Какую нагрузку выдерживает плита перекрытия: Сколько выдерживает плита перекрытия на 1м2: допустимая нагрузка

Сколько может выдержать плита перекрытия?

Максимальная нагрузка на пустотные плиты перекрытия может быть рассчитана даже тем, кто никогда ранее не сталкивался со строительством и подобными задачами в целом. Здесь работает простая арифметика, на требующая глубоких знаний ни в строительстве, ни в высшей математике.

В первую очередь необходимо определить, с какой плитой мы имеет дело.

Блок: 1/9 | Кол-во символов: 368
Источник: https://shtyknozh.ru/nagruzka-na-plitu-perekrytija/

Хранение строительных материалов

При производстве ремонта используют сухие смеси (М:300, пескобетон, штукатурки, наливные полы и т.д.). Как правило, это мешки с весом 30-50 кг.

Материалов требуется много и часто их хранят в одном месте, например складируют друг на друга. Так удобно строителям — площадь остается свободной и есть простор для работы. Этого никогда нельзя допускать.

В момент доставки мало кто задумывается о несущей возможности плиты перекрытия, а зря.

Все дома имеют запас прочности — он зависит от типа дома, конструктивного решения и возраста постройки. Ниже я привожу виды несущих плит.

В каждом случае нужно делать просчет допустимой нагрузки на плиту перекрытия. Важно просчитать все по формуле и учесть индивидуальные характеристики (возможные прогибы, целостность арматуры, износ и т.д.).

Чтобы не вдаваться в сложные расчеты привожу усредненные данные для типовых домов.

Для типового домостроения применяют плиты перекрытия с нагрузкой до 400 кг/кв.м. В крупнопанельных домах (поздние версии) допустимая нагрузка — 600 кг/кв.м.

Эти величины включают в себя как постоянные (перегородки, стяжка), так и временные (мебель, человек) нагрузки. Нельзя допускать перегруз — это приведет к обрушению. 18 мешков наливного пола — это уже 800 кг.

Конструкции дома не должны работать на износ, поэтому не нагружайте плиту перекрытия своего дома.

Горе-строители могут настаивать и спорить — им удобно сразу завести все черновые материалы. На первый взгляд это кажется логичным — происходит экономия на доставках, но экономия должна быть рациональной.

В своих проектах я разделяю доставки материалов по весу и всегда слежу, чтобы нагрузки распределялись равномерно на плиту перекрытия. Т.е. я не разрешаю строить «горы» из строительных смесей.

так нельзя

Блок: 2/4 | Кол-во символов: 1780
Источник: http://trustload.com/%D0%B4%D0%BE%D0%BF%D1%83%D1%81%D1%82%D0%B8%D0%BC%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%BD%D0%B0-%D0%BF%D0%BB%D0%B8%D1%82%D1%83-%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%8B/

Особенности

Пустотная плита перекрытия изготавливается из прочного бетона в совокупности со стальной арматурой высокого качества, которая может быть предварительно напряжена. Данная конструкция имеет форму прямоугольника, она оснащена сквозными воздушными круглыми камерами. Данная особенность определяет легкость пустотелых плит, поэтому они могут снижать общую нагрузку на фундамент и стенки. Их перемещение с использованием техники не доставляет дискомфорта, так как для этого имеются специальные петли.

Конструкция пустотелых плит более легкая, нежели у полнотелых, но при этом их прочность и надежность находится на высоком уровне. Присутствие полостей воздуха в данном изделии способствует тепло- и звукоизоляции. Изготовление плит данного вида осуществляется двумя путями:

  • безопалубочным, который подразумевает применение вибрационных трамбовок;
  • заливанием стационарных опалубок из металла бетонной смесью, после чего залитую конструкцию отправляют на виброуплотнение и обработку теплом.

Благодаря наличию полостей в форме цилиндра улучшаются такие эксплуатационные возможности плит:

  • увеличение прочности;
  • улучшение теплоизоляции;
  • облегчение процедуры прокладывания коммуникаций инженерами;
  • уменьшение влияния внешних звуков.

Блок: 2/8 | Кол-во символов: 2471
Источник: http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/

Виды пустотных панелей перекрытия

Панели с продольными полостями применяют при сооружении перекрытий в жилых зданиях, а также строениях промышленного назначения.

Железобетонные панели отличаются по следующим признакам:

  • размерам пустот;
  • форме полостей;
  • наружным габаритам.

В зависимости от размера поперечного сечения пустот железобетонная продукция классифицируется следующим образом:

  • изделия с каналами цилиндрической формы диаметром 15,9 см. Панели маркируются обозначением 1ПК, 1 ПКТ, 1 ПКК, 4ПК, ПБ;
  • продукция с кругами полостями диаметром 14 см, произведенная из тяжелых марок бетонной смеси, обозначается 2ПК, 2ПКТ, 2ПКК;
  • пустотелые панели с каналами диаметром 12,7 см. Они маркируются обозначением 3ПК, 3ПКТ и 3ПКК;
  • круглопустотные панели с уменьшенным до 11,4 см диаметром полости. Применяются для малоэтажного строительства и обозначаются 7ПК.

Виды плит и конструкция перекрытия

Панели для межэтажных оснований отличаются формой продольных отверстий, которая может быть выполнены в виде различных фигур:

  • круга;
  • эллипса;
  • восьмигранника.

По согласованию с заказчиком стандарт допускает выпуск продукции с отверстиями, форма которых отличается от указанных. Каналы могут иметь вытянутую или грушеобразную форму.

Круглопустотная продукция отличается также габаритами:

  • длиной, которая составляет 2,4–12 м;
  • шириной, находящейся в интервале 1м3,6 м;
  • толщиной, составляющей 16–30 см.

По требованию потребителя предприятие-изготовитель может выпускать нестандартную продукцию, отличающуюся размерами.

Основные характеристики пустотных панелей перекрытий

Плиты с полостями пользуются популярностью в строительной отрасли благодаря своим эксплуатационным характеристикам.

Расчет на продавливание плиты межэтажного перекрытия

Главные моменты:

  • расширенный типоразмерный ряд продукции. Габариты могут подбираться для каждого объекта индивидуально, в зависимости от расстояния между стенами;
  • уменьшенная масса облегченной продукции (от 0,8 до 8,6 т). Масса варьируется в зависимости от плотности бетона и размеров;
  • допустимая нагрузка на плиту перекрытия, равная 3–12,5 кПа. Это главный эксплуатационный параметр, определяющий несущую способность изделий;
  • марка бетонного раствора, который применялся для заливки панелей. Для изготовления подойдут бетонные составы с маркировкой от М200 до М400;
  • стандартный интервал между продольными осями полостей, составляющий 13,9-23,3 см. Расстояние определяется типоразмером и толщиной продукции;
  • марка и тип применяемой арматуры. В зависимости от типоразмера изделия, используются стальные прутки в напряженном или ненапряженном состоянии.

Подбирая изделия, нужно учитывать их вес, который должен соответствовать прочностным характеристикам фундамента.

Блок: 2/6 | Кол-во символов: 2690
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Материалы и конструкционные находки

Вес, который может выдержать плита перекрытия напрямую зависит от марки цемента, из которого она сделана.

Изготавливаются плиты перекрытия из бетона на основе цемента марки М300 или М400. Маркировка в строительстве — это не просто буквы и цифры. Это закодированная информация. К примеру, цемент марки М400 способен выдержать нагрузку до 400 кг на 1 куб.см в секунду.

Но не следует путать понятия «способен выдержать» и «будет выдерживать всегда». Эти самые 400 кг/куб.см/сек — нагрузка, которую изделие из цемента М400 выдержит какое-то время, а не постоянно.

Цемент М300 представляет из себя смесь на основе М400. Изделия из него выносят меньшие одномоментные нагрузки, зато они более пластичны и выдерживают прогибы, не проламываясь.

Армирование придает бетону высокую несущую способность. Пустотная плита армируется нержавеющей сталью класса АIII или АIV. У этой стали высокие антикоррозийные свойства и устойчивость к температурным перепадам от — 40˚ до + 50˚, что очень важно для нашей страны.

При производстве современных железобетонных изделий применяется натяжное армирование. Часть арматуры предварительно натягивают в форме, затем устанавливают арматурную сетку, которая передает напряжение от натянутых элементов на все тело пустотной плиты. После этого в форму заливают бетон. Как только он затвердеет и обретет нужную прочность, натяжные элементы обрезают.

Такое армирование позволяет железобетонным плитам выдержать большие нагрузки, не провисая и не прогибаясь. На торцах, которые опираются на несущие стены, используется двойное армирование. Благодаря этому торцы не «проминаются» под собственным весом и легко выдерживают нагрузку от верхних несущих стен.

Блок: 3/9 | Кол-во символов: 1711
Источник: https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html

Оплатить три доставки вместо одной — дешевле чем восстанавливать дом

При завозе строительных материалов нельзя допускать халатности и складывать все в одной точке. Профессиональные строители это знают, а дилетанты загрузят все в лифт и застрянут в лучшем случае.

Заранее просчитайте какие материалы потребуются и определите временные рамки для доставок.

Блок: 3/4 | Кол-во символов: 360
Источник: http://trustload.com/%D0%B4%D0%BE%D0%BF%D1%83%D1%81%D1%82%D0%B8%D0%BC%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%BD%D0%B0-%D0%BF%D0%BB%D0%B8%D1%82%D1%83-%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%8B/

Преимущества и слабые стороны плит с полостями

Плиты перекрытия с полостями

Пустотелые плиты популярны благодаря комплексу достоинств:

  • небольшому весу. При равных размерах они обладают высокой прочностью и успешно конкурируют с цельными панелями, которые имеют большой вес, соответственно увеличивая воздействие на стены и фундамент строения;
  • уменьшенной цене. По сравнению с цельными аналогами, для изготовления пустотелых изделий требуется уменьшенное количество бетонного раствора, что позволяет обеспечить снижение сметной стоимости строительных работ;
  • способности поглощать шумы и теплоизолировать помещение. Это достигается за счет конструктивных особенностей, связанных с наличием в бетонном массиве продольных каналов;
  • повышенному качеству промышленно изготовленной продукции. Особенности конструкции, размеры и вес не позволяют кустарно изготавливать панели;
  • возможности ускоренного монтажа. Установка выполняется намного быстрее, чем сооружение цельной железобетонной конструкции;
  • многообразию габаритов. Это позволяет использовать стандартизированную продукцию для строительства сложных перекрытий.

К преимуществам изделий также относятся:

  • возможность использования внутреннего пространства для прокладки различных инженерных сетей;
  • повышенный запас прочности продукции, выпущенной на специализированных предприятиях;
  • стойкость к вибрационному воздействию, перепадам температур и повышенной влажности;
  • возможность использования в районах с повышенной до 9 баллов сейсмической активностью;
  • ровная поверхность, благодаря которой уменьшается трудоемкость отделочных мероприятий.

Изделия не подвержены усадке, имеют минимальные отклонения размеров и устойчивы к воздействию коррозии.

Пустотные плиты перекрытия

Имеются также и недостатки:

  • потребность в использовании грузоподъемного оборудования для выполнения работ по их установке. Это повышает общий объем затрат, а также требует наличия свободной площадки для установки подъемного крана;
  • необходимость выполнения прочностных расчетов. Важно правильно рассчитать значения статической и динамической нагрузки. Массивные бетонные покрытия не стоит устанавливать на стены старых зданий.

Для установки перекрытия необходимо сформировать армопояс по верхнему уровню стен.

Расчет нагрузки на плиту перекрытия

Расчетным путем несложно определить, какую нагрузку выдерживают плиты перекрытия. Для этого необходимо:

  • начертить пространственную схему здания;
  • рассчитать вес, действующий на несущую основу;
  • вычислить нагрузки, разделив общее усилие на количество плит.

Определяя массу, необходимо просуммировать вес стяжки, перегородок, утеплителя, а также находящейся в помещении мебели.

Рассмотрим методику расчета на примере панели с обозначением ПК 60.15-8, которая весит 2,85 т:

  1. Рассчитаем несущую площадь – 6х15=9 м2.
  2. Вычислим нагрузку на единицу площади – 2,85:9=0,316 т.
  3. Отнимем от нормативного значения собственный вес 0,8-0,316=0,484 т.
  4. Вычислим вес мебели, стяжки, полов и перегородок на единицу площади – 0,3 т.
  5. Сопоставимый результат с расчетным значением 0,484-0,3=0,184 т.

Многопустотная плита перекрытия ПК 60.15-8

Полученная разница, равная 184 кг, подтверждает наличие запаса прочности.

Плита перекрытия – нагрузка на м2

Методика расчета позволяет определить нагрузочную способность изделия.

Рассмотрим алгоритм вычисления на примере панели ПК 23.15-8 весом 1,18 т:

  1. Рассчитаем площадь, умножив длину на ширину – 2,3х1,5=3,45 м2.
  2. Определим максимальную загрузочную способность – 3,45х0,8=2,76т.
  3. Отнимем массу изделия – 2,76-1,18=1,58 т.
  4. Рассчитаем вес покрытия и стяжки, который составит, например, 0,2 т на 1 м2.
  5. Вычислим нагрузку на поверхность от веса пола – 3,45х0,2=0,69 т.
  6. Определим запас прочности – 1,58-0,69=0,89 т.

Фактическая нагрузка на квадратный метр определяется путем деления полученного значения на площадь 890 кг:3,45 м2= 257 кг. Это меньше расчетного показателя, составляющего 800 кг/м2.

Блок: 4/6 | Кол-во символов: 3875
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Как правильно делать ремонт (распределение нагрузок):

  • Произведите демонтаж (уберите лишнее) и утилизацию строительного мусора. Это важно, чтобы подготовить фронт работы.
  • Продумайте и просчитайте пирог полов. Если требуется большой слой, то используйте легкие материалы (пеноплекс, керамзит). Эти материалы не дают большую нагрузку на плиту перекрытия и позволяют обеспечить звукоизоляцию.
  • Перегородки собирайте из легких материалов. Не используйте кирпич для возведения внутренних перегородок — вес кирпичной перегородки (пустотелый кирпич) составляет 200-220 кг/кв.м. Соответственно маленькая кирпичная стена площадью в 10 кв.м будет весить более 2 т.

В своих проектах я всегда собираю перегородки из тонкого пеноблока (толщиной 50-75мм). Это позволяет экономить пространство (толщина кирпичной стены 120 мм) и не перегружать плиту перекрытия. Стены из пеноблока обладают схожими характеристиками с кладкой в полкирпича (крепость и звукоизоляция между помещениями).

  • Никогда не заливайте слой цементной стяжки более 4 см. Всегда должен быть «пирог» полов: снизу толстые слои легких материалов, а сверху цементная стяжка и тонкий слой самовыравнивающегося наливного пола (0,4 — 0,9 см).
  • Учитывайте вес финишных материалов. Натуральный камень может передавать нагрузку от 60 кг/кв.м. Если уже произвели работы и подняли уровень полов, то правильно заменить тяжелые финишные материалы на более легкие, например на керамогранит.
  • Следите, чтобы во время ремонта хранение сухих смесей не было организовано в одной точке. Разделите смеси на группы и храните их в разных комнатах.
  • Всегда обращайтесь к профессионалам и не экономьте на специалистах. Ремонт не прощает ошибок. Ремонт требует знаний и опыта, никогда не допускайте к работе дилетантов или тех, кто не понимает разницу между М:300 и М:500.

Источник

Блок: 4/4 | Кол-во символов: 1845
Источник: http://trustload.com/%D0%B4%D0%BE%D0%BF%D1%83%D1%81%D1%82%D0%B8%D0%BC%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%BD%D0%B0-%D0%BF%D0%BB%D0%B8%D1%82%D1%83-%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%8B/

Виды нагрузок

Независимо от типа, любое перекрытие состоит из:

  1. 1. Верхней части – напольное покрытие, утепление полов, бетонные стяжки, если сверху расположен жилой этаж.
  2. 2. Нижней части, которая создается из обшивочных материалов, штукатурки, плиточных покрытий, к примеру, отделка потолка и подвесные конструкции, если снизу находится жилой этаж.
  3. 3. Конструкционной части, состоящей из монолитных или сборных плит.

Конструкционной частью является любой тип плит перекрытия, при этом верхняя и нижняя часть создают определенную статическую (перегородки, подвесные потолки, мебель) и динамическую нагрузку (нагрузка от перемещающихся по полу людей, домашних питомцев). Помимо этого также существуют точечные нагрузки и распределенные. Для жилых строений, помимо статических и динамических рассчитывают распределенные нагрузки, которые измеряются в килограмм-силах или Ньютонах на метр (кгс/м).

Блок: 5/9 | Кол-во символов: 896
Источник: https://shtyknozh.ru/nagruzka-na-plitu-perekrytija/

Маркировка

Каждый тип пустотелых плит перекрытий оснащается маркировкой, которая соответствует стандартам качества. Благодаря этому заказчик и проектировщик могут определить нужные параметры. На торце конструкции потребитель может увидеть маркировку, дату изготовления, массу и штамп ОТК.

В стандартной маркировке имеются несколько букв, которые обозначают серию, а также 3 группы цифр, определяющие размеры, несущую возможность. Обе группы имеют вид двух цифр, которые считаются обозначением длины, а также ширины в дециметрах. Данные показатели округляются до целых чисел в большую сторону. Последняя группа представлена в виде единой цифры, она определяет равномерность распределения нагрузок в кПа.

Показатель этот также округляется.

Пример маркировки: ПК 23-5-8. Ее расшифровка такая: плита имеет круглые пустоты, она характеризуется длиной в 2280, шириной в 490 миллиметров, при этом конструкция обладает несущей способностью в 7,85 кПа. Есть такие виды изделий, что оснащаются маркировкой, дополненной латинскими обозначениями, что определяют типы прутьев. Один из примеров маркировки: ПК ,5 обозначает, что изготовление каркаса осуществлялось из напряженной арматуры. В качестве дополнения на пустотелых конструкциях имеются следующие обозначения:

  • т – бетон тяжелого типа;
  • а – наличие вкладышей для уплотнения;
  • э – формирование при помощи экструзионного метода.

Блок: 6/8 | Кол-во символов: 2646
Источник: http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/

Разновидности конструкций

  • ПК характеризуется стандартной толщиной в 22 см, наличием сквозных полостей цилиндрической формы. Плиты изготавливаются из железобетона, который имеет класс не менее В15.
  • ПБ – этот вид изделий получают при помощи безопалубочного метода, используя конвейер. При изготовлении данных конструкций используется особый метод армирования, с его помощью отрезание происходит без потерь прочности. Так как плиты имеют ровную поверхность, последующая отделка полов, потолков осуществляется легче.
  • ПНО – облегченный вид конструкции, что произведен путем безопалубочного метода. Отличием от предыдущего вида можно назвать меньшую толщину в 0,16 метра.
  • НВ – внутренний тип настила, производимый из железобетона класса В40, имеющий армирование в один ряд, что является предварительно напряжённым.
  • НВК является внутренним типом настила, который имеет напряженное армирование в два ряда и толщину в 26,5 сантиметров.

При производстве конструкций для перекрытий предварительно напряженную арматуру подвергают сжимающей напряженности в пунктах, где будет осуществляться самое большое растяжение. По прохождению данной обработки преднапряженные круглопустотные конструкции становятся более прочными, устойчивыми. Характеристика таких приспособлений содержит обозначение «предварительно напряженная плита».

Стандартные габариты круглопустотных плит толщиной 0,22 м (ПК, ПБ, НВ) и 0,16 м (ПНО) характеризуются длиной 980-8990 мм, что в маркировке фиксируется как 10-90. Дистанция между соседствующими габаритами – 10-20 сантиметров. Ширина полноразмерного товара составляет 990 (10), 1190 (12), 1490 (15) миллиметров. Чтобы потребителю не приходилось резать изделия, применяются элементы добора, ширина которых составляет 500 (5), 600 (6), 800 (8), 900 (9), 940 (9) миллиметров.

ПБ характеризуются длиной до 12 метров. Если данный показатель составляет более 9 метров, то толщина должна соответствовать 22 сантиметрам или же несущая способность плиты будет меньше. Изделия серии НВК, НВКУ, 4НВК могут характеризоваться габаритами, которые не подходят к стандартным. Расстояние между пустотами плит назначается с использованием параметров оборудования, что используется на заводе. Согласно ГОСТ дистанция должна составлять меньше, чем следующие показатели:

  • для плит 1ПК, 1ПКТ, 1ПКК, 2ПК, 2ПКТ, 2ПКК, 3ПК, 3ПКТ, 3ПКК и 4ПК – 185;
  • для конструкций типа 5ПК – 235 миллиметров;
  • 6ПК – 233 миллиметров;
  • 7ПК – 139 миллиметров.

Оптимальным количеством пустот в данной конструкции считается 6 штук.

Блок: 5/8 | Кол-во символов: 4073
Источник: http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/

Примерный расчет предельной нагрузки на пустотную плиту перекрытия

Для того чтобы самостоятельно рассчитать, какую максимальную нагрузку могут выдерживать плиты перекрытия, которые вы планируете использовать при строительстве, необходимо учесть все моменты. Допустим, что для обустройства перекрытий вы хотите использовать панели 1ПК63.12-8 (то есть, величина расчетной нагрузки, которую выдерживает одно изделие, составляет 800 кг/м²: для дальнейших расчетов обозначим ее буквой Q₀). Рассчитав сумму всех динамических, статических и распределенных нагрузок (от веса самой плиты; от людей и животных, мебели и бытовой техники; от стяжки, утеплителя, финишного напольного покрытия и перегородок), которую обозначаем QΣ, можно определить, какую нагрузку выдерживает ваша конкретная плита. Основной момент, на который надо обратить внимание: в результате всех расчетов (разумеется, с учетом повышающего коэффициента прочности) должно получиться, что QΣ ≤ Q₀.

Для того чтобы определить равномерно распределенную нагрузку от собственного веса плиты, необходимо знать ее массу (M). Можно воспользоваться либо величиной массы, указанной в сертификате завода-изготовителя (если его предоставили в месте продажи), либо справочной величиной из таблицы ГОСТ-а, которая составлена для изделий, изготовленных из тяжелых видов бетона со средней плотностью 2500 кг/м³. В нашем случае справочный вес плиты составляет 2400 кг.

Сначала вычисляем площадь плиты: S = L⨯H = 6,3⨯1,2 = 7,56 м². Тогда нагрузка от собственного веса (Q₁) составит: Q₁ = M:S = 2400:7,56 = 317,46 ≈ 318 кг/м².

В некоторых строительных справочниках рекомендуют при расчетах использовать суммарное усредненное значение полезной нагрузки на перекрытие жилых помещений – Q₂=400 кг/м².

Тогда суммарная нагрузка, которую необходимо выдерживать плите перекрытия, составит:

QΣ = Q₁ + Q₂ = 318 + 400 = 718 кг/м² ˂ 800 кг/м², то есть основной момент QΣ ≤ Q₀ соблюден и выбранная плита пригодна для обустройства перекрытий жилых помещений.

Для точных расчетов будут необходимы значения удельной плотности (стяжки, теплоизолятора, финишного покрытия), значение нагрузки от перегородок, вес мебели и бытовой техники и так далее. Нормативные показатели нагрузок (Qн) и коэффициенты надежности (Үн) указаны в соответствующих СНИП-ах.

Блок: 6/7 | Кол-во символов: 2267
Источник: https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html

Максимальная нагрузка на плиту перекрытия в точке приложения усилий

Предельное значение статической нагрузки, которое может прилагаться в одной точке, определяется с коэффициентом запаса, равным 1,3. Для этого необходимо нормативный показатель 0,8 т/м2 умножить на коэффициент запаса. Полученное значение составляет – 0,8х1,3=1,04 т. При динамической нагрузке, действующей в одной точке, коэффициент запаса следует увеличить до 1,5.

Блок: 5/6 | Кол-во символов: 434
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Нагрузка на плиту перекрытия в панельном доме старой постройки

Определяя, какой вес выдерживает плита перекрытия в квартире старого дома, следует учитывать ряд факторов:

  • нагрузочную способность стен;
  • состояние строительных конструкций;
  • целостность арматуры.

При размещении в зданиях старой застройки тяжелой мебели и ванн увеличенного объема, необходимо рассчитать, какое предельное усилие могут выдержать плиты и стены строения. Воспользуйтесь услугами специалистов. Они выполнят расчеты и определят величину предельно допустимых и постоянно действующих усилий. Профессионально выполненные расчеты позволят избежать проблемных ситуаций.

Originally posted 2018-03-05 17:23:17.

Блок: 6/6 | Кол-во символов: 677
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Способ пересчета нагрузок на квадратный м

Расчет нагрузок на плиту перекрытия делается на ее каждый погонный метр.

Нагрузку на ту же плиту перекрытия можно рассчитать и по-другому. Берем все ту же ПК-60-15-8.

При площади поверхности в 9 кв.м на 1 кв.м поверхности плиты приходится: 2850 кг : 9 кв.м = 316 кг/кв.м Вычитаем собственный вес из максимально допустимой нагрузки: 800 кг/кв. м — 316 кг/кв.м = 484 кг/кв.м.

Теперь вычитаем отсюда вес напольного покрытия, стяжки или утепления, то есть всего того, что ляжет на пол. Пусть оно будет приблизительно равно 150 кг/кв.м: 484 кг/кв.м — 150 кг/кв.м = 334 кг/кв.м.

Небольшая разница в 1 кг получается за счет того, что здесь не проводилось деление, которое в первом случае приводит к периодической дроби. Из остающихся 334 кг/кв.м нужно вычесть 150 кг/кв. м, отпущенные на мебель и людей, а потом распланировать перегородки и двери из расчета 184 кг на 1 кв.м.

Блок: 7/9 | Кол-во символов: 912
Источник: https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html

Сколько может выдержать плита перекрытия?

Не стоит устанавливать в старых домах слишком массивную сантехнику или другие предметы, которые приведут к утяжелению конструкции. Помимо этого статические нагрузки со временем могут накапливаться, что в свою очередь может привести к прогибам и провисанию плит перекрытия. Чтобы не ошибиться в измерениях, рекомендуется пригласить специалиста для проведения детальных расчетов. Расчеты должны соответствовать установленным нормам (СНиПу).

Блок: 7/9 | Кол-во символов: 482
Источник: https://shtyknozh.ru/nagruzka-na-plitu-perekrytija/

Точечная нагрузка с точностью до грамма

Этот вид нагрузки требует особой осторожности. От того, сколько будет подвешено или нагружено на одну точку, будет зависеть срок службы всего перекрытия.

Некоторые справочники предлагают рассчитывать предельно допустимую точечную нагрузку по следующей формуле: 800 кг/кв.м × 2 = 1600 кг То есть на одну точку можно навесить или поставить 1600 кг. Однако более разумным будет подсчет точечной нагрузки в соответствии с коэффициентом надежности.

Для жилых помещений он обычно равен 1-1,2. Исходя из этого, получаем: 800 кг/кв.м × 1,2 = 960 кг Такой расчет более безопасен, если речь идет о длительной нагрузке на одну точку. Однако следует помнить, что точечную нагрузку лучше располагать ближе к несущим стенам, возле которых армирование плиты усилено.

Блок: 8/9 | Кол-во символов: 793
Источник: https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html

Правила монтажа

Для осуществления надежного монтажа пустотных плит перекрытия стоит точно соблюдать все правила. В случае если площадь опоры недостаточна, могут деформироваться стены, а в ситуации с излишком площади возможно увеличение теплопроводности. При установке плит данного вида стоит брать во внимание максимальную глубину опоры:

  • для кирпичного сооружения – 9 сантиметров;
  • для газобетонного и пенобетонного – 15 сантиметров;
  • для конструкций из стали – 7, 5 сантиметров.

В данном процессе стоит учитывать, что глубина заделки панели в стене не должно быть более чем 16 см для легкого блочного и кирпичного здания, а также 12 см для конструкции из бетона и железобетона.

До того как начать установку плит, окраинные пустоты необходимо заделать легкой смесью из бетона на глубину 0,12 метра.

Категорически не рекомендуется осуществлять монтаж плит без использования раствора. На рабочей поверхности укладывается слой раствора не меньше чем в 2 миллиметра. Благодаря данному мероприятию нагрузка на стену передается равномерно. Обустраивая плиты на хрупкую стену, необходимо сделать процедуру армирования, благодаря которой не будет выгибания блоков. Для того чтобы уменьшить теплопроводность плит перекрытия, стоит снаружи утеплить конструкцию.

