Электрическая схема подключения: Схемы подключения электроэлементов

Содержание

Схемы подключения выключателей освещения | ehto.ru

Вступление

Выключатели освещения — коммутационные электротехнические устройства, предназначенные для управления освещением. В этой статье смотрим и разбираем схемы подключения выключателей освещения жилых помещений, квартир и частных домов.

Простые схемы подключения выключателей освещения

Данные схемы обеспечивают включение/выключение, бытовых осветительных приборов с рабочим напряжением  230÷250 В и токами до 10 Ампер.

Замечу, что данные параметры работы выключателя должны быть указаны на его корпусе в нормативной маркировке, о которой я писал в прошлой статье: Типы выключателей освещения бытового назначения.

Говоря несколько проще, эти простые схемы, работают в любой квартире и доме, для управления освещением комнат. Академическое название этих схем — схемы управления освещением из одного места.

Два важных момента:

  • На выключателе нужно прерывать фазную цепь электропитания;
  • Собирать схемы нужно только при отключенном электропитании (техника безопасности).

Схема управления освещением одноламповой люстры, светильника, бра

Данную схему можно назвать простейшей. Чтобы включать/ выключать светильник достаточно установить выключатель на фазный провод электропитания светильника.

Выключатель одноклавишный

Выключатель с подсветкой

Всем знакомы удобные выключатели с подсветкой. У некоторых производителей подсветка выключателей устанавливается отдельно (проводок с диодом). Подключается подсветка следующим образом.

Однако, на практике, такую принципиальную схему установки одноклавишного выключателя получиться реализовать не везде. Например, для управления работой бра с выключателем на кабеле питания.

Чаще выключатель удален от светильника и подключения выключателя в схему освещения делается через распределительную коробку.

Монтаж проводки освещения

Фактически, монтаж проводки освещения, скажем люстры, делается так:

Три кабеля электропроводки, от светильника, от выключателя и от светильника заводятся в распределительную коробку. В ней производится соединение проводов данной цепи по выбранной схеме управления освещением. По этой же схеме, выбирается количество жил кабелей идущих к выключателю и светильнику. Вполне оправданно называть следующую схему монтажной.

Для реализации такой схемы используются двухжильные кабели, в быту, сечением 1,5 мм2 по меди.

Схема управления освещением люстры, светильника, бра на две лампы

Данная схема позволит управлять освещением светильника на две лампы. Для реализации такой схемы используются двухжильный кабель электропитания (для бытовой проводки освещения кабель питания везде будет двухжильный) и трехжильные кабели от выключателя и к светильнику.

Схема 1+1 (выключатель двухклавишный)

На данной схеме двухклавишный выключатель позволяет управлять двухламповым светильником, включая каждую лампу отдельно или обе лампы вместе.

Схема выключателя две клавиши с подсветкой

Примечание: Обращу внимание, что использование слова лампа весьма условное. Схема не измениться, если слово лампа заменить на группу светильников, соединенных параллельно. Например, в квартире это может быть группа точечных светильников в потолке.

Схема управления трехрожковой люстры

Выключатель двухклавишный (2+1)

Данная схема работает на включение/выключение трехрожковой люстры с возможностью включения 1 или 2 или 3 ламп.

Выключатель трехклавишный (1+1+1)

Трехклавишный позволяет управлять не только трехрожковой люстрой, но и тремя группами светильников. При этом обеспечивается возможность включения каждой группы светильников по отдельности и в любой комбинации.

Примечание: Обращу внимание, что группа светильников отличается от группы освещения.

Схема подключения выключателя к люминесцентному светильнику

В статье Схемы подключения люминесцентных ламп я показывал схемы подключения люминесцентных светильников. Повторяться не буду. Здесь только замечу, что данные условные схемы подключения выключателей освещения, относятся к любым типам светильников. Меняются только типы выключателей.

Схема управления освещением светодиодной подсветки

В схемах управления освещением светодиодной подсветки, участвуют блоки питания светодиодных лент. В остальном, принципиальные схемы управления освещением такие же, как для ламп накаливания. Например, такая схема:

Об управлении освещением с двух точек

Представьте длинный коридор, например, в офисном здании или лучше представьте частный двухэтажный дом. Вы заходите на 1-й этаж дома и включаете свет. Свет помогает ориентироваться на этаже и части лестницы. Поднимаетесь на 2-й этаж и теперь вам нужно включить свет на этом этаже и одновременно выключить свет на первом этаже.

Это и есть пример управления освещением с двух мест. При этом схема должна работать и в обратном направлении. То есть, находясь на втором этаже, вы включаете свет первого этажа, а уходя из дома, выключаете свет второго этажа, находясь на первом и наоборот.

В ситуации с коридором, эта схема обеспечит следующий вариант управления освещением. Зашли в коридор — включил свет, прошли длинный коридор — выключили свет. Работает схема в двух направлениях.

Стоит отметить, что для сборки такой схемы вам, формально, понадобятся не простые выключатели, а выключатели проходные. Почему формально? Потому что из любого двухклавишного выключателя можно сделать переключатель.

Примечание: не путайте проходной выключатель с переключателем, он же выключатель перекидной. О последнем ниже.

то же с подсветкой

Схема управления освещением с трех мест

Идя дальше, можно реализовать схему управления освещением с трех мест. В этом варианте нам понадобится не проходной выключатель (одна клавиша), а выключатель перекидной (переключатель), который с большой натяжкой назвать выключатель проходной двухклавишный.

На схеме 2 и 3 выключатель перекидной расположен посередине. Это условность и фактически схему можно собрать, при любом расположении выключателей (схема 1). Схема собирается в распределительной коробке.

схема 1схема 2схема 3

Для реализации такой схемы, в «приличном обществе» нужны четырех жильные кабели. Также обратите внимание, сто в схеме 2 используется двухклавишный проходной выключатель, а в схеме 3 проходной переключатель. Об этом подробно в следующей статье.

Монтажные схемы освещения

Выше я говорил о разнице монтажных и принципиальных схем освещения. Также говорил, что вся сборка схемы освещения производится в распределительной коробке. Вот несколько таких сборок.

Другие схемы оптом

Выключатель одна клавиша три светильника. Выключатель три клавиши три светильника Выкл. три клавиши 380 В Выкл. 1 клавиша 380 В

Вывод

Схемы подключения выключателей освещения НЕ ограничиваются приведенными выше. Это скорее база, на которой можно придумать более сложные схемы управления электропитанием не только освещения, но и розеток, вентиляторов и т.п.

©Ehto.ru

Еще статьи по освещению

Схема подключения проходного выключателя (переключателя) — RozetkaOnline.

COM

Проходной выключатель или переключатель света является несложным механическим устройством, основная функция которого – управление освещением, принцип действия: при взаимодействии с другим/другими переключателями, замыкание и размыкание электрической цепи на пути к светильнику. Переключатель разрывая одну электрическую цепь, замыкает другую, тем самым работая вместе с другим/другими переключателями, позволяет управлять освещением из разных мест. С каждым днем, схемы электропроводки освещения с использованием проходных выключателей получают все большее распространение. Самая простая схема переключения – это управление из двух мест, т.е. с использованием двух проходных выключателей, схема с принципом работы переключателя на два направления представлена ниже.

Так же, вашему вниманию, схема электропроводки с вариантом коммутации проводов в распределительной коробке. По схеме видно, что для правильной разводки, необходимо из распределительной коробки, прокинуть по трехжильному кабелю до каждого механизма, а так же в нее должны заходить питающий провод с фазой, землей и рабочим нулем и провод идущий непосредственно к светильнику.

В общей сложности в распределительной коробке коммутируются четыре трехжильных кабеля.

 

 

Для возможности управления освещением больше чем из двух мест, в схему добавляется перекрестный переключатель. Принципиальная схема работы системы с тремя органами управления светом, представлена ниже.

 

 

При этом схема электропроводки коммутации проводов в распределительной коробке дополняется. В распределительную коробку добавляется четырехжильный провод, который прокинут к перекрестному выключателю.

 

Добавляя к схеме перекрестные переключатели, можно увеличивать количество мест управления освещением, до любого количества. Подробная пошаговая фото инструкция подключения системы переключателей с управлением из трех мест — здесь.

Схема подключения проходного выключателя с 2х или 3х мест

Представим ситуацию: ночь, перед вами длинная лестница на второй этаж где темно, как в лесу. Вы нажали на выключатель света и стало светло, но когда поднялись по лестнице поняли, что свет может быть погашен только с помощью переключателя вверху…

Чтобы иметь возможность включать и выключать свет из двух разных мест, просто купите дополнительный проходной переключатель для лестницы. Это не единственное решение, но, безусловно, самое популярное. Есть ещё импульсные переключатели, о которых сказано в другой записи. Но в рамках этой статьи будем разбирать следующие вопросы:

  • Работа лестничных выключателей
  • Способ подключения проходных переключателей
  • Практический пример и реализация схемы включения
  • Возможность создать схему управления лампой из 3х и более мест.

Итак, благодаря лестничным переключателям можно зажечь одну и ту же лампу из двух разных мест. Не обязательно на лестнице. Это может быть любая большая комната, где разумно управлять лампой из двух мест. Вообще такие переключатели могут использоваться для включения / выключения любого устройства из двух мест, не обязательно лишь лампы.

Как работают лестничные переключатели

Упрощенная схема выглядит так (присмотритесь к анимации).

  1. Обеспечиваем электрический потенциал через фазовый провод ( L ).
  2. Выключатели соединены двумя коричневыми и серыми проводами (на схеме).
  3. Лампочка загорается когда электрический ток от L- провода достигает лампы.
  4. Схема может быть разорвана независимо, как с помощью лестничного переключателя S1, так и с помощью S2.
  5. С помощью лестничного выключателя не полностью разрывают цепь, а выбирают какой электрический потенциал передается второму выключателю.

Таким образом, проходной переключатель имеет еще один контакт по сравнению с одиночным переключателем. В обычном 2, а тут 3 терминала для присоединения проводов.

Следующая схема имеет больше общего с реальностью. Итак, посмотрим что здесь происходит:

  1. Шнур питания подключается к переключателю S1.
  2. Соединяем нейтральные ( N ) и защитные ( PE ) провода вне автоматических выключателей с помощью электрических разъемов.
    Защитный соединитель проводника соединен с корпусом лампы (или PE терминалом), нейтральный провод к клемме N.
  3. Силовой фазовый проводник ( L ) подключен к клемме № 1 переключателя S1. После этой операции и подачи напряжения электропотенциал будет подаваться либо на клемму № 2, либо на клемму № 3 переключателя S1.
  4. Следовательно, электрический ток 220 В на клеммах 2 или 3 достигнет переключателя S2.
  5. Если переключатели S1 и S2 находятся в одинаковых положениях, электрический потенциал появится на клемме № 1 переключателя S2 и свет загорится.

Чтобы загорелась лампочка, крайне важно чтоб цепь не прерывалась начиная с фазного провода подачи 220 В (L) и заканчивая лампой.

Принципиальная схема проходного выключателя

Далее вы сможете увидеть метод подключения переключателей лестниц. Посмотрим на следующую принципиальную схему:

На ней изменились три вещи:

  1. К коммутационной коробке S1 к переключателю S2 подключены два кабеля, которые используются для питания других переключателей освещения.
  2. Соединены все нейтральные и все защитные провода с двумя отдельными разъемами. Поскольку в терминале № 1 переключателя лестничной клетки S1 имеется только два контакта, необходимо использовать дополнительный электрический разъем, к которому они будут подключены: Фазовый провод питания L, фазовые провода приводящие к другим выключателям и источник питания S1.
  3. Между коробкой переключения S2 и лампой находится четвертый кабель (черный). Это может быть полезно в будущем, но в данной конфигурации он не используется и не связан ни с чем.

Пошаговая установка

Проходной выключатель S1

Ещё раз напомним — всегда начинаем любую установку с отключением напряжения в сети 220V. Перед началом работы с помощью тестера напряжения убедитесь, что на силовых кабелях нет электрического потенциала, предпочтительно на всех выводах выходящих из короба.


Вид проводов, что выходят из коробки. Нам нужен шнур питания и кабель, который направляется для переключения S2.

Сразу подключим все провода, чтобы не пришлось снова откручивать переключатель позже.

Подключим все нейтральные провода к одному разъему, а все защитные провода к другому разъему. Во время этой операции используйте плоскогубцы.

Когда все нейтральные и защитные провода подключены, засовываем их в электрическую коробку. Осталось 5 фазных проводов:

  • Источник питания — 1 шт.
  • Для питания других выключателей — 2 шт.
  • Для лестничного выключателя S2 — 2 шт.

Кабель питания и два шнура для других автоматических выключателей соединены вместе в электрическом разъеме. Также подключаем к этому разъему короткий кабель длиной в несколько сантиметров, который будет подключен к клемме 1 переключателя S1.

Шнур короткого замыкания соединен с одной стороны, а провода, ведущие к переключателю S2 на второй (верхней) стороне переключателя. После подачи напряжения электрический потенциал в линии будет передаваться либо коричневому, либо черному проводу в зависимости от положения переключателя.

Последний этап — сборка и выравнивание автоматического выключателя. Поставим назад рамку и клавишу. Вот ещё один рисунок того, как всё должно соединяться в коробе:

Про установку более подробно говорили в статье об одиночных переключателях.

Проходной выключатель S2

Переходим ко второму месту (выключателю). У нас есть два кабеля, каждый из которых имеет 4 провода:

  • кабельный вывод от переключателя S1 (внизу)
  • кабель, который ведет к лампе (вверху)

Из-за отсутствия синего проводника, серый провод обернут синей изолентой, чтобы показать что это нейтральный проводник.

Подобно переключателю S1 соединяем защитные проводники с одним разъемом и нейтральными проводниками с помощью второго разъема.

Осталось 4 фазных провода из которых черный, ведущий к лампе, в соответствии со схемой не будет использоваться.

Фиксируем провода. С верхней стороны подключите провода от переключателя S1, а нижний фазовый провод направляется на лампу.

В зависимости от положения переключателя S1, электрический потенциал будет либо на коричневом проводе (сверху), либо на черном проводе. То есть в зависимости от положения переключателя S2 направляющий провод к лампе (нижний коричневый) будет подключен к одному из верхних проводов.

Теперь обратная сборка, снова надеть рамку и клавишу.

Проходной выключатель на 3 места

Возможно ли подключить большее количество переключателей для управления освещением одной лампы? При использовании только обычных ступенчатых переключателей невозможно реализовать управление лампой больше, чем из двух мест. Для ещё большего количества мест необходимо купить перекрестные переключатели, которые размещаются между лестничными, как показано на схеме.

Подведём итог проделанных работ

Таким образом лестничный переключатель представляет собой недорогой и простой способ управления освещением из двух разных мест. Однако для этого требуется предварительное планирование и прокладку дополнительных кабелей между ними ещё на стадии ремонта / строительства проводки. На более позднем этапе эта операция может быть затруднительной — придётся вести провод по стене или долбить канал в ней.


Устройство Топас, схема, принцип работы, подключение септика

Это продолжение полного обзора, посвящённый конструкции Топас и принципу работы. При выборе системы канализации многие покупатели либо не читают подобный материал, либо читают его между строк. А очень зря. Знание устройства очень помогает, при возникновении проблем, разговаривать с сервисной службой на одном языке. Также вы можете самостоятельно разобраться в причине неисправности и восстановить работу очистного сооружения.

Схема Топас

Рассмотрим устройство Топас, рассчитанного на 5 проживающих.

Схема септика Топас
Обозначения
  • А. Приёмная камера
  • Б. Аэротенк
  • В. Вторичный отстойник
  • Г. Стабилизатор ила
  • Д. Компрессорный отсек

  1. Ввод стоков
  2. Фильтр грубой очистки
  3. Главный насос
  4. Насос откачки ила
  5. Насос аэротенка
  6. Компрессоры
  7. Устройство сбора не перерабатываемых волокнистых веществ (волосоуловитель)
  8. Выход очищенной воды
  9. Поплавковый датчик
  10. Распаечная коробка для подключения подводящего электрокабеля
  11. Кнопка включения и выключения станции
  12. Блок управления
  13. Фильтр плавающих веществ (фильтр тонкой очистки)
  14. Успокоитель вторичного отстойника
  15. Циркуляционный насос
  16. Аэраторы

Принцип работы Топас

Хозяйственно-бытовые стоки из дома по трубе (1) попадают в приёмный отсек (А) септика Топас. Под интенсивным воздействием воздуха (аэрацией), стоки проходят фазу измельчения и предварительной очистки. Аэрация в приёмном отсеке осуществляется с помощью аэратора (16), расположенного на дне станции и воздушного компрессора (6).

Подготовленные стоки проходят через фильтр крупных фракций (2). Суть которого – задержать крупные не переработанные частицы внутри приемной камеры до полного растворения. Затем с помощью главного насоса (3) перекачиваются в отсек-аэротенк (Б). В процессе перекачивания, стоки проходят через волосоуловитель (7), на котором собираются не перерабатываемые волокнистые вещества.

В аэротенке сточные воды проходят доочистку с помощью активного ила – колониями бактерий и микроорганизмов «живущими» в септике, которые в процессе жизнедеятельности перерабатывают загрязнённые стоки. Как и в приёмной камере, на дне аэротенка тоже находится аэратор, который насыщая стоки кислородом, поддерживает работоспособность активного ила.

Пройдя переработку в аэротенке, очищенные стоки вместе с активным илом поступают в следующий отсек – вторичный отстойник. Назначение этого отсека – отделить очищенную воду от активного ила. Под действием силы тяжести ил в этой камере опускается на дно, а очищенная вода через фильтр тонкой очистки (13) самотёком отводится в дренаж. Либо, откачивается принудительно с помощью дренажного насоса (в модификациях ПР).

Активный ил оседает на дно, а затем перекачивается насосом аэротенка в камеру — стабилизатор (Г). Откуда он откачивается, когда проводится техническое обслуживание.

Очищенные стоки представляют собой прозрачную воду (или немного мутную, если септик находится в стадии запуска), очищенную на 95-98%. Вода после переработки является технической и поливать ей, например, клубнику или огурцы не стоит, ведь бактериологической очистки в стандартной комплектации не предусмотрено. Вы можете спокойно поливать ей деревья и кустарники на участке.

В работе Топас предусмотрено 2 фазы (цикла) работы, которые переключаются с помощью поплавочного переключателя (9) внутри приёмного отсека. Прямой цикл (фаза очистки) и обратный цикл (фаза регенерации). Фаза очистки работает, когда поступают канализационные стоки. Фаза регенерации нужна для поддержания жизнедеятельности активного ила во время отсутствия стоков.

Принцип работы топас в развёрнутом виде хорошо представлен на видео ниже. Сразу оговоримся – это схема работы европейского септика TOPAS+. Более технологичного, нежели устройство российского производства. Главное отличие в том, что за переключение фаз работы отвечает микропроцессорный блок управления совместно с датчиком давления. Плюс, европейский вариант комплектуется песчаным фильтром, который осуществляет дополнительную доочистку стоков. В остальном, принцип действия остался неизменным.

Для интерактивного просмотра необходим Adobe Flash Player, если у вас на устройстве он не установлен – будет показан видеоролик.

swf»>

В заключение стоит ещё раз отметить, что вся очистка стоков происходит автоматически и не требует вашего вмешательства. Никакие добавки, бактерии и прочую химию заливать не требуется – все бактерии и микроорганизмы появляются естественным путём – вам необходимо только пользоваться канализацией. От вас требуется только время от времени открывать крышку для контроля работы и осуществлять плановое техническое обслуживание септика.

Остались вопросы? Мы знаем всё о септиках Топас! Свяжитесь с нами по телефону +7 (499) 391-68-35 или напишите в WhatsApp и мы ответим на все возникшие вопросы.
А можно вызвать инженера на участок — и получить исчерпывающую консультацию с точным рассчетом стоимости монтажа Топас. Это бесплатно!

Как вы заметили, внутри отсеков вся перекачка стоков осуществляется с помощью мамут-насосов. Это очень простое и эффективное решение. Анимированная схема работы мамут-насоса приведена ниже.

Устройство Топас

Корпус

Корпус септика изготовлен из листового полипропилена. Толщина полипропилена может отличаться у разных моделей и модификаций. Внешние стенки выполняются из листа толщиной от 18мм и более, внутренние перегородки тоньше и электрический отсек из более тонкого. Полипропиленовые листы скрепляются друг с другом методом сварки. Если раньше сварка осуществлялась исключительно с помощью фена ручным способом, то сейчас применяются полуавтоматические процессы, позволяющие минимизировать процент брака производства корпуса. Также активно используется оборудование для гибки полипропилена, что даёт готовой продукции меньшее количество сварных швов.

Полипропилен – великолепный материал для изготовления корпуса. Он обладает низкой теплопроводностью и отлично сохраняет тепло зимой. Очень гибок и отлично восстанавливает свою первоначальную форму. Отлично переносит агрессивную среду, преобладающую в септике, и не подвержен коррозии.

Посмотрите на фото, какие нагрузки он может выдерживать. На фотографиях листовой полипропилен размером 1000х1000мм толщиной 18мм. Именно из листов такой толщины изготавливается самая популярная модель Топас-5.

Электрооборудование

Как мы уже упоминали, для осуществления процесса очистки, его управления используется различное электрооборудование оборудование: воздушные компрессоры Airmac, поплавочные переключатели, блок управления, немецкие дренажные насосы Wilo (в модификациях с принудительным отводом воды). Все комплектующие тщательно подобраны и отлично зарекомендовали себя на протяжении многих лет работы.

Вся прелесть Топас, за счет чего он стал так популярен – это простота конструкции, взаимозаменяемость комплектующих и возможность ремонта своими силами. Все детали, разве что кроме компрессоров и аэраторов, можно починить или изготовить самостоятельно. Это как с УАЗом в российской глубинке — всегда найдется местный «кулибин», способный его завести.

Кроме того, можно даже самостоятельно сделать некоторые полезные опции, как, например «Инструкция: как сделать аварийную сигнализацию для Топас своими руками».

Электрическая схема Топас

Подвод питающего кабеля производится в компрессорном отсеке. Вам необходимо только подсоединить его к блоку управления. Схема подключения Топас немного отличается от модели к модели. Нижеприведенные принципиальные электрические схемы используются в септиках от Топас-4 до Топас-30.

Так же можете посмотреть электрическую схему аналога Топас. Она более понятна для обычного пользователя.

Как подключить септик к электросети

Как видите, схема подключения Топас очень проста и в ней разберется любой электрик.

Качество очистки

Обратите внимание, что Топас может очищать только хозяйственно-бытовые стоки. Если вы планируете очищать стоки от кафе, различных предприятий и производств, где характер стоков отличается от среднестатистических, то при принятии решения о выборе септика, вам следует опираться на следующую таблицу.

Состав и свойства бытовых сточных вод по основным нормируемым показателям до и после очистки должны соответствовать требованиям, приведенным в таблице.

Наименование показателя Единица
измерения
Концентрация, не более
До
очистки
После очистки
(не более)
После доочистки биореакторои
ТОПЛОС-ЦИКЛОН (не более)
рН   6-9 6-9 6-9
Взвешенные вещества мг/л до мг/л 300 10,0 3,0
БПК5 мг/л до 300 4,0 2,0
ХПК мг/л до 500 30,0 15,0
Азот аммонийный мг/л 25 1,5 0,39
Нитраты мг/л   45 40
Нитриты мг/л   3,3 0,08
Растворенный кислород мг   4 4
СПАВ мг/л 20 0,5 0,1
Нефтепродукты мг/л 0,5 0,05 0,05
Фосфаты (РО4) мг/л 5 3,5 0,05 (по Р)*

*— при добавлении реагента.

Продолжаем изучать проблему канализации для загородного дома со следующей статьей.

Если статья оказалась вам полезна — поделитесь ссылкой с друзьями

Схема подключения электрического счетчика


Наглядная схема подключения однофазного электрического счетчика в стандартных электрощитах следующая:

Примечание: фаза «А» обозначена желтым цветом, фаза «В» — зеленым, фаза «С» — красным, нулевой провод «N» — синим цветом, заземляющий проводник «PЕ» — желто-зеленым. Вместо пакетного выключателя может быть установлен двухполюсный автомат. Схема подключения индукционного счетчика не отличается от схемы подключения электронного.

Наглядная схема подключения трехфазного электрического счетчика прямого включения в четырехпроводной сети напряжением 380 вольт:

Примечание: фаза «А» обозначена желтым цветом, фаза «В» — зеленым, фаза «С» — красным, нулевой провод «N» — синим цветом, заземляющий проводник «PЕ» — желто-зеленым.
Обязательно соблюдение прямого порядка чередования фаз напряжений на колодке зажимов счетчика. Определяется фазоуказателем или прибором ВАФ. Прямой порядок чередования фаз напряжений — АВС, ВСА, САВ (по часовой стрелке). Обратный порядок чередования фаз напряжений — АСВ, СВА, ВАС, создает дополнительную погрешность и вызывает самоход индукционного счетчика активной энергии. Счетчик реактивной энергии при обратном порядке чередования фаз напряжений и нагрузки вращается в обратную сторону.

Схема однофазного индукционного электрического счетчика:

Примечание: фазный провод и токовая катушка обозначены красным цветом; нулевой провод и катушка напряжения обозначены синим цветом.

Схема соединений трехфазного индукционного счетчика прямого включения для четырехпроводной сети напряжением 380 вольт:

Примечание: фаза «А» обозначена желтым цветом, фаза «В» — зеленым, фаза «С» — красным, нулевой провод «N» — синим цветом; L1, L2, L3 — токовые катушки; L4, L5, L6 — катушки напряжения; 2, 5, 8 — винт напряжения; 1, 3, 4, 6, 7, 9, 10, 11 — клеммы для подключения электропроводки к счетчику.



Распиновка розетки фаркопа на 7 pin

Распиновка розетки прицепа (от англ. pin – «вывод, ножка») – это схема разводки электрических разъемов, необходимая для самостоятельного подключения автоприцепа к автомобилю. Подключение требуется для обеспечения безопасной эксплуатации несамоходной прицепной техники. Соединение происходит с использованием розетки (расположена у фаркопа) и соответствующего штекера, подключенного к проводке прицепа. Используя соединительные разъёмы, можно объединить электрические схемы технических средств: электрический ток, подаваемый от автомашины, будет задействовать поворотные сигналы, габаритные огни и подсветку номерного знака автоприцепа. Также может потребоваться смарт-коннект, согласующий работу проводки автомобиля с прицепом (на некоторых современных автомобилях с электронными схемами управления).

Схема подключения розетки 7 к 7

Наиболее распространённая на данный момент схема подключения с «вилкой» на 7 контактов («европейский» разъем). Она применяется при подсоединении большинства прицепов для легковых машин. Схема подключения изображена ниже:

Обратите внимание: приемная и ответная часть устройства имеют гнезда обоих типов («папа» и «мама»). Такое решение – залог безопасности при соединении круглого разъема в условиях плохой видимости: взаимное расположение гнезд исключает вероятность их неверного соединения или коротких замыканий. Разъемы продаются в любых автомагазинах, а для их подсоединения используют медные многожильные кабели с различными цветами проводов. Для безопасной и длительной эксплуатации контакты рекомендовано промазать солидолом или литолом, а место ввода кабеля в розетку обработать герметиком.

Распиновка розетки фаркопа 7 пин в легковых автоприцепах

Для синхронизации световых сигналов необходима распиновка розетки прицепа 7 пин и ее подключение к электропроводке машины. Оптимальные места для расположения розетки – технологические проемы для смены ламп (в них есть доступ к колодкам). Если на фаркопе установлен подрозетник, на который выведены все сигналы, достаточно купить «вилку» на 7 контактов, соединив в соответствии со схемой разъема, обозначенной в руководстве по эксплуатации. Указанный метод называется штатным. В противном случае используют универсальный способ подключения: проводку подсоединяют прямо к сигнальным цепям при отсутствии в автомобиле бортового компьютера. Провода, идущие от разъема, соединяют с электроцепями задних фонарей.

Универсальный метод подключения разъема прицепа и распиновки

Для подключения универсальным способом, используя разъем фаркопа, поочередно соединяют провод левого поворотного сигнала машины с левым поворотником прицепа, задний противотуманный огонь авто и противотуманку прицепной техники и т.д. Внимательно изучите схему проводки машины, чтобы безошибочно найти нужные цепи (для проверки используйте тестер).

Подключая провода через разъем фаркопа, примените обжимные клипсы или спаяйте провода, предварительно зачистив изоляцию. Для подключения к машине с бортовым компьютером необходима не только вилка прицепа 7 pin, но и блок согласования – устройство, подключаемое к бортовой схеме и не воспринимаемое компьютером. Даже при увеличенном потреблении тока ввиду работы светового оборудования автоприцепа бортовой компьютер не будет сигнализировать о неисправностях.

Распиновка 7-контактной розетки прицепа: важные особенности

Упрощенная схема подключения розетки 7 к 7 предполагает самостоятельное определение трассировки проводов, а наибольшую трудность вызывает определение места включения соответственных проводников. Настоятельно не рекомендуется делать это наугад, последовательно соединяя разъемные контакты автоприцепа с индикаторной лампой – при наличии цифровых схем управления световыми приборами такой метод небезопасен.

Перед подключением проверьте электронные цепи в разъеме прицепа на предмет отгнившей проводки в зоне паек и контактов, на короткие замыкания на участках трущихся элементов. После этого составьте схему трассировки с обозначением цветов, способов и мест соединения проводов. Если электрические соединения расположены вне салона, их следует покрыть термоусаживаемым кембриком (специальным изолятором), а по завершении работ проверить электросвязи мультиметром, удостоверившись в отсутствии замыканий.

электрические схемы для разных режимов работы

Безопасность эксплуатации ДГУ в качестве резервного или аварийного источника электропитания напрямую зависит от того, насколько грамотно реализована схема подключения дизель-генератора к сети. На практике применяют решения решений, которые обеспечивают переход на автономное электроснабжение в ручном или автоматическом режиме.

Варианты схем подключения ДГУ

Если схема переключения между дизель-генераторами и центральной сетью разработана и собрана неправильно, возрастает риск подачи электроэнергии с обоих источников. Это приводит к выходу из строя не только ДГУ, но и потребителей, которые в текущий момент были подключены к сети.

В стандартные комплекты документации обычно входят электрические схемы дизель-генераторов и несколько вариантов подключения к сети. Но если отсутствует опыт в чтении подобной документации и навыки электромонтажа, то работы по этому направлению следует доверить специалисту.

Включение ДГУ в ручном режиме

В бытовых резервных и аварийных системах энергоснабжения в большинстве случаев реализован переход на автономный источник в ручном режиме. Самое простое решение, к которому прибегают, подключение установки к ближайшей доступной розетке, благодаря чему запитывается вся домовая сеть. Следует понимать, что такая схема управления ДГУ не считается наиболее эффективной, а в отдельных случаях она таит большую опасность. Это связано со следующими факторами:

  • Требуется обязательное отключение входных автоматов или выкручивание пробок, в противном случае при возобновлении центрального электроснабжения электроэнергия будет поступать из двух источников.

  • Через розетку, к которой подключена установка, проходит значительный ток при подсоединении нескольких потребителей, это вызывает ее выход из строя. В отдельных случаях возможно повреждение участков проводки, не рассчитанных на подобную нагрузку.

Более правильной считается схема подключения непосредственно в сеть после счетчика с установкой дополнительного автомата на выходе генератора. В этом случае при отключении централизованного электроснабжения отключается сетевой автомат, запускается ДГ, после чего подключается нагрузка. Но и в этом случае при нарушении очередности включения/отключения существует риск подачи питания с двух источников.


Поэтому для ручного запуска следует использовать схему с применением перекидного или спаренного рубильника с блокировкой или реверсивного переключателя. Конструкция этих устройств предотвращает одновременное подключение центрального и автономного источника электроснабжения. Благодаря этому и обеспечивается безопасность эксплуатации.

Подключение дизель-генератора с АВР

При ручном управлении приходится постоянно контролировать наличие тока в основной сети, чтобы вовремя отключить ДГУ. Поэтому более совершенным вариантом считается схема подключения дизель генератора с автозапуском. Автомат ввода резерва (АВР) мониторит состояние центральной сети. При его отключении осуществляется запуск дизель-генератора и при выходе на рабочий режим подключается нагрузка без участия обслуживающего персонала (человека).

Такая система получила распространение и в бытовых, и в промышленных сетях. Особенно интересна схема подключения ДГУ с АВР к ВРУ при наличии двух независимых основных вводов или при необходимости резервирования питания по группам потребителей:

  • В первом случае в дополнении к АВР «сеть–генератор» между основными вводами включается АВР «сеть­–сеть». Система работает по следующему принципу — при отключении первого ввода нагрузка переключается на второй. ДГУ запускается в работу только в том случае, когда отсутствует питание от обоих основных источников.

  • В целях экономии практикуют разделение потребителей по категориям важности. Выделятся оборудование, отключения которого от сети будет критичным. Такая группа устройств подключается к центральной сети с обеспечением резервирования при помощи ДГУ. При срабатывании АВР «сеть-генератор» происходит переключение нагрузки на автономный источник питания, остальное обслуживаемое оборудование отключается. Такой подход позволяет применять ДГУ меньшей мощности.

На текущий момент схемы подключения дизель-генераторов с АВР считаются наиболее безопасными и эффективными. Основной плюс такого решения — минимизация влияния человеческого фактора, все переключения осуществляются в автоматическом режиме, что снижает риск возможной ошибки.

Как подключить дизель генератор к трехфазной сети

Схема подключения ДГУ к шинам подстанции для обеспечения питания трехфазных потребителей также может отличаться. Она зависит от типа используемого АВР. Среди применяемых вариантов выделим:

  • При применении четырехполюсного АВР, осуществляющего переключение 3 фазных и нулевого кабеля, линии заводятся в устройство и подсоединяются к соответствующим шинам аппаратуры.

  • В трехполюсных АВР (наиболее распространенный вариант) фазные кабели подключаются к соответствующим шинам, о нулевой провод соединяется с общим нулем, его переключение не предусматривается.

  • Если АВР не укомплектован общей шиной для соединения нуля, то соединение этого проводника выполняется на аналогичном устройстве распределительного щита.

Такие решения используют для подключения трехфазных потребителей электрической энергии. Но во многих случаях трехфазная сеть используется для питания однофазных потребителей. Это позволяет распределить нагрузку по отдельным фазам. В такой ситуации допускается подключение однофазного дизель-генератора. Для этого при помощи перемычек на контакторе ДГУ распределяют ток на 3 фазы сети, никакого негативного воздействия на оборудование такой тип подключения не оказывает.

Электрическая схема ДЭС — подключение в разных режимах

В нормативных документах используют отличающиеся обозначения дизель-генератора на схеме. В большинстве случаев ДГУ представлен в виде окружности с размещенной внутри русской буквой «Г» или латинской «G» со значком переменного или постоянного тока.


Электрическая схема дизель-генератора позволит реализовать правильное подключение устройства к сети и нагрузке. На однолинейных изображают силовые линии, необходимые для соединения отдельных элементов.

Кроме обозначения ДГУ, на схеме отображены пульт управления установкой, АВР, коммутационная аппаратура обводного канала (байпаса), распределительный щит, к которому подключаются потребители.

Электрические схемы подключения ДЭС представлены в пакете эксплуатационной документации на каждую установку.

Принципиальная электрическая схема дизель-генератора

Принципиальная схема отличается большей информативностью. Она дает представление об отдельных элементах ДГУ — генератор и приборы контроля панели управления, зарядной системы, необходимой для поддержания АКБ, регуляторы и другие устройства, обеспечивающие работоспособность оборудования.

На схеме дополнительно дана информация о назначении отдельных контактов, что позволит избежать ошибок при подключении к сети и нагрузке. Кроме того, принципиальная схема дает представление о принципе работы оборудования. Она незаменима при выявлении неисправностей и ремонте электрической части генератора. Схема этого типа также представлена в технической документации на установку.

Схема электрических соединений панели

Схемы электрических соединений панели используются для обозначения каждого устройства, а также соединения между устройствами внутри электрической панели . Поскольку электрические панели — это то, что будет содержать системы управления, технические специалисты и инженеры ПЛК обычно сталкиваются со схемами подключения панелей. Хотя электрические панели на первый взгляд могут быть не слишком сложными, для выбора подходящих устройств, определения размеров проводки и проектирования компоновки панели, которая документируется схемами электрических соединений панели, уходит много инженерных усилий.

Важно отметить, что электрические схемы панели должны соответствовать местным властям, которые диктуют стандарты , которые должны соблюдаться внутри панели. В США этим органом является Национальная ассоциация противопожарной защиты (NFPA), а кодекс называется Национальным электротехническим кодексом (NEC). Кроме того, каждое государство может выбрать разные версии кода в зависимости от выпуска. Перед проектированием панели важно ознакомиться с кодом, который применяется в вашем регионе.

Электрическая панель — основные компоненты

В этом разделе мы хотели бы начать с рассмотрения стандартной электрической панели, изучения компонентов и понимания вариантов выбора, лежащих в основе определенных компонентов и решений по компоновке.

Электрическая панель — система управления на основе MicroLogix

Электрическая панель выше включает в себя ПЛК MicroLogix, защитные устройства (предохранители), соединительные устройства (неуправляемый переключатель, преобразователь EtherNet в RS232), клеммные колодки и источник питания.

Конструкция электрической панели — силовые устройства

Силовые устройства внутри электрической панели используются для подачи тока, необходимого на каждое устройство, и для защиты их от ситуаций перегрузки по току.

  • Автоматический выключатель | Обычно это точка входа внешнего тока в панель. Выключатель электрической панели аналогичен тому, что вы можете найти в домашних условиях, но с гораздо более высокими характеристиками. Это устройство используется для отключения всего питания от электрического щита и автоматически срабатывает при превышении определенного уровня тока (в зависимости от номинала выключателя).
  • Предохранители | Предохранитель — это статическое устройство, которое защитит оборудование и персонал от скачков тока.В зависимости от кода предохранитель может использоваться отдельно или в сочетании с автоматическим выключателем. При срабатывании предохранителя его необходимо заменить перед возобновлением работы.
Схема электрических соединений панели — Электропроводка частотно-регулируемого привода

На приведенной выше схеме электрических соединений показан пример автоматического выключателя, а также нескольких предохранителей, защищающих частотно-регулируемые приводы. Обратите внимание, что на чертеже автоматического выключателя есть значок, который указывает, что цепь размыкается во время скачка тока.

Конструкция электрической панели — трансформаторы и источники питания

Регулирование напряжения — важный процесс в каждой панели. Трансформаторы и блоки питания используются для преобразования одного уровня напряжения в другой. Это создает уникальную проблему для электрических чертежей: разные уровни напряжения должны управляться отдельно. Кроме того, для разных уровней напряжения потребуются отдельные клеммы, предохранители и электрические щупы. Как правило, размеры проводки указываются в начале набора чертежей.На отдельной странице напряжение будет указано в источнике, но редко на каждом проводе. Следовательно, важно отследить проводку, чтобы подтвердить местоположение и характеристики источника. Схема подключения электрической панели

— Падение напряжения на трансформаторе

На приведенной выше схеме показан трансформатор, который принимает напряжение 575 В переменного тока и преобразует его в 115 В переменного тока. 115 В переменного тока является стандартным напряжением в Северной Америке и используется для многих устройств, включая ПЛК, HMI, переключатели и многое другое.

Блок питания будет выполнять ту же функцию, но обозначен другим символом на чертеже.

Как упоминалось выше, преобразование напряжения приведет к созданию новой шины питания. Поэтому чрезвычайно важно следить за маркировкой и этикетками на чертежах, чтобы отслеживать уровень напряжения, о котором идет речь.

Конструкция электрической панели — Устройства управления

Устройства управления — это компоненты, которые будут управлять процессом. К ним относятся программируемые логические контроллеры, частотно-регулируемые приводы, весоизмерительные ячейки и т. Д.На панели, о которой мы упоминали выше, мы можем идентифицировать ПЛК серии MicroLogix вместе с массивом внешних модулей ввода / вывода. Давайте посмотрим на пример их представления на чертеже электрической панели. Схема подключения электрической панели

— пример трансформатора и источника питания

На приведенной выше схеме подключения электрической панели показан пример трансформатора и источника питания, используемых в системе ПЛК. Важно отметить, что источник питания может быть отдельным блоком (как обсуждалось в предыдущем разделе) или модулем в стойке ПЛК.Помимо питания ПЛК, на схеме подключения будет показан массив IO, связанный с ПЛК; давайте посмотрим на пример ниже.

Базовый провод — соединение между двумя компонентами.

На рисунке выше показана первая карта ПЛК Allen Bradley CompactLogix. Основываясь на модели карты (1769-IQ16), а также на характере устройств, привязанных к каждой точке на карте, мы можем сразу сделать вывод, что карта представляет собой 16-точечную входную карту 24 В постоянного тока. На рисунке показаны следующие устройства:

  • Вход 0: «ИЗ СТРОКИ 1219» | Устройство, нарисованное на другой странице набора чертежей.
  • Ввод 1: «PB4028» | Кнопка нормально разомкнутого типа
  • Вход 2: «PB4029» | Нормально закрытая кнопка
  • Вход 3: «PB4030» | Кнопка нормально разомкнутого типа
  • Вход 4: «PB4031» | Кнопка нормально разомкнутого типа
  • Ввод 5: «CR1503» | Реле управления
  • Вход 6: «CR1504» | Реле управления
  • Вход 7: «190-MC01» | Моторный контактор
  • Вход 8: «905-MC01» | Моторный контактор
  • Вход 9: «906-MC01» | Моторный контактор
  • Вход 10: «030-MC02» | Моторный контактор
  • Вход 11: «030-SE01» | Трехпозиционный селекторный переключатель
  • Вход 12: «035-MC01» | Моторный контактор
  • Вход 13: «030-ZS01» | Трехпозиционный селекторный переключатель
  • Вход 14: Н / Д
  • Вход 15: «Контакт ЗАПУСК СИСТЕМЫ РАЗРЯДА»

На электрическом чертеже каждая карта будет разделена на страницу. Другими словами, внешние модули, которые мы видели на панели, будут иметь отдельную страницу, на которой показаны компоненты, подключенные к каждой точке.

Конструкция электрической панели — символы электрических устройств

Мы не рассмотрели все основные компоненты в приведенном выше разделе. Однако, поскольку мы углубились в точки ввода и вывода, привязанные к внешним устройствам, важно рассмотреть их, прежде чем мы продолжим. В этом разделе мы представим символ устройства, который вы можете найти на электрической схеме панели, и дадим краткое описание устройства, а также несколько примеров для справки.

Обозначения проводки на электрических чертежах

Провода — это то, что связывает устройства вместе. Линии используются для обозначения разводки панели. Вы увидите следующие основные линии:

Basic Wire — соединение между двумя компонентами.

Примечание: провод становится пунктирной линией, когда проводка выходит за пределы панели, описанной на чертеже.

Соединение проводов — Соединение между несколькими проводниками.

Wire Bypass — Байпас без тока двух проводов.Между горизонтальным и вертикальным проводниками нет соединения.

Обозначения кнопок и переключателей на электрических чертежах

Кнопки и переключатели играют важную роль в автоматизации производства. Они используются для получения данных, вводимых пользователем, а также состояния оборудования. Важно отметить, что переключатель не всегда приравнивается к кнопке на машине. Переключатель также включает в себя широкий набор концевых выключателей, используемых в процессе. Этикетка над устройством обычно указывает на его характер.

Переключатель — [левый] — нормально разомкнутый | [Центр] — нормально закрытый | [Справа] — однополюсный двухпозиционный переключатель (SPDT)

Электрический переключатель — это базовое устройство, которое проводит ток, когда он замкнут, и блокирует прохождение тока, когда он разомкнут. Сигнал, который передается через коммутатор, может быть прочитан полевым устройством или входом ПЛК, как мы видели выше.

В промышленном производстве используется широкий спектр переключателей. Мы написали подробное руководство о том, как работают некоторые из этих переключателей и где они используются в производстве, в следующей статье: Концевой выключатель.

Кнопка — [Левая] — Нормально открытый | [Вправо] — нормально замкнутый

Нажимная кнопка — это мгновенный электрический выключатель, который будет проводить ток, когда он замкнут, и блокировать прохождение тока, когда он открыт. Разница между переключателем и кнопкой заключается в том, что кнопка автоматически вернется в исходное состояние, в то время как переключатель будет поддерживать это состояние до тех пор, пока он не будет переключен.

Свет — [Слева] — Красный | [Справа] — зеленый

Свет обычно используется в качестве индикатора процесса.Это может быть светодиодный индикатор на панели или индикатор на машине или технологическом оборудовании.

Контакт катушки двигателя

Контакт катушки двигателя — это вход контактора или частотно-регулируемого привода. Подав напряжение на катушку, привод замыкает необходимые контакты и запускает двигатель. Обратите внимание, что на катушке также указаны клеммы, на которые должны быть заземлены соединения. Ориентация (+24 В постоянного тока против 0 В постоянного тока) важна и будет указана на электрическом чертеже.

Контакт двигателя или реле — [левый] — нормально разомкнутый | [Справа] — нормально замкнутый

Контакт отображает состояние определенного устройства. Когда реле находится под напряжением, контакт либо замыкается, либо размыкается в зависимости от начального состояния. Когда контакт замкнут, ток течет; когда он открыт, ток прекращается. Когда дело доходит до контактора двигателя, рекомендуется отправлять сигнал обратно на ПЛК в качестве подтверждения того, что устройство находится под напряжением. Следовательно, ПЛК получит сигнал от контакта и подтвердит его логикой.

Другие устройства на электрических чертежах

Мы рассмотрели несколько основных устройств, которые могут встретиться на электрических чертежах. Этот список ни в коем случае не является исчерпывающим. Существует ряд вариаций основных устройств, а также символов для других, с которыми вы столкнетесь. Мы рекомендуем вам обращаться к техническим примечаниям производителя, когда речь идет о соответствующих символах. В большинстве случаев они указаны в паспорте.

Конструкция электрической панели — Сетевые устройства

Сети являются важным компонентом большинства современных панелей.Они поддерживают ряд различных протоколов, таких как EtherNet, DeviceNet, ProfiBUS, ControlNet, Serial и другие. Разница между представлениями типовых схем электрических панелей для нормальной проводки и сетевых устройств заключается в том, что в них часто не используется многожильный кабель. Другими словами, стандартный кабель EtherNet, который может содержать 8 проводов, будет представлен как один провод. Давайте посмотрим на пример ниже. Схема подключения электрической панели

— сетевые устройства

На приведенной выше схеме показано соединение между неуправляемым коммутатором и рядом периферийных устройств, использующих протокол EtherNet.Как упоминалось выше, для простоты предполагается, что читатель понимает использование стандартного кабеля EtherNet RJ45 для этой цели.

Обратите внимание, что на этой странице описаны только сетевые подключения к этим устройствам. Те же устройства будут перечислены на другой странице, так как им требуются дополнительные сигналы. Пример: частотно-регулируемый привод (VFD) «030-SC01 конвейерная платформа» будет подключен к источнику питания, двигателю, ПЛК и цепям безопасности. Они будут описаны на отдельной странице схемы электрических соединений панели.

Анализ электрических схем панели

В этом разделе мы рассмотрим ряд страниц схем электрических соединений, выделим ключевые элементы, раскроем, какую информацию можно извлечь с каждой страницы, и прокомментируем, как конкретную страницу можно использовать для устранения неисправностей система. Схема электрических соединений панели

— цепь стартера двигателя

Схема панели управления двигателем

На приведенном выше чертеже мы видим 4 ключевых элемента:

  1. Точка входа в электрическую шину указана на предыдущей странице.Если мы перейдем к первой странице наших электрических чертежей, мы сможем найти спецификацию напряжения на шине: 460 В переменного тока, 3 фазы, 60 Гц.
  2. 195-MC01 — это контактор двигателя, который включает в себя автоматический выключатель, плавкий предохранитель и контакт. На чертеже указана установка автоматического выключателя: 5А.
  3. 195-HSS01 — выключатель двигателя. Обратите внимание, что отключение обеспечивает средство отключения высокого напряжения от двигателя, а также обратную связь с ПЛК. На чертеже указано «LOCAL: I: 4/08» в качестве входа отключения в ПЛК.
  4. 195-M01 — трехфазный двигатель мощностью 0,75 л.с.
Возможные действия по поиску и устранению неисправностей
  • Сработавший контактор двигателя | См. Устройство 192-MC01. Измерьте входящее в устройство напряжение 460 В переменного тока, 60 Гц. Убедитесь, что уставка выключателя составляет 5 А.
  • Двигатель не работает | См. Устройство 195-M01. Убедитесь, что выключатель двигателя (195-HSS01) находится в положении ВКЛ. Это можно сделать, измерив выходное напряжение и проверив сигнал ПЛК, указанный выше.Убедитесь, что контактор двигателя (195-MC01) не сработал. Убедитесь в исправности обмоток двигателя, измерив сопротивление, когда он отключен с помощью выключателя двигателя.
  • Схема электрических соединений панели
— цепь безопасности

Схема цепи безопасности панели

Схема электрических соединений, приведенная выше, содержит пример цепи безопасности, которую можно найти в промышленной среде. Здесь показаны следующие компоненты:

  1. MSR304 — это реле безопасности Allen Bradley.Он отправляет сигнал через серию предохранительных выключателей и аварийных остановов и считывает сигнал, который он получает в конце цепочки. Если все переключатели замкнуты, реле подтверждает, что цепь безопасности исправна, и подает питание на нагрузку, к которой оно привязано.
  2. 090-ZSS11 — это предохранительный выключатель, который является частью цепи безопасности устройств. Как показано на схеме, устройства безопасности подключаются одно за другим.
  3. Световой индикатор кнопки аварийной остановки — это устройство, которое указывает на нажатие кнопки аварийной остановки.Обратите внимание, что этот сигнал поступает непосредственно от кнопки через нормально разомкнутый контакт. Другими словами, этот свет будет активироваться только при нажатии кнопки E-Stop; ни какой другой элемент в цепи цепи безопасности.
Возможные действия по поиску и устранению неисправностей
  • Неисправность цепи аварийного останова | См. Устройство «MSR304». Начните с проверки сигнала аварийной остановки. Отожмите кнопку аварийной остановки, если она нажата. Проверьте напряжение на каждом устройстве, связанном с безопасностью. Цепь должна возвращать сигнал 24 В постоянного тока на каждую линию.Если это не так, сузьте круг схемного элемента (переключателя), который вызывает проблему.
  • Цепь безопасности не сбрасывается | См. Устройство «MSR304». Необходимо будет выполнить те же действия, что и выше. Реле сбрасывается только при получении правильного сигнала от полевых устройств. В противном случае реле не сработает.

Схема электрических соединений панели — программные инструменты

В этом разделе мы опишем различные инструменты, которые инженеры и техники используют для создания схем электрических соединений панели.Некоторые из этих инструментов дороги и продаются только через дистрибьюторов. Однако большинство этих поставщиков предоставляют пробные версии, которые вы можете использовать с ограниченными возможностями, чтобы оценить, подходит ли их решение для вас.

AutoCAD Electrical от Autodesk — один из наиболее часто используемых инструментов в отрасли. AutoCAD — это полнофункциональный набор инструментов с широким набором функций для многих приложений. Это дорогая лицензия, но она поставляется с обширной библиотекой устройств, которая постоянно обновляется предложениями большинства поставщиков.

EPLAN — Этот инструмент специализируется на программном обеспечении для проектирования панелей и промышленного дизайна. Вы не найдете обширного списка функций, которые вы можете увидеть в AutoCAD, но функции, которые вы найдете, исключительно хорошо разработаны и поддерживаются командой. EPLAN приобрел популярность в последние годы и стал предпочтительным инструментом для многих инженеров и электриков.

SkyCAD — Этот «недорогой» инструмент имеет меньше наворотов, но имеет огромную скидку по сравнению с чем-либо другим на рынке.Это отличное решение для небольшого предприятия, частного пользователя или подрядчика.

Схема электрических соединений панели управления Заключение

Электрические чертежи являются обязательными в соответствии с Национальным электрическим кодексом (NEC) в США и другими органами власти в разных регионах мира. Они предоставляют список спецификаций, по которому электрики и инженеры будут проектировать и собирать панели управления, используемые на производстве и в промышленности.

На каждой странице чертежа будет отображаться схема, которая будет содержать некоторые элементы панели вместе со ссылками на другие страницы.Используя схему, можно идентифицировать элементы на панели, проверять соединения и устранять неполадки на местах, когда они возникают.

Схемы электрических соединений для систем кондиционирования воздуха — Часть вторая ~ Электрические ноу-хау

  • Введение в типы систем кондиционирования воздуха,
  • Введение в типы двигателей / компрессоров, используемых в системах кондиционирования воздуха.

И в статье «Схема электропроводки для систем кондиционирования — Часть первая » я объяснил следующие моменты:
  • Важность электропроводки для систем кондиционирования воздуха,
  • Как получить электропроводку для систем кондиционирования воздуха ?,
  • Типы электрических схем для систем кондиционирования воздуха,
  • Как читать электрические схемы?

Сегодня я расскажу о электропроводке для различных типов систем кондиционирования и оборудования .


Третий: схемы электрических соединений для системы кондиционирования воздуха Системы — продолжение
Электрика электрические схемы для типового оборудования для кондиционирования воздуха Основные виды и оборудования в общих системах кондиционирования воздуха были:
  • Оконный кондиционер ед.,
  • Сплит-кондиционер ед.,
  • Мульти-сплит воздух блоки кондиционирования,

1- Оконные кондиционеры
1.1 Окно Воздух Установки кондиционирования Строительство В корпусе оконного кондиционера находятся следующие компоненты: (см. Рис.1 )
Рис.1: Окно Кондиционеры Строительство
  1. Конденсатор (наружный змеевик),
  2. Вентилятор конденсатора,
  3. Герметичный компрессор,
  4. Испаритель (внутренний змеевик кондиционирования),
  5. Вентилятор испарителя (нагнетатель),
  6. Controls: Элементы управления для Оконный блок прост и встроен, в его состав входят: (см. рис.2)
Рис.2: Окно Органы управления кондиционерами

  • А вращающийся селектор / переключатель режима отмечен шкалой горячего-холодного из пяти позиций (выкл., высокий охлаждение, низкое охлаждение, высокий вентилятор, слабый вентилятор) без настроек температуры.
  • А вращающийся Переключатель термостата работает как переключатель включения / выключения для компрессор, его состояние зависит от того, на какую температуру / степень охлаждения вы его установили. (обычно есть 8 позиций для степень охлаждения).
  • Жалюзи переключатель поворота: это переключатель включения / выключения, который управляет двигателем поворота, ответственным для управления движением и углом направления подачи воздуха от жалюзи в комнату.

1.2 Поток мощности в ответвленной цепи типичного оконного воздуха кондиционер
  • Оконный кондиционер блоки питаются от однофазного источника питания (см. рис.3 ), поэтому его ответвленная цепь и ее основной шнур питания, состоящий из 3-х проводов (Заземление провод, провод под напряжением и нейтральный провод).
Рис.3: Окно Цепь питания блока кондиционирования воздуха
  • Филиал цепь будет происходить от одного из однополюсных устройств защиты от перегрузки по току устройство OCPD включено в электрическую панель.
  • Затем пройдите система кабельных каналов (кабелепроводы, каналы и т. д.) к средствам отключения какого-либо типа подходит для применения.
  • Наконец, сетевой шнур оконного кондиционера соединенный с этим разъединяющим средством с одной стороны, другая сторона входит кожух агрегата, подключаемый к клеммной коробке агрегата.

1.3 Электрические соединения внутри окна воздух кондиционеры Здесь нас интересуют как основной шнур питания подключен внутри устройства, и это может быть объясняется следующим образом (см. рис.4 ):
Рис.4: Окно Кондиционер Внутренняя электрическая проводка
A- Внутри устройства основной шнур питания разделить на:
  1. Провод массы (либо зеленый или оголенный провод) прикручивается к металлическому корпусу блока.
  2. Горячий провод
  3. Нейтральный провод.

B- Горячий провод идет к селекторному переключателю на оконном блоке для подачи питания на жизненно важные части, компрессор и двигатель вентилятора:
  • Горячий провод к селекторному переключателю к переключателю термостата к компрессору
  • Горячий провод к селекторному переключателю к двигателю вентилятора.

C- нейтральный провод будет подключен к двигателю вентилятора и компрессору без каких-либо выключатель. Эти соединения выполняются на разъеме проводов на задней панели селекторный переключатель так, все нейтральные провода являются общими друг для друга, потому что они подключены к одной и той же точке.

Некоторые примеры полных схем электропроводки оконного кондиционера приведены на рис. 5 .
Фиг.5: Схема электрических соединений оконного кондиционера
Кроме того, в Рис. 6 вы можете найти примеры полных электрических схем оконного кондиционера, которые устанавливаются на корпусе блока.
Рис.6: Окно Схемы электрических соединений блока кондиционирования воздуха — заводская установка

Кроме того, вы можете найти примеры полных схем подключения оконного кондиционера, сенсорного и дистанционного управления в Рис.7 .

Рис.7: Электрические схемы оконного кондиционера — сенсорное и дистанционное управление, тип

1,4 Поток мощности внутри стандартного оконного кондиционера в режиме охлаждения

  • Когда вы переводите селекторный переключатель в режим охлаждения, мощность, которая поступает от шнура, подключенного к переключателю через горячий провод, поступает на вентилятор, чтобы вентилятор работал.
  • Селекторный переключатель также передает питание на компрессор по горячей проволоке, но компрессор не будет работать, пока термостат не перейдет в положение включения, затем компрессор сработает и начнется цикл охлаждения.

2- Блоки воздушного охлаждения с раздельным охлаждением
2.1 Конструкция агрегатов с разделенным воздушным охлаждением Сплит-системы — это индивидуальные системы в котором два теплообменника разделены (один снаружи, один внутри) (см. Рис.8 ). Есть две основные части сплит-кондиционера:
Рис.8: Конструкция агрегатов с разделенным воздушным охлаждением
  1. Наружный блок,
  2. Внутренний блок.

Этот агрегат устанавливается вне помещения или офисное помещение, которое необходимо охлаждать и в котором находятся важные компоненты кондиционер нравится:
  • Компрессор,
  • Вентилятор охлаждения конденсатора,
  • Расширительный клапан.

Самый распространенный тип внутреннего блока — это настенный тип, хотя другие типы, такие как потолочный и напольный навесные также используются. Внутренний блок создает охлаждающий эффект внутри помещения. комната или офис и вмещает следующие компоненты:
  • Змеевик испарителя или змеевик охлаждения,
  • Вентилятор охлаждения или нагнетатель,
  • Труба сливная,
  • Жалюзи или ребра,
  • Воздушный фильтр,
  • Органы управления.

2.2 Поток мощности в параллельном контуре типичного раздельного воздуха кондиционер Сплит-кондиционер блоки питаются либо от:
  • Однофазный источник питания (см. , рис. 9, и , рис. 11, ), поэтому его ответвленная цепь и основной шнур питания, состоящий из 3-х проводов (заземляющий провод, горячий провод и нейтральный провод).

  • Трехфазный источник питания (см. Рис. 12 ), Таким образом, его ответвленная цепь и основной шнур питания, состоящий из 5 проводов (заземляющий провод, 3 горячих провода и нейтральный провод).

Рис.9: Блоки охлаждения с разделенным воздухом — однофазные — Внутренний подача Наружный
08
Рис.10: Блоки воздушного охлаждения с разделением на две фазы — Однофазные — Схема электрических соединений
Фиг. 11: Агрегаты с разделенным воздушным охлаждением — Однофазные — Наружная подача Внутренний
Рис.12: Блоки воздушного охлаждения с разделением на две фазы — трехфазные
Рис.13: Устройства с разделенным воздушным охлаждением — трехфазные — Схема электрических соединений
  • Филиал цепь будет происходить от одного из однополюсных / трехполюсных перегрузок по току защитное устройство OCPD, включенное в электрическую панель.
  • Затем пройдите система кабельных каналов (кабелепроводы, каналы и т. д.) к средствам отключения какого-либо типа подходит для применения.
  • После этого сетевой шнур сплит-системы кондиционирования соединен с этим разъединяющим средством с одной стороны, другая сторона подключается к клеммной коробке во внутреннем блоке (см. Рис. 9, ) или в наружном блоке (см. Рис. 10, ) в соответствии с рекомендациями производителя и схемами подключения.

Примечание:

если подключение к источнику питания выполнено во внутреннем блоке, внутренний используются средства отключения, и если подключение к источнику питания выполняется на открытом воздухе блок, наружное отключающее устройство (см. , рис. 14, ) с подходящей защитой (IP) (ознакомьтесь с рекомендациями производителя и схемами подключения).
Рис.14: Средства отключения наружной установки
  • Наконец, сила передается по 3-проводному или 5-проводному кабелю от клеммной коробки в внутренний блок к клеммной коробке в наружном блоке или наоборот, как показано на вышеупомянутый пункт.

Есть сигнал кабель, также соединяющий управление во внутреннем блоке с управлением в Наружный блок.

2.3 Электрические соединения внутри The Split air кондиционеры


Электропроводка внутри внутреннего и наружного блоков сложнее, чем у оконных блоков кондиционирования воздуха. Это всегда заводская проводка, и с нашей точки зрения как инженеров-электриков, это никак не повлияет на нашу работу.Тем не менее, мы предоставляем несколько примеров схем электропроводки, включая проводку управления, для справки, как показано ниже Рис. 15 .

Рис.15:

Сплит-кондиционеры — внутренние Схема электрических соединений

3- Мульти-сплит-кондиционеры
3. 1 Силовая разводка кондиционеров мульти-сплит
  • В наши дни, Мульти-сплит воздух кондиционеры также широко используются (см. Рис.16 ). В агрегатах на один наружный агрегат есть два внутренних блока, которые можно разместить в двух разных комнатах или в два разных места в большой комнате.
Рис.16: Кондиционеры с несколькими сплит-системами
  • Силовая разводка для кондиционеры с несколькими сплит-системами будут такими, как в рис.17 ниже.

Рис.17: Многофункциональные кондиционеры Электропроводка

в Рис.18 вы можете найти примеры полных электрических схем для кондиционеров Multi-split.

Рис. 18: Многофункциональные кондиционеры Схема электрических соединений
4.1 Силовая проводка Мини-тепловые насосы

Электропроводка мини-тепловых насосов будет выглядеть так же, как у Split air. Охлаждающие устройства на большие расстояния (см. Рис.19).


Рис.19: Мини-тепловые насосы

Тем не менее, вы можете найти ниже несколько примеров для схемы подключения Mini- Тепловые насосы (см. Рис. 20), и вы можете сравнить их с тепловыми насосами Split air. Блоки охлаждения, особенно в силовой (высоковольтной) проводке.

Рис.

20: Схема электрических соединений мини-теплового насоса
5.1 Раздельные блоки Строительство А сплит-система описывает систему кондиционирования воздуха или теплового насоса, которая разделена на две части (см. Рис.21 ), которые:
  1. Наружная секция,
  2. Внутренняя часть.

Рис.21: Конструкция разделенных блоков

В наружный блок расположен снаружи, как правило, на земле, но иногда и на крыша. В нем находятся следующие компоненты:
  • Компрессор (ы),
  • Змеевик (-ы) конденсатора,
  • Вентилятор (ы) конденсатора,
  • Двигатель (и) вентилятора конденсатора,
  • Решетка вентилятора,
  • Запорная арматура,
  • Клапан реверсивный,
  • Дополнительные аксессуары (если любой).

В внутренняя секция обычно располагается во внутреннем шкафу или гараже.Здесь находится следующие компоненты:
  • Воздуходувка (и),
  • Змеевик испарителя,
  • Терморегулирующий клапан (ы) и дистрибьютор (ы)
  • Подшипники и вал,
  • Дополнительные аксессуары.

5.2 Электропроводка в раздельных блоках Электропроводка в Блоки Split Packaged состоят из 3 основных частей, а именно:
  1. Высоковольтная часть (силовая часть),
  2. Контроль высокого напряжения и моторная часть,
  3. Блок управления низким напряжением.

1- Высоковольтная часть (силовая часть) 🙁 см. рис.22)
Рис.22: Электропроводка Split Packaged unit — Высоковольтная часть

Филиал цепь будет исходить от одного из трехполюсных устройств защиты от перегрузки по току. устройство OCPD включено в электрическую панель.

Тогда пройдите система кабельных каналов (кабелепроводы, каналы и т. д.) к:
  • Разъединитель средства внутреннего блока (Воздухообрабатывающий агрегат),
  • Разъединитель означает наружного блока (конденсатор / испаритель).

2- Контроль высокого напряжения и часть двигателя: (см. рис.23)
Рис.23: Электропроводка блока Split Packaged — Блок управления высоким напряжением и двигателя
  • Сюда входят высