напряжения могут быть достигнуты с помощью регулируемых источников питания на основе батарей. Регулируемые источники питания на основе батарей могут потребовать регулярной замены батареи. Таким образом, линейно регулируемый источник питания, обеспечивающий обычно используемые уровни постоянного напряжения, лучше всего подходит для прототипирования и тестирования электронных схем. Затем производственные цепи могут получать питание от батарей или цепей на солнечных батареях, если это необходимо.

В следующей статье мы обсудим элементы и батареи.


Filed Under: Featured, Tutorials


Electric Power System — Generation, Transmission & Distribution of Electricity

Типовая схема систем электроснабжения (производство, передача и распределение электроэнергии) и элементы системы распределения

Что такое электроэнергетическая система?

Электроэнергетическая система или электрическая сеть известна как большая сеть электростанций, которые подключены к потребителям нагрузки .

Как хорошо известно, что « Энергия не может быть создана или уничтожена , но может быть преобразована только из одной формы энергии в другую форму энергии». Электрическая энергия — это форма энергии, при которой мы передаем эту энергию в виде потока электронов. Итак, электрическая энергия получается путем преобразования различных других форм энергии. Исторически сложилось так, что мы делали это с помощью химической энергии, используя элементы или батареи.

Однако, когда произошло изобретение генератора, он превратился в способ сначала преобразовать некоторую форму энергии в механическую форму энергии, а затем преобразовать ее в электрическую форму энергии с помощью генератора.Генераторы вырабатывают два типа мощности переменного и постоянного тока. Тем не менее, 99% существующих энергосистем используют генераторы переменного тока.

Электроэнергия значительно выросла за два столетия благодаря гибкости, которую она обеспечивает при ее использовании. Разнообразие использования привело к монотонному росту спроса. Однако по мере увеличения нагрузки или спроса практически одно требование остается неизменным. То есть мы должны сгенерировать количество, требуемое для нагрузки, в этот самый момент, потому что это большое количество не может быть сохранено для удовлетворения такого высокого объема спроса.

Следовательно, выработка электроэнергии происходит одновременно с тем, как мы ее используем. К тому же наш спрос всегда меняется. Следовательно, с ней меняется и поколение. Помимо меняющегося спроса, различается и тип потребляемого нами тока. Эти вариации ставят множество ограничений и условий. Это причина сложных и больших диспетчерских по всей энергосистеме.

Линейная сеть между генерирующей станцией (электростанцией) и потребителем электроэнергии может быть разделена на две части.

  • Система передачи
  • Система распределения

Мы можем исследовать эти системы в других категориях, таких как первичная передача и вторичная передача , а также первичная распределительная и вторичная распределительная . Это показано на рисунке 1 ниже (однолинейная или однолинейная схема типовой схемы энергосистемы переменного тока).

Нет необходимости, чтобы все ступени, которые засеваются на фиг.1, должны быть включены в другие схемы питания.Может быть разница. Например, во многих схемах нет вторичной передачи, в других (малых) схемах энергосистемы нет передачи энергии, а есть только распределение.

Основная цель электроэнергетической системы — получить электроэнергию и сделать ее безопасной для точки нагрузки, где она используется в пригодной для использования форме. Это выполняется в пять этапов, а именно:

  1. Генерирующая станция
  2. Первичная передача
  3. Вторичная передача
  4. Первичная распределительная система
  5. Вторичная распределительная сеть

Следующие части типовой схемы электроснабжения показаны на рисунке 1.

Рис. 2: Типовая схема системы электроснабжения переменного тока (производство, передача и распределение)

После этих пяти уровней энергия должна быть доступна в указанной форме с точки зрения величин напряжения, частоты и согласованности. Генерация означает преобразование формы энергии в электрическую. Передача подразумевает транспортировку этой энергии на очень большие расстояния с очень высокой величиной напряжения. Кроме того, распределение удовлетворяет потребности потребителей на сертифицированном уровне напряжения, и это осуществляется по фидерам.Питатели — это маленькие-маленькие куски груза, физически распределенные в разных местах.

Похожие сообщения:

Давайте объясним все вышеперечисленные уровни один за другим.

Генерирующая или генерирующая станция

Место, где электроэнергии, производимой параллельно соединенными трехфазными генераторами / генераторами, называется генерирующей станцией (т. Е. Электростанцией).

Обычная мощность электростанции и генерирующее напряжение могут составлять 11 кВ , 11.5 кВ 12 кВ или 13 кВ . Но с экономической точки зрения целесообразно увеличивать производимое напряжение с (11 кВ, 11,5 кВ или 12 кВ) до 132 кВ , 220 кВ или 500 кВ или более (в некоторых странах до 1500 кВ ) с помощью Step up трансформатор (силовой трансформатор).

Генерация — это часть энергосистемы, в которой мы преобразуем некоторую форму энергии в электрическую. Это источник энергии в энергосистеме. Он работает все время.Он вырабатывает электроэнергию при разных уровнях напряжения и мощности в зависимости от типа станции и используемых генераторов. Максимальное количество генераторов вырабатывает электроэнергию на уровне напряжения около 11кВ-20кВ . Повышенный уровень напряжения приводит к увеличению требуемого размера генератора и, следовательно, к стоимости.

В настоящее время мы используем следующие генерирующие станции в основном по всему миру: —

  1. Тепловая электростанция
  2. Электростанция Hydel (гидроэлектрическая)
  3. Атомная электростанция
  4. Дизельная электростанция
  5. Газовая электростанция
  6. Солнечная энергия электростанция
  7. Приливная электростанция
  8. Ветряная электростанция.И т. Д.

Мы генерируем электроэнергию на этих электростанциях с разными уровнями напряжения и в разных местах в зависимости от типа электростанции. Они используются для разных целей, а именно.

  • Установка базовой нагрузки : — Когда установка используется для обработки потребности в базовой нагрузке в системе
  • Установка пиковой нагрузки : — Когда установка предназначена для обработки потребности в пиковой нагрузке в системе

Соответственно, установка рассчитана на то, чтобы выдерживать нагрузку.Эта категоризация важна для качества электроэнергии. Это также важно для того факта, что мощность должна генерироваться в тот же момент, когда нагрузка принимает мощность. Итак, поскольку мы знаем тип нагрузки и примерный размер нагрузки на станции, выбирается другой тип генерирующей станции.

Например; Тепловая установка, установка Hydel, атомная установка, солнечная установка, ветряная установка и приливная установка выбраны для обработки базовой нагрузки на систему, тогда как газовые установки, дизельные установки используются для обработки пиковой нагрузки.Это в основном определяется характером времени, которое им требуется в процессе начала подачи энергии. Установки с базовой нагрузкой требуют больше времени для выдачи мощности, тогда как установки с пиковой нагрузкой должны запускаться очень быстро, чтобы удовлетворить спрос.

Связанное сообщение: Почему кабели и линии передачи электроэнергии плохо закреплены на электрических столбах и опорах передачи?

Первичная передача

Электроснабжение (в 132 кВ , 220 кВ , 500 кВ или выше) передается к центру нагрузки по трехфазному трехпроводному соединению ( 3 фазы — 3 провода , также известное как Соединение треугольником ) воздушная система передачи.

Поскольку уровень генерируемого напряжения составляет около ( 11-20 ) кВ , а спрос находится на различных уровнях напряжения и в очень удаленных от электростанции местах. Например, генерирующая станция может генерировать напряжение в 11 кВ, но центр нагрузки находится на расстоянии 1000 км друг от друга и на уровне 440 В .

Следовательно, для доставки электроэнергии на такое большое расстояние необходимо устройство, чтобы это было возможно.Следовательно, система передачи необходима для доставки электроэнергии. Это стало возможным благодаря использованию линий передачи разной длины. Практически во всех случаях это воздушные линии электропередачи. Некоторые исключения случаются, когда необходимо пересечь океан. Затем возникает необходимость использовать подземные кабели.

Но по мере того, как система росла и требовалась нагрузка, задача в этом процессе становилась очень сложной. При низком уровне напряжения величина тока, протекающего по линии при высокой нагрузке, больше, и, следовательно, падение напряжения из-за сопротивления и реактивного сопротивления линии передачи очень велико.Это приводит к большим потерям в линиях передачи и снижению напряжения на стороне нагрузки.

Это влияет на стоимость системы и работу оборудования, используемого потребителями. Итак, трансформатор используется для повышения уровня напряжения на определенные значения в диапазоне от 220 кВ до 765 кВ . Это делает текущее значение меньше для той же нагрузки, которая будет иметь более высокие значения тока при определенной нагрузке. Текущее значение можно рассчитать по формуле: —

Где, = действующее значение линейного напряжения

= действующее значение линейного тока

* обозначает сопряжение вектора.

Повышенный спрос и ограничение местоположения генерирующей станции сделали возможным потребность в очень сложной системе, называемой «Grid». Эта система соединяет несколько генерирующих станций, генерирующих напряжение на разных уровнях, которые соединяются вместе как объединенная система.

Это позволяет системе работать с различными центрами нагрузки, и это обеспечивает отличную систему с более высокой надежностью. В настоящее время эта система выросла до размеров страны. Еще одна система, которая используется сейчас, — это использование HVDC.HVDC используется для больших расстояний и иногда используется для соединения двух сетей с разными уровнями напряжения или частоты. HVDC также обеспечивает более низкие потери на коронный разряд, меньшие помехи связи, устранение индуктивного эффекта и устранение рабочей частоты.

Линии передачи различаются по размерам. Этот размер определяет его характеристики и поведение в системе. Например, в длинных линиях передачи напряжение на стороне потребителя становится выше своего номинального значения в условиях малой нагрузки из-за преобладающей емкостной природы линий передачи.

Вторичная передача

Удаленная от города территория (окраина), соединенная линиями с приемными станциями, называется вторичной передачей . На приемной станции уровень напряжения понижается понижающими трансформаторами до 132 кВ, 66 или 33 кВ , и электроэнергия передается по трехфазной трехпроводной ( 3 фазы — 3 провода ) воздушной сети в разные подстанции .

Первичное распределение

На подстанции уровень напряжения вторичной передачи ( 132 кВ, 66 или 33 кВ, ) снижен до 11 кВ с понижением преобразуется в .

Как правило, электроснабжение обеспечивается тем потребителям с большой нагрузкой (коммерческое электроснабжение для промышленных предприятий), где потребность составляет 11 кВ, от линий, которые вызывают напряжение 11 кВ (в трехфазной трехпроводной воздушной системе), и они создают отдельную подстанцию ​​для контролировать и использовать тяжелую энергию в промышленности и на заводах.

В остальных случаях для потребителей с большей нагрузкой (в больших масштабах) потребность составляет до 132 кВ или 33 кВ. Таким образом, электроснабжение обеспечивало их напрямую вторичной передачей или первичным распределением (в 132 кВ, 66 кВ или 33 кВ), а затем понижало уровень напряжения с помощью понижающих трансформаторов на их собственной подстанции для использования (т.е. для электрической тяги и т. д.).

Когда линии электропередачи приближаются к центрам спроса, уровень напряжения снижается, чтобы сделать его практичным для распределения в различных местах нагрузки. Таким образом, мощность берется из сети и снижается до 30-33 кВ, , в зависимости от мест, куда она подается. Затем он передается на подстанции. Например, напряжение системы на уровне подстанции в Индии составляет 33 кВ .

Связанные сообщения:

На подстанциях предусмотрено множество механизмов управления, чтобы сделать подачу электроэнергии управляемым и непрерывным процессом без особых помех.Эти подстанции подают питание на более мелкие блоки, называемые « Feeders ». Это осуществляется с помощью « воздушных линий » или « подземных кабелей ». Эти фидеры находятся в городах или деревнях, или это может быть какая-то группа предприятий, которая берет энергию от подстанции и преобразует ее уровень напряжения в соответствии с ее собственным использованием.

Для домашнего использования напряжение дополнительно снижается до 110–230 В ( фаза на землю ) для использования людьми с другим коэффициентом мощности.Совокупный объем спроса — это нагрузка на всю систему, и она должна быть сгенерирована в этот момент.

В зависимости от схемы распределительной сети она подразделяется на радиальную или кольцевую. Это придает системе разную степень надежности и стабильности. Все эти системы защищены с помощью различных схем защиты, включающих автоматические выключатели, реле, ограничители молнии, провода заземления и т. Д.

Многие измерительные и чувствительные элементы также связаны, например, «Трансформатор тока» и «Трансформатор потенциала », а также измерения на всех места от подстанций до фидеров до мест потребителей.

Вторичное распределение

Электроэнергия передается (от первичной распределительной линии, например, 11 кВ) на распределительную подстанцию, известную как вторичное распределение . Данная подстанция расположена вблизи бытовых и потребительских территорий, где уровень напряжения понижен до 440 В понижающими трансформаторами .

Эти трансформаторы называются Распределительные трансформаторы , трехфазная четырехпроводная система (3 фазы — 4 провода, также известные как Звездное соединение ).Таким образом, между любыми двумя фазами и 230 В ( однофазное питание ) между нейтралью и фазным проводом (под напряжением) находится 400 Вольт (трехфазная система питания) .

Жилая нагрузка (например, вентиляторы, освещение, телевизор и т. Д.) Может быть подключена между одной фазой и нулевым проводом, а трехфазная нагрузка может быть подключена непосредственно к трехфазным линиям.

Короче говоря, вторичное распределение электроэнергии можно разделить на три секции, такие как фидеры, распределители и линии обслуживания (подробности ниже).

Связанное сообщение:

Комбинированный процесс энергосистемы

Вся структура энергосистемы состоит из источника (генерирующая станция), передачи (передача и распределение) и нагрузки (потребителя). Цели: —

  • Номинальное напряжение и частота до центров нагрузки.
  • Надежность системы, обеспечивающая непрерывную подачу электроэнергии.
  • Гибкость системы, обеспечивающая доступность питания при различных уровнях напряжения
  • Более быстрое устранение неисправностей, чтобы система работала хорошо в течение более длительного времени и увеличивалась срок ее службы
  • Стоимость электроэнергии должна быть как можно ниже
  • в системе должно быть как можно ниже.
Рис. 3: Комбинированный процесс в энергосистеме

Все эти цели достигаются за счет использования различных комплектов генерирующих станций, систем передачи, систем распределения и повышенного качества оборудования безопасности.

В любой момент наша нагрузка меняется в разной степени. Следовательно, чтобы следовать за спросом, поколение должно измениться и догнать спрос. Для этого существует множество механизмов управления, таких как регулирующий клапан на тепловых станциях, регулирующие стержни на атомных станциях, которые изменяют количество вырабатываемой энергии. И для этой цели существует набор мер, направленных на передачу спроса на генерирующую станцию. Это PLC, SCADA, волоконно-оптическая связь, GSM-связь и т. Д.

Кроме того, в энергосистеме используются некоторые методы оценки состояния для прогнозирования потребности в нагрузке в различные моменты времени. Это помогает определить количество энергии, которое необходимо произвести в нужное время. Теперь, с появлением новых технологий, очень многообещающим является использование «мягких вычислений» для управления работой энергосистемы. Кроме того, он сопровождается различным программным обеспечением и численными методами. Следовательно, можно сказать, что этапы, на которых работает энергосистема, следующие: —

  • Изменение потребности в нагрузке
  • Связь между подстанцией и генерирующей станцией
  • Операции управления на генерирующих станциях
  • Непрерывная оценка изменений на подстанции востребован

Современная энергосистема работает и буквально обрабатывает такое большое количество электроэнергии с помощью этих четырех основных шагов.Чем лучше регулируется подаваемая мощность, тем выше будет качество электроэнергии, потому что качество энергии — это просто поддержание номинального значения напряжения и частоты в каждом месте. Эта цель достигается только тогда, когда вся система работает в постоянной координации и эффективности.

Поскольку наша нагрузка меняется от состояния с небольшой нагрузкой до состояния с высокой нагрузкой, подстанция связывается с генерирующей станцией, чтобы увеличить выработку электроэнергии, и она постоянно проверяет требования, чтобы обеспечить непрерывную подачу электроэнергии.

Обмен данными осуществляется в соответствии с величиной нагрузки и стоимостью, задействованной в процессе. Более того, это увеличение спроса затем подтверждается генерирующей станцией путем изменения мощности, потребляемой генератором. Кроме того, от генерирующей станции до центров нагрузки существуют различные уровни (а именно, передача и распределение).

Таким образом, для обеспечения качества и надежности электроэнергии используется множество устройств для эффективного выполнения различных механизмов управления, включая системы управления неисправностями, системы повышения коэффициента мощности, системы измерения и т. Д.

Все эти операции выполняются непрерывно в любой энергосистеме по всему миру, чтобы обеспечить возможность и эффективность подачи энергии. С увеличением спроса произошло увеличение изобретений различных устройств.

Кроме того, доходы, полученные от распределения электроэнергии, сделали возможным дальнейшее изобретение и использование новых технологий. Это позволяет нам использовать энергию в такой простой форме, тогда как на самом деле многие сложные операции выполняются постоянно.

ниже представляет собой полную типичную схему системы электроснабжения переменного тока, другими словами, вся история, приведенная выше на рис. 4.

Щелкните изображение, чтобы увеличить

Рис. 4: Типовая схема системы электроснабжения (производство, передача и распределение Электроэнергия)

Элементы системы распределения

Вторичное распределение можно разделить на три части следующим образом.

  1. Питатели
  2. Дистрибьюторы
  3. Линии обслуживания или сеть обслуживания

Связанная должность: Проектирование системы заземления в сети подстанции

Рис. 5: Элементы распределительной системы
Питатели

Те линии электропередач, которые соединяют генерирующую станцию ​​(электростанцию) или подстанцию ​​с распределителями, называются фидерами .Помните, что ток в фидерах (в каждой точке) постоянный, а уровень напряжения может быть разным. Ток, протекающий в фидерах, зависит от размера проводника. Рис. 5.

Распределители

Те ленты, которые извлекаются для подачи электроэнергии к потребителям или линиям, от которых потребители получают прямое электроснабжение, известны как распределители, как показано на рис. 5. Ток различается в каждой секции. У распределителей при этом напряжение может быть таким же.Выбор распределителей зависит от падения напряжения и может быть рассчитан на различный уровень падения напряжения. Это потому, что потребители должны получать номинальное напряжение в соответствии с правилами и конструкцией.

Полезно знать: основное различие между фидером и распределителем заключается в том, что ток в фидере одинаков, (в каждой секции), с другой стороны, напряжение одинаково в каждой секции распределителя

Соответствующий пост : Техническое обслуживание трансформатора — Техническое обслуживание, диагностика и мониторинг силовых трансформаторов

Сервисные линии или сервисная сеть

Обычный кабель, который подключается между распределителями и потребительским терминалом нагрузки, называемый сервисной линией или сервисной сетью. другими словами, кабель, который был подключен к линиям электропередачи 11 кВ (взят от понижающего трансформатора) для получения трехфазного или однофазного источника питания. Электропитание между фазой или нейтралью составляет 230 В переменного тока (110 в США ) и 440 В переменного тока (208 в США ) в трехфазной системе (между фазами).

Статьи по теме:

Основные принципы проектирования источников питания для печатных плат

Одним из самых фундаментальных законов физики является Закон сохранения энергии, который можно резюмировать следующим образом:

«В замкнутой системе энергия не может быть создана или уничтожена, она только меняет форму.”

В принципе, это можно интерпретировать как изолированную систему, которая не взаимодействует с какой-либо внешней силой, сохраняет постоянный уровень внутренней энергии. Эта предпосылка стала катализатором многих схем построения самоподдерживающихся энергетических систем, которые могли бы работать вечно. Пока что полностью изолировать систему так, чтобы не было накопления или потери энергии, было сложно. Это означает, что системы, требующие энергии, необходимо периодически подзаряжать, как и мы.

Цепи питания являются источником подзарядки электронных систем и печатных плат.Некоторые платы содержат подсхемы питания; однако печатные платы также часто используются в качестве источников питания. Эти платы на самом деле являются преобразователями, поскольку они преобразуют входной источник энергии в выход, который соответствует требованиям нагрузки, системы или схемы. Независимо от требований к источнику и нагрузке, всегда важно сделать сборку вашей платы неотъемлемой частью макета печатной платы для вашего дизайна. Сначала давайте обсудим различные типы цепей питания, а затем определим основные принципы проектирования источников питания, которые следует применять при их разработке.

Типы плат питания

Являясь преобразователями или мостами между входным электрическим источником и электронной нагрузкой, цепи питания можно классифицировать в одну из групп в таблице ниже.

Типы цепей питания

Выходы

Выход переменного тока Выход постоянного тока
Вход переменного тока Изоляция, преобразователь частоты Выпрямитель
Вход постоянного тока Инвертор Преобразователь постоянного тока в постоянный

Как показано выше, схемы источника питания в основном используются для изменения энергии из одного состояния в другое, переменного в постоянный или наоборот, для изменения уровней, повышения или понижения напряжения или частоты.Источники питания AC-AC также могут использоваться для изоляции входных цепей от выходов. В дополнение к перечисленным выше типам цепи питания можно разделить на регулируемые и нерегулируемые. К регулируемым источникам питания относятся устройства для поддержания уровня выходного напряжения. Эти регуляторы напряжения отсутствуют в нерегулируемых источниках питания, а выходная мощность зависит от входа и изменения тока нагрузки.

Цепи питания также классифицируются по принципу действия. Двумя основными рабочими типами являются линейный и переключаемый или переключаемый.

Линейный источник питания

Пример схемы линейного источника питания

Линейный источник питания, указанный выше, используется для преобразования сетевого входа переменного тока, первичной стороны трансформатора TR1, в постоянный ток для распределения. Эта схема включает в себя регулятор напряжения IC1, который будет обеспечивать постоянное напряжение независимо от нагрузки R1. Этот линейный источник питания демонстрирует базовую работу этих схем, которые могут иметь множество различных конфигураций. Линейные источники питания обычно используются в системах с низким энергопотреблением.Преимуществами являются простота, невысокая стоимость, надежность и низкий уровень шума; однако они неэффективны, что вызывает большую озабоченность в приложениях с более высокой мощностью.

DFM для высокоскоростных цифровых печатных плат

Загрузить сейчас

Импульсный источник питания

Альтернативой использованию линейного источника питания является импульсный источник питания или SMPS, показанный на рисунке ниже.

Пример схемы блока питания SMPS

Блок питания SMPS содержит коммутационную схему; например, транзистор T1 выше, который преобразует выпрямленный постоянный ток из мостовой схемы B1 в высокочастотный переменный ток.Уровень частоты определяется или устанавливается управляющим сигналом, который включает и выключает транзистор. В приведенной выше схеме выходной сигнал сглаживается или регулируется LC-фильтром перед подачей на нагрузку R1. Как правило, схемы SMPS более сложны, чем линейные источники питания, и переключение вызывает шум, который может создавать электромагнитные помехи, которые могут повлиять на маршрутизацию трассировки во время разводки печатной платы. Однако эти источники питания более эффективны и могут использовать меньшие компоненты, чем линейные источники питания.SMPS чаще всего используются в цифровых системах.

Основы проектирования источников питания

При разработке SMPS или платы линейного источника питания есть общие проблемы. К ним относятся тепловые характеристики, электромагнитные помехи или шум, а также в зависимости от веса меди на уровне мощности. Еще одно важное соображение — это конструкция фильтра блока питания. Хотя ваши конкретные требования к конструкции будут диктовать конкретный выбор конструкции, существуют общие основы проектирования источников питания для печатных плат, которым следует всегда следовать, как указано ниже.

  • Оптимизируйте свой дизайн фильтрации

Производительность вашей схемы фильтрации зависит от выбора соответствующих значений компонентов фильтра, индуктивности, емкости и сопротивления. Поскольку фактические доступные значения компонентов могут не совпадать с расчетными значениями, вам следует использовать комбинацию значений компонентов, которая обеспечивает наилучший отклик, определенный с помощью моделирования.

  • Выберите подходящую массу меди

Токи блока питания могут быть довольно высокими; Следовательно, необходимо убедиться, что ширина дорожек и толщина или вес меди могут выдерживать необходимые токи.Также важно убедиться, что ваша компоновка соответствует допускам зазоров, установленным правилами DFM вашего контрактного производителя (CM).

  • Подберите подходящий материал к типу плиты

Для цепей большой мощности убедитесь, что ваша плата может выдерживать уровни температуры, которые будут генерироваться путем выбора материалов с подходящим коэффициентом теплового расширения (CTE). Для ИИП, если это высокоскоростная конструкция, то такие свойства, как диэлектрическая постоянная, dk, коэффициент рассеяния, df, диэлектрические потери, потери в проводнике, Ploss, становятся важными и должны определять ваш выбор материала.

  • Убедитесь, что ваша плата имеет достаточное рассеивание тепла

Одна, если не самая большая проблема для плат блока питания — это отвод избыточного тепла.