Покупая пустотные панели перекрытий, стоит обращать внимание на их качество, внешний вид и наличие сертификатов, так как от них будет зависеть безопасность. Использование пустотных плит обеспечивает небольшую нагрузку на весь периметр сооружения, гарантирует высокую прочность и надежность сооружения.

Этот вид конструкций способствует меньшей осадке здания, нежели при использовании полнотелых вариантов, к тому же цена на них приемлемая.

О том, как правильно уложить плиты перекрытия, вы можете узнать из видео ниже.

Блок: 8/8 | Кол-во символов: 4118
Источник: http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/

Нагрузки при ремонтах старых квартир

Плиты перекрытия можно делать своими руками. Чтобы сделать их прочнее делается армирование.

Планируя роскошные ремонты в старых домах, лучше заранее изъять старое утепление полов и напольное покрытие. Затем следует хотя бы приблизительно оценить его вес. Новые стяжки, плиты или паркет, которые придут им на смену, желательно подобрать так, чтобы вес нового напольного «одеяния» был примерно равен массе прежней верхней части перекрытия.

Следует быть особо осторожным, размещая в старых квартирах новую сантехнику с увеличенными объемами — ванны на 500 л и более, джакузи. Лучше всего пригласить специалиста и попросить его провести детальные расчеты. Следует помнить, что кратковременная нагрузка и постоянная статическая нагрузка отличаются друг от друга.

Статические нагрузки имеют свойство накапливаться, приводя со временем к значительным прогибам и провисаниям плиты. А кратковременная нагрузка всего лишь испытывает ее на прочность.

В заключение хотелось бы сказать, что только точное соблюдение всех правил и тщательность в расчетах обеспечат плитам перекрытия долгую жизнь.

Блок: 9/9 | Кол-во символов: 1153
Источник: https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html

Кол-во блоков: 21 | Общее кол-во символов: 33856
Количество использованных доноров: 6
Информация по каждому донору:
  1. https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html: использовано 4 блоков из 9, кол-во символов 4569 (13%)
  2. https://shtyknozh.ru/nagruzka-na-plitu-perekrytija/: использовано 3 блоков из 9, кол-во символов 1746 (5%)
  3. http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/: использовано 4 блоков из 8, кол-во символов 13308 (39%)
  4. https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html: использовано 2 блоков из 7, кол-во символов 2572 (8%)
  5. https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya: использовано 4 блоков из 6, кол-во символов 7676 (23%)
  6. http://trustload.com/%D0%B4%D0%BE%D0%BF%D1%83%D1%81%D1%82%D0%B8%D0%BC%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%BD%D0%B0-%D0%BF%D0%BB%D0%B8%D1%82%D1%83-%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%8B/: использовано 3 блоков из 4, кол-во символов 3985 (12%)

Поделитесь в соц.сетях:

Оцените статью:

Загрузка…

Какую нагрузку выдерживает плита перекрытия пустотные

Максимально допустимая нагрузка на плиту перекрытия

Для обустройства перекрытий между этажами, а также при строительстве частных объектов применяются железобетонные панели с полостями. Они являются связующим элементом в сборных и сборно-монолитных строениях, обеспечивая их устойчивость. Главная характеристика – нагрузка на плиту перекрытия. Она определяется на этапе проектирования здания. До начала строительных работ следует выполнить расчеты и оценить нагрузочную способность основы. Ошибка в расчетах отрицательно повлияет на прочностные характеристики строения.

Нагрузка на пустотную пелиту перекрытия

Виды пустотных панелей перекрытия

Панели с продольными полостями применяют при сооружении перекрытий в жилых зданиях, а также строениях промышленного назначения.

Железобетонные панели отличаются по следующим признакам:

  • размерам пустот;
  • форме полостей;
  • наружным габаритам.

В зависимости от размера поперечного сечения пустот железобетонная продукция классифицируется следующим образом:

  • изделия с каналами цилиндрической формы диаметром 15,9 см. Панели маркируются обозначением 1ПК, 1 ПКТ, 1 ПКК, 4ПК, ПБ;
  • продукция с кругами полостями диаметром 14 см, произведенная из тяжелых марок бетонной смеси, обозначается 2ПК, 2ПКТ, 2ПКК;
  • пустотелые панели с каналами диаметром 12,7 см. Они маркируются обозначением 3ПК, 3ПКТ и 3ПКК;
  • круглопустотные панели с уменьшенным до 11,4 см диаметром полости. Применяются для малоэтажного строительства и обозначаются 7ПК.

Виды плит и конструкция перекрытия

Панели для межэтажных оснований отличаются формой продольных отверстий, которая может быть выполнены в виде различных фигур:

  • круга;
  • эллипса;
  • восьмигранника.

По согласованию с заказчиком стандарт допускает выпуск продукции с отверстиями, форма которых отличается от указанных. Каналы могут иметь вытянутую или грушеобразную форму.

Круглопустотная продукция отличается также габаритами:

  • длиной, которая составляет 2,4–12 м;
  • шириной, находящейся в интервале 1м3,6 м;
  • толщиной, составляющей 16–30 см.

По требованию потребителя предприятие-изготовитель может выпускать нестандартную продукцию, отличающуюся размерами.

Основные характеристики пустотных панелей перекрытий

Плиты с полостями пользуются популярностью в строительной отрасли благодаря своим эксплуатационным характеристикам.

Расчет на продавливание плиты межэтажного перекрытия

Главные моменты:

  • расширенный типоразмерный ряд продукции. Габариты могут подбираться для каждого объекта индивидуально, в зависимости от расстояния между стенами;
  • уменьшенная масса облегченной продукции (от 0,8 до 8,6 т). Масса варьируется в зависимости от плотности бетона и размеров;
  • допустимая нагрузка на плиту перекрытия, равная 3–12,5 кПа. Это главный эксплуатационный параметр, определяющий несущую способность изделий;
  • марка бетонного раствора, который применялся для заливки панелей. Для изготовления подойдут бетонные составы с маркировкой от М200 до М400;
  • стандартный интервал между продольными осями полостей, составляющий 13,9-23,3 см. Расстояние определяется типоразмером и толщиной продукции;
  • марка и тип применяемой арматуры. В зависимости от типоразмера изделия, используются стальные прутки в напряженном или ненапряженном состоянии.

Подбирая изделия, нужно учитывать их вес, который должен соответствовать прочностным характеристикам фундамента.

Как маркируются плиты пустотные

Государственный стандарт регламентирует требования по маркировке продукции. Маркировка содержит буквенно-цифровое обозначение.

Маркировка пустотных плит перекрытия

По нему определяется следующая информация:

  • типоразмер панели;
  • габариты;
  • предельная нагрузка на плиту перекрытия.

Маркировка также может содержать информацию по типу применяемого бетона.

На примере изделия, которое обозначается аббревиатурой ПК 38-10-8, рассмотрим расшифровку:

  • ПК – эта аббревиатура обозначает межэтажную панель с круглыми полостями, изготовленную опалубочным методом;
  • 38 – длина изделия, составляющая 3780 мм и округленная до 38 дециметров;
  • 10 – указанная в дециметрах округленная ширина, фактический размер составляет 990 мм;
  • 8 – цифра, указывающая, сколько выдерживает плита перекрытия килопаскалей. Это изделие способно выдерживать 800 кг на квадратный метр поверхности.

При выполнении проектных работ следует обращать внимание на индекс в маркировке изделий, чтобы избежать ошибок. Подбирать изделия необходимо по размеру, уровню максимальной нагрузки и конструктивным особенностям.

Преимущества и слабые стороны плит с полостями

Пустотелые плиты популярны благодаря комплексу достоинств:

  • небольшому весу. При равных размерах они обладают высокой прочностью и успешно конкурируют с цельными панелями, которые имеют большой вес, соответственно увеличивая воздействие на стены и фундамент строения;
  • уменьшенной цене. По сравнению с цельными аналогами, для изготовления пустотелых изделий требуется уменьшенное количество бетонного раствора, что позволяет обеспечить снижение сметной стоимости строительных работ;
  • способности поглощать шумы и теплоизолировать помещение. Это достигается за счет конструктивных особенностей, связанных с наличием в бетонном массиве продольных каналов;
  • повышенному качеству промышленно изготовленной продукции. Особенности конструкции, размеры и вес не позволяют кустарно изготавливать панели;
  • возможности ускоренного монтажа. Установка выполняется намного быстрее, чем сооружение цельной железобетонной конструкции;
  • многообразию габаритов. Это позволяет использовать стандартизированную продукцию для строительства сложных перекрытий.

К преимуществам изделий также относятся:

  • возможность использования внутреннего пространства для прокладки различных инженерных сетей;
  • повышенный запас прочности продукции, выпущенной на специализированных предприятиях;
  • стойкость к вибрационному воздействию, перепадам температур и повышенной влажности;
  • возможность использования в районах с повышенной до 9 баллов сейсмической активностью;
  • ровная поверхность, благодаря которой уменьшается трудоемкость отделочных мероприятий.

Изделия не подвержены усадке, имеют минимальные отклонения размеров и устойчивы к воздействию коррозии.

Имеются также и недостатки:

  • потребность в использовании грузоподъемного оборудования для выполнения работ по их установке. Это повышает общий объем затрат, а также требует наличия свободной площадки для установки подъемного крана;
  • необходимость выполнения прочностных расчетов. Важно правильно рассчитать значения статической и динамической нагрузки. Массивные бетонные покрытия не стоит устанавливать на стены старых зданий.

Для установки перекрытия необходимо сформировать армопояс по верхнему уровню стен.

Расчет нагрузки на плиту перекрытия

Расчетным путем несложно определить, какую нагрузку выдерживают плиты перекрытия. Для этого необходимо:

  • начертить пространственную схему здания;
  • рассчитать вес, действующий на несущую основу;
  • вычислить нагрузки, разделив общее усилие на количество плит.

Определяя массу, необходимо просуммировать вес стяжки, перегородок, утеплителя, а также находящейся в помещении мебели.

Рассмотрим методику расчета на примере панели с обозначением ПК 60.15-8, которая весит 2,85 т:

  1. Рассчитаем несущую площадь – 6х15=9 м 2 .
  2. Вычислим нагрузку на единицу площади – 2,85:9=0,316 т.
  3. Отнимем от нормативного значения собственный вес 0,8-0,316=0,484 т.
  4. Вычислим вес мебели, стяжки, полов и перегородок на единицу площади – 0,3 т.
  5. Сопоставимый результат с расчетным значением 0,484-0,3=0,184 т.

Многопустотная плита перекрытия ПК 60.15-8

Полученная разница, равная 184 кг, подтверждает наличие запаса прочности.

Плита перекрытия – нагрузка на м 2

Методика расчета позволяет определить нагрузочную способность изделия.

Рассмотрим алгоритм вычисления на примере панели ПК 23.15-8 весом 1,18 т:

  1. Рассчитаем площадь, умножив длину на ширину – 2,3х1,5=3,45 м 2 .
  2. Определим максимальную загрузочную способность – 3,45х0,8=2,76т.
  3. Отнимем массу изделия – 2,76-1,18=1,58 т.
  4. Рассчитаем вес покрытия и стяжки, который составит, например, 0,2 т на 1 м 2 .
  5. Вычислим нагрузку на поверхность от веса пола – 3,45х0,2=0,69 т.
  6. Определим запас прочности – 1,58-0,69=0,89 т.

Фактическая нагрузка на квадратный метр определяется путем деления полученного значения на площадь 890 кг:3,45 м2= 257 кг. Это меньше расчетного показателя, составляющего 800 кг/м2.

Максимальная нагрузка на плиту перекрытия в точке приложения усилий

Предельное значение статической нагрузки, которое может прилагаться в одной точке, определяется с коэффициентом запаса, равным 1,3. Для этого необходимо нормативный показатель 0,8 т/м 2 умножить на коэффициент запаса. Полученное значение составляет – 0,8х1,3=1,04 т. При динамической нагрузке, действующей в одной точке, коэффициент запаса следует увеличить до 1,5.

Виды плит и конструкция перекрытия.

Основные характеризующие моменты

Установка плиты перекрытия на несущую конструкцию кровли позволяет заниматься возведением многоэтажных домов. Чтобы правильно выполнить проект здания, необходимо точно знать, какое давление выдержит выбранная плита перекрытия. Необходимо хорошо разбираться в разнообразии плит.

Чертеж пустотной плиты перекрытия.

Прежде чем приступать к возведению многоэтажного здания, необходимо провести расчет нагрузки. От будущего веса будет зависеть подбор конструкции здания, от нагрузки зависит, какую нужно устанавливать плиту.

На производстве выпускается два вида плит:

Полнотелые системы отличаются большой массой, они стоят очень дорого. Такая конструкция применяется в строительстве серьезных объектов, которые относятся к социально значимым.

При строительстве жилых домов в основном используется пустотная плита. Надо сказать, что основные технические параметры такой плиты соответствуют всем стандартам строительства жилого помещения:

Важнейшим преимуществом этих изделий можно назвать низкую стоимость. Это дало возможность применять такую систему намного чаще, если сравнивать ее с другими.

Для расчета перекрытия учитывается местонахождение пустот. Они располагаются таким образом, чтобы несущие характеристики изделия не были нарушены. Пустоты влияют также на звукоизоляцию помещения, его теплоизоляционные свойства.

Плита изготавливается самых разных размеров. Ее длина может достигать максимально 9,7 м при максимальной ширине — 3,5 м.

Расчет на продавливание плиты межэтажного перекрытия.

При строительстве зданий чаще всего применяются конструкции с габаритами 6 х1,5 м. Этот размер считается стандартным и наиболее востребованным. Данную систему применяют для возведения:

Так как вес данных плит не очень высок, их легко монтировать, для чего применяется пятитонный кран.

Как рассчитать нагрузку правильно

Строительство любого дома не может обойтись без правильного расчета нагрузки, которую способна удержать плита перекрытия. От нее зависит жесткость всего здания. Поэтому данные расчеты — это залог безопасного строительства, это гарантия безопасности жизни людей.

В каждом доме перекрытия имеют две конструктивные части:

Схема нагрузок на перекрытие.

Верхняя часть передает нагрузку нижней конструкции. Поэтому очень важно точно рассчитать допустимую величину.

В основном расчет любой строительной конструкции просто необходим, чтобы впоследствии не произошло разрушение здания. В случае ошибочного расчета стены очень быстро начнут трескаться. Здание быстро развалится.

Расчет нагрузки плиты делается в двух категориях:

Статический расчет учитывает все предметы, которые осуществляют нагрузку на плиту. Все движущиеся объекты несут динамическую величину.

Чтобы выполнить расчет, необходимо иметь:

От размера плиты зависит ее устойчивость к различным нагрузкам.

Для определения нагрузки, которую способна выдержать будущая плита перекрытия, предварительно делается подробный чертеж. Учитывается площадь дома и все, что может создавать нагрузку. К данным элементам относятся:

  • перегородки;
  • утепления;
  • цементные стяжки;
  • напольное покрытие.

Основная опорная система кровли находится в торцах плиты. Когда изготавливаются плиты, армирование располагается так, чтобы максимальная нагрузка приходилась именно на торцы.

Центр плиты не должен воспринимать нагрузку, она не закладывается при расчете конструкции.

Нормативные, расчетные нагрузки и коэффициент надежности.

Поэтому середина конструкции не выдержит, даже если она будет усилена капитальными стенами.

Чтобы понять, как делается расчет, возьмем для примера конструкцию типа «ПК-50-15-8». Согласно ГОСТу 9561-91, масса данной системы равна 2850 кг.

  1. Сначала рассчитывается площадь всей несущей поверхности: 5 м × 1,5 м = 7,5 кв.м.
  2. Затем рассчитывается вес, который может удержать плита: 7,5 кв. м × 800 кг/кв.см= 6000 кг.
  3. После этого определяется масса: 6000 кг — 2850 кг = 3150 кг.

На последнем шаге подсчитывается, сколько останется от нагрузки после проведения утепления, укладки стяжки и обшивки полов. Профессионалы стараются брать напольное покрытие, чтобы оно и стяжка не превышали 150 кг/кв.см.

Затем 7,5 кв. м умножается на значение 150 кг/кв.см, в результате получается 1125 кг. От массы плиты, равной 3150 кг, отнимается 1125 кг, получается 3000 кг. Таким образом, 1 кв. м может выдержать 300 кг/кв. см.

Расчет точечной нагрузки

Данный параметр должен выполняться очень грамотно и расчетливо. Если нагрузка будет приходиться в одну точку, то это будет сильно влиять на срок службы перекрытия.

Справочники по строительству приводят формулу:

800 кг/кв.см × 2 = 1600 кг.

Следовательно, одна индивидуальная точка способна выдержать 1600 кг.

Однако при более точном расчете необходимо учесть коэффициент надежности. Его значение для жилого здания берется 1,3. В результате:

800 кг/кв.см × 1,3 = 1040 кг.

Но, даже имея данный безопасный размер, желательно точечную нагрузку располагать рядом с несущей конструкцией.

Несколько дополнительных сведений

Характеристики железобетонных плит перекрытий

Конечно, если известны все технические параметры перекрытия, ориентировочная масса, которая будет основной нагрузкой, выполнить нужные расчеты достаточно легко. При этом необходимо учесть существование нескольких разновидностей нагрузок.

В первую очередь, это продолжительность нагрузки. Она может существовать в виде:

Постоянную нагрузку создают:

  • мебель;
  • люди;
  • бытовая техника;
  • вещи, постоянно расположенные в помещении.

Кроме того, постоянно давит масса несущей конструкции, оказывает влияние горное давление.

Под временными нагрузками понимаются те, которые появляются при строительстве самых разных конструкций.

К особым нагрузкам относится сейсмическое воздействие, возможное изменение свойств грунта.

Кратковременные нагрузки возникают от оборудования, применяемого при строительстве здания, при атмосферном воздействии. Когда делается расчет самой большой нагрузки, необходимо учесть и длительные нагрузки. Они составляют большую группу, к ним можно отнести:

  • замерзание воды;
  • появление льда;
  • возникновение трещин;
  • линию жесткости;
  • кирпичную стенку:
  • цементную стяжку;
  • покрытие напольной поверхности;
  • массу перегородок;
  • массу оборудования для выполнения стационарной работы, это могут быть конвейерные установки, различные аппараты, твердые или жидкообразные тела;
  • вес стеллажей, находящихся на складе или в другом помещении;
  • массу скопившейся пыли, этот фактор часто игнорируют, однако его необходимо обязательно принимать к сведению, это также лишний вес;
  • атмосферные осадки.

Несколько полезных рекомендаций

Чтобы усилить несущую способность плит перекрытия, специально делается армирование.

Когда проводится расчет нагрузки, которая создается массой самого разного производственного оборудования, требуется учитывать существующую нормативную нагрузку. Сюда входит и масса проложенных трубопроводов.

Когда расчет касается нестандартного оборудования, лучше всего за основу брать паспортные данные, которые прилагает завод-изготовитель данного оборудования.

При расчете учитывается также вес конвейеров, аппаратов и изоляции. Чаще всего производитель плиты сопровождает изделие паспортом, где указывается допустимая нагрузка плиты перекрытия.

Какую нагрузку могут выдерживать пустотные плиты перекрытия

Бетонные пустотные плиты уже много лет используют для обустройства межэтажных перекрытий при строительстве зданий из любых строительных материалов: железобетонных панелей, стеновых блоков (газобетонных, пенобетонных, газосиликатных), а также при возведении монолитных или кирпичных сооружений. Нагрузка на пустотную плиту перекрытия – одна из основных характеристик таких изделий, которую необходимо учитывать уже на этапе проектирования будущего строения. Неправильный расчет этого параметра негативно скажется на прочности и долговечности всего строения.

Разновидности пустотных плит перекрытия

Пустотные плиты наиболее широко применяют при обустройстве перекрытий при строительстве жилых домов, общественных и промышленных сооружений. Толщина таких панелей составляет 160, 220, 260 или 300 мм. По типу отверстий (пустот) изделия бывают:

  • с круглыми отверстиями;
  • с пустотами овальной формы;
  • с отверстиями грушевидной формы;
  • с формой и размерами пустот, которые регламентируются техусловиями и специальными стандартами.

Самые востребованные на современном строительном рынке – изделия с толщиной 220 мм и отверстиями цилиндрической формы, так как они рассчитаны на значительные нагрузки на каждую пустотную плиту перекрытия, а ГОСТ предусматривает их применение для обустройства перекрытий практически всех типов зданий. Различают три типа таких конструкционных изделий:

  • Плиты с цилиндрическими пустотами Ø=159 мм (маркируют символами 1ПК).
  • Изделия с круглыми отверстиями Ø=140 мм (2ПК), которые изготавливают только из тяжелых видов бетона.
  • Панели с пустотами Ø=127 мм (3ПК).

На заметку! Для малоэтажного индивидуального строительства допустимо применение панелей толщиной 16 см и отверстиями Ø=114 мм. Важный момент, который надо учитывать, выбирая изделие такого типа, уже на этапе проектирования сооружения – максимальная нагрузка, которую выдержит плита.

Характеристики пустотных плит перекрытий

К основным техническим характеристикам пустотных плит относятся:

  • Геометрические размеры (стандартные: длина – от 2,4 до 12 м; ширина – от 1,0 до 3,6 м; толщина – от 160 до 300 мм). По желанию заказчика производитель может изготовить нестандартные панели (но только при строгом соблюдении всех требований ГОСТа).
  • Масса (от 800 до 8600 кг в зависимости от размеров панели и плотности бетона).
  • Допустимая нагрузка на плиту перекрытия (от 3 до 12,5 кПа).
  • Тип бетона, который использовали при изготовлении (тяжелый, легкий, плотный силикатный).
  • Нормированное расстояние между центрами отверстий от 139 до 233 мм (зависит от типа и толщины изделия).
  • Минимальное количество сторон, на которые должна опираться панель перекрытия (2, 3 или 4).
  • Расположение пустот в плите (параллельно длине либо ширине). Для панелей, предназначенных для опоры на 2 или 3 стороны, пустоты необходимо обустраивать только параллельно длине изделия. Для плит, опирающихся на 4 стороны, возможно расположение отверстий параллельно как длине, так и ширине.

  • Арматура, использованная при изготовлении (напрягаемая или ненапрягаемая).
  • Технологические выпуски арматуры (если таковые предусмотрены проектным заданием).

Маркировка пустотных плит

Марка панели состоит из нескольких групп букв и цифр, разделенных дефисами. Первая часть – тип плиты, ее геометрические размеры в дециметрах (округленные до целого числа), количество сторон опоры, на которое рассчитана панель. Вторая часть – расчетная нагрузка на плиту в кПа (1 кПа = 100 кг/м²).

Внимание! В маркировке указана расчетная, равномерно распределенная нагрузка на бетонное перекрытие (без учета собственной массы изделия).

Дополнительно в маркировке указывают тип бетона, примененного для изготовления (Л – легкий; С – плотный силикатный; тяжелый бетон индексом не обозначают), а также дополнительные характеристики (например, сейсмологическую устойчивость).

Например, если на плиту нанесена маркировка 1ПК66.15-8, то это расшифровывается следующим образом:

1ПК – толщина панели – 220 мм, пустоты Ø=159 мм и она предназначена для установки с опорой на две стороны.

66.15 – длина составляет 6600 мм, ширина – 1500 мм.

8 – нагрузка на плиту перекрытия, которая составляет 8 кПа (800 кг/м²).

Отсутствие в конце маркировки буквенного индекса указывает на то, что для изготовления был применен тяжелый бетон.

Еще один пример маркировки: 2ПКТ90.12-6-С7. Итак, по порядку:

2ПКТ – панель толщиной 220 мм с пустотами Ø=140 мм, предназначенная для установки с упором на три стороны (ПКК означает необходимость установки панели на четыре стороны опоры).

90.12 – длина – 9 м, ширина – 1,2 м.

6 – расчетная нагрузка 6 кПа (600 кг/м²).

С – означает, что она изготовлена из силикатного (плотного) бетона.

7 – панель может быть использована в регионах с сейсмологической активностью до 7 баллов.

Достоинства и недостатки пустотных плит

По сравнению со сплошными аналогами пустотные панели обладают рядом несомненных преимуществ:

  • Меньшей массой по сравнению со сплошными аналогами, причем без потери надежности и прочности. Это значительно уменьшает нагрузки на фундамент и несущие стены. При монтаже можно использовать технику меньшей грузоподъемности.
  • Меньшей стоимостью, так как для их изготовления необходимо значительно меньшее количество строительного материала.
  • Более высокой тепло- и звукоизоляцией (за счет пустот в «теле» изделия).
  • Отверстия могут быть использованы для прокладки различных инженерных коммуникаций.
  • Изготовление плит осуществляют только на крупных заводах, оснащенных современным высокотехнологичным оборудованием (производство их в кустарных условиях, практически, невозможно). Поэтому можно быть уверенным в соответствии изделия заявленным техническим характеристикам (согласно ГОСТ).

  • Многообразие стандартных типоразмеров позволяет осуществлять строительство сооружений самых различных конфигураций (доборные элементы перекрытий можно изготовить из стандартных панелей или заказать у производителя).
  • Быстрый монтаж перекрытия по сравнению с обустройством монолитной железобетонной конструкции.

К недостаткам таких плит можно отнести:

  • Возможность монтажа только с применением грузоподъемной техники, что приводит к удорожанию постройки при индивидуальном строительстве жилого дома. Необходимость свободного места на частном участке для маневрирования подъемного крана при монтаже перекрытий.

На заметку! Деревянные перекрытия, которые очень популярны в индивидуальном строительстве, устанавливают на балки, для монтажа которых также необходимо применение техники достаточной грузоподъемности.

  • При использовании стеновых блоков необходимо обустройство железобетонного армопояса.

  • Невозможность изготовления своими руками.

Примерный расчет предельной нагрузки на пустотную плиту перекрытия

Для того чтобы самостоятельно рассчитать, какую максимальную нагрузку могут выдерживать плиты перекрытия, которые вы планируете использовать при строительстве, необходимо учесть все моменты. Допустим, что для обустройства перекрытий вы хотите использовать панели 1ПК63.12-8 (то есть, величина расчетной нагрузки, которую выдерживает одно изделие, составляет 800 кг/м²: для дальнейших расчетов обозначим ее буквой Q₀). Рассчитав сумму всех динамических, статических и распределенных нагрузок (от веса самой плиты; от людей и животных, мебели и бытовой техники; от стяжки, утеплителя, финишного напольного покрытия и перегородок), которую обозначаем QΣ, можно определить, какую нагрузку выдерживает ваша конкретная плита. Основной момент, на который надо обратить внимание: в результате всех расчетов (разумеется, с учетом повышающего коэффициента прочности) должно получиться, что QΣ ≤ Q₀.

Для того чтобы определить равномерно распределенную нагрузку от собственного веса плиты, необходимо знать ее массу (M). Можно воспользоваться либо величиной массы, указанной в сертификате завода-изготовителя (если его предоставили в месте продажи), либо справочной величиной из таблицы ГОСТ-а, которая составлена для изделий, изготовленных из тяжелых видов бетона со средней плотностью 2500 кг/м³. В нашем случае справочный вес плиты составляет 2400 кг.

Сначала вычисляем площадь плиты: S = L⨯H = 6,3⨯1,2 = 7,56 м². Тогда нагрузка от собственного веса (Q₁) составит: Q₁ = M:S = 2400:7,56 = 317,46 ≈ 318 кг/м².

В некоторых строительных справочниках рекомендуют при расчетах использовать суммарное усредненное значение полезной нагрузки на перекрытие жилых помещений – Q₂=400 кг/м².

Тогда суммарная нагрузка, которую необходимо выдерживать плите перекрытия, составит:

QΣ = Q₁ + Q₂ = 318 + 400 = 718 кг/м² ˂ 800 кг/м², то есть основной момент QΣ ≤ Q₀ соблюден и выбранная плита пригодна для обустройства перекрытий жилых помещений.

Для точных расчетов будут необходимы значения удельной плотности (стяжки, теплоизолятора, финишного покрытия), значение нагрузки от перегородок, вес мебели и бытовой техники и так далее. Нормативные показатели нагрузок (Qн) и коэффициенты надежности (Үн) указаны в соответствующих СНИП-ах.

В заключении

На современном строительном рынке представлены пустотелые плиты с расчетными нагрузками от 300 до 1250 кг/м². Если подойти к моменту расчета необходимой предельной нагрузки ответственно, то можно выбрать изделие, удовлетворяющее именно вашим требованиям, не переплачивая за излишнюю прочность.

Допустимая нагрузка на пустотные плиты перекрытия

Допустимая нагрузка на плиты перекрытия пустотные – важнейшая характеристика изделия для строителей и ремонтников. От верного проектирования перекрытия зависит итоговая прочность сооружения. Как читать маркировку, определять допустимый вес и хранить плиты без ущерба устойчивости к нагрузке?

Что означает маркировка плит?

Сортамент плит перекрытия пустотных составлен с учетом их размеров и прочности.

Маркировка начинается с аббревиатуры ПК, то есть «плита круглопустотная», и содержит описание продукции.

Разберем значение цифр на примере названия ПК-30-12-8:

  • 30 — длина пустотной плиты перекрытия в дециметрах
  • 12 — ширина изделия в дм
  • 8 — максимальная нагрузка на 1 дм 2 в кг, то есть 800 кг на м 2 , в которые входит и вес самой плиты

В маркировке цифры округляются, в приведенном примере реальная длина плит перекрытия пустотных составит около 1180 см, а ширина – 1190 см.

Указанные параметры нагрузки используются чаще всего, однако возможны и другие значения – от 500 до 1500 кг на м 2 . В планировке жилых и офисных помещений стандартная нагрузка на плиты перекрытия пустотные 800 кг/м 2 , как правило, отвечает эксплуатационным требованиям.

Как рассчитывать допустимую нагрузку

Для проверки, выдержит ли выбранная плита внутренние элементы, вычитают из проектных значений разные виды нагрузок:

  • собственную массу изделия на м 2
  • оформление напольного покрытия (стяжки, утеплители, декор)
  • привнесенную статическую нагрузку (мебель, техника)
  • динамическую нагрузку (люди, животные)

Сортамент пустотных плит перекрытия содержит множество изделий, нужно рассчитать оптимальное заполнение проема с учетом массы плит и нагрузок.

Пример расчета веса внутренней стены:

800 кг/м 2 — 300 кг/м 2 (вес конкретной плиты по ГОСТу) — 150 кг/м 2 (максимальный вес стяжки, утеплителя и напольного покрытия по СНиП) – 150 кг/м 2 (минимальные нормы на привнесенную статическую и динамическую нагрузку) — 200 кг/м 2 .

Итоговая цифра означает максимально допустимый вес планируемых конструкций. Располагать их следует ближе к торцам плит. Важно помнить, что постоянные статические нагрузки скапливаются и могут привести к прогибу изделия, поэтому лучше не достигать максимума.

Правильное хранение плит перекрытия

Чтобы не допустить уменьшения проектной прочности пустотных плит еще до монтажа, следует выполнять основные правила их складирования:

  • Укладываются петлями вверх на твердую ровную поверхность, лучше асфальт или щебень, без контакта с землей, на перегородки от 15 см высотой.
  • Между плитами в районе петель строго друг под другом – деревянные бруски толщиной 2,5-3 см.
  • Высота штабеля – не более 2,5 м
  • Сверху накрыть водонепроницаемой пленкой или рубероидом

Точное соблюдение условий хранения плит перекрытия и грамотный монтаж позволят легко выйти на расчетные показатели нагрузок.

Также рады Вам предложить:

звонок по России бесплатный

199178, Россия, Санкт-Петербург, наб. реки Смоленки, д. 33А, БЦ «На Смоленке» оф. 7.192;
Представительство в Казахстане: г.Атырау, пр. Сатпаева, 19 блок А, Бизнес-центр «Atyrau Plaza»

Мы Вам перезвоним

Ваше сообщение успешно отправлено!

Доставка в Регионы

Мы обеспечиваем доставку в любой регион РФ. Обязательства по доставке мы выполняем независимо от величины партии и количества товарных позиций, пункта назначения и состояния транспортной сети в регионе адресата.

«Пром ЖБИ» каждый день отправляет десятки тонн железобетонных изделий в разные концы страны. Нашими постоянными заказчиками являются крупные подрядные организации из Калининграда и Владивостока, Архангельска и Белгорода, Нижнего Новгорода и Астрахани. Постоянство заказов, которые делают в «Пром-ЖБИ» строительные компании и эксплуатирующие организации, обусловлено:

  • соблюдением нами условий доставки (сроков, номенклатуры и количества ЖБИ)
  • оперативностью в обработке заказов
  • соблюдением правил перевозки изделий из железобетона
  • огромным опытом в организации перевозок ЖБИ, который позволяет избегать форс-мажора в пути
  • отлаженной системой логистики (мы выбираем самые удобные и недорогие варианты доставки)

С нами Вы всегда вовремя получите заказанные материалы. Мы организуем доставку любых товаров, изготовленных на нашем производстве.

Невысокая цена на всю номенклатуру выпускаемых компанией изделий дополняется демократичной стоимостью доставки. При этом все организационные хлопоты компания «Пром-ЖБИ» берет на себя. Мы контролируем:

  • комплектацию заказа и отгрузку
  • маршрут и время в пути
  • время доставки в пункт назначения и комплектность заказа в пункте выгрузки

Независимо от региона, в котором вы находитесь, доставка организуется максимально быстро: где бы вы не ожидали груз, он прибудет к вам вовремя и без каких-либо усилий с вашей стороны.

Какую нагрузку сможет выдержать плита перекрытия

Для того чтобы построить загородный дом, понадобятся некоторые знания, связанные с нагрузками, которые может выдержать плита перекрытия. Но прежде, стоит изучить, что именно собой представляет такая плита, какую плиту выбрать: вид, маркировка и т. д.

При строительстве частных домов и многоэтажных зданий часто используют плиты перекрытия

Типы бетонных плит и их преимущества

Монолитная плита из бетона, в качестве перекрытия считается самым надежным способом укладки. Такого результата можно достичь только в заводских условиях, по технологии, в которой заложены специальные температурные режимы и время отвердения.

Наиболее распространенными в строительстве пустотелые монолитные плиты, которые характеризуются небольшим весом и приемлемой ценой. Благодаря этому, плиту можно использовать при самостоятельном строительстве.

  • Полнотелые плиты в основном применяются только, для особо важных объектов, в которых предполагаются большие нагрузки и напряжения.
  • Пустотелые монолитные плиты обеспечивают более высокий уровень звукоизоляции, но принцип размещение пустот и их количество должно быть выбрано, после того, как будет сделан точный расчет.

Нагрузка, которую могут выдерживать плиты перекрытия, напрямую зависит от марки цемента, который использовался в изготовлении. Рекомендуется применять цемент марки М300 или М400, так готовое изделие будет выдерживать 400 кг на 1 куб. см. в секунду. Но при этом, при самостоятельном строительстве стоит знать, что это цифра, которая характеризует на плиту, нагрузку временную, а не постоянную.

На производстве современных ж/б конструкций, все плиты обязательно армируют, закладывая специальную арматурную сетку.

Плиточные перекрытия являются наиболее важным элементом постройки, благодаря которым нагрузка распределяется по опорам. Каждая такая плита должна характеризоваться небольшой массой и высоким уровнем прочности. Максимальная длина плиты, исхода из сортамента может достигать 9,7 м, а максимальная ширина 3,5 м. Среди всех предлагаемых, на строительном рынке вариантов, самым востребованным считается плита с габаритами 6х1,5 м, которая используется для многоэтажных построек, жилых зданий и загородных коттеджей.

Допустимая нагрузка на плиту перекрытия

Расчет нагрузок на плиту перекрытия делается на ее каждый погонный метр

Расчеты нагрузок на плиты перекрытия – это фактор, который необходимо обязательно учитывать, чтобы исключить последующие разрушения и трещины. Именно поэтому расчет должен производиться обязательно.

Допустимая нагрузка может быть:

  • Статической
  • Динамической

Статические считаются те, которые распределяются горизонтально по отношению к стене, т.е. нагнетаются предметами, висящими, лежащим или прибитыми к стене.

Все предметы, которые производят нагрузку, в процессе движения считаются динамическими.

Помимо этого, тип нагрузок зависит от способа их распределения:

  • Равномерные
  • Сосредоточенные
  • Неравномерные

Любые нагрузки рассчитываются в килограмм-силах или Ньютонах на метр (кгс/м), в стандартной конструкции они считаются, равными 400 кг на кв. метр, при этом учитывается масса самой плиты, приблизительно 2,5 центнера и отделочные материалы. В результате расчет сводится к нескольким цифрам:

Прежде чем приступать, к каким бы то ни было расчетам, понадобиться грамотный чертеж, выполненный в полном соответствии с нормами и стандартами. Для выполнения строительных работ, рекомендуется обратиться за чертежами к высокопрофессиональным специалистам, которые после могут сделать расчет.

После необходимо рассчитать вес всего, что создаст нагрузку для перекрытия, к примеру, возможные перегородки, материал для утепления полов, стяжки, декоративная отделка. Все дополнительные материалы и отделку также принято считать в килограммах. Полученную цифру необходимо будет разделить на количество плит, которые будут уложены на перекрытие.

Зачастую стараются привести расчеты и выбранные материалы, к «золотой середине», так, чтобы нагрузка всех материалов составляла не более 150 кг на кв. метр. Стоит отметить, что наиболее распространена плита, которую выбирают практически все строительные подрядчики, для возведения жилых домов – это ПК-60-15-8, общая масса, которой, составляет 2850 кг.

Точечные нагрузки на перекрытия

Расчет точечной нагрузки считается наиболее важным, так как в случае ошибки вся нагнетаемая нагрузка будет приходиться на одну точку в плите, что, несомненно, приведет к обвалу перекрытия.

Согласно специализированной строительной литературе, в одной точке перекрытия может быть сосредоточенно не более 1600 кг, но каждый случай индивидуален и должен учитывать коэффициент надежности постройки.

И даже при всех правильно выполненных подсчетах специалисты советуют распределять точечную нагрузку таким образом, чтобы максимум располагался вблизи несущей конструкции, в которых выполняется усиленное армирование плит и исходных материалов. Несмотря на точный расчет рекомендуется перестраховаться.

Особенности определения точечной нагрузки

Проверка выполненных расчетов

После выполнения всех подсчетов очень важно выполнить проверку, для этого, по имеющимся исходным данным необходимо сделать пересчет нагрузки на перекрытие на каждый кв. метр.

Итак, при общей площади перекрытия, к примеру, в 9 кв. метров, вес который приходится на 1 метр, равняется 2850 кг. Далее нужно вычесть из максимума допустимой нагрузки, собственный вес плиты и получится 484 кг на кв. метр.

Так, необходимо подчитать задуманное ранее напольное покрытие и вес отделочных материалов и далее отнять эту цифру, из полученной ранее. Пусть общий вес всех материалов будет равен 150 кг/кв.м., так: 484 – 150 = 334 килограмма на один кв. метр.

Разница в расчетах и некоторые погрешности допустимы, однако расчет может быть с погрешностью, не более 1 кг.

При планировании нагрузки, специалисты рекомендуют вначале распределить вес мебели равномерно и подсчитать общую массу и только после этого включать в формулу вес перегородок, дверей и т.д. Если же перегородки будут превышать допустимое значение нагрузки на перекрытие, необходимо будет выбрать более легкий материал.

Именно от грамотно сделанного расчета точечной нагрузки будет в большей степени зависеть продолжительность службы перекрытия и ее безопасность. Поэтому, несмотря на допускаемую погрешность, рекомендуется выполнять точный расчет, вплоть до граммов.

Несмотря на то, что привычнее пользоваться вышеописанной методикой расчетов точечной нагрузки, можно использовать более точную и безопасную, которая включает коэффициент надежности.

Для жилых многоэтажных построек принято выбирать коэффициент надежности, равный 1,2, что гарантирует в дальнейшем более безопасную эксплуатацию постройки, и длительный срок службы перекрытия.

Особенности нагрузок в старых домах

Перекрытия лучше всего выбирать стандартного заводского производства, но при желании сделать плиты самостоятельно, рекомендуется уделить особое внимание армированию.

При необходимости делать капитальный ремонт в здании строго образца, рекомендуется предварительно снять все старое половое покрытие и утепление и максимально точно определить его вес. Далее выбирать новые материалы, руководствуясь полученной цифрой старого покрытия, таки образом, чтобы нагрузка не была превышена. В противном случае лучше выбрать покрытие и утеплитель из другого материала с более легкой общей массой (и сделать после изменения проверочный расчет).

Специалисты советуют быть особенно внимательными при размещении в старых домах, современной мебели и сантехники, которая значительно габаритнее и скорее всего больше весит (сауны, джакузи и т.д.). В таком случае лучше всего обратиться к профессионалам, которые грамотно сделают расчеты допустимых нагрузок, как кратковременных, так и статистических. Это связано с тем, что статистические нагрузки имеют свойства накапливаться, и в течение долгого времени могут привести к провисанию плиты. И наоборот, кратковременная нагрузка – это характеристика, которая в основном действует на прочностные показатели плиты.

Советы и рекомендации

Если известны все необходимые исходные данные, конечно, сориентироваться и сделать расчет нагрузки по формулам не составит труда. При этом стоит обратить внимание на существование нескольких характеристик нагрузок. Одной из самых важных является – продолжительность нагнетания:

К постоянным нагрузкам относится мебель, люди и крупная бытовая техника. Помимо этого, стоит учесть, на плиту перекрытия постоянно давит основа несущей конструкции.

Временными нагрузками считаются те, которые появляются на непродолжительное время, при строительстве дополнительных конструкций.

Какую нагрузку выдерживает плита перекрытия

Вы — счастливый обладатель участка и мечтаете о собственном доме. Более того – у вас на руках уже имеется проект будущего домашнего очага, и торжественная закладка фундамента подходит к концу. Пора подумать о следующем этапе, а именно – об установке плит перекрытия.

Плита перекрытия – монолитная железобетонная конструкция. Есть два вида железобетонных плит – это полнотелая и пустотная. Различие данных типов в том, что они применяются для разного вида строительства, но чаще всего все-таки используется пустотные железобетонные плиты, в том числе и при малоэтажном строительстве.

Пустотные плиты перекрытия

Преимущества использования пустотных плит перекрытия:

  • они более легкие, а значит проще и быстрее в монтаже
  • внутри плит можно проложить коммуникации
  • пустотные плиты обладают хорошей звукоизоляцией – поскольку пустоты внутри гасят звуковые вибрации
  • огнестойкость
  • влагостойкость
  • долговечность
  • низкая стоимость

Пустотные плиты выпускаются на заводе, поэтому вы можете быть спокойны – за соблюдением стандартов там отвечает ГОСТ, а все изделия в обязательном порядке проходят маркировку. На самих плитах можно увидеть аббревиатуру ПК и набор цифр, обозначающих длину плиты (в дециметрах) и вес в килограммах на 1 кв.дм.

Установка плит перекрытия

Устанавливают плиты с помощью применения подъемного крана со стрелой и бригадой в три-четыре человека. Основание при этом должно быть идеально ровным, допускаются перепады не более трех сантиметров. Площадь опоры плит должна составлять не менее 120 мм на каждую из стен. Плита укладывается на цементный раствор в 20 мм, кроме того цементной смесью плита связывается не только между собой, но и со всеми стенами, образуя устойчивую конструкцию.

Расчет нагрузки на плиты перекрытия

Серьезное внимание нужно уделить расчету нагрузки на плиты перекрытия. Поскольку мы используем пустотные плиты перекрытия, для расчета следует учитывать местонахождение пустот и располагать таким образом, чтобы несущие характеристики изделия не были нарушены.

Кроме того, для расчета нагрузки необходимо знать вес используемой плиты. Допустим, берем стандартную плиту ПК-60-15-8 (ГОСТ 9561-91), вес которой составляет 2850 кг.  Максимально возможная нагрузка на плиту перекрытия — 800 кг на 1 кв.м. Для начала рассчитаем вес плиты, например, в девятиметровом пространстве: для этого делим общий вес плиты на девять и получаем вес самой плиты — 316 кг на 1 кв.м.

Далее учитываем вес человека, который будет ходить по будущему полу и примерный вес мебели (около 150 кг на 1 кв.м.), а также проделанные отделочные работы, среди которых стяжка, утепление, напольное покрытие – также примерно 150 кг на 1 кв.метр. Прибавим двери и перегородки, на них отведем до 180 кг на 1 кв.м.

Получается 800 кг -316 кг -150 кг-150кг- 180 кг и есть допустимая нагрузка на плиты перекрытия.

Расчет нагрузки на перекрытие калькулятор. Расчет плиты перекрытия по формулам

Комментариев:

  • Основные характеризующие моменты
  • Как рассчитать нагрузку правильно
  • Расчет точечной нагрузки
  • Несколько дополнительных сведений
  • Несколько полезных рекомендаций

Отделочный материал выбирается по принципу, какую нагрузку выдерживает плита перекрытия. Этот показатель будет влиять на обустройство крыши здания. В основном, когда строится любое здание или объект, в первую очередь соблюдается жесткость каркаса, его устойчивость. Все эти характеристики напрямую зависят от прочности создаваемого перекрытия.

Основные характеризующие моменты

Установка плиты перекрытия на несущую конструкцию кровли позволяет заниматься возведением многоэтажных домов. Чтобы правильно выполнить проект здания, необходимо точно знать, какое давление выдержит выбранная плита перекрытия. Необходимо хорошо разбираться в разнообразии плит.

Прежде чем приступать к возведению многоэтажного здания, необходимо провести расчет нагрузки. От будущего веса будет зависеть подбор конструкции здания, от нагрузки зависит, какую нужно устанавливать плиту.

На производстве выпускается два вида плит:

  • полнотелые;
  • пустотные.

Полнотелые системы отличаются большой массой, они стоят очень дорого. Такая конструкция применяется в строительстве серьезных объектов, которые относятся к социально значимым.

При строительстве жилых домов в основном используется пустотная плита.

Надо сказать, что основные технические параметры такой плиты соответствуют всем стандартам строительства жилого помещения:

Плиту отличает:

  • высокая надежность;
  • малый вес.

Важнейшим преимуществом этих изделий можно назвать низкую стоимость. Это дало возможность применять такую систему намного чаще, если сравнивать ее с другими.

Для расчета перекрытия учитывается местонахождение пустот. Они располагаются таким образом, чтобы несущие характеристики изделия не были нарушены. Пустоты влияют также на звукоизоляцию помещения, его теплоизоляционные свойства.

Плита изготавливается самых разных размеров. Ее длина может достигать максимально 9,7 м при максимальной ширине – 3,5 м.

При строительстве зданий чаще всего применяются конструкции с габаритами 6 х1,5 м. Этот размер считается стандартным и наиболее востребованным. Данную систему применяют для возведения:

  • высотных зданий;
  • многоэтажек;
  • коттеджей.

Так как вес данных плит не очень высок, их легко монтировать, для чего применяется пятитонный кран.

Вернуться к оглавлению

Как рассчитать нагрузку правильно

Строительство любого дома не может обойтись без правильного расчета нагрузки, которую способна удержать плита перекрытия. От нее зависит жесткость всего здания. Поэтому данные расчеты – это залог безопасного строительства, это гарантия безопасности жизни людей.

В каждом доме перекрытия имеют две конструктивные части:

  • верхняя;
  • нижняя.

Верхняя часть передает нагрузку нижней конструкции. Поэтому очень важно точно рассчитать допустимую величину.

В основном расчет любой строительной конструкции просто необходим, чтобы впоследствии не произошло разрушение здания. В случае ошибочного расчета стены очень быстро начнут трескаться. Здание быстро развалится.

  • динамический;
  • статический.

Статический расчет учитывает все предметы, которые осуществляют нагрузку на плиту. Все движущиеся объекты несут динамическую величину.

Чтобы выполнить расчет, необходимо иметь:

  • калькулятор;
  • рулетку;
  • уровень.

От размера плиты зависит ее устойчивость к различным нагрузкам.

Для определения нагрузки, которую способна выдержать будущая плита перекрытия, предварительно делается подробный чертеж. Учитывается площадь дома и все, что может создавать нагрузку. К данным элементам относятся:

  • перегородки;
  • утепления;
  • цементные стяжки;
  • напольное покрытие.

Основная опорная система кровли находится в торцах плиты. Когда изготавливаются плиты, армирование располагается так, чтобы максимальная нагрузка приходилась именно на торцы.

Центр плиты не должен воспринимать нагрузку, она не закладывается при расчете конструкции.

Поэтому середина конструкции не выдержит, даже если она будет усилена капитальными стенами.

Чтобы понять, как делается расчет, возьмем для примера конструкцию типа «ПК-50-15-8». Согласно ГОСТу 9561-91, масса данной системы равна 2850 кг.

  1. Сначала рассчитывается площадь всей несущей поверхности: 5 м × 1,5 м = 7,5 кв.м.
  2. Затем рассчитывается вес, который может удержать плита: 7,5 кв. м × 800 кг/кв.см= 6000 кг.
  3. После этого определяется масса: 6000 кг – 2850 кг = 3150 кг.

На последнем шаге подсчитывается, сколько останется от нагрузки после проведения утепления, укладки стяжки и обшивки полов. Профессионалы стараются брать напольное покрытие, чтобы оно и стяжка не превышали 150 кг/кв.см.

Затем 7,5 кв. м умножается на значение 150 кг/кв.см, в результате получается 1125 кг. От массы плиты, равной 3150 кг, отнимается 1125 кг, получается 3000 кг. Таким образом, 1 кв. м может выдержать 300 кг/кв. см.

Вернуться к оглавлению

Расчет точечной нагрузки

Данный параметр должен выполняться очень грамотно и расчетливо. Если нагрузка будет приходиться в одну точку, то это будет сильно влиять на срок службы перекрытия.

Справочники по строительству приводят формулу:

800 кг/кв.см × 2 = 1600 кг.

Следовательно, одна индивидуальная точка способна выдержать 1600 кг.

Однако при более точном расчете необходимо учесть коэффициент надежности. Его значение для жилого здания берется 1,3. В результате:

800 кг/кв.см × 1,3 = 1040 кг.

Но, даже имея данный безопасный размер, желательно точечную нагрузку располагать рядом с несущей конструкцией.

Вернуться к оглавлению

Несколько дополнительных сведений

Конечно, если известны все технические параметры перекрытия, ориентировочная масса, которая будет основной нагрузкой, выполнить нужные расчеты достаточно легко. При этом необходимо учесть существование нескольких разновидностей нагрузок.

В первую очередь, это продолжительность нагрузки. Она может существовать в виде:

  • постоянной;
  • временной.

Постоянную нагрузку создают:

  • мебель;
  • люди;
  • бытовая техника;
  • вещи, постоянно расположенные в помещении.

Кроме того, постоянно давит масса несущей конструкции, оказывает влияние горное давление.

Под временными нагрузками понимаются те, которые появляются при строительстве самых разных конструкций.

К особым нагрузкам относится сейсмическое воздействие, возможное изменение свойств грунта.

Кратковременные нагрузки возникают от оборудования, применяемого при строительстве здания, при атмосферном воздействии. Когда делается расчет самой большой нагрузки, необходимо учесть и длительные нагрузки. Они составляют большую группу, к ним можно отнести:

  • замерзание воды;
  • появление льда;
  • возникновение трещин;
  • линию жесткости;
  • кирпичную стенку:
  • цементную стяжку;
  • покрытие напольной поверхности;
  • массу перегородок;
  • массу оборудования для выполнения стационарной работы, это могут быть конвейерные установки, различные аппараты, твердые или жидкообразные тела;
  • вес стеллажей, находящихся на складе или в другом помещении;
  • массу скопившейся пыли, этот фактор часто игнорируют, однако его необходимо обязательно принимать к сведению, это также лишний вес;
  • атмосферные осадки.
  • Виды и достоинства данного изделия
  • Материалы и конструкционные находки
  • Различные виды нагрузок
  • Маркировка железобетонных изделий
  • Расчет предельно допустимых нагрузок
  • Способ пересчета нагрузок на квадратный м
  • Нагрузки при ремонтах старых квартир

Кто не мечтает завести домик в деревне или отремонтировать с размахом квартиру в городе? Всякий, кто занимается частным строительством или ремонтом, должен задуматься о том, сколько выдерживает плита перекрытия. Сколько нагрузки, полезной или декоративной, она вынесет и не прогнется? Чтобы ответить на все эти вопросы, нужно сначала разобраться в конструкции плит и их маркировке.

Перед постройкой многоэтажного здания, нужно обязательно рассчитать, сколько может выдержать плита перекрытия.

Какие элементы входят в состав плиточного монолитного фундамента?

Чтобы правильно произвести расчеты по уточнению толщины плиты фундамента, следует знать, из каких основных элементов состоит такая монолитная конструкция. К ним относятся:

  • подушка, размеры которой уточняются с учетом данных глубины промерзания почвы в зимний сезон, уровня нахождения грунтовой влаги. Если последняя находится ниже уровня двух метров, то сначала насыпается слой песка (около сорока сантиметров), затем – щебень либо гравий. В противном случае засыпают щебенку (гравий), чтобы минимизировать впитывание влаги, после этого подушку выравнивают речным песком. Каждый очередной слой тщательно утрамбовывается, между ними закладывается геотекстиль, исключающий взаимопроникновение насыпных материалов;

  • укладывается гидроизоляционный материал, для которого вполне подходит полиэтиленовая пленка;
  • подбетонка – слой выравнивающего тощего бетона от пяти до десяти сантиметров, без армирования;
  • основная гидроизоляционная прослойка – рулонные материалы, уложенные в два слоя с нахлестом и обработкой стыковочных участков газовой горелкой;
  • утеплитель – часто используют экструдированный пенополистирол;
  • фундаментная плита, минимальная толщина которой составляет десять сантиметров, а максимальная – тридцать – тридцать пять;
  • армирующий каркас в один или в два яруса (зависит от толщины плитного фундамента).

Виды и достоинства данного изделия

Плиты перекрытия, изготовленные в заводских условиях с соблюдением температурного режима и времени затвердения, отличаются высоким качеством. Сегодня они выпускаются в двух модификациях: полнотелые и пустотные.

Полнотелые плиты, имеющие не только большой вес, но и большую стоимость, используют лишь при строительстве особо важных объектов. Для жилых домов традиционно берут пустотные плиты. В числе их достоинств – более легкий вес и меньшая цена, совмещенные с высоким уровнем надежности.

Надо отметить, что количество пустот рассчитано так, чтобы не нарушить несущие свойства. Пустоты также играют важную роль в обеспечении звуко- и теплоизоляции строения.

Размеры плит колеблются по длине от 1,18 до 9,7 м, по ширине – от 0,99 до 3,5 м. Но чаще всего при строительстве используются изделия длиной 6 м и шириной 1,2-1,5 м. Это излюбленный формат для строительства не только высотных домов, но и частных коттеджей. Для их установки требуется монтажный кран мощностью не более 3-5 тонн.

Вернуться к оглавлению

Материалы и конструкционные находки

Вес, который может выдержать плита перекрытия напрямую зависит от марки цемента, из которого она сделана.

Изготавливаются плиты перекрытия из бетона на основе цемента марки М300 или М400. Маркировка в строительстве – это не просто буквы и цифры. Это закодированная информация. К примеру, цемент марки М400 способен выдержать нагрузку до 400 кг на 1 куб.см в секунду.

Но не следует путать понятия «способен выдержать» и «будет выдерживать всегда». Эти самые 400 кг/куб.см/сек – нагрузка, которую изделие из цемента М400 выдержит какое-то время, а не постоянно.

Цемент М300 представляет из себя смесь на основе М400. Изделия из него выносят меньшие одномоментные нагрузки, зато они более пластичны и выдерживают прогибы, не проламываясь.

Армирование придает бетону высокую несущую способность. Пустотная плита армируется нержавеющей сталью класса АIII или АIV. У этой стали высокие антикоррозийные свойства и устойчивость к температурным перепадам от – 40˚ до + 50˚, что очень важно для нашей страны.

При производстве современных железобетонных изделий применяется натяжное армирование. Часть арматуры предварительно натягивают в форме, затем устанавливают арматурную сетку, которая передает напряжение от натянутых элементов на все тело пустотной плиты. После этого в форму заливают бетон. Как только он затвердеет и обретет нужную прочность, натяжные элементы обрезают.

Такое армирование позволяет железобетонным плитам выдержать большие нагрузки, не провисая и не прогибаясь. На торцах, которые опираются на несущие стены, используется двойное армирование. Благодаря этому торцы не «проминаются» под собственным весом и легко выдерживают нагрузку от верхних несущих стен.

Вернуться к оглавлению

Схема конструкции плитного фундамента

Представляется собой «слоистый пирог». Первый слой – это песчано-гравийная подушка, которая будет защищать будущий фундамент от проседаний и морозного пучения. Следующим слоем является геотекстиль. Он, в свою очередь защищает песчано-гравийную подушку от размывания грунтовыми водами. Часто им пренебрегают, в целях экономии, но также часто именно от него зависит прочность всей конструкции. Далее, укладывается бетонная подготовка, которая исполняет роль выравнивания геометрии плиты. Следующий слой – гидроизоляция. Это обязательный элемент, которым никто не пренебрегает и который требует качественного материала для выполнения для обеспечения надёжной защиты от влаги. Затем, возводится армирующая сетка, которая представляет собой каркас з арматуры. Она поддерживает прочность конструкцию и принимает на себя часть нагрузок. Затем, заливается сама бетонная плита.

Различные виды нагрузок

Всякое перекрытие состоит из трех частей:

  • верхняя часть, куда входят напольное покрытие, стяжки и утепление, если сверху расположен жилой этаж;
  • нижняя часть, состоящая из отделки потолка и подвесных элементов, если снизу тоже жилое помещение;
  • конструкционная часть, которая все это держит в воздухе.

Плиты перекрытия весят очень много, поэтому их нужно устанавливать только с помощью крана.

Плита перекрытия является конструкционной частью. Верхняя и нижняя часть, то есть отделка пола и потолка создает нагрузку, которую называют постоянной статической. К этой нагрузке относятся все подвешенные к перекрытию элементы – подвесные потолки, люстры, боксерские груши, качели. Сюда же относится то, что встанет на перекрытии – перегородки, колонны, ванны и джакузи.

Есть еще так называемая динамическая нагрузка, то есть нагрузка от перемещающихся по перекрытию объектов. Это не только люди, но и их питомцы, ведь сегодня некоторые люди обзаводятся экзотическими домашними любимцами, например, хряками, рысями или даже оленями. Поэтому вопрос о динамической нагрузке важен как никогда.

Помимо этого, нагрузки бывают распределенные и точечные. Например, если к перекрытию подвесить боксерскую грушу в 200 кг, то это будет точечная нагрузка. А если смонтировать подвесной потолок, каркас которого через каждые 50 см крепится подвесами к перекрытию, то это уже распределенная нагрузка.

При расчете точечной и распределенной нагрузки встречаются и более сложные случаи. К примеру, при установке ванны емкостью 500 л нужно учитывать не только распределенную нагрузку, которую создаст вес наполненной ванны на всю площадь опоры (то есть площадь между ножками ванны), но и точечную нагрузку, которую создаст каждая ножка на перекрытие.

Вернуться к оглавлению

Расчет арматуры


Расчет арматуры для плитного фундамента – это задача, к решению которой следует подходить основательно. Чтобы правильно рассчитать, какое количество стальных прутков, имеющих определенный диаметр, потребуется для плитного фундамента, следует учитывать не только размер здания и его параметры, но и тип грунта.

В первую очередь придется определиться с тем, какой диаметр арматурного прута необходим в конкретном случае. Для относительно легкого здания или сооружения, возводимого на устойчивом и непучинистом грунте, достаточно остановить выбор на стержнях, диаметр которых варьируется от 10 до 20 см. Если же планируется строительство тяжеловесного дома на сыпучем либо пучинистом грунте, лучше выбрать больший диаметр – от 14 до 16.

Что касается плитного фундамента, для него обычно производится укладка арматуры большого диаметра. Чаще всего речь идет о прутьях сечением 14 мм.

Маркировка железобетонных изделий

Нарезанные плиты перекрытия обладают такой же стойкостью к нагрузкам как и обычные.

Что означают эти 333 кг? Поскольку вес самой плиты и напольных покрытий уже вычтен, 333 кг на 1 кв.м – это та полезная нагрузка, которую можно на ней разместить. Согласно СНиП от 1962 года, не менее 150 кг/кв. м из этих 333 кг/кв.м должно быть отведено под будущие привнесенные нагрузки: статическую (мебель и бытовые приборы), и динамическую (люди, их питомцы).

Оставшиеся 183 кг/кв.м могут быть использованы для установки перегородок или каких-либо декоративных элементов. Если вес перегородок превышает рассчитанное значение, следует выбрать более легкое напольное покрытие.

Сначала о нагрузках. По таблице 3.3 СНиП 2.01.07-85* временная нагрузка на перекрытие считается равной 150 кг/м². То есть на каждом квадратном метре перекрытия можно будет разместить 150 кг дополнительного веса сверх постоянных нагрузок. К постоянным нагрузкам относят вес самого перекрытия с напольными конструкциями и вес межкомнатных перегородок. Мебель, санитарно-техническое оборудование и вес людей относят к временным нагрузкам.

Какую величину нагрузки выбрать для устройства деревянного перекрытия? Проще всего провести аналогию с чем-то хорошо знакомым. Например, в наших квартирах используются железобетонные перекрытия с несущей способностью от 400 до 800 кг/м². В последнее время применяются в основном плиты перекрытия с несущей способностью 800 кг/м². Стоит ли принимать к расчету деревянного перекрытия такую нагрузку? Наверное, нет. Как показывает практика, нагрузка на перекрытие чаще всего, не превышает 350–400 кг/м². Однако это не исключает того, что вы, проектируя перекрытие под свои конкретные нужды, примите другую величину нагрузки. В любом случае, все возможные нагрузки лучше учесть заранее и спроектировать перекрытие с небольшим (не более 40%) запасом прочности, чем потом, при возникшей необходимости, заниматься его упрочнением.

Для подбора сечений балок перекрытия, нагрузку исчисляемую в килограммах на квадратный метр нужно перевести в нагрузку, на погонный метр длины балки. Мы легко можем представить себе, например, квадратный лист железа со сторонами длинной в 1 м. Если мы надавим на этот лист весом в 400 кг и подложим под его середину деревянную балку, то на один метр длинны этой балки будет давить сила 400 кг. Это очевидно. А если мы подложим под лист две балки и распределим их под серединами половин листа, то на метр длины балок будет давить вес по 200 кг. Это тоже очевидно. Положив под лист три балки и равномерно раздвинув их, получим нагрузку на каждую балку уже по 133 кг. Таким образом, изменяя количество балок расположенных под одним квадратным метром, мы можем изменять давящую на них нагрузку и тем самым уменьшать сечение балок. Либо наоборот, разместить под двумя (тремя, четырьмя и т.д.) квадратными метрами одну балку и увеличить ее сечение.

Балки перекрытия рассчитываются не только по несущей способности, но еще и на прогиб. Жить в доме, в котором над головой прогнулось перекрытие, будь оно хоть трижды прочным — неприятно. Нормативная величина прогиба балки не должна превышать 1/250 ее длины.

Несущая способность древесины известна, сечения и длины балок то же не составляют тайны — их тысячи раз просчитывали до нас. Поэтому для определения сечения балок при известном пролете (длине от опоры до опоры) можно применить график изображенный на рисунке 37. При использовании графика нужно задать нагрузку и ширину балки и по ним определить ее высоту, для данного пролета балки. Либо зная длину пролета балки и размеры ее сечения, определить какую нагрузку она может выдержать. Изменяя шаг установки балок добиться требуемой величине нагрузки.

Рис. 37. График для определения сечений деревянных балок

График предназначен для расчета однопролетных балок, т. е. балок лежащих на двух опорах. Также можно использовать калькулятор для расчета деревянных балок. Если будут применены двухпролетные балки (на трех опорах) или балки нестандартной длины, то можно попробовать

  • Расчет железобетонной монолитной плиты перекрытия
  • Первый этап: определение расчетной длины плиты
  • Определение геометрических параметров железобетонного монолитного перекрытия
  • Существующие виды нагрузок, сбор которых следует выполнить
  • Определения максимального изгибающего момента для нормального (поперечного) сечения балки
  • Некоторые нюансы
  • Подбор сечения арматуры
  • Количество стержней для армирования монолитной железобетонной плиты перекрытия
  • Сбор нагрузок — некоторый дополнительный расчет

Расчет щебня для фундамента

Вначале определим необходимое количество щебня  на один кубометр. Например, толщина слоя должна быть  20 см. Далее – объем получаем по формуле: ширину умножаем на длину и высоту, то есть в данном случае 1 м x 1 м x 0,2 м = 0,2 м3.

Полученное число  умножить на удельный вес щебня и  коэффициент уплотнения. В данном случае 0,2 м3 х 1,47 т (для гранитного щебня) x 1,3 = 0,382 м3. Это расход материала на один кубометр фундамента. Умножайте это число на общую площадь фундамента – и  узнаете точное количество щебня, которое понадобится для создания всей конструкции.

Бетон для фундамента должен быть не ниже М300 или класса В25

Состав такого бетона в пропорциях следующий:

  • – Цемент М 400 -380кг
  • – Щебень- 1080 кг
  • – Песок- 705 кг
  • – Вода 220л.

Это расход на 1 м3

Расчет железобетонной монолитной плиты перекрытия

Железобетонные монолитные плиты перекрытия, несмотря на то, что имеется достаточно большое количество готовых плит, по-прежнему востребованы. Особенно если это собственный частный дом с неповторимой планировкой, в котором абсолютно все комнаты имеют разные размеры либо процесс строительства ведется без использования подъемных кранов.

Монолитные плиты достаточно востребованы, особенно в строительстве загородных домов с индивидуальным дизайном.

В подобном случае устройство монолитной железобетонной плиты перекрытия дает возможность значительно сократить затраты денежных средств на приобретение всех необходимых материалов, их доставку либо монтаж. Однако в данном случае большее количество времени может уйти на выполнение подготовительных работ, в числе которых будет и устройство опалубки. Стоит знать, что людей, которые затевают бетонирование перекрытия, отпугивает вовсе не это.

Заказать арматуру, бетон и сделать опалубку на сегодняшний день несложно. Проблема заключается в том, что не каждый человек может определить, какая именно арматура и бетон понадобятся для того, чтобы выполнить подобные работы.

Данный материал не является руководством к действию, а несет чисто информационный характер и содержит исключительно пример расчета. Все тонкости расчетов конструкций из железобетона строго нормированы в СНиП 52-01-2003 “Железобетонные и бетонные конструкции. Основные положения”, а также в своде правил СП 52-1001-2003 “Железобетонные и бетонные конструкции без предварительного напряжения арматуры”.

Монолитная плита перекрытия представляет собой армированную по всей площади опалубку, которая заливается бетоном.

Касательно всех вопросов, которые могут возникать в процессе расчета железобетонных конструкций, следует обращаться именно к данным документам. В данном материале будет содержаться пример расчета монолитного железобетонного перекрытия согласно тем рекомендациям, которые содержатся в данных правилах и нормах.

Пример расчета железобетонной плиты и любой строительной конструкции в целом будет состоять из нескольких этапов. Их суть – подбор геометрических параметров нормального (поперечного) сечения, класса арматуры и класса бетона, чтобы плита, которая проектируется, не разрушилась под воздействием максимально возможной нагрузки.

Пример расчета будет производиться для сечения, которое перпендикулярно оси х. На местное сжатие, на действие поперечных сил, продавливание, на кручение (предельные состояния 1 группы), на раскрытие трещин и расчет по деформациям (предельные состояния 2 группы) производиться не будут. Заранее стоит предположить, что для обыкновенной плоской плиты перекрытия в жилом частном доме подобных расчетов не требуется. Как правило, так оно и есть на самом деле.

Следует ограничиться лишь расчетом нормального (поперечного) сечения на действия изгибающего момента. Те люди, которым не нужно давать пояснения касательно определения геометрических параметров, выбора расчетных схем, сбор нагрузок и расчетных предпосылок, могут сразу перейти к разделу, в котором содержится пример расчета.

Вернуться к оглавлению

Первый этап: определение расчетной длины плиты

Плита перекрытия может быть абсолютно любой длины, а вот длину пролета балки уже необходимо высчитывать отдельно.

Реальная длина может быть абсолютно любой, а вот расчетная длина, выражаясь другими словами, пролет балки (в данном случае плиты перекрытия) – совсем другое дело. Пролетом является расстояние между несущими стенами в свету. Это длина и ширина помещения от стенки до стенки, следовательно, определить пролет довольно просто. Следует измерить рулеткой либо другими подручными средствами данное расстояние. Реальная длина во всех случаях будет большей.

Железобетонная монолитная плита перекрытия может опираться на несущие стенки, которые выкладываются из кирпича, камня, шлакоблоков, керамзитобетона, пено- либо газобетона. В подобном случае это не очень важно, однако в случае, если несущие стенки выкладываются из материалов, которые имеют недостаточную прочность (газобетон, пенобетон, шлакоблок, керамзитобетон), также необходимо будет выполнить сбор некоторых дополнительных нагрузок.

Данный пример содержит расчет для однопролетной плиты перекрытия, которая опирается на 2 несущих стенки. Расчет плиты из железобетона, которая опирается по контуру, то есть на 4 несущих стенки, или для многопролетных плит рассматриваться в данном материале не будет.

Чтобы то, что было сказано выше, усваивалось лучше, следует принять значение расчетной длины плиты l = 4 м.

Вернуться к оглавлению

Определение толщины монолитной плиты основания

Как правило, при частной застройке принимаются усредненные величины. Для наиболее распространенных видов конструкций они указаны ниже

Этажность и материал стен зданияТолщина фундаментной плиты (мм)Армация
Легкие постройки: веранды, хозяйственные помещения, гаражи150один ряд сетки
Двухэтажные легкие дома (пено- или газобетон, каркасные)250объемно в два уровня
Двухэтажные дома из кирпича и бетона с тяжелыми перекрытиями300объемно в два уровня


При этом данные значения справедливы:

  • для грунтов с нормальной несущей способностью;
  • диаметр прутка армирования для легких строений 10 мм;
  • диаметр горизонтального стержня для двухэтажных строений 12-16 мм;
  • размер стороны ячейки сетки армирования 0,1 м;
  • вертикальный прут берется размером 8 мм.

Если здание не подходит под типовые данные, можно воспользоваться онлайн калькулятором.

Армирующую сетку в монолитных плитах фундамента не принято сваривать. Чаще её вяжут специальной проволокой, что дает дополнительную гибкость основанию.

Определение геометрических параметров железобетонного монолитного перекрытия

Расчет нагрузок на плиту перекрытия считается отдельно для каждого конкретного случая строительства.

Данные параметры пока не известны, однако есть смысл их задать для того, чтобы была возможность произвести расчет.

Высота плиты задается как h = 10 см, условная ширина – b = 100 см. Условность в подобном случае означает то, что плита бетонного перекрытия будет рассматриваться как балка, которая имеет высоту 10 см и ширину 100 см. Следовательно, результаты, которые будут получены, могут применяться для всех оставшихся сантиметров ширины плиты. То есть, если планируется изготавливать плиту перекрытия, которая имеет расчетную длину 4 м и ширину 6 м, для каждого из данных 6 м необходимо применять параметры, определенные для расчетного 1 м.

Класс бетона будет принят B20, а класс арматуры – A400.

Далее происходит определение опор. В зависимости от ширины на стенки, от материала и веса несущих стенок плита перекрытия может рассматриваться как шарнирно опертая бесконсольная балка. Это является наиболее распространенным случаем.

Далее происходит сбор нагрузки на плиту. Они могут быть самыми разнообразными. Если смотреть с точки зрения строительной механики, все, что будет неподвижно лежать на балке, приклеено, прибито либо подвешено на плиту перекрытия – это статистическая и достаточно часто постоянная нагрузка. Все что ползает, ходит, ездит, бегает и падает на балку – динамические нагрузки. Подобные нагрузки чаще всего являются временными. Однако в рассматриваемом примере никакой разницы между постоянными и временными нагрузками делаться не будет.

Вернуться к оглавлению

Плитный фундамент своими руками пошаговая инструкция

Подготовительный этап. Он включает в себя очистку территории от мусора и прочих посторонних элементов, в том числе и от растительности. В некоторых случаях для этого потребуется снять небольшой слой грунта, обычно это 5-10 сантиметров. Затем, производится разметка фундамента, в соответствии с планом застройки дома. Разметка должна быть на 5 сантиметров шире с каждой стороны. Разметку можно сделать, используя прочную нить и колышки из кусочков деревянных брусьев. Важно, чтобы углы разметки были идеально прямыми, а нить была натянута на одной высоте. Для этого может понадобиться строительный уровень: водный или лазерный. Лучше всего для этих целей подходит лазерный уровень. Если сделать идеально ровные прямые углы не получается, можно воспользоваться очень старым способом. Древние египтяне использовали треугольник, со следующими пропорциями: 3:4:5. Это позволяло создать идеально ровный прямой угол. В качестве катетов и гипотенузы подойдут прутья арматуры или металлические прутья, любые ровные длинные элементы строительства, которые есть под рукой.

Разметка котлована. Делается с учётом теплоизоляции и дренажной системы, чаще всего, выступы по бокам берутся не меньше, чем толщина фундамента, иногда эти выступы превышают 1 метр. Всё зависит от планов, которые вы собираетесь осуществить после заливки фундамента.

Земляные работы. Копание котлована вручную – это очень трудоёмкий процесс. Даже при небольшой глубине залегания и площади, это может занять неделю работ, поэтому, гораздо эффективнее будет, если Вы закажете специальную технику. Если же не хотите переплачивать, то будьте готовы к длительному труду. Глубина рассчитывается с учётом песчаной подушки, которая является обязательной для такого фундамента. Если Вы планируете прокладку теплоизоляции, то глубина также будет больше. Выемка верхнего грунта, даже с учётом того, что плита будет располагаться почти на поверхности, является обязательной. Многие представители флоры могут навредить конструкции или ещё хуже: проникать в дом через пол.

Этап ручной работы. Представляет собой работы по выравниванию поверхности. Это делается при помощи геодезического нивелира или лазерного строительного уровня. Иногда, проще засыпать неровность землёй, нежели выравнивать поверхность методом выкапывания ненужного. Важно, чтобы эта поверхность была идеально ровной и утрамбованной сверху, то есть не имела рыхлости. Помимо дна, выравниваются также и вертикальные стенки. Эти работы могут занять от 3 до 5-ти дней, в зависимости от погодных условий и количества свободных рук.

Разметка плиты. Осуществляется при помощи нити и металлических прутьев. Края должны быть идеально ровными, а все углы под 90 градусов. Также, на этом этапе можно сделать разметку дренажной системы и коммуникаций.

Прокладка канализации. Очень важный этап, поскольку к нему уже не удастся вернуться так просто. На данном этапе, прокладка канализационных труб является наиболее выгодной.

Настилка геотекстиля. Этот слой позволяет защитить песчано-гравийную подушку от размыва и проседаниий, вызванных грунтовыми водами.

Настилка и утрамбовка песчано-гравийной подушки. Этот этап очень трудоёмкий, поскольку должен быть выполнен с предельной точностью. Подушка должна быть как минимум двуслойной.

Сначала засыпается песок, а затем гравий. Это не позволяет воде просачиваться капиллярным путём вверх.

Установка опалубки и гидроизоляции. Опалубка выполняется из деревянных брусков, которые ставятся на расстоянии 50-100 сантиметров друг от друга. Гидроизоляция настилается поверх песчано-гравийной подушки, равномерно по всей площади. Важно, чтобы она выходила далеко за края подушки.

Армирование фундамента. Проводится при помощи арматуры, методом построения каркаса.

Места переплетений можно укрепить сваркой или специальными элементами для переплёта металлических прутьев.

Заливка бетона. Должна осуществляться заливка сразу всей плиты. Здесь понадобиться несколько рабочих рук для того, чтобы процесс продвигался быстро. Также, понадобиться нанять необходимую технику.

Расчёт размеров плиты

Расчёт размеров плиты производится исходя из физических характеристик грунтов. Лучше всего, если для этого будет приглашён специалист, с учётом того, что перед этим выполнены все инженерно-геологические работы. Плитный фундамент расчёт толщины осуществляется при помощи специального калькулятора, которые учитывает цифровые характеристики сопротивления грунта и предполагаемых нагрузок. При желании, Вы можете сделать это самостоятельно.

Существующие виды нагрузок, сбор которых следует выполнить

Сбор нагрузок сосредоточен на том, что нагрузка может быть равномерно распределенной, сосредоточенной, неравномерно распределенной и другой. Однако нет смысла так сильно углубляться во все существующие варианты сочетания нагрузки, сбор которой производится. В данном примере будет равномерно распределенная нагрузка, потому как подобный случай загрузки для плит перекрытия в жилых частных домах является наиболее распространенным.

Сосредоточенная нагрузка должна измеряться в кг-силах (КГС) или в Ньютонах. Распределенная же нагрузка – в кгс/м.

Нагрузки на плиту перекрытия могут быть самыми разными, сосредоточенными, равномерно распределенными, неравномерно распределенными и т. д.

Вернуться к оглавлению

Пояснения к вычислительным действиям

Представленный калькулятор осуществляет расчеты на базе линейных габаритов основания, то есть предполагается ввод общей протяженности, ширины железобетонной полосы и толщины укладываемого слоя. Перечисленные параметры должны вводиться в программу.

Для оснований, закладывающихся на небольшую глубину, обычно насыпается слой сухой смеси толщиной 7-10 см. Если возводится массивный фундамент, то этот показатель, как правило, увеличивается до 15-20 см. Толщина укладываемой смеси должна измеряться только в утрамбованном виде. Плотность насыпного слоя до его прессования гораздо меньше. Данное обстоятельство учитывается представленной программой расчетов для определения количества приобретаемой смеси. Ответ выводится как в тоннах, так и в кубических метрах.

Что касается состава песчано-гравийных смесей, предназначенных для проведения строительных работ, то он регламентируется пунктами ГОСТ 23735-2014. В данном стандарте также отражены дополнительные сведения о прослойке.

Экономьте время: отборные статьи каждую неделю по почте

пустотные плиты и их армирование

  • Виды и достоинства данного изделия
  • Материалы и конструкционные находки
  • Различные виды нагрузок
  • Маркировка железобетонных изделий
  • Расчет предельно допустимых нагрузок
  • Способ пересчета нагрузок на квадратный м
  • Нагрузки при ремонтах старых квартир

Кто не мечтает завести домик в деревне или отремонтировать с размахом квартиру в городе? Всякий, кто занимается частным строительством или ремонтом, должен задуматься о том, сколько выдерживает плита перекрытия. Сколько нагрузки, полезной или декоративной, она вынесет и не прогнется? Чтобы ответить на все эти вопросы, нужно сначала разобраться в конструкции плит и их маркировке.

Перед постройкой многоэтажного здания, нужно обязательно рассчитать, сколько может выдержать плита перекрытия.

Виды и достоинства данного изделия

Плиты перекрытия, изготовленные в заводских условиях с соблюдением температурного режима и времени затвердения, отличаются высоким качеством. Сегодня они выпускаются в двух модификациях: полнотелые и пустотные.

Полнотелые плиты, имеющие не только большой вес, но и большую стоимость, используют лишь при строительстве особо важных объектов. Для жилых домов традиционно берут пустотные плиты. В числе их достоинств – более легкий вес и меньшая цена, совмещенные с высоким уровнем надежности.

Надо отметить, что количество пустот рассчитано так, чтобы не нарушить несущие свойства. Пустоты также играют важную роль в обеспечении звуко- и теплоизоляции строения.

Размеры плит колеблются по длине от 1,18 до 9,7 м, по ширине – от 0,99 до 3,5 м. Но чаще всего при строительстве используются изделия длиной 6 м и шириной 1,2-1,5 м. Это излюбленный формат для строительства не только высотных домов, но и частных коттеджей. Для их установки требуется монтажный кран мощностью не более 3-5 тонн.

Вернуться к оглавлению

Материалы и конструкционные находки

Вес, который может выдержать плита перекрытия напрямую зависит от марки цемента, из которого она сделана.

Изготавливаются плиты перекрытия из бетона на основе цемента марки М300 или М400. Маркировка в строительстве – это не просто буквы и цифры. Это закодированная информация. К примеру, цемент марки М400 способен выдержать нагрузку до 400 кг на 1 куб.см в секунду.

Но не следует путать понятия «способен выдержать» и «будет выдерживать всегда». Эти самые 400 кг/куб.см/сек – нагрузка, которую изделие из цемента М400 выдержит какое-то время, а не постоянно.

Цемент М300 представляет из себя смесь на основе М400. Изделия из него выносят меньшие одномоментные нагрузки, зато они более пластичны и выдерживают прогибы, не проламываясь.

Армирование придает бетону высокую несущую способность. Пустотная плита армируется нержавеющей сталью класса АIII или АIV. У этой стали высокие антикоррозийные свойства и устойчивость к температурным перепадам от – 40˚ до + 50˚, что очень важно для нашей страны.

При производстве современных железобетонных изделий применяется натяжное армирование. Часть арматуры предварительно натягивают в форме, затем устанавливают арматурную сетку, которая передает напряжение от натянутых элементов на все тело пустотной плиты. После этого в форму заливают бетон. Как только он затвердеет и обретет нужную прочность, натяжные элементы обрезают.

Такое армирование позволяет железобетонным плитам выдержать большие нагрузки, не провисая и не прогибаясь. На торцах, которые опираются на несущие стены, используется двойное армирование. Благодаря этому торцы не «проминаются» под собственным весом и легко выдерживают нагрузку от верхних несущих стен.

Вернуться к оглавлению

Различные виды нагрузок

Всякое перекрытие состоит из трех частей:

  • верхняя часть, куда входят напольное покрытие, стяжки и утепление, если сверху расположен жилой этаж;
  • нижняя часть, состоящая из отделки потолка и подвесных элементов, если снизу тоже жилое помещение;
  • конструкционная часть, которая все это держит в воздухе.

Плиты перекрытия весят очень много, поэтому их нужно устанавливать только с помощью крана.

Плита перекрытия является конструкционной частью. Верхняя и нижняя часть, то есть отделка пола и потолка создает нагрузку, которую называют постоянной статической. К этой нагрузке относятся все подвешенные к перекрытию элементы – подвесные потолки, люстры, боксерские груши, качели. Сюда же относится то, что встанет на перекрытии – перегородки, колонны, ванны и джакузи.

Есть еще так называемая динамическая нагрузка, то есть нагрузка от перемещающихся по перекрытию объектов. Это не только люди, но и их питомцы, ведь сегодня некоторые люди обзаводятся экзотическими домашними любимцами, например, хряками, рысями или даже оленями. Поэтому вопрос о динамической нагрузке важен как никогда.

Помимо этого, нагрузки бывают распределенные и точечные. Например, если к перекрытию подвесить боксерскую грушу в 200 кг, то это будет точечная нагрузка. А если смонтировать подвесной потолок, каркас которого через каждые 50 см крепится подвесами к перекрытию, то это уже распределенная нагрузка.

При расчете точечной и распределенной нагрузки встречаются и более сложные случаи. К примеру, при установке ванны емкостью 500 л нужно учитывать не только распределенную нагрузку, которую создаст вес наполненной ванны на всю площадь опоры (то есть площадь между ножками ванны), но и точечную нагрузку, которую создаст каждая ножка на перекрытие.

Вернуться к оглавлению

Маркировка железобетонных изделий

Нарезанные плиты перекрытия обладают такой же стойкостью к нагрузкам как и обычные.

Что означают эти 333 кг? Поскольку вес самой плиты и напольных покрытий уже вычтен, 333 кг на 1 кв.м – это та полезная нагрузка, которую можно на ней разместить. Согласно СНиП от 1962 года, не менее 150 кг/кв. м из этих 333 кг/кв.м должно быть отведено под будущие привнесенные нагрузки: статическую (мебель и бытовые приборы), и динамическую (люди, их питомцы).

Оставшиеся 183 кг/кв.м могут быть использованы для установки перегородок или каких-либо декоративных элементов. Если вес перегородок превышает рассчитанное значение, следует выбрать более легкое напольное покрытие.

Комментариев:

  • Основные характеризующие моменты
  • Как рассчитать нагрузку правильно
  • Расчет точечной нагрузки
  • Несколько дополнительных сведений
  • Несколько полезных рекомендаций

Отделочный материал выбирается по принципу, какую нагрузку выдерживает плита перекрытия. Этот показатель будет влиять на обустройство крыши здания. В основном, когда строится любое здание или объект, в первую очередь соблюдается жесткость каркаса, его устойчивость. Все эти характеристики напрямую зависят от прочности создаваемого перекрытия.

Основные характеризующие моменты

Установка плиты перекрытия на несущую конструкцию кровли позволяет заниматься возведением многоэтажных домов. Чтобы правильно выполнить проект здания, необходимо точно знать, какое давление выдержит выбранная плита перекрытия. Необходимо хорошо разбираться в разнообразии плит.

Прежде чем приступать к возведению многоэтажного здания, необходимо провести расчет нагрузки. От будущего веса будет зависеть подбор конструкции здания, от нагрузки зависит, какую нужно устанавливать плиту.

На производстве выпускается два вида плит:

  • полнотелые;
  • пустотные.

Полнотелые системы отличаются большой массой, они стоят очень дорого. Такая конструкция применяется в строительстве серьезных объектов, которые относятся к социально значимым.

При строительстве жилых домов в основном используется пустотная плита. Надо сказать, что основные технические параметры такой плиты соответствуют всем стандартам строительства жилого помещения:

Плиту отличает:

  • высокая надежность;
  • малый вес.

Важнейшим преимуществом этих изделий можно назвать низкую стоимость. Это дало возможность применять такую систему намного чаще, если сравнивать ее с другими.

Для расчета перекрытия учитывается местонахождение пустот. Они располагаются таким образом, чтобы несущие характеристики изделия не были нарушены. Пустоты влияют также на звукоизоляцию помещения, его теплоизоляционные свойства.

Плита изготавливается самых разных размеров. Ее длина может достигать максимально 9,7 м при максимальной ширине – 3,5 м.

При строительстве зданий чаще всего применяются конструкции с габаритами 6 х1,5 м. Этот размер считается стандартным и наиболее востребованным. Данную систему применяют для возведения:

  • высотных зданий;
  • многоэтажек;
  • коттеджей.

Так как вес данных плит не очень высок, их легко монтировать, для чего применяется пятитонный кран.

Вернуться к оглавлению

Как рассчитать нагрузку правильно

Строительство любого дома не может обойтись без правильного расчета нагрузки, которую способна удержать плита перекрытия. От нее зависит жесткость всего здания. Поэтому данные расчеты – это залог безопасного строительства, это гарантия безопасности жизни людей.

В каждом доме перекрытия имеют две конструктивные части:

  • верхняя;
  • нижняя.

Верхняя часть передает нагрузку нижней конструкции. Поэтому очень важно точно рассчитать допустимую величину.

В основном расчет любой строительной конструкции просто необходим, чтобы впоследствии не произошло разрушение здания. В случае ошибочного расчета стены очень быстро начнут трескаться. Здание быстро развалится.

  • динамический;
  • статический.

Статический расчет учитывает все предметы, которые осуществляют нагрузку на плиту. Все движущиеся объекты несут динамическую величину.

Чтобы выполнить расчет, необходимо иметь:

  • калькулятор;
  • рулетку;
  • уровень.

От размера плиты зависит ее устойчивость к различным нагрузкам.

Для определения нагрузки, которую способна выдержать будущая плита перекрытия, предварительно делается подробный чертеж. Учитывается площадь дома и все, что может создавать нагрузку. К данным элементам относятся:

  • перегородки;
  • утепления;
  • цементные стяжки;
  • напольное покрытие.

Основная опорная система кровли находится в торцах плиты. Когда изготавливаются плиты, армирование располагается так, чтобы максимальная нагрузка приходилась именно на торцы.

Центр плиты не должен воспринимать нагрузку, она не закладывается при расчете конструкции.

Поэтому середина конструкции не выдержит, даже если она будет усилена капитальными стенами.

Чтобы понять, как делается расчет, возьмем для примера конструкцию типа «ПК-50-15-8». Согласно ГОСТу 9561-91, масса данной системы равна 2850 кг.

  1. Сначала рассчитывается площадь всей несущей поверхности: 5 м × 1,5 м = 7,5 кв.м.
  2. Затем рассчитывается вес, который может удержать плита: 7,5 кв. м × 800 кг/кв.см= 6000 кг.
  3. После этого определяется масса: 6000 кг – 2850 кг = 3150 кг.

На последнем шаге подсчитывается, сколько останется от нагрузки после проведения утепления, укладки стяжки и обшивки полов. Профессионалы стараются брать напольное покрытие, чтобы оно и стяжка не превышали 150 кг/кв.см.

Затем 7,5 кв. м умножается на значение 150 кг/кв.см, в результате получается 1125 кг. От массы плиты, равной 3150 кг, отнимается 1125 кг, получается 3000 кг. Таким образом, 1 кв. м может выдержать 300 кг/кв. см.

Вернуться к оглавлению

Расчет точечной нагрузки

Данный параметр должен выполняться очень грамотно и расчетливо. Если нагрузка будет приходиться в одну точку, то это будет сильно влиять на срок службы перекрытия.

Справочники по строительству приводят формулу:

800 кг/кв.см × 2 = 1600 кг.

Следовательно, одна индивидуальная точка способна выдержать 1600 кг.

Однако при более точном расчете необходимо учесть коэффициент надежности. Его значение для жилого здания берется 1,3. В результате:

800 кг/кв.см × 1,3 = 1040 кг.

Но, даже имея данный безопасный размер, желательно точечную нагрузку располагать рядом с несущей конструкцией.

Вернуться к оглавлению

Несколько дополнительных сведений

Конечно, если известны все технические параметры перекрытия, ориентировочная масса, которая будет основной нагрузкой, выполнить нужные расчеты достаточно легко. При этом необходимо учесть существование нескольких разновидностей нагрузок.

В первую очередь, это продолжительность нагрузки. Она может существовать в виде:

  • постоянной;
  • временной.

Постоянную нагрузку создают:

  • мебель;
  • люди;
  • бытовая техника;
  • вещи, постоянно расположенные в помещении.

Кроме того, постоянно давит масса несущей конструкции, оказывает влияние горное давление.

Под временными нагрузками понимаются те, которые появляются при строительстве самых разных конструкций.

К особым нагрузкам относится сейсмическое воздействие, возможное изменение свойств грунта.

Кратковременные нагрузки возникают от оборудования, применяемого при строительстве здания, при атмосферном воздействии. Когда делается расчет самой большой нагрузки, необходимо учесть и длительные нагрузки. Они составляют большую группу, к ним можно отнести:

  • замерзание воды;
  • появление льда;
  • возникновение трещин;
  • линию жесткости;
  • кирпичную стенку:
  • цементную стяжку;
  • покрытие напольной поверхности;
  • массу перегородок;
  • массу оборудования для выполнения стационарной работы, это могут быть конвейерные установки, различные аппараты, твердые или жидкообразные тела;
  • вес стеллажей, находящихся на складе или в другом помещении;
  • массу скопившейся пыли, этот фактор часто игнорируют, однако его необходимо обязательно принимать к сведению, это также лишний вес;
  • атмосферные осадки.

Сначала о нагрузках. По таблице 3.3 СНиП 2.01.07-85* временная нагрузка на перекрытие считается равной 150 кг/м². То есть на каждом квадратном метре перекрытия можно будет разместить 150 кг дополнительного веса сверх постоянных нагрузок. К постоянным нагрузкам относят вес самого перекрытия с напольными конструкциями и вес межкомнатных перегородок. Мебель, санитарно-техническое оборудование и вес людей относят к временным нагрузкам.

Какую величину нагрузки выбрать для устройства деревянного перекрытия? Проще всего провести аналогию с чем-то хорошо знакомым. Например, в наших квартирах используются железобетонные перекрытия с несущей способностью от 400 до 800 кг/м². В последнее время применяются в основном плиты перекрытия с несущей способностью 800 кг/м². Стоит ли принимать к расчету деревянного перекрытия такую нагрузку? Наверное, нет. Как показывает практика, нагрузка на перекрытие чаще всего, не превышает 350–400 кг/м². Однако это не исключает того, что вы, проектируя перекрытие под свои конкретные нужды, примите другую величину нагрузки. В любом случае, все возможные нагрузки лучше учесть заранее и спроектировать перекрытие с небольшим (не более 40%) запасом прочности, чем потом, при возникшей необходимости, заниматься его упрочнением.

Для подбора сечений балок перекрытия, нагрузку исчисляемую в килограммах на квадратный метр нужно перевести в нагрузку, на погонный метр длины балки. Мы легко можем представить себе, например, квадратный лист железа со сторонами длинной в 1 м. Если мы надавим на этот лист весом в 400 кг и подложим под его середину деревянную балку, то на один метр длинны этой балки будет давить сила 400 кг. Это очевидно. А если мы подложим под лист две балки и распределим их под серединами половин листа, то на метр длины балок будет давить вес по 200 кг. Это тоже очевидно. Положив под лист три балки и равномерно раздвинув их, получим нагрузку на каждую балку уже по 133 кг. Таким образом, изменяя количество балок расположенных под одним квадратным метром, мы можем изменять давящую на них нагрузку и тем самым уменьшать сечение балок. Либо наоборот, разместить под двумя (тремя, четырьмя и т.д.) квадратными метрами одну балку и увеличить ее сечение.

Балки перекрытия рассчитываются не только по несущей способности, но еще и на прогиб. Жить в доме, в котором над головой прогнулось перекрытие, будь оно хоть трижды прочным — неприятно. Нормативная величина прогиба балки не должна превышать 1/250 ее длины.

Несущая способность древесины известна, сечения и длины балок то же не составляют тайны — их тысячи раз просчитывали до нас. Поэтому для определения сечения балок при известном пролете (длине от опоры до опоры) можно применить график изображенный на рисунке 37. При использовании графика нужно задать нагрузку и ширину балки и по ним определить ее высоту, для данного пролета балки. Либо зная длину пролета балки и размеры ее сечения, определить какую нагрузку она может выдержать. Изменяя шаг установки балок добиться требуемой величине нагрузки.

Рис. 37. График для определения сечений деревянных балок

График предназначен для расчета однопролетных балок, т. е. балок лежащих на двух опорах. Также можно использовать калькулятор для расчета деревянных балок. Если будут применены двухпролетные балки (на трех опорах) или балки нестандартной длины, то можно попробовать

Тематические материалы:

Обновлено: 03.04.2018

103583

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter

Нагрузки на плиту перекрытия от стяжки

Нас спрашивают: 
Здравствуйте! У меня вопрос по поводу нагрузки на плиту перекрытия от стяжки. Дом «хрущевка», плиты перекрытия в нем монолитные, из того что проштудировал, рассчитаны на нагрузку 600 кг на кв.м. Толщиной где 10, где 12 см, кривые в общем, отлиты не ровно, размером 3 на 6 м, лежат на несущих балках. Балки по бокам по всей длине.

В моей 2-х комнатной квартире 3 плиты получается, на одной толщина стяжки из пескобетона получилась 2-5 см, что вообще не критично, это нагрузка максимум 100 кг на кв.м.

На второй плите толщина слоя стяжки начинается с 8 см и уменьшается до 5 см. Тоже вроде терпимо макс. 160 кг на кв. м. Это в комнатах.

А вот, что сильно беспокоит — кухня с коридором. Находится это все на одной плите, причем она не стандарт похоже какой-то. Длина чуть больше 6 м, а вот ширина по видимым размерам в квартире получается 2,5 м. Опять же толщина как можно понять порядка 8 см, меньше чем те что в комнатах.

На этой плите находится асбестовая (если я не ошибаюсь) коробка ванная+туалет, которая в свою очередь еще и установлена на куске вырезанной плиты. Все это располагается на этой самой тонкой плите.

Из-за того что плиты комнат неровные, толщина стяжки, чтобы выровнять уровень, получается 8 см, а в центре на кухне, дополнительно кривизна пола, уровень до 10-11 см в одном месте доходит.

У стен кухни нужно толщину меньше 5 и даже 3 см. Но в среднем 8 см получается. То есть, если считать макс нагрузка получилась 220 кг на кв.м. А значит, 600-220=380 кг на кв.м осталось запаса. Опять же я не знаю как коробка санузла (ванна+туалет), какую она дает нагрузку…

Тем более, хотелось бы еще плитку наклеить туда, а это доп. нагрузка потому как в среднем 1 кв.м плитки весит 12-13 кг. Боюсь чтобы к соседям не провалиться каким-нибудь образом, мало ли!

Короб ванны с плитой получается стоит, если мерить от стены, примерно по средине плиты. Хотя вроде видел, 3 прицепа песка от легковой машины пролежали по центру таких плит полгода, без проблем, ничего им не стало, тем не менее, не создаю ли я критичной нагрузки на перекрытие? Подскажите пожалуйста, если нетрудно!

Мы отвечаем: 
Александр, в справочниках обычно указывается нормативная нагрузка, реально плиты имеют определенный запас прочности, иногда довольно значительный, но разумеется, надеяться на это не стоит и лишний раз перегружать тоже. Опять же, стоит учесть и возможность брака и усталость конструкции, так что Ваши опасения целиком оправданы. Только я не понял, как Вы рассчитывали доп. вес стяжки? Если взять толщину даже 10 см то на метр квадратный это будет 0,1 м3, а вес максимум 220 кг это если использовать тяжелый бетон, раствор же имеет объемный вес порядка 1,8 тн/м3, т. е. вес квадрата десятисантиметровой подготовки будет около 180 кг. А на 5 см стяжки, соответственно вдвое меньше. Обычно стяжка больше трех, максимум 5 см не делается, а значительные перепады выводятся подсыпкой керамзитового щебня или банального шлака (печного или доменного). Можно, как вариант, использовать листы пенополистирола, получите дополнительную тепло-, шумоизоляцию.

Что до коробки, то ее вес в расчет можно не принимать. Во-первых, она передает его через плиту на ниже лежащие конструкции (под вами у соседей видимо тоже есть коробка?), во-вторых, значительную часть нагрузки воспринимают стены. Так что, спокойно облицовывайте плиткой, укладывайте выравнивающий слой, хоть в пять сантиметров толщиной, проблем не будет.

А вообще сам подход у Вас очень правильный. Сколько я видел «спецов», которые абсолютно не задумывались вопросами несущей способности, а потом за голову хватались! Бывали случаи когда буквально чудом удавалось серьезнейших последствий избежать…

Оставляйте ваши советы и комментарии ниже. Подписывайтесь на новостную рассылку. Успехов вам, и добра вашей семье!

Какую нагрузку могут выдерживать пустотные плиты перекрытия

 

Бетонные пустотные плиты уже много лет используют для обустройства межэтажных перекрытий при строительстве зданий из любых строительных материалов: железобетонных панелей, стеновых блоков (газобетонных, пенобетонных, газосиликатных), а также при возведении монолитных или кирпичных сооружений. Нагрузка на пустотную плиту перекрытия – одна из основных характеристик таких изделий, которую необходимо учитывать уже на этапе проектирования будущего строения. Неправильный расчет этого параметра негативно скажется на прочности и долговечности всего строения.

Блок: 1/7 | Кол-во символов: 556
Источник: https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html

Разделы статьи

Пустотная плита перекрытия: важный элемент, обеспечивающий зданию надежность

Для межэтажного перекрытия любого каркасного и панельного здания применяются пустотные плиты.

Блок: 2/12 | Кол-во символов: 169
Источник: https://hozsektor.ru/plita-pk-foto-video-osnovnye-razmery-tipy-pustotnyh-plit-perekrytiya

Разновидности плит и сферы применения

Плиты перекрытия разнятся по предназначению. Они бывают чердачными, подвальными, межэтажными. Кроме того, они различаются по конструкционным параметрам:

  • сборные: а) балочные из стальных балок; б) балки, выполненных из древесины; в) панельные;
  • часторебристые;
  • монолитные и железобетонные;
  • сборно-монолитные;
  • шатрового типа;
  • арочные, кирпичные, сводчатые.

Сводчатые, как правило, практикуются при сооружении домов из камня на старинный лад.

Пустотные панели перекрытия

Пустотелые (многопустотные) ПК нашли применение при устройстве перекрытий на соединениях между этажами, при возведении объектов из бетона, стеновых блоков и кирпича. Плиты востребованы при сооружении высотных зданий и индивидуальных домов, в сборно-монолитных строениях и в постройках сборного типа. Пустотелые изделия из железобетона зачастую применяются в качестве несущих конструкций. При постройке производственных комплексов востребованы многопустотные армированные образцы плит из тяжелого бетона.

Для придания большей надежности они армируются арматурой либо специализированным каркасом. Эти панели выполняют не только несущие функции, но и роль шумоизоляции. У пустотелых плит внутри есть пустоты, которые к тому же обеспечивают дополнительную звуко- и теплоизоляцию, кроме того, через пустоты можно проложить электропроводку. Такие панели принадлежат к 3-й группе трещиностойкости. Они способны выдерживать большую нагрузку – от 400 до 1200 кгс/м2). Огнеустойчивость у них, как правило, один час.

Панели ПКЖ

ПКЖ – это панели, которые используются главным образом при возведении первых этажей. Расшифровывается их аббревиатура как плита крупнопанельная железобетонная. Изготавливаются из тяжелых бетонов. Использовать ПКЖ необходимо исключительно после всех расчетов – если инсталлировать их просто так, то они могут просто проломиться.

Для высотных монолитных сооружений использовать их нерентабельно.

Блок: 2/5 | Кол-во символов: 2401
Источник: https://stroy-podskazka.ru/perekrytiya/plity-pk/

Характеристики пустотелых (многопустотных) плит

Размер

От габаритов пустотелой ПК зависит и ее окончательная цена. Принципиальное значение, кроме таких характеристик, как длина и ширина, имеет еще и вес.

Габариты ПК колеблются в следующих пределах:

  • в длину плита может быть от 1180 до 9700 миллиметров;
  • в ширину – от 990 до 3500 миллиметров.

Самые востребованные и распространенные – это многопустотные ПК, длина которых составляет 6 метров, а ширина 1,5 метра. Существенное значение также имеет толщина (высота) ПК (правильней будет называть этот параметр «высотой», но строители обычно называют ее «толщиной»).

Итак, высота, которой могут обладать многопустотные ПК, стабильно имеет размер в 220 миллиметров. Немалое значение имеет, естественно, и масса ПК. Плиты перекрытия из бетона должен поднимать подъемный кран, грузоподъемность которого минимум должна составлять 4-5 тонн.

Масса

Производимые в Российской Федерации плиты имеют вес в пределах от 960 до 4820 килограммов. Масса считается основным аспектом, по которому обусловливается метод, посредством которого будет производиться сборка плит.

Вес плит схожей маркировки может различаться, но лишь незначительно: поскольку если расценивать массу с точностью до грамма, то это сделать очень трудно, так как на массу способно оказать воздействие множество факторов (влажность, состав, температура и другое). Если, к примеру, плита попала под дождь, значит, она, естественно, станет немного тяжелее той панели, которая не была под дождем.

Блок: 3/5 | Кол-во символов: 2094
Источник: https://stroy-podskazka.ru/perekrytiya/plity-pk/

Маркировка пустотных плит

Марка панели состоит из нескольких групп букв и цифр, разделенных дефисами. Первая часть – тип плиты, ее геометрические размеры в дециметрах (округленные до целого числа), количество сторон опоры, на которое рассчитана панель. Вторая часть – расчетная нагрузка на плиту в кПа (1 кПа = 100 кг/м²).

Внимание! В маркировке указана расчетная, равномерно распределенная нагрузка на бетонное перекрытие (без учета собственной массы изделия).

Дополнительно в маркировке указывают тип бетона, примененного для изготовления (Л – легкий; С – плотный силикатный; тяжелый бетон индексом не обозначают), а также дополнительные характеристики (например, сейсмологическую устойчивость).

Например, если на плиту нанесена маркировка 1ПК66.15-8, то это расшифровывается следующим образом:

1ПК – толщина панели – 220 мм, пустоты Ø=159 мм и она предназначена для установки с опорой на две стороны.

66.15 – длина составляет 6600 мм, ширина – 1500 мм.

8 – нагрузка на плиту перекрытия, которая составляет 8 кПа (800 кг/м²).

Отсутствие в конце маркировки буквенного индекса указывает на то, что для изготовления был применен тяжелый бетон.

Еще один пример маркировки: 2ПКТ90.12-6-С7. Итак, по порядку:

2ПКТ – панель толщиной 220 мм с пустотами Ø=140 мм, предназначенная для установки с упором на три стороны (ПКК означает необходимость установки панели на четыре стороны опоры).

90.12 – длина – 9 м, ширина – 1,2 м.

6 – расчетная нагрузка 6 кПа (600 кг/м²).

С – означает, что она изготовлена из силикатного (плотного) бетона.

7 – панель может быть использована в регионах с сейсмологической активностью до 7 баллов.

Блок: 4/7 | Кол-во символов: 1604
Источник: https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html

Виды пустотных панелей перекрытия

Панели с продольными полостями применяют при сооружении перекрытий в жилых зданиях, а также строениях промышленного назначения.

Железобетонные панели отличаются по следующим признакам:

  • размерам пустот;
  • форме полостей;
  • наружным габаритам.

В зависимости от размера поперечного сечения пустот железобетонная продукция классифицируется следующим образом:

  • изделия с каналами цилиндрической формы диаметром 15,9 см. Панели маркируются обозначением 1ПК, 1 ПКТ, 1 ПКК, 4ПК, ПБ;
  • продукция с кругами полостями диаметром 14 см, произведенная из тяжелых марок бетонной смеси, обозначается 2ПК, 2ПКТ, 2ПКК;
  • пустотелые панели с каналами диаметром 12,7 см. Они маркируются обозначением 3ПК, 3ПКТ и 3ПКК;
  • круглопустотные панели с уменьшенным до 11,4 см диаметром полости. Применяются для малоэтажного строительства и обозначаются 7ПК.

Виды плит и конструкция перекрытия

Панели для межэтажных оснований отличаются формой продольных отверстий, которая может быть выполнены в виде различных фигур:

  • круга;
  • эллипса;
  • восьмигранника.

По согласованию с заказчиком стандарт допускает выпуск продукции с отверстиями, форма которых отличается от указанных. Каналы могут иметь вытянутую или грушеобразную форму.

Круглопустотная продукция отличается также габаритами:

  • длиной, которая составляет 2,4–12 м;
  • шириной, находящейся в интервале 1м3,6 м;
  • толщиной, составляющей 16–30 см.

По требованию потребителя предприятие-изготовитель может выпускать нестандартную продукцию, отличающуюся размерами.

Основные характеристики пустотных панелей перекрытий

Плиты с полостями пользуются популярностью в строительной отрасли благодаря своим эксплуатационным характеристикам.

Расчет на продавливание плиты межэтажного перекрытия

Главные моменты:

  • расширенный типоразмерный ряд продукции. Габариты могут подбираться для каждого объекта индивидуально, в зависимости от расстояния между стенами;
  • уменьшенная масса облегченной продукции (от 0,8 до 8,6 т). Масса варьируется в зависимости от плотности бетона и размеров;
  • допустимая нагрузка на плиту перекрытия, равная 3–12,5 кПа. Это главный эксплуатационный параметр, определяющий несущую способность изделий;
  • марка бетонного раствора, который применялся для заливки панелей. Для изготовления подойдут бетонные составы с маркировкой от М200 до М400;
  • стандартный интервал между продольными осями полостей, составляющий 13,9-23,3 см. Расстояние определяется типоразмером и толщиной продукции;
  • марка и тип применяемой арматуры. В зависимости от типоразмера изделия, используются стальные прутки в напряженном или ненапряженном состоянии.

Подбирая изделия, нужно учитывать их вес, который должен соответствовать прочностным характеристикам фундамента.

Блок: 2/6 | Кол-во символов: 2690
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Максимальная нагрузка на плиту перекрытия в точке приложения усилий

Предельное значение статической нагрузки, которое может прилагаться в одной точке, определяется с коэффициентом запаса, равным 1,3. Для этого необходимо нормативный показатель 0,8 т/м2 умножить на коэффициент запаса. Полученное значение составляет – 0,8х1,3=1,04 т. При динамической нагрузке, действующей в одной точке, коэффициент запаса следует увеличить до 1,5.

Блок: 5/6 | Кол-во символов: 434
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Нагрузка на плиту перекрытия в панельном доме старой постройки

Определяя, какой вес выдерживает плита перекрытия в квартире старого дома, следует учитывать ряд факторов:

  • нагрузочную способность стен;
  • состояние строительных конструкций;
  • целостность арматуры.

При размещении в зданиях старой застройки тяжелой мебели и ванн увеличенного объема, необходимо рассчитать, какое предельное усилие могут выдержать плиты и стены строения. Воспользуйтесь услугами специалистов. Они выполнят расчеты и определят величину предельно допустимых и постоянно действующих усилий. Профессионально выполненные расчеты позволят избежать проблемных ситуаций.

Блок: 6/6 | Кол-во символов: 637
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Преимущества и слабые стороны плит с полостями

Плиты перекрытия с полостями

Пустотелые плиты популярны благодаря комплексу достоинств:

  • небольшому весу. При равных размерах они обладают высокой прочностью и успешно конкурируют с цельными панелями, которые имеют большой вес, соответственно увеличивая воздействие на стены и фундамент строения;
  • уменьшенной цене. По сравнению с цельными аналогами, для изготовления пустотелых изделий требуется уменьшенное количество бетонного раствора, что позволяет обеспечить снижение сметной стоимости строительных работ;
  • способности поглощать шумы и теплоизолировать помещение. Это достигается за счет конструктивных особенностей, связанных с наличием в бетонном массиве продольных каналов;
  • повышенному качеству промышленно изготовленной продукции. Особенности конструкции, размеры и вес не позволяют кустарно изготавливать панели;
  • возможности ускоренного монтажа. Установка выполняется намного быстрее, чем сооружение цельной железобетонной конструкции;
  • многообразию габаритов. Это позволяет использовать стандартизированную продукцию для строительства сложных перекрытий.

К преимуществам изделий также относятся:

  • возможность использования внутреннего пространства для прокладки различных инженерных сетей;
  • повышенный запас прочности продукции, выпущенной на специализированных предприятиях;
  • стойкость к вибрационному воздействию, перепадам температур и повышенной влажности;
  • возможность использования в районах с повышенной до 9 баллов сейсмической активностью;
  • ровная поверхность, благодаря которой уменьшается трудоемкость отделочных мероприятий.

Изделия не подвержены усадке, имеют минимальные отклонения размеров и устойчивы к воздействию коррозии.

Пустотные плиты перекрытия

Имеются также и недостатки:

  • потребность в использовании грузоподъемного оборудования для выполнения работ по их установке. Это повышает общий объем затрат, а также требует наличия свободной площадки для установки подъемного крана;
  • необходимость выполнения прочностных расчетов. Важно правильно рассчитать значения статической и динамической нагрузки. Массивные бетонные покрытия не стоит устанавливать на стены старых зданий.

Для установки перекрытия необходимо сформировать армопояс по верхнему уровню стен.

Расчет нагрузки на плиту перекрытия

Расчетным путем несложно определить, какую нагрузку выдерживают плиты перекрытия. Для этого необходимо:

  • начертить пространственную схему здания;
  • рассчитать вес, действующий на несущую основу;
  • вычислить нагрузки, разделив общее усилие на количество плит.

Определяя массу, необходимо просуммировать вес стяжки, перегородок, утеплителя, а также находящейся в помещении мебели.

Рассмотрим методику расчета на примере панели с обозначением ПК 60.15-8, которая весит 2,85 т:

  1. Рассчитаем несущую площадь – 6х15=9 м2.
  2. Вычислим нагрузку на единицу площади – 2,85:9=0,316 т.
  3. Отнимем от нормативного значения собственный вес 0,8-0,316=0,484 т.
  4. Вычислим вес мебели, стяжки, полов и перегородок на единицу площади – 0,3 т.
  5. Сопоставимый результат с расчетным значением 0,484-0,3=0,184 т.

Многопустотная плита перекрытия ПК 60.15-8

Полученная разница, равная 184 кг, подтверждает наличие запаса прочности.

Плита перекрытия – нагрузка на м2

Методика расчета позволяет определить нагрузочную способность изделия.

Рассмотрим алгоритм вычисления на примере панели ПК 23.15-8 весом 1,18 т:

  1. Рассчитаем площадь, умножив длину на ширину – 2,3х1,5=3,45 м2.
  2. Определим максимальную загрузочную способность – 3,45х0,8=2,76т.
  3. Отнимем массу изделия – 2,76-1,18=1,58 т.
  4. Рассчитаем вес покрытия и стяжки, который составит, например, 0,2 т на 1 м2.
  5. Вычислим нагрузку на поверхность от веса пола – 3,45х0,2=0,69 т.
  6. Определим запас прочности – 1,58-0,69=0,89 т.

Фактическая нагрузка на квадратный метр определяется путем деления полученного значения на площадь 890 кг:3,45 м2= 257 кг. Это меньше расчетного показателя, составляющего 800 кг/м2.

Блок: 4/6 | Кол-во символов: 3875
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Виды нагрузок, на которые рассчитаны плиты пк

По стандарту величина несущей способности изделия равняется 800 кг/м², но существуют также варианты, рассчитанные на повышенную нагрузку в пределах 1200-1600 кг/м². Следует учитывать, что стоимость пустотных плит перекрытия такого типа будет выше. В основном панели испытывают два типа нагрузок:

  • статические;
  • динамические.

Статическая нагрузка ‒ совокупное воздействие на плиту, оказываемое напольным покрытием совместно с массой стяжки. Сюда же относится и масса межкомнатных стен, установленной мебели – все это составляет суммарное давление, которое оказывается на изделие сверху. Снизу имеется дополнительная нагрузка в виде потолочных светильников, гипсокартонных конструкций, закреплённых карнизов и всего остального навесного оборудования, при установке которого используется потолок.

Что касается динамических нагрузок, то они возникают в результате перемещения всех жильцов. Помимо этого, динамическую нагрузку создают установленные спортивные тренажёры, а также раздвижные перегородки, которые имеют крепления на полу или на потолке.

800 кг/м² – стандартный показатель несущей способности плит перекрытия.

В отдельную категорию выделяется комплексная нагрузка, куда, например, можно отнести давление, оказываемое ванной, которое изменяется в зависимости от наполнения чаши, присутствия или отсутствия в ней человека. Если ванная установлена на ножки, то каждая из опор будет создавать на плиту локальное давление.

Блок: 9/12 | Кол-во символов: 1462
Источник: https://hozsektor.ru/plita-pk-foto-video-osnovnye-razmery-tipy-pustotnyh-plit-perekrytiya

Кол-во блоков: 13 | Общее кол-во символов: 16366
Количество использованных доноров: 4
Информация по каждому донору:

  1. https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya: использовано 4 блоков из 6, кол-во символов 7636 (47%)
  2. https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html: использовано 3 блоков из 7, кол-во символов 2465 (15%)
  3. https://hozsektor.ru/plita-pk-foto-video-osnovnye-razmery-tipy-pustotnyh-plit-perekrytiya: использовано 3 блоков из 12, кол-во символов 1770 (11%)
  4. https://stroy-podskazka.ru/perekrytiya/plity-pk/: использовано 2 блоков из 5, кол-во символов 4495 (27%)

1.2: Структурные нагрузки и система нагружения

2.1.4.1 Дождевые нагрузки

Дождевые нагрузки — это нагрузки из-за скопившейся массы воды на крыше во время ливня или сильных осадков. Этот процесс, называемый пондингом, в основном происходит на плоских крышах и крышах с уклоном менее 0,25 дюйма / фут. Заливка крыш возникает, когда сток после атмосферных осадков меньше количества воды, удерживаемой на крыше. Вода, скопившаяся на плоской или малоскатной крыше во время ливня, может создать большую нагрузку на конструкцию.Поэтому это необходимо учитывать при проектировании здания. Совет Международного кодекса требует, чтобы на крышах с парапетами были первичные и вторичные водостоки. Первичный водосток собирает воду с крыши и направляет ее в канализацию, а вторичный сток служит резервным на случай засорения первичного водостока. На рисунке 2.3 изображена крыша и эти дренажные системы. Раздел 8.3 стандарта ASCE7-16 определяет следующее уравнение для расчета дождевых нагрузок на неотклоненную крышу в случае, если основной слив заблокирован:

где

  • R = дождевая нагрузка на неотклоненную крышу в фунтах на кв. Дюйм или кН / м 2 .
  • d s = глубина воды на неотклоненной крыше до входа во вторичную дренажную систему (т. Е. Статический напор) в дюймах или мм.
  • d h = дополнительная глубина воды на неотклоненной крыше над входом во вторичную дренажную систему (т. Е. Гидравлический напор) в дюймах или мм. Это зависит от скорости потока, размера дренажа и площади дренажа каждого дренажа.

Расход Q в галлонах в минуту можно рассчитать следующим образом:

Q (галлонов в минуту) = 0.0104 Ai

где

  • A = площадь крыши в квадратных футах, осушаемая дренажной системой.
  • и = 100 лет, 1 час. интенсивность осадков в дюймах в час для местоположения здания, указанного в правилах водоснабжения.

Рис. 2.3. Водосточная система с крыши (адаптировано из Международного совета по кодам).

2.1.4.2 Ветровые нагрузки

Ветровые нагрузки — это нагрузки, действующие на конструкции ветровым потоком.Ветровые силы были причиной многих структурных нарушений в истории, особенно в прибрежных регионах. Скорость и направление ветрового потока непрерывно меняются, что затрудняет точное прогнозирование давления ветра на существующие конструкции. Это объясняет причину значительных усилий по исследованию влияния и оценки ветровых сил. На рисунке 2.4 показано типичное распределение ветровой нагрузки на конструкцию. Основываясь на принципе Бернулли, взаимосвязь между динамическим давлением ветра и скоростью ветра может быть выражена следующим образом при визуализации потока ветра как потока жидкости:

где

  • q = воздух с динамическим ветровым давлением в фунтах на квадратный фут.
  • ρ = массовая плотность воздуха.
  • V = скорость ветра в милях в час.

Базовая скорость ветра для определенных мест в континентальной части США может быть получена из основной контурной карты скорости в ASCE 7-16 .

Предполагая, что удельный вес воздуха для стандартной атмосферы составляет 0,07651 фунт / фут 3 и подставляя это значение в ранее указанное уравнение 2.1, можно использовать следующее уравнение для статического давления ветра:

Для определения величины скорости ветра и его давления на различных высотах над уровнем земли прибор ASCE 7-16 модифицировал уравнение 2.2 путем введения некоторых факторов, учитывающих высоту сооружения над уровнем земли, важность сооружения для жизни и имущества человека, а также топографию его местоположения, а именно:

где

K z = коэффициент скоростного давления, который зависит от высоты конструкции и условий воздействия. Значения K z приведены в таблице 2.4.

K zt = топографический фактор, который учитывает увеличение скорости ветра из-за внезапных изменений топографии там, где есть холмы и откосы.Этот коэффициент равен единице для зданий на ровной поверхности и увеличивается с высотой.

K d = коэффициент направленности ветра. Он учитывает уменьшенную вероятность максимального ветра, идущего с любого заданного направления, и уменьшенную вероятность развития максимального давления при любом направлении ветра, наиболее неблагоприятном для конструкции. Для конструкций, подверженных только ветровым нагрузкам, K d = 1; для конструкций, подверженных другим нагрузкам, помимо ветровой, значения K d приведены в таблице 2.5.

  • K e = коэффициент высоты земли. Согласно разделу 26.9 в ASCE 7-16 , это выражается как K e = 1 для всех отметок.
  • V = скорость ветра, измеренная на высоте z над уровнем земли.

Три условия воздействия, классифицированные как B, C и D в таблице 2.4, определены с точки зрения шероховатости поверхности следующим образом:

Воздействие B: Шероховатость поверхности для этой категории включает городские и пригородные зоны, деревянные участки или другую местность с близко расположенными препятствиями.Эта категория применяется к зданиям со средней высотой крыши ≤ 30 футов (9,1 м), если поверхность простирается против ветра на расстояние более 1500 футов. Для зданий со средней высотой крыши более 30 футов (9,1 м) эта категория будет применяться, если шероховатость поверхности с наветренной стороны превышает 2600 футов (792 м) или в 20 раз превышает высоту здания, в зависимости от того, что больше.

Экспозиция C: Экспозиция C применяется там, где преобладает шероховатость поверхности C. Шероховатость поверхности C включает открытую местность с разбросанными препятствиями высотой менее 30 футов.

Воздействие D: Шероховатость поверхности для этой категории включает квартиры, гладкие илистые отмели, солончаки, сплошной лед, свободные участки и водные поверхности. Воздействие D применяется, когда шероховатость поверхности D простирается против ветра на расстояние более 5000 футов или в 20 раз больше высоты здания, в зависимости от того, что больше. Это также применимо, если шероховатость поверхности с наветренной стороны равна B или C, и площадка находится в пределах 600 футов (183 м) или 20-кратной высоты здания, в зависимости от того, что больше.

Таблица 2.4. Коэффициент воздействия скоростного давления, K z , как указано в ASCE 7-16 .

Таблица 2.5. Коэффициент направленности ветра K d , как указано в ASCE 7-16 .

Тип конструкции

К г

Основная система сопротивления ветровой нагрузке (MWFRS)

Комплектующие и облицовка

0.85

0,85

Арочные крыши

0,85

Дымоходы, резервуары и аналогичные конструкции

Площадь

Шестиугольный

Круглый

0.9

0,95

0,95

Сплошные отдельно стоящие стены и сплошные отдельно стоящие и прикрепленные вывески

0,85

Открытые вывески и решетчатый каркас

0,85

Фермерские башни

Треугольная, квадратная, прямоугольная

Все прочие сечения

0.85

0,95

Чтобы получить окончательное внешнее давление для расчета конструкций, уравнение 2.3 дополнительно модифицируется следующим образом:

где

  • P z = расчетное давление ветра на лицевую поверхность конструкции на высоте z над уровнем земли. Он увеличивается с высотой на наветренной стене, но остается неизменным с высотой на подветренной и боковых стенах.
  • G = фактор порыва ветра. G = 0,85 для жестких конструкций с собственной частотой ≥ 1 Гц. Коэффициенты порывов ветра для гибких конструкций рассчитываются с использованием уравнений в ASCE 7-16 .
  • C p = коэффициент внешнего давления. Это часть внешнего давления на наветренные стены, подветренные стены, боковые стены и крышу. Значения C p представлены в таблицах 2.6 и 2.7.

Чтобы вычислить ветровую нагрузку, которая будет использоваться для расчета элемента, объедините внешнее и внутреннее давление ветра следующим образом:

где

GC pi = коэффициент внутреннего давления из ASCE 7-16 .

Рис. 2.4. Типичное распределение ветра на стенах конструкции и крыше.

Таблица 2.6. Коэффициент давления на стенку, C p , как указано в ASCE 7-16 .

Примечания:

1. Положительные и отрицательные знаки указывают на давление ветра, действующее по направлению к поверхностям и от них.

2. L — размер здания, перпендикулярный направлению ветра, а B — размер, параллельный направлению ветра.

Таблица 2.7. Коэффициенты давления на крышу, C p , для использования с q h , как указано в ASCE 7-16 .

Пример \ (\ PageIndex {1} \)

Двухэтажное здание, показанное на рисунке 2.5 — это начальная школа, расположенная на ровной местности в пригороде, со скоростью ветра 102 миль в час и категорией воздействия B. Какое давление скорости ветра на высоте крыши для основной системы сопротивления ветровой силе (MWFRS)?

Рис. 2.5. Двухэтажное здание.

Решение

Средняя высота крыши ч = 20 футов

Таблица 26.10-1 из ASCE 7-16 утверждает, что если категория воздействия — B и коэффициент воздействия скоростного давления для h = 20 ′, то K z = 0.7.

Коэффициент топографии из раздела 26.8.2 ASCE 7-16 равен K zt = 1.0.

Коэффициент направленности ветра для MWFRS, согласно таблице 26.6-1 в ASCE 7-16 , составляет K d = 0,85.

Используя уравнение 2.3, скоростное давление на высоте 20 футов для MWFRS составляет:

В некоторых географических регионах сила, оказываемая накопившимся снегом и льдом на крышах зданий, может быть довольно огромной и может привести к разрушению конструкции, если не будет учтена при проектировании конструкции.

Предлагаемые расчетные значения снеговых нагрузок приведены в нормах и проектных спецификациях. Основой для расчета снеговых нагрузок является так называемая снеговая нагрузка на грунт. Снеговая нагрузка на грунт определяется Международными строительными нормами (IBC) как вес снега на поверхности земли. Снеговые нагрузки на грунт для различных частей США можно получить из контурных карт в ASCE 7-16 . Некоторые типичные значения снеговых нагрузок на грунт из этого стандарта представлены в таблице 2.8. После того, как эти нагрузки для требуемых географических областей установлены, их необходимо изменить для конкретных условий, чтобы получить снеговую нагрузку для проектирования конструкций.

Согласно стандарту ASCE 7-16 расчетные снеговые нагрузки для плоских и наклонных крыш можно получить с помощью следующих уравнений:

где

  • р f = расчетная снеговая нагрузка на плоскую крышу.
  • р с = расчетная снеговая нагрузка для скатной крыши.
  • р г = снеговая нагрузка на грунт.
  • I = фактор важности. См. Таблицу 2.9 для значений коэффициента важности в зависимости от категории здания.
  • C e = коэффициент воздействия. См. Таблицу 2.10 для значений коэффициента воздействия в зависимости от категории местности.
  • C t = тепловой коэффициент. См. Таблицу 2.11 для типичных значений.
  • C s = коэффициент наклона.Значения C s приведены в разделах с 7.4.1 по 7.4.4 ASCE 7-16 , в зависимости от различных факторов.

Таблица 2.8. Типичные снеговые нагрузки на грунт, указанные в ASCE 7-16.

Расположение

Нагрузка (PSF)

Ланкастер, Пенсильвания

Якутат, АК

Нью-Йорк, NY

Сан-Франциско, Калифорния

Чикаго, Иллинойс

Таллахасси, Флорида

30

150

30

5

25

0

Таблица 2.9. Коэффициент значимости снеговой нагрузки Is, как указано в ASCE 7-16.

Категория риска конструкции

Фактор важности

I

II

III

IV

0.8

1,0

1,1

1,2

Таблица 2.10. Коэффициент экспозиции, C e , как указано в ASCE 7-16 .

Таблица 2.11. Тепловой коэффициент, C t , как указано в ASCE 7-16 .

Температурные условия

Температурный коэффициент

Все конструкции, кроме указанных ниже

1.0

Конструкции, поддерживаемые чуть выше точки замерзания, и другие конструкции с холодными вентилируемыми крышами, в которых термическое сопротивление (значение R) между вентилируемым и отапливаемым помещениями превышает 25 ° F × h × ft 2 / BTU (4,4 K × м 2 / Вт)

1,1

Неотапливаемые и открытые конструкции

1.2

Сооружения намеренно поддерживаются ниже нуля

1,3

Теплицы с постоянным обогревом и крышей, имеющей тепловое сопротивление (значение R) менее 2,0 ° F × в × фут 2 / BTU

0,85

Пример 2.4

Одноэтажный отапливаемый жилой дом, расположенный в пригородной зоне Ланкастера, штат Пенсильвания, считается частично незащищенным. Крыша дома с уклоном 1 на 20, без нависающего карниза. Какова расчетная снеговая нагрузка на крышу?

Решение

Согласно рисунку 7.2-1 в ASCE 7-16 , снеговая нагрузка на грунт для Ланкастера, штат Пенсильвания, составляет

р г = 30 фунтов на квадратный дюйм.

Поскольку 30 psf> 20 psf, доплата за дождь на снегу не требуется.

Чтобы найти уклон крыши, используйте θ = arctan

.

Согласно ASCE 7-16 , поскольку 2,86 ° <15 °, крыша считается пологой. В таблице 7.3-2 в ASCE 7-16 указано, что тепловой коэффициент для обогреваемой конструкции составляет C t = 1,0 (см. Таблицу 2.11).

Согласно таблице 7.3-1 в ASCE 7-16 , коэффициент воздействия для частично открытой местности категории B составляет C e = 1.0 (см. Таблицу 2.10).

В таблице 1.5-2 в ASCE 7-16 указано, что фактор важности I s = 1,0 для категории риска II (см. Таблицу 2.9).

Согласно уравнению 2.6 снеговая нагрузка на плоскую крышу составляет:

Так как 21 psf> 20 I s = (20 psf) (1) = 20 psf. Таким образом, расчетная снеговая нагрузка на плоскую крышу составляет 21 фунт / фут.

2.1.4.4 Сейсмические нагрузки

Смещение грунта, вызванное сейсмическими силами во многих географических регионах мира, может быть весьма значительным и часто повреждает конструкции.Это особенно заметно в регионах вблизи активных геологических разломов. Таким образом, большинство строительных норм и правил требуют, чтобы конструкции были спроектированы с учетом сейсмических сил в таких областях, где вероятны землетрясения. Стандарт ASCE 7-16 предоставляет множество аналитических методов для оценки сейсмических сил при проектировании конструкций. Один из этих методов анализа, который будет описан в этом разделе, называется процедурой эквивалентной боковой силы (ELF). Поперечный сдвиг основания V и поперечная сейсмическая сила на любом уровне, вычисленные с помощью ELF, показаны на рисунке 2.6. Согласно процедуре, общий статический поперечный сдвиг основания, V , в определенном направлении для здания определяется следующим выражением:

где

V = боковой сдвиг основания здания. Расчетное значение В должно удовлетворять следующему условию:

Вт = эффективный сейсмический вес здания. Он включает в себя полную статическую нагрузку здания и его постоянного оборудования и перегородок.

T = основной естественный период здания, который зависит от массы и жесткости конструкции. Он рассчитывается по следующей эмпирической формуле:

C т = коэффициент периода строительства. Значение C t = 0,028 для каркасов из конструкционной стали, устойчивых к моменту, 0,016 для жестких железобетонных рам и 0,02 для большинства других конструкций (см. Таблицу 2.12).

n = высота самого высокого уровня здания, а x = 0.8 для стальных жестких рам, 0,9 для жестких железобетонных рам и 0,75 для других систем.

Таблица 2.12. C t значения для различных структурных систем.

Структурная система

C т

х

Рамы, сопротивляющиеся моменту стальные

Рамы с эксцентриситетом (EBF)

Все прочие конструкционные системы

0.028

0,03

0,02

0,8

0,75

0,75

S DI = расчетное спектральное ускорение. Он оценивается с использованием сейсмической карты, которая обеспечивает расчетную интенсивность землетрясения для конструкций в местах с T = 1 секунда.

S DS = расчетное спектральное ускорение.Он оценивается с использованием сейсмической карты, которая обеспечивает расчетную интенсивность землетрясения для конструкций с T = 0,2 секунды.

R = коэффициент модификации отклика. Это объясняет способность структурной системы противостоять сейсмическим силам. Значения R для нескольких распространенных систем представлены в таблице 2.13.

I = фактор важности. Это мера последствий для жизни человека и материального ущерба в случае выхода конструкции из строя.Значение фактора важности равно 1 для офисных зданий, но равняется 1,5 для больниц, полицейских участков и других общественных зданий, где в случае разрушения конструкции ожидается большая гибель людей или повреждение имущества.

где

F x = боковая сейсмическая сила, приложенная к уровню x .

W i и W x = эффективные сейсмические веса на уровнях i и x .

i и x = высота от основания конструкции до этажей на уровнях i и x .

= суммирование произведения W i и всей конструкции.

k = показатель распределения, относящийся к основному собственному периоду конструкции.Для T ≤ 0,5 с, k = 1,0, а для T ≥ 2,5 с k = 2,0. Для T , лежащего между 0,5 с и 2,5 с, k можно вычислить с использованием следующего соотношения:

Рис. 2.6. Процедура эквивалентной боковой силы

Пример 2.5

Пятиэтажное офисное стальное здание, показанное на рис. 2.7, укреплено по бокам стальными каркасами, устойчивыми к особым моментам, и его размеры в плане 75 футов на 100 футов.Здание находится в Нью-Йорке. Используя процедуру эквивалентной боковой силы ASCE 7-16 , определите поперечную силу, которая будет приложена к четвертому этажу конструкции. Статическая нагрузка на крышу составляет 32 фунта на квадратный фут, статическая нагрузка на перекрытие (включая нагрузку на перегородку) составляет 80 фунтов на квадратный фут, а снеговая нагрузка на плоскую крышу составляет 40 фунтов на квадратный фут. Не обращайте внимания на вес облицовки. Расчетные параметры спектрального ускорения: S DS = 0,28 и S D 1 = 0.11.

Рис. 2.7. Пятиэтажное офисное здание.

Решение

S DS = 0,28 и S D 1 = 0,11 (дано).

R = 8 для стальной рамы со специальным моментом сопротивления (см. Таблицу 2.13).

Офисное здание относится к категории риска занятости II, поэтому I e = 1,0 (см. Таблицу 2.9).

Рассчитайте примерный фундаментальный естественный период здания T a .

C t = 0,028 и x = 0,8 (из таблицы 2.12 для стальных рам, сопротивляющихся моменту).

n = Высота крыши = 52,5 фута

Определите статическую нагрузку на каждом уровне. Поскольку снеговая нагрузка на плоскую крышу, указанная для офисного здания, превышает 30 фунтов на квадратный фут, 20% снеговой нагрузки должны быть включены в расчеты сейсмической статической нагрузки.

Вес, присвоенный уровню крыши:

W крыша = (32 фунта на фут) (75 футов) (100 футов) + (20%) (40 фунтов на квадратный фут) (75 футов) (100 футов) = 300000 фунтов

Вес, присвоенный всем остальным уровням, следующий:

Вт i = (80 фунтов на фут) (75 футов) (100 футов) = 600000 фунтов

Общая статическая нагрузка составляет:

Вт Всего = 300000 фунтов + (4) (600000 фунтов) = 2700 тыс.

Расчет коэффициента сейсмической реакции C s .

Следовательно, C с = 0,021> 0,01

Определите сейсмический сдвиг основания V .

В = C с Вт = (0,021) (2700 тысяч фунтов) = 56,7 тыс.

Рассчитайте боковую силу, приложенную к четвертому этажу.

2.1.4.5 Гидростатическое давление и давление земли

Подпорные конструкции должны быть спроектированы с учетом опрокидывания и скольжения, вызываемых гидростатическим давлением и давлением грунта, чтобы обеспечить устойчивость их оснований и стен.Примеры подпорных стен включают гравитационные стены, консольные стены, контрфорсированные стены, резервуары, переборки, шпунтовые сваи и другие. Давление, создаваемое удерживаемым материалом, всегда перпендикулярно контактирующим с ними поверхностям удерживающей конструкции и изменяется линейно с высотой. Интенсивность нормального давления р и равнодействующей силы P на подпорную конструкцию рассчитывается следующим образом:

Где

γ = удельный вес удерживаемого материала.

= расстояние от поверхности удерживаемого материала и рассматриваемой точки.

2.1.4.6 Разные нагрузки

Существует множество других нагрузок, которые также можно учитывать при проектировании конструкций, в зависимости от конкретных случаев. Их включение в сочетания нагрузок будет основано на усмотрении проектировщика, если предполагается, что в будущем они окажут значительное влияние на структурную целостность. Эти нагрузки включают тепловые силы, центробежные силы, силы из-за дифференциальной осадки, ледовые нагрузки, нагрузки от затопления, взрывные нагрузки и многое другое.

2.2 Сочетания нагрузок для расчета конструкций

Конструкции

спроектированы с учетом требований как прочности, так и удобства эксплуатации. Требование прочности обеспечивает безопасность жизни и имущества, а требование эксплуатационной пригодности гарантирует удобство использования (людей) и эстетику конструкции. Чтобы соответствовать указанным выше требованиям, конструкции проектируются на критическую или самую большую нагрузку, которая будет действовать на них. Критическая нагрузка для данной конструкции определяется путем объединения всех возможных нагрузок, которые конструкция может нести в течение своего срока службы.В разделах 2.3.1 и 2.4.1 документа ASCE 7-16 представлены следующие сочетания нагрузок для использования при проектировании конструкций с использованием методов расчета коэффициента нагрузки и сопротивления (LRFD) и расчета допустимой прочности (ASD).

Для LRFD комбинации нагрузок следующие:

1.1.4 Д

2.1.2 D + 1,6 L + 0,5 ( L r или S или R )

3.1.2 D + 1,6 ( L r или S или R ) + ( L или 0.5 Вт )

4.1.2 D + 1.0 W + L + 0.5 ( L r или S или R )

5.0.9 D + 1.0 Вт

Для ASD комбинации нагрузок следующие:

1. Д

2. Д + Д

3. D + ( L r или S или R )

4. D + 0,75 L + 0.75 ( L r или S или R )

5. D + (0,6 Вт )

где

D = статическая нагрузка.

L = временная нагрузка из-за занятости.

L r = временная нагрузка на крышу.

S = снеговая нагрузка.

R = номинальная нагрузка из-за начальной дождевой воды или льда, без учета затопления.

Вт = ветровая нагрузка.

E = сейсмическая нагрузка.

Пример 2.6

Система перекрытий, состоящая из деревянных балок, расположенных на расстоянии 6 футов друг от друга по центру, и деревянной обшивки с гребнем и пазом, как показано на рисунке 2.8, выдерживает статическую нагрузку (включая вес балки и обшивки) 20 фунтов на квадратный фут и временную нагрузку. 30 фунтов на квадратный фут. Определите максимальную факторную нагрузку в фунтах / футах, которую должна выдержать каждая балка перекрытия, используя комбинации нагрузок LRFD.

Рис. 2.8. Система полов.

Решение

Собственная нагрузка D = (6) (20) = 120 фунт / фут

Переменная нагрузка L = (6) (30) = 180 фунтов / фут

Определение максимальной факторизованной нагрузки W и с использованием комбинаций нагрузок LRFD и пренебрежением членами, не имеющими значений, дает следующее:

Вт u = (1,4) (120) = 168 фунтов / фут

Вт u = (1,2) (120) + (1,6) (180) = 288 фунтов / фут

Вт u = (1.2) (120) + (0,5) (180) = 234 фунт / фут

Вт u = (1,2) (120) + (0,5) (180) = 234 фунт / фут

Вт u = (1,2) (120) + (0,5) (180) = 234 фунт / фут

Вт u = (0,9) (120) = 108 фунтов / фут

Регулирующая факторная нагрузка = 288 фунтов / фут

2.3 Ширина и площадь притока

Зона притока — это зона нагрузки, на которую будет воздействовать элемент конструкции. Например, рассмотрим внешнюю балку B1 и внутреннюю балку B2 односторонней системы перекрытий, показанной на рисунке 2.9. Входная ширина для B1 — это расстояние от центральной линии луча до половины расстояния до следующего или соседнего луча, а подчиненная область для луча — это область, ограниченная шириной подчиненного элемента и длиной луча, как заштриховано на рисунке. Для внутренней балки B2-B3 ширина притока W T составляет половину расстояния до соседних балок с обеих сторон.

Рис. 2.9. Площадь притока.

2,4 Области влияния

Зоны влияния — это зоны нагружения, которые влияют на величину нагрузок, переносимых конкретным элементом конструкции.В отличие от притоков, где нагрузка в пределах зоны воспринимается элементом, все нагрузки в зоне влияния не поддерживаются рассматриваемым элементом.

2,5 Снижение динамической нагрузки

Большинство кодексов и стандартов допускают снижение временных нагрузок при проектировании больших систем перекрытий, поскольку очень маловероятно, что такие системы всегда будут поддерживать расчетные максимальные временные нагрузки в каждом случае. Раздел 4.7.3 стандарта ASCE 7-16 позволяет снизить временные нагрузки для элементов, которые имеют зону воздействия A I ≥ 37.2 м 2 (400 футов 2 ). Площадь влияния — это произведение площади притока и коэффициента элемента динамической нагрузки. Уравнения ASCE 7-16 для определения приведенной временной нагрузки на основе зоны воздействия следующие:

где

L = уменьшенная расчетная временная нагрузка на фут 2 (или м 2 ).

≥ 0,50 L o для конструктивных элементов, поддерживающих один этаж (например, балок, балок, плит и т. Д.).

≥ 0,40 L o для конструктивных элементов, поддерживающих два или более этажа (например, колонны и т. Д.).

Никакое уменьшение не допускается для динамических нагрузок на пол более 4,79 кН / м 2 (100 фунтов / фут 2 ) или для полов общественных собраний, таких как стадионы, зрительные залы, кинотеатры и т. Д., Поскольку существует большая вероятность того, что такие этажи будут перегружены или использованы как гаражи.

L o = несниженная расчетная временная нагрузка на фут 2 (или 2 м) из таблицы 2.2 (Таблица 4.3-1 в ASCE 7-16 ).

A T = площадь притока элемента в футах 2 (или м 2 ).

K LL = A I / A T = коэффициент элемента динамической нагрузки из таблицы 2.14 (см. Значения, указанные в таблице 4.7-1 в ASCE 7-16 ).

A I = K LL A T = зона влияния.

Таблица 2.14. Коэффициент динамической нагрузки элемента.

Таблица 2.13. Коэффициент модификации ответа, R, как указано в ASCE 7-16.

Сейсмическая система сопротивления

р

Системы несущих стен

Обычные железобетонные стены со сдвигом

Обычные стены, армированные сдвигом по камню

Стены с легким каркасом (холоднокатаная сталь), обшитые конструкционными панелями, устойчивыми к сдвигу, или стальными листами

4

2

Строительные каркасные системы

Обычные железобетонные стены со сдвигом

Обычные стены, армированные сдвигом по камню

Рамы стальные, ограниченные продольным изгибом

5

2

8

Моментостойкие каркасные системы

Стальные рамы с особым моментом

Стальные обычные моментные рамы

Рамы моментные железобетонные обычные

8

3

Строительный элемент

К LL

Внутренние колонны и внешние колонны без консольных плит

4

Наружные колонны с консольными перекрытиями

3

Угловые колонны с консольными перекрытиями

2

Внутренние и краевые балки без консольных плит

2

Все остальные элементы, включая панели в двусторонних плитах

1

Пример 2.7

В четырехэтажном школьном здании, используемом для классных комнат, колонны расположены, как показано на Рисунке 2.10. Нагрузка конструкции на плоскую крышу оценивается в 25 фунтов / фут 2 . Определите уменьшенную временную нагрузку, поддерживаемую внутренней колонной на уровне земли.

Рис. 2.10. Четырехэтажное здание школы.

Решение

Любая внутренняя колонна на уровне земли выдерживает нагрузку на крышу и временные нагрузки на втором, третьем и четвертом этажах.

Площадь притока внутренней колонны A T = (30 футов) (30 футов) = 900 футов 2

Временная нагрузка на крышу составляет F R = (25 фунтов / фут 2 ) (900 футов 2 ) = 22500 фунтов = 22,5 k

Для динамических нагрузок на перекрытие используйте уравнения ASCE 7-16 , чтобы проверить возможность уменьшения.

L o = 40 фунтов / фут 2 (из таблицы 4.1 в ASCE 7-16 ).

Если внутренняя колонна K LL = 4, то зона влияния A 1 = K LL A T = (4) (900 футов 2 ) = 3600 футов 2 .

Так как 3600 футов 2 > 400 футов 2 , временная нагрузка может быть уменьшена с помощью уравнения 2.14 следующим образом:

Согласно таблице 4.1 в ASCE 7-16 , приведенная нагрузка как часть неуменьшенной временной нагрузки на пол для классной комнаты равна Таким образом, приведенная временная нагрузка на пол составляет:

F F = (20 фунтов / фут 2 ) (900 футов 2 ) = 18000 фунтов = 18 кг

Общая нагрузка, воспринимаемая внутренней колонной на уровне земли, составляет:

F Итого = 22.5 к + 3 (18 к) = 76,5 к

Краткое содержание главы

Структурные нагрузки и системы нагружения: Элементы конструкции рассчитаны на наихудшие возможные сочетания нагрузок. Некоторые нагрузки, которые могут воздействовать на конструкцию, кратко описаны ниже.

Собственные нагрузки : Это нагрузки постоянной величины в конструкции. Они включают в себя вес конструкции и нагрузки, которые постоянно прилагаются к ней.

Динамические нагрузки : Это нагрузки различной величины и положения.К ним относятся подвижные грузы и нагрузки из-за занятости.

Ударные нагрузки : Ударные нагрузки — это внезапные или быстрые нагрузки, прикладываемые к конструкции в течение относительно короткого периода времени по сравнению с другими нагрузками на конструкцию.

Дождевые нагрузки : Это нагрузки из-за скопления воды на крыше после ливня.

Ветровые нагрузки : Это нагрузки из-за давления ветра на конструкции.

Снеговые нагрузки : Это нагрузки, оказываемые на конструкцию скопившимся снегом на крыше.

Нагрузки от землетрясений : Это нагрузки, оказываемые на конструкцию движением грунта, вызванным сейсмическими силами.

Гидростатическое давление и давление грунта : Это нагрузки на подпорные конструкции из-за давлений, создаваемых удерживаемыми материалами. Они линейно меняются с высотой стен.

Сочетания нагрузок: Два метода проектирования зданий — это метод расчета коэффициента нагрузки и сопротивления (LRFD) и метод расчета допустимой прочности (ASD).Некоторые комбинации нагрузок для этих методов показаны ниже.

LRFD:

1.1.4 Д

2.1.2 D + 1,6 L + 0,5 ( L r или S или R )

3.1.2 D + 1,6 ( L r или S или R ) + ( L или 0,5 W )

4.1.2 D + 1.0 W + L + 0.5 ( L r или S или R )

5.0.9 D + 1.0 Вт

ASD:

1. Д

2. Д + Д

3. D + ( L r или S или R )

4. D + 0,75 L + 0,75 ( L r или S или R )

5. D + (0,6 Вт )

Список литературы

ACI (2016), Требования строительных норм для конструкционного бетона (ACI 318-14), Американский институт бетона.

ASCE (2016), Минимальные расчетные нагрузки для зданий и других конструкций, ASCE 7-16, ASCE.

ICC (2012), Международные строительные нормы и правила, Международный совет по нормам.

Практические задачи

2.1 Определите максимальный факторный момент для балки крыши, подверженной следующим эксплуатационным нагрузкам:

M D = 40 psf (статический момент нагрузки)

M L r = 36 psf (момент нагрузки на крышу)

M с = 16 psf (момент снеговой нагрузки)

2.2 Определите максимальную факторную нагрузку, которую выдерживает колонна, подверженная следующим эксплуатационным нагрузкам:

P D = 500 тысяч фунтов (статическая нагрузка)

P L = 280 тысяч фунтов (постоянная нагрузка на пол)

P S = 200 тысяч фунтов (снеговая нагрузка)

P E = ± 30 тысяч фунтов (землетрясение)

P w = ± 70 тысяч фунтов (ветровая нагрузка)

2.3 Типичная планировка композитной системы перекрытий из железобетона и бетона в здании библиотеки показана на рисунке P2.1. Определите статическую нагрузку в фунтах / футах, действующую на типичную внутреннюю балку B 1- B 2 на втором этаже. Все лучи имеют размер W 12 × 44, расстояние между ними составляет 10 футов в секунду. Распределенная нагрузка на второй этаж:

Пескоцементная стяжка толщиной 2 дюйма

= 0.25 фунтов / кв. Дюйм

Железобетонная плита толщиной 6 дюймов

= 50 фунтов / кв. Дюйм

Подвесные потолки из металлических реек и гипсокартона

= 10 фунтов / кв. Дюйм

Электротехнические и механические услуги

= 4 фунта / кв. Дюйм

Типовой план

Рис.P2.1. Композитная система перекрытий из стали и бетона.

2.4 План второго этажа здания начальной школы показан на рисунке P2.1. Отделка пола аналогична практической задаче 2.3, за исключением того, что потолок представляет собой акустическую древесноволокнистую плиту с минимальной расчетной нагрузкой 1 фунт-сила на фут. Все балки имеют размер W, 12 × 75, вес 75 фунтов / фут, а все балки — W, 16 × 44, с собственным весом 44 фунта / фут. Определите статическую нагрузку на типичную внутреннюю балку A 2- B 2.

2.5 План второго этажа офисного помещения показан на рисунке P2.1. Отделка пола аналогична практической задаче 2.3. Определите общую статическую нагрузку, приложенную к внутренней колонне B 2 на втором этаже. Все балки имеют размер Вт, 14 × 75, а все балки — Вт, 18 × 44.

2.6 Четырехэтажное больничное здание с плоской крышей, показанное на рисунке P2.2, имеет концентрически скрепленные рамы в качестве системы сопротивления поперечной силе. Вес на каждом уровне пола указан на рисунке.Определите сейсмический сдвиг в основании в тысячах фунтов с учетом следующих расчетных данных:

S 1 = 1,5 г

S с = 0,6 г

Класс площадки = D

Рис. P2.2. Четырехэтажное здание с плоской крышей.

2.7 Используйте ASCE 7-16 для определения снеговой нагрузки (psf) для здания, показанного на рисунке P2.3. Следующие данные относятся к зданию:

Снеговая нагрузка на грунт = 30 фунтов / кв. Дюйм

Крыша полностью покрыта битумной черепицей.

Угол наклона крыши = 25 °

Открытая местность

Категория размещения I

Неотапливаемое сооружение

Рис. P2.3. Образец кровли.

2,8. В дополнение к расчетной снеговой нагрузке, рассчитанной в практической задаче 2.7, крыша здания на рисунке P2.3 подвергается статической нагрузке 16 фунтов на квадратный фут (включая вес фермы, кровельной доски и асфальтовой черепицы) по горизонтали. самолет. Определите равномерную нагрузку, действующую на внутреннюю ферму, если фермы имеют 6 футов-0 дюймов в центре.

2.9 Ветер дует со скоростью 90 миль в час на закрытое хранилище, показанное на Рисунке P2.4. Объект расположен на ровной местности с категорией воздействия B. Определите давление скорости ветра в psf на высоте карниза объекта. Топографический коэффициент K zt = 1.0.

Рис. P2.4. Закрытая сторга.

Общие сведения о передаче нагрузок с плиты на балки

🕑 Время чтения: 1 минута

Передача нагрузок от плиты к балкам контролируется геометрическими размерами плиты и направлением арматуры.Нагрузка плиты, включая собственный вес, временную нагрузку и приложенную статическую нагрузку, распределяется по балкам по их сторонам.

Нагрузки на плиту выражаются в весе на единицу площади, тогда как нагрузки на балки выражаются в единицах веса на длину балки.

Если плита имеет стандартные размеры, перенос нагрузки может быть выполнен легко и быстро. Однако, если он имеет неправильную форму, рекомендуется использовать подходящие программы, такие как SAP2000, SAFE и ETABS.

Односторонняя плита

Нагрузка односторонней плиты прямоугольной формы распределяется поровну между соседними балками. Внутренняя балка принимает на себя половину общей нагрузки плиты с каждой стороны.

Рисунок 1: Передача нагрузок от прямоугольной односторонней плиты на балки на двух сторонах плиты

Если плита поддерживается только с двух сторон или поддерживается со всех четырех сторон, но отношение более длинной стороны к более короткой стороне больше 2, она называется односторонней плитой, см. Рисунок-2.

Рисунок 2: Одностороннее перекрытие к балкам

Двусторонняя плита

Нагрузки на двухстороннюю плиту передаются на все балки со всех сторон. Таким образом, каждая балка выдерживает определенную нагрузку от плиты. Плиту обычно делят на трапециевидные и треугольные области, проводя линии из каждого угла прямоугольника под углом 45 градусов.

Рисунок-3: Передача нагрузок от прямоугольной двухсторонней плиты на четыре балки Рисунок 4: Для квадратной двухсторонней плиты нагрузка, передаваемая на четыре балки, равна

Распределенная нагрузка на балку вычисляется путем умножения площади сегмента (трапециевидной или треугольной площади) на удельную нагрузку плиты, деленную на длину балки.Для внутренней балки часть веса плиты с другой стороны оценивается аналогичным образом и добавляется к весу предыдущей, т. Е. К нагрузке на плиту с другой стороны балки. Итак, межкомнатные балки принимают нагрузки с двух сторон.

Рисунок 5: Передача нагрузок от двухсторонних плит на внутренние балки

Пример

Плита, показанная на рисунке ниже, имеет толщину 150 мм и, помимо собственного веса, поддерживает перегородку 0,85 кН / м. 2 и динамическую нагрузку 2.4 кН / м 2 . Распределите нагрузку плиты на балки со всех четырех сторон.

Рисунок 6: Переход двухсторонней плиты на балки

Решение:

Собственный вес плиты = толщина плиты * вес бетонной единицы

= 0,15 * 24 = 3,6 кН / м 2

Общая статическая нагрузка на плиту = 3,6 + 0,85 = 4,45 кН / м 2

Можно распределить служебную нагрузку (без учета нагрузки) на балку или предельную распределенную нагрузку на плиту; используйте факторную нагрузку как для статической, так и для временной нагрузки плиты в соответствии со спецификациями ACI 318-19.

В этом примере мы используем разные коэффициенты нагрузки, а затем используем комбинацию нагрузок для расчета предельной распределенной нагрузки на плиту. После этого на балки передается предельная распределенная нагрузка.

Предельная распределенная нагрузка (Wu) = 1,2 * статическая нагрузка + 1,6 * переменная нагрузка

Предельная распределенная нагрузка (Wu) = 1,2 * 4,45 + 1,4 * 2,4 = 8,7 кН / м 2

Нагрузка плиты на балку (4 м) = площадь треугольника * Wu

= 4 * 8.7 = 34,8 кН

Равномерно распределенная нагрузка плиты на балку (4 м) = 34,8 / 4 = 8,7 кН / м

Нагрузка плиты на балку (4 м) = площадь трапеции * Wu

= 8 * 8,7 = 69,6 кН

Равномерно распределенная нагрузка плиты на балку (6 м) = 69,6 / 6 = 11,6 кН / м

Плита сложной геометрии

Моделирование методом конечных элементов следует использовать для распределения нагрузки плиты сложной геометрии на балку. Для этого можно использовать компьютерные программы, такие как SAP200, SAFE и ETABS.Этот метод также можно рассмотреть для плит с регулярной геометрией.

Часто задаваемые вопросы

Как нагрузка передается с плиты на балки?

В односторонней плите нагрузки передаются только в одном направлении, тогда как нагрузки на двухстороннюю плиту передаются в двух направлениях.

Какие основные виды нагрузок на конструкции?

Типы нагрузок, действующих на конструкции зданий и других сооружений, можно в широком смысле классифицировать как вертикальные нагрузки, горизонтальные нагрузки и продольные нагрузки.Вертикальные нагрузки состоят из статической нагрузки, временной нагрузки и ударной нагрузки. Горизонтальные нагрузки складываются из ветровой нагрузки и землетрясения. Продольные нагрузки, т. Е. Тяговые и тормозные силы, учитываются в частных случаях проектирования мостов, портальных балок и т. Д.

Как рассчитывается временная нагрузка на плиту?

Временная нагрузка на плиту определяется в зависимости от функции конструкции. Например, для офисов используйте 2,4 кН / м2 (50 фунтов на квадратный фут) в соответствии с таблицей 4-1 стандарта ASCE (ASCE / SEI 10-7).

Как рассчитать статическую нагрузку на бетонные элементы?

Собственная нагрузка бетонного элемента рассчитывается путем умножения объема бетонного элемента на вес бетонной единицы.

Какая нагрузка на здание?

Возложенная нагрузка описывается как нагрузка, которая прилагается к конструкции, не является постоянной в течение срока службы конструкции и может изменяться.

Подробнее

Как напряжения передаются от R.C. Колонны к опорам?

Виды нагрузок на конструкции — здания и другие сооружения

Как выполнить расчет нагрузки на колонну, балку, стену и перекрытие | Расчеты конструкции колонны | Расчет балочной нагрузки | Расчет нагрузки на стену

Что такое столбец?

Элемент сжатия, то есть колонна, является важным элементом каждой железобетонной конструкции . Они используются для безопасной передачи нагрузки надстройки на фундамент.

В основном колонны, стойки и опоры используются в качестве элементов сжатия в зданиях, мостах, опорных системах резервуаров, заводов и многих других подобных конструкций.

Колонна определяется как вертикальный сжимающий элемент, который в основном подвергается действующей длине и осевым нагрузкам, превышающей в три раза ее наименьший поперечный размер.

Компрессионный элемент, эффективная длина которого меньше его наименьшего поперечного размера в три раза, называется опорой.

Сжимающий элемент, который является наклонным или горизонтальным и подвергается осевым нагрузкам, называется распоркой. В фермах используются подкосы.

Функция колонн заключается в передаче нагрузки конструкции вертикально вниз для передачи ее на фундамент. Помимо стены выполняет также следующие функции:

  • Он разделяет территорию здания на разные отсеки и обеспечивает конфиденциальность.
  • Обеспечивает защиту от взлома и насекомых.
  • Сохраняет тепло в здании зимой и летом.

Также прочтите: Что такое Pier Foundation | Типы пробуренных опор | Преимущества и недостатки фундаментов пробуренных опор

Что такое луч?

Балка — это конструктивный элемент, устойчивый к изгибу.Балка в основном несет вертикальные гравитационные силы, но также тянет на нее горизонтальные нагрузки.

Балка называется стеновой плитой или порогом , которая несет передающие и нагружает их на балки, колонны или стены. Он прикреплен с помощью.

В ранние века древесина была наиболее предпочтительным материалом для использования в качестве балки для этой структурной опоры, теперь она выдерживает силу вместе с вертикальной гравитационной силой, теперь они сделаны из алюминия, стали или других подобных материалов. .

Фактически балки — это конструкционные материалы, которые выдерживают поперечную силу нагрузки и изгибающий момент.

Для того, чтобы выдерживать большее напряжение и нагрузку, предварительно напряженные бетонные балки широко используются в настоящее время в фундаменте мостов и других подобных громоздких конструкций.

Несколько известных балок, используемых в настоящее время, поддерживаются балкой, фиксированной балкой, консольной балкой, неразрезной балкой, нависающей балкой.

Что такое стена?

Стена — структурный элемент, который разделяет пространство (комнату) на два пространства (комнаты), а также обеспечивает безопасность и укрытие.Как правило, стены подразделяются на два типа: внешняя стена и внутренняя стена.

Наружные стены служат ограждением для дома для укрытия, а внутренние стены помогают разделить ограждение на необходимое количество комнат. Внутренние стены также называются перегородками.

Стены делят жилую зону на разные части. Они обеспечивают конфиденциальность и защиту от температуры, дождя и кражи.

Также прочтите: Что такое гипс | Тип штукатурки | Дефекты штукатурки

Что такое плита?

Плита предназначена для обеспечения плоских поверхностей, обычно горизонтальных, крыш зданий, полов, мостов и других типов конструкций .Плита могла поддерживаться стенами , железобетонными балками, обычно , монолитно залитыми с плитой, балками из конструкционной стали, либо колоннами , либо из земли.

Плита — это пластинчатый элемент, имеющий глубину (D), очень маленькую по сравнению с его длиной и шириной. Плита используется в качестве перекрытия или крыши в зданиях, равномерно переносит распределительную нагрузку.

Плита может быть

  • Просто поддерживается.
  • Continuos.
  • Консоль.

Расчет различных нагрузок на колонну, балку, стену и перекрытие

  • Колонна = Собственная масса x Количество этажей
  • Балки = Собственная масса на погонный метр
  • Нагрузка на стену на погонный метр
  • Общая нагрузка на плиту (постоянная нагрузка + динамическая нагрузка + ветровая нагрузка + собственный вес)

Помимо указанной выше нагрузки, на колонны также действуют изгибающие моменты, которые необходимо учитывать при окончательном проектировании.Эти инструменты представляют собой упрощенный и трудоемкий метод ручных расчетов для проектирования конструкций, который в настоящее время настоятельно рекомендуется в полевых условиях.

Наиболее эффективным методом проектирования конструкций является использование передового программного обеспечения для проектирования конструкций, такого как STAAD Pro или ETABS. Для профессионального проектирования конструкций есть несколько основных допущений, которые мы используем при расчетах нагрузок на конструкции.

Также прочтите: Введение в портальную балку | Нагрузка на портальный желоб | Тип нагрузки на портальный желоб

Расчет нагрузки на колонну:

Мы знаем, что собственный вес бетона составляет около 2400 кг / м 3 , , что эквивалентно 24.54 кн / м 3 , а собственный вес стали составляет около 7850 кг / м 3 . (Примечание: 1 килоньютон равен 101,9716 килограмму)

Итак, если мы примем размер колонны 300 мм x 600 мм с 1% стали и 2,55 (, почему 2,55 так, высота колонны 3 м — размер балки ) метра Стандартная высота , собственный вес колонна около 1000 кг на этаж , что id равно 10 кН.

Как загрузить расчет в столбец?

  1. Размер колонны Высота 2.55 м, длина = 300 мм, ширина = 600 мм
  2. Объем бетона = 0,30 x 0,60 x 2,55 = 0,459 м³
  3. Вес бетона = 0,459 x 2400 = 1101,60 кг
  4. Вес стали (1%) в бетоне = 0,459 x 1% x 7850 = 36,03 кг
  5. Общий вес колонны = 1101,60 + 36,03 = 1137,63 кг = 11,12 кН

При проведении расчетов мы предполагаем, что собственный вес колонн составляет от от 10 до 12 кН на пол.

Расчет балочной нагрузки:

Мы применяем тот же метод расчета для балки.

мы предполагаем, что каждый метр балки имеет размеры 300 мм x 600 мм без учета толщины плиты.

Предположим, что каждый (1 м) метр балки имеет размер

Как выполнить

Расчет балочной нагрузки ?
  1. 300 мм x 600 мм без плиты.
  2. Объем бетона = 0.30 x 0,60 x 1 = 0,18 м³
  3. Вес бетона = 0,18 x 2400 = 432 кг
  4. Вес стали (2%) в бетоне = 0,18 x 2% x 7850 = 28,26 кг
  5. Общий вес колонны = 432 + 28,26 = 460,26 кг / м = 4,51 кН / м

Таким образом, собственный вес составит около 4,51 кН на погонный метр.

Также прочтите: Разница между битумом и гудроном | Что такое битум | Что такое смола

Расчет нагрузки на стену :

мы знаем, что плотность кирпича колеблется от 1800 до 2000 кг / м 3 .

Для кирпичной стены толщиной 9 дюймов (230 мм), высотой 2,55 метра и длиной 1 метр ,

Нагрузка на погонный метр должна быть равна 0,230 x 1 x 2,55 x 2000 = 1173 кг / метр,

, что эквивалентно 11,50 кН / м.

Этот метод можно использовать для расчета нагрузки кирпича на погонный метр для любого типа кирпича с использованием этого метода.

Для блоков из газобетона и блоков из автобетона (ACC), таких как Aerocon или Siporex, вес на кубический метр составляет от 550 до кг на кубический метр.

Нагрузка на погонный метр должна быть равна 0,230 x 1 x 2,55 x 650 = 381,23 кг

, если вы используете эти блоки для строительства, нагрузка на стену на погонный метр может составлять всего 3,74 кН / метр , использование этого блока может значительно снизить стоимость проекта.

Расчет нагрузки на перекрытие :

Допустим, плита имеет толщину 150 мм.

Таким образом, собственный вес каждого квадратного метра плиты будет

.

Расчет нагрузки на перекрытие = 0.150 x 1 x 2400 = 360 кг, что эквивалентно 3,53 кН.

Теперь, если мы считаем, что нагрузка на чистовую отделку пола составляет 1 кН на метр , наложенная временная нагрузка составляет 2 кН на метр, а ветровая нагрузка согласно Is 875 Около 2 кН на метр .

Итак, исходя из приведенных выше данных, мы можем оценить нагрузку на плиту примерно в от 8 до 9 кН на квадратный метр.

Как выполнить расчет нагрузки на перекрытие стены балки колонны

Часто задаваемые вопросы

Расчет нагрузки на колонну:

  • Объем бетона = 0.23 x 0,60 x 3 = 0,414 м³
  • Вес бетона = 0,414 x 2400 = 993,6 кг
  • Вес стали (1%) в бетоне = 0,414x 0,01 x 8000 = 33 кг
  • Общий вес колонны = 994 + 33 = 1026 кг = 10 кН

Расчет нагрузки на стену

  1. Плотность кирпичной стены с раствором составляет примерно 1600-2200 кг / м 3 . Таким образом, мы считаем, что собственный вес кирпича стены составляет 2200 кг / м 3 в этом расчете .
  2. Объем кирпичной стены: Объем кирпичной стены = l × b × h, длина = 1 метр, ширина = 0,152 мм, высота стены = 2,5 метра, объем = 1 м × 0,152 м × 2,5 м, объем кирпичной стены = 0,38 м 3
  3. Статическая нагрузка на кирпичную стену: Вес = объем × плотность, собственная нагрузка = 0,38 м 3 × 2200 кг / м 3 , собственная нагрузка = 836 кг / м
  4. Его преобразуем в килограмм Ньютон, разделив на 100, получим 8,36 кН / м.
  5. Таким образом, собственная нагрузка на кирпичную стену составляет около 8.36 кН / м, действующее на колонну.

Расчет балочной нагрузки

  • 300 мм x 600 мм без учета толщины плиты.
  • Объем бетона = 0,30 x 0,60 x 1 = 0,18 м³
  • Вес бетона = 0,18 x 2400 = 432 кг
  • Вес стали (2%) в бетоне = 0,18 x 2% x 7850 = 28,26 кг
  • Общий вес колонны = 432 + 28,26 = 460,26 кг / м = 4,51 кН / м

Нагрузка на колонну

Колонна является важным элементом конструкции RCC, который помогает передавать нагрузку надстройки на фундамент.Это вертикальный сжимающий элемент, подверженный прямой осевой нагрузке , и его эффективная длина в три раза больше, чем его наименьший поперечный размер.

Расчет статической нагрузки для здания

Собственная нагрузка = объем элемента x удельный вес материалов.

Посредством вычисления объема каждого элемента и умножения его на удельный вес материалов, из которых он составлен, можно определить точную статическую нагрузку для каждого компонента.

Расчет колонны

  • Объем бетона = 0,23 x 0,60 x 3 = 0,414 м³
  • Вес бетона = 0,414 x 2400 = 993,6 кг
  • Вес стали (1%) в бетоне = 0,414x 0,01 x 8000 = 33 кг
  • Общий вес колонны = 994 + 33 = 1026 кг = 10 кН

Расчет опорной нагрузки

Для стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр можно измерить нагрузку на погонный метр, эквивалентную 0.150 x 1 x 3 x 2000 = 900 кг, что эквивалентно 9 кН / метр . Следуя этой методике, можно измерить нагрузку на погонный метр для любого типа кирпича.

Расчет нагрузки на бетонную плиту

  • Размер плиты Длина 3 м x 2 м Толщина 0,150 м
  • Объем бетона = 3 x 2 x 0,15 = 0,9 м³
  • Вес бетона = 0,9 x 2400 = 2160 кг.

Расчет нагрузки на сталь

  • Размер плиты Длина 3 м x 2 м Толщина 0,150 м
  • Объем бетона = 3 x 2 x 0.15 = 0,9 м³
  • Вес бетона = 0,9 x 2400 = 2160 кг.
  • Вес стали (1%) в бетоне = 0,9 x 0,01 x 7850 = 70,38 кг.
  • Общий вес колонны = 2160 + 70,38 = 2230,38 кг / м = 21,87 кН / м.

Как рассчитать нагрузку на балку

  1. 300 мм x 600 мм без плиты.
  2. Объем бетона = 0,30 x 0,60 x 1 = 0,18 м³
  3. Вес бетона = 0,18 x 2400 = 432 кг
  4. Вес стали (2%) в бетоне = 0.18 x 2% x 7850 = 28,26 кг
  5. Общий вес колонны = 432 + 28,26 = 460,26 кг / м = 4,51 кН / м
Понравился этот пост? Поделитесь этим с вашими друзьями!

Рекомендуемое чтение —

плит в строительстве — что подойдет вашему зданию? | Поставка инженера

Мосты, крыши, фундаменты и проезды — все это прочный бетон для прочного основания и надежной конструкции. Узнайте, как сравнить 16 распространенных типов бетонных плит сегодня, прежде чем планировать строительный проект.Правильно оцените потребности бетонной плиты с помощью профессиональных измерительных приборов и строительных инструментов от Engineer Supply.

1. Плоская односторонняя плита

Один из наиболее распространенных типов плит в строительных проектах, односторонняя плоская плита использует от 4 до 6 дюймов бетона, чтобы выдерживать большие нагрузки. Название этой плиты относится к опорной конструкции. Он разработан для использования в приложениях, где одно направление поддерживается, а другое требует меньше поддержки.Этот тип перекрытия — доступное и простое решение для коммерческих или жилых проектов. Это более доступно, чем другие типы плит, особенно для наземных конструкций. Основным ограничением односторонних плоских перекрытий является то, что они не обладают такими же возможностями пролета, как другие типы перекрытий. Это делает их непригодными для многих мостов и потолков.

2. Двусторонняя плоская плита

В двухсторонней конструкции используются опорные балки на всех четырех углах для равномерного распределения веса по всей плите.Этот тип обычно используется в многоэтажных зданиях, где перекрытия должны выдерживать вес дополнительных этажей. Лучший способ определить, какой тип вам нужен, — это изучить масштаб конкретного проекта. Если одно направление длиннее другого в соотношении два к одному, то вам следует рассмотреть возможность использования односторонней плиты.

3. Кухонная плита

Этот конкретный тип плит используется в проектах жилищного строительства для кухонной платформы.Обычно его используют для размещения печи на огнеупорной поверхности. Небольшая конструкция этой плиты не подходит для структурных целей, но ее можно использовать для поддержки духовки или другого кухонного прибора.

4. Тент от солнца

Бетонная плита с наклоном, расположенная над дверью или окном, называется плиткой для защиты от солнца. Этот специализированный элемент конструкции используется для защиты двери или окна от прямых солнечных лучей и проливного дождя. Обычно его заливают отдельно и устанавливают снаружи здания после полного отверждения.Используйте козырек от солнца в качестве прочной альтернативы стальному или тканевому козырьку от солнца. Плиты солнцезащитных козырьков не должны быть особенно толстыми, поскольку они традиционно не являются конструктивными элементами. Вместо этого они должны быть достаточно толстыми, чтобы безопасно выдерживать собственный вес. Обязательно изучите материалы, используемые для надежной фиксации плиты над окном или дверью, чтобы предотвратить опасность падения.

5. Перемычка

Окна и двери — слабые места в стене. Поскольку эти элементы не обеспечивают такой же несущей способности, как кирпич, бетон или деревянный каркас, вашему зданию может потребоваться перемычка.Этот элемент конструкции размещается над окном или дверью и перенаправляет верхнюю нагрузку. Сборная перемычка — популярный вариант для типовых размеров и материалов. Эти перемычки изготавливаются на заводе, поэтому они обычно более доступны и удобны, чем перемычки на месте. Перемычки, отлитые на месте, отливают и заливают на строительной площадке. Вместо того, чтобы строить их на заводе, бетон смешивается, обрамляется и заливается либо непосредственно над окном или дверью, либо на строительной площадке. Это позволяет создать специальную бетонную смесь или дизайн для вашего строительного проекта.

6. Затонувшая плита

На жилых и коммерческих объектах может потребоваться утопленная плита в туалетных комнатах или вокруг других приспособлений. В таких строительных ситуациях требуется плита ниже уровня пола, в которой проходят водопроводные и канализационные линии. Утопленная плита обычно имеет наклон и находится ниже уровня земли, достаточного для установки поддона для душа или другого приспособления, так что верх приспособления находится на одном уровне или ближе к полу. Используйте строительный уровень , чтобы определить углубление, необходимое для размещения как плиты, так и приспособления.

7. Подвесная плита для тросов

Мосты — это наиболее распространенная область, где используются плиты для подвешивания кабелей. Растягивайте длинные пролеты без нарушения структурной целостности бетонной поверхности. Этот тип плиты также можно использовать в коммерческом строительстве для создания плавающего фундамента или приподнятого прохода между зданиями. Размер и частота подвесных тросов зависит от многих критических факторов. Вам нужно будет рассчитать вес плиты, длину ее подвешивания и ожидаемую нагрузку.Эти факторы помогут вам прийти к оптимальным размерам плиты и соображениям подвески, прежде чем вы спроектируете колонны для поддержки моста или другой конструкции.

8. Плита предварительного натяжения

Проложите натянутые стальные тросы в качестве армирующего каркаса бетонной плиты. Как и плита после растяжения, плита предварительного напряжения используется для предотвращения сжатия и повышения общей прочности. Это достигается за счет использования тросов из высокопрочной стали. Гидравлические домкраты создают напряжение в системе перед заливкой бетона в каркас.Если конструкция треснет, натяжение тросов предотвратит опасное разделение бетонных частей. Для получения более тонкого продукта используйте пластину предварительного натяжения. По сравнению с другими армированными плитами, плиты предварительного и последующего напряжения не требуют такой толщины бетона. Напряжение в плите также снижает потребность в стыках. В некоторых конструкциях плита полностью свободна от стыков.

9. Вафельная плита

Эта готовая плита, удивительно похожая на вафлю, создает культовый вид, который обычно используется в ресторанах, торговых центрах и других коммерческих помещениях.В большом вестибюле можно использовать эту квадратную систему для размещения встраиваемых светильников, изменения акустики и создания широкого пролета с минимальной опорой для колонн. Строительство и установка вафельной плиты требует больших затрат времени и средств. Хотя в результате получается потрясающая структура и запоминающийся интерьер, этот процесс может оказаться слишком дорогостоящим для многих коммерческих или жилых проектов.

10. Скатная плита крыши

Имитируйте вид черепичной или стальной крыши с односкатной кровлей.В этой наклонной конструкции обычно используются тонкие плитки, легкие и простые в установке. Этот кровельный материал обычно требует стального или деревянного каркаса, чтобы поддерживать его. Он не подходит для больших пролетов без опоры, но может стать отличным вложением, которое снижает необходимость в обслуживании конкретного здания. Используйте строительные инструменты для расчета идеального шага для вашего района, чтобы избежать его перегрузки снегом или другими ограничивающими факторами веса.

11. Плита после натяжения

Плита пост-натяжения обладает теми же характеристиками, что и плита предварительного натяжения.Вместо того, чтобы затягивать тросы и создавать напряжение перед заливкой бетона, этот процесс происходит после. Он дает такой же легкий и прочный результат. Будьте осторожны при выборе этого варианта, так как неопытная бетонная бригада может оставить в плите воздушные карманы. Эти карманы способствуют коррозии стального кабеля и увеличивают риск внезапного разрушения плиты.

12. Пустотная плита

Эти удобные плиты предварительно заливаются и доставляются на вашу рабочую площадку.Это сокращает трудозатраты и время, необходимые для вашего проекта. Просто используйте кран, чтобы поднять и установить пустотные плиты на опорные колонны. По сравнению с другими вариантами перекрытий, многопустотные плиты обеспечивают превосходное расстояние между пролетами. В них также есть сквозные отверстия, которые идеально подходят для прокладки проводки и сантехники, что еще больше сокращает время и стоимость строительного проекта. Убедитесь, что вы заказываете пустотные плиты у надежных подрядчиков. Ошибки отливки и неправильная транспортировка могут повредить эти плиты, что быстро превращается в дорогостоящую и трудоемкую ситуацию.

13. Hardy Slab

Бетонные блоки складываются вместе, образуя плиту с использованием техники, известной как твердая плита. После того, как эти блоки уложены друг на друга, вокруг них устанавливается опалубка, а между блоками помещается арматура. Затем блоки заливаются бетоном. Этот прием чаще всего используется в жарком климате. Они не только экономят на стоимости бетона, но и обладают большей тепло- и звукоизоляцией, чем другие типы плит. У него нет такого же предела нагрузки, как у других типов плит, и он может быть более дорогостоящим в ремонте, но это удобный и экономичный вариант для средних и длинных пролетов и умеренных нагрузок.

14. Купольная плита

Культовую мечеть, храм или купол дворца можно построить с помощью купольной плиты. Эта полукруглая бетонная конструкция использует стальную опорную конструкцию. Бетон средней толщины и аккуратно залит с использованием каркаса для получения гладкой или текстурированной формы купола.

15. Спроектированная плита

Крытый вход для высадки обычно включает выступающую плиту. Эта длинная плита прикреплена к зданию одним концом и свободно свисает с другого.Цель — защитить автомобили и пешеходов от прямых солнечных лучей и ненастной погоды. Плита имеет консольную конструкцию, чтобы сбалансировать вес и надежно удерживать ее с одного конца.

16. Комната Чайджа

Откройте потолочное пространство для дополнительного хранения с комнатой chajja. Эту плиту можно использовать как встроенную полку в доме. Она не предназначена для использования в качестве конструктивного элемента или несущего чердака, но может быть стильной встроенной полкой на кухне или в столовой.

Часто задаваемые вопросы

Сколько типов бетонных плит существует?

В строительных проектах используются 16 различных типов бетонных плит. Плоские плиты — одни из наиболее распространенных типов, используемых в коммерческих строительных проектах. Рассмотрим плоскую плиту для парковки или пол с опорами или без них. Другие варианты идеально подходят для специализированных проектов, например, кухонные плиты.

Как я могу сравнить варианты перекрытий?

Прежде чем выбрать правильный тип плиты, примите во внимание тип строительного проекта и конструктивные особенности.У каждого варианта плиты есть свои плюсы и минусы в зависимости от вашего процесса. Прежде чем выбрать лучшую плиту, изучите соображения по весу, доступный бюджет и опорные конструкции. Инструменты инженерных расчетов имеют решающее значение для оценки размеров и опорной конструкции.

Как сооружается плита?

Процесс начинается с опалубки и основания из гладкой земли или гравия. После установки каркаса бетон необходимо перемешать и залить на место. Финишная обработка бетона создает гладкую, однородную поверхность до того, как он затвердеет.В зависимости от толщины плиты и используемой смеси для полного отверждения может потребоваться до 60 дней.

Как точно измерить плиту?

Используйте строительный лазерный уровень и другие профессиональные инструменты, чтобы измерить плиту. Уделите время, чтобы тщательно отметить предполагаемое место расположения плиты, чтобы избежать проблем с размерами. Наклонная плита или плита неправильной формы может поставить под угрозу весь проект здания и потребовать дорогостоящих переделок.

Каковы опасности выбора неправильного типа плиты?

У каждого типа плиты есть свои особенности конструкции.Выбор неправильного типа плиты может привести к ее растрескиванию под действием собственного веса, здания, построенного на ней, или обычного транспортного потока. Эта ситуация дорогостоящая и может быть опасной для всех, кто находится в здании или движется по бетонной поверхности.

Магазин инструментов сегодня в Engineer Supply, чтобы подготовить почву для гладкой, ровной и квадратной бетонной плиты. Используйте строительные инструменты и калькуляторы, чтобы точно оценить объем проекта, прежде чем работать с подрядчиками для завершения вашего коммерческого или жилого проекта.


Строительные защитные жилеты

Статьи по теме строительства


Лучший уровень строительства

Этот транзитный уровень 26x имеет точность 3/16 дюйма на расстояниях до 150 футов, но имеет общий диапазон 400 футов. Оптика имеет горизонтальный круг с замком и касательной, а также вертикальную дугу с замком и касательной. Он также имеет размер резьбы 5/8 «x 11» и стадию 1: 100 со стеклянной сеткой.При покупке этого строительного уровня вы также получите:

  • Оптический центрир
  • Капюшон от дождя
  • Крышка объектива
  • Жесткий футляр для переноски
Если вы готовы приобрести этот уровень, не забудьте приобрести его в Engineer Supply.

Этот автоматический уровень позволит геодезистам и строителям получать точные измерения уровня, угла, высоты и расстояния. Оптика имеет 32-кратное увеличение, точность 1/32 дюйма и встроенный компенсатор, который стабилизирует линию визирования (даже при наличии мелких вибраций, которые могут быть вызваны тяжелым оборудованием на стройплощадке).Телескоп имеет диапазон фокусировки 7,9 дюйма и может использоваться в ограниченном пространстве. Он также имеет внутренний компенсатор с магнитным демпфированием, который позволит вам выровнять линию визирования в диапазоне 15 угловых минут с точностью до 0,3 угловых секунд. Вы даже можете получить его со следующими аксессуарами:

  • Диагональный окуляр.
  • Оптический микрометр.
  • Light pack (который может быть полезен в условиях низкой освещенности).
  • Окуляр
  • 40x (что повысит точность и увеличение).
Не забудьте забрать свой в Engineer Supply сегодня!

Доказано, что этот строительный уровень обеспечивает как точность, так и долговечность. Он также отличается повышенной надежностью во всех типах условий окружающей среды. Его прочный и компактный корпус имеет рейтинг IPx6. Таким образом, он будет устойчив к повреждениям, вызванным водой, влажностью и пылью. Он также имеет ряд полезных функций, которые могут включать, но не ограничиваться:

  • Точный и надежный автоматический компенсатор — Он имеет четыре высокопрочных подвесных троса и магнитную систему демпфирования, которая обеспечивает точность и стабильность (даже при изменении температуры, вибрации или ударах).
  • Улучшенный телескоп — Он может обеспечить исключительно яркое и резкое изображение, которое минимизирует нагрузку на глаза. Он также имеет ультракороткий фокус на расстоянии 7,9 дюйма (20 см) от конца телескопа, что упрощает использование в ограниченном пространстве.
  • Быстрая коллимация — Двумя ручками приводов бесконечного горизонтального движения можно управлять любой рукой, что обеспечивает более быстрое и легкое прицеливание.
  • Измерение горизонтального угла — Горизонтальные углы могут быть считаны в единицах градуса или одного градуса, а свободно вращающийся круг позволит вам выполнять считывание любого угла с нуля.
Линии стадиона на сетке нитей позволят вам измерить любое расстояние, и их легко отрегулировать с помощью одного винта. Круглые пузырьки уровня регулируются двумя винтами, но оба они быстро и легко с помощью прилагаемых инструментов.

Этот самовыравнивающийся ротационный лазерный уровень с двойным уклоном отлично подходит для наружных работ и включает в себя следующее:

  • Комплект аккумуляторной батареи.
  • LS-100D лазерный извещатель с держателем 6 стержневого зажима.
  • Пульт дистанционного управления RC-400.
  • Жесткий футляр для переноски.
Красный лазерный луч имеет рабочий диапазон 3600 футов в диаметре с лазерным детектором и имеет точность 3/64 дюйма на расстояниях до 100 футов.

Этот строительный лазерный уровень имеет рабочий диапазон до 800 метров и оснащен интеллектуальным дальнодействующим приемником. Лазер имеет скорость вращения 600 об / мин с диапазоном самонивелирования в пять градусов. Аккумулятор может работать до 100 часов, а корпус имеет рейтинг IP66 (что позволяет ему выдерживать пыль, внезапный душ или даже сильный дождь).При покупке этого лазерного уровня для строительства на него предоставляется 5-летняя гарантия производителя, а также следующие аксессуары:

  • Лазерный извещатель Topcon LS-80L.
  • Держатель датчика.
  • Кейс для переноски.
Не забудьте забрать свой в Engineer Supply сегодня! Пожалуйста, подождите…

Требования к конструкции перекрытий в зданиях

Базовый этаж во многих зданиях представляет собой просто монолитную бетонную плиту с ограниченными конструктивными соображениями, касающимися структурной поддержки или контроля окружающей среды.Однако фундаментный пол может представлять собой более сложную систему, состоящую из структурной фундаментной плиты, уложенной слоями гидроизоляции и изнашивающихся плит. Эта система разработана, чтобы выдерживать гидростатическое давление и поддерживать контролируемую среду.

Основная проблема с плитами — утечка, поскольку бетон — наиболее распространенный материал, а трещины — обычная проблема в бетонных элементах. Еще одна проблема при проектировании плит перекрытия — контроль выбросов почвенных газов, таких как радон. Дизайн и конструкция плит перекрытия — ключ к достижению ожидаемых характеристик, долговечности и длительного срока службы.Кроме того, ремонт фундаментной плиты может быть очень дорогим или практически невозможным после завершения.

При проектировании плит перекрытия лучше всего быть очень консервативным, особенно в местах, которые будут находиться под землей. Рекомендуется использовать высококачественные материалы с дополнительным усилением, чтобы снизить риски отказов.


Обеспечивает ли ограждающая конструкция вашего здания эффективную изоляцию и защиту от атмосферных воздействий?


Несущие конструкции

Плиты перекрытия ограждающих конструкций нижнего уровня должны выдерживать вертикальные гравитационные нагрузки и восходящие нагрузки грунта или гидростатического давления.Нисходящие нагрузки возникают из-за собственного веса плиты перекрытия и любых временных нагрузок, связанных с присутствием людей, например, пешеходного движения. В некоторых конструкциях плита перекрытия может также служить матовой фундаментной плитой, выдерживая значительные нагрузки от колонн и стен.

Плиты перекрытия также могут подвергаться восходящим нагрузкам грунта и гидростатическому давлению, в зависимости от их расположения и уровня грунтовых вод в данной местности. К плите перекрытия может быть приложено восходящее давление грунта, если она спроектирована как матовый фундамент, в то время как точечные нагрузки здания — это нисходящие силы.

Экологический контроль

Внешняя среда подвергает фундамент тепловому воздействию, воздействию влаги, насекомых и почвенного газа. В частности, тепловые эффекты и влажность воздуха также могут исходить от внутренних источников. Как и в случае с другими элементами ниже уровня, характеристики плиты перекрытия будут в значительной степени зависеть от ее способности выдерживать и регулировать эти воздействия окружающей среды. Предотвращение трещин очень важно как для структурных характеристик, так и для предотвращения утечек.

Меры контроля влажности часто включают системы дренажа и барьерного типа.В случаях с гидростатическим давлением грунтовых вод первым компонентом контроля влажности является система откачки и обезвоживания, которая механически опускает уровень грунтовых вод. Второй компонент системы контроля влажности включает слой гранулированного заполнителя под плитой перекрытия, который обеспечивает место для накопления и рассеивания влаги. Влага также может быть откачана или отведена в систему отстойника или сливной дренаж. В районах с низким уровнем грунтовых вод или засушливыми условиями слоя зернистого заполнителя и выходного дренажа обычно достаточно для контроля влажности.

После того, как система контроля влажности определена, следующим шагом будет установка водонепроницаемой мембраны или замедлителя парообразования под плитой перекрытия.

  • Замедлитель образования пара служит барьером против миграции пара в отсутствие гидростатического давления
  • Гидроизоляционные мембраны будут обеспечивать устойчивость как к миграции пара, так и к гидростатическому давлению.

Большинство строительных норм и правил требуют наличия пароизолятора в качестве минимальной защиты от влаги даже в районах с низким уровнем грунтовых вод.Замедлители образования пара также сводят к минимуму усадочные напряжения и образование трещин в плите пола. Гидроизоляционные мембраны необходимы в ситуациях с гидростатическим давлением и во внутренних помещениях, чувствительных к влаге. Эти мембраны обычно наносят на глиняную плиту, заливают гранулированный заполнитель или уплотненный слой земли.

Почвенный газ — еще одно условие окружающей среды. Миграцию почвенных газов, таких как радон, можно контролировать с помощью замедлителя пара из полиэтилена или гидроизоляционной мембраны. Защита мембраны во время строительства имеет решающее значение, наряду с вниманием к деталям на всех концах, краях и проходах.Это обеспечивает надлежащий контроль над влажностью или почвенными газами.

Отделка перекрытия пола и распределительные системы MEP

Когда речь идет о напольных системах, важна только внутренняя отделка. Требования к этой отделке зависят от использования внутреннего пространства, и некоторые распространенные виды отделки — это ковролин, плитка и приклеенный пол. При использовании плитки или любого типа напольного покрытия контроль паров имеет решающее значение для обеспечения надлежащей адгезии. На стоянках или в складских помещениях внутренней отделкой может быть просто открытая поверхность бетонной плиты.

Плита перекрытия может содержать компоненты оборудования MEP, такие как механические трубопроводы, водопроводные линии и электрические питатели. Когда эти элементы присутствуют, они должны быть спроектированы таким образом, чтобы выдерживать ожидаемые нагрузки, действующие на плиту перекрытия. Системы распределения MEP также должны быть спроектированы таким образом, чтобы их было легко обслуживать или модифицировать.

Первичные нагрузки

Первичные нагрузки

Первичные нагрузки


Нагрузка на строительную конструкцию может принимать самые разные формы.Во многих случаях точная загрузка не может точно соответствовать определенной категории. Тем не менее, нагрузки обычно можно рассматривать как первичные или вторичные. Первичная загрузка обычно включает материалы, из которых строится конструкция. был построен, обитатели, их мебель, прямое влияние различных типичные погодные условия, а также уникальные испытанные условия нагрузки во время строительства, экстремальных погодных условий и природных катастроф. Вторичный нагрузки — это нагрузки из-за изменений температуры, эксцентриситета конструкции, усадка конструкционных материалов, оседание фундамента и т. д. нагрузки.Основное внимание в этом курсе будет уделяться основным нагрузкам. Несмотря тот факт, что следует учитывать каждую нагрузку и комбинацию нагрузок чтобы уменьшить вероятность разрушения конструкции, определение строительные нагрузки остаются статистическим упражнением. Каждая нагрузка не может быть предвиденным; таким образом, очень важно определить наихудший сценарий, в котором разумно предположить, что нужно воздействовать на конструкцию.

Первичные нагрузки делятся на две широкие категории в соответствии с способ их воздействия на конструкцию или структурный элемент.Эти МЕРТВАЯ НАГРУЗКА и ЖИВАЯ НАГРУЗКА.

МЕРТВЫЕ НАГРУЗКИ
Непрерывные нагрузки — это нагрузки, которые считаются действующими постоянно; Oни «мертвы», неподвижны и не могут быть удалены. Собственный вес элементов конструкции обычно обеспечивает наибольшую часть мертвых нагрузка на здание. Это явно будет зависеть от фактических выбранных материалов. Постоянные неструктурные элементы, такие как кровля, пол, трубы, воздуховоды, внутренние перегородки, оборудование систем экологического контроля, лифт машины и все другие строительные системы в здании также должны быть включены в расчет общей статической нагрузки.Офисное оборудование или мебель, которая может считаться постоянной в глазах пользователя не являются частью мертвых расчетов. Мертвые нагрузки представлены красная стрелка на иллюстрации.

Величину собственных нагрузок здания обычно можно определить. с погрешностью всего 5%. Свойства строительных материалов часто сведены в таблицы и опубликованы авторами учебников и производителями. Всегда очень важно быть в курсе изменений в строительные материалы.Свойства строительных материалов различаются из-за быстро меняющийся рынок. Самозагрузка или собственный вес из-за этих материалы часто выражаются в единицах веса в кН / м 3 или фунты / футов 3. Обратите внимание, что эти единицы даны в единицах силы, не масса.

Обычно необходимо перевести единицу веса в нагрузку на единицу. площадь (psf) или нагрузка на единицу длины (plf) для завершения структурного анализ конструктивного элемента. Это довольно просто определяется, взяв объем (площадь поперечного сечения, умноженная на длину) элемента умножить на единицу веса материала и распределить его по длина элемента.Так как это нормально выражать собственный вес в с точки зрения нагрузки на единицу длины, обычно берется только поперечное сечение площадь и умножает ее на единицу веса. Общий собственный вес член затем будет определяться путем умножения этого значения на длину. Собственная нагрузка на пол или крышу обычно выражается в единицах нагрузки. на единицу площади (т.е. фунтов на квадратный фут или килограмм ньютонов на квадратный метр).

Общая статическая нагрузка на здание определяется сложением всех различных статических нагрузок на элементы здания.Это важно держите блоки в стороне, когда постоянные нагрузки на балку (PLF) сочетаются с полом или собственные нагрузки на крышу (psf).

ЖИВЫЕ НАГРУЗКИ
Структуры обычно имеют функцию. Функция является частью программы для которых завершена конструкция. Однако точные функции, которые придется выдерживать в течение всего срока службы конструкции не полностью предсказуемо. Таким образом, были установлены строительные нормы и правила, в которых «предсказать» разумную нагрузку, для которой следует проектировать определенный тип пространства. Живые нагрузки — это переходные нагрузки. и может меняться по величине. Они включают в себя все предметы, найденные в здании. в течение жизни (люди, диваны, пианино, сейфы, книги, машины, компьютеры, машины или хранящиеся материалы), а также внешние воздействия окружающей среды например, нагрузки из-за солнца, земли или погоды. Ветровые и землетрясения нагрузки помещены в особую категорию поперечных временных нагрузок в связи с серьезность их воздействия на здание и их способность вызвать разрушение.

Есть надежда, что срок службы большинства зданий будет выходить за рамки первоначально предполагаемое использование здания. Практически невозможно спрогнозировать все возможные варианты использования любой данной конструкции перед сносом. Если и когда здание будет использоваться по назначению кроме оригинального дизайна, вместимость здания для его нового использование должно быть определено. Поскольку совокупность знаний о поведении зданий всегда увеличивается, здание, которое могло быть спроектировано согласно последней информации о загрузке в течение одного года, может не удовлетворить требования несколько лет спустя.Это особенно характерно для последствия землетрясения.

Величины временных нагрузок трудно определить с помощью одного и того же степень точности, которая возможна при статических нагрузках. Вероятный максимум значение временных нагрузок было определено исследованиями и включено в национальные строительные нормы и правила. Обычно это минимальная расчетная нагрузка на единицу площади. Строительство коды также предусматривают снижение нагрузки при определенных условиях. В качестве примера, полные временные нагрузки, скорее всего, возникнут не на каждом этаже многоэтажного здание в то же время.Следовательно, расчетная временная нагрузка для некоторых из колонны и фундамент можно уменьшить. Строительные нормы и правила по всему миру не согласны с величиной соответствующих расчетных значений временной нагрузки. Очень важно, чтобы разработчик нашел время, чтобы определить установленные значения. вниз в местных строительных нормах и правилах. Это юридические документы и ДОЛЖНЫ быть последовал.

Комбинации нагрузок При рассмотрении возможных комбинаций эти две категории нагрузки, вероятность возникновения определенных нагрузок одновременно считаются равными нулю.Одной из таких комбинаций может быть максимальная нагрузка толпой, мокрый и тяжелый снег, тайфун силой девять баллов, бушующий адский огонь и землетрясение. Вполне возможно, что два из первых трех могли произойти как землетрясения, но не все четыре одновременно. Таким образом, нужно только рассмотреть разумные комбинации нагрузок.


Стол 17-1. Общие веса массивных строительных материалов
Материал Ед. Вес
Алюминий 24 кН / м 3
Кирпич (широкий вариант) 22 кН / м 3
Бетон 24 кН / м 3
Легкий бетонный блок 12 (сред.) кН / м 3
Сталь 70 кН / м 3
Древесина 6 кН / м 3

Таблица 17-2. Обычная удельная масса листовых строительных материалов
Материал Unit Wt
Акустическая потолочная плитка 0,1 кН / м 2
Алюминиевое кровельное покрытие 0.04 кН / м 2
Стекло 0,1 кН / м 2
гипсокартон 0,15 (средн.) КН / м 2
Стальная кровельная пленка 0,15 кН / м 2
Деревянные половые доски 0,15 кН / м 2

Таблица 17-3.Общие нагрузки на перекрытие
Площадь Штучная нагрузка
Художественная галерея 4,0 кН / м 2
Стержни 5,0 кН / м 2
Парковочные конструкции 2,5 кН / м 2
Аудитории 3,0 кН / м 2
Танцевальные залы 5.0 кН / м 2
Офисы 5,0 кН / м 2
Частный дом 1,5 кН / м 2
Театры (фиксированные сиденья) 4.0 кН / м 2
На основе BS 6399: Часть 1: 1984
Авторские права © 1995, 1996 г. Крис Х. Любкеман и Дональд Петинг

Почему балки и колонны важны для строительства зданий? — Ram Jack OKC

Пытаясь воплотить структурные проекты в реальность, инженеры-строители должны учитывать несколько аспектов.Стабильность была бы одним из наиболее важных факторов. При обеспечении безопасности и долговечности конструкций важна стабильность.

Двумя основными конструктивными элементами являются балки и колонны, которые играют важную роль в поддержании веса здания и обеспечении стабильного пути нагрузки от плиты до фундамента конструкции.

Горизонтальные конструктивные элементы, которые несут нагрузки, перпендикулярные их продольному направлению, обычно представляют собой балки. В гимнастике подумайте о бревне.Это прямоугольный объект длиной 15 футов, поддерживаемый с обоих концов.

Балки

Балки выдерживают вес полов, потолков и крыш здания и перемещают нагрузку на каркас вертикального несущего элемента. Чтобы выдержать совокупный вес уложенных друг на друга стен и передать опорную нагрузку, часто используются более крупные и тяжелые балки, называемые передаточными балками.

Балочная архитектура или определение размеров требует понимания концепций фундаментальной физики и статики техники.Инженер-строитель имеет квалификацию и полностью готов проверить нагрузки, действующие на балку, измерить силы и напряжения на ней и соответственно выбрать материал, размер и форму. Конструктивное проектирование балок в новых зданиях и реконструкция или усиление существующих балок в конструкции — это часть инженерных консультаций, которые мы предлагаем нашим клиентам.

Колонны

Колонны используются для усиления конструкций, как и балки. Колонны — это, в основном, вертикальные конструкции, передающие сжимающие нагрузки.

Пол и колонны на этажах выше поддерживаются колоннами; колонны нижнего этажа должны быть достаточно большими, чтобы выдерживать совокупный вес каждого этажа над ним. Они могут перемещать грузы на фундамент и грунт ниже с плиты и балок.

Колонны следует размещать равномерно на всех этажах для наиболее эффективной поддержки, если это возможно. Это повысит стабильность самого нижнего набора столбцов.

Перед выбором подходящей конструкции инженеры-строители должны измерить вес, поддерживаемый колонной.Как и в случае с балками, конструкция колонны будет зависеть от значений вертикальных сил, выдавливающих нагрузку. При выборе размера и размеров колонны необходимо учитывать влияние боковых сил из-за землетрясений и ветра. В современном строительстве колонн используются два основных материала:

  1. Сталь

  2. Бетон

Стальные колонны, такие как C-образное, двутавровое и полое сечения, можно разделить на три вида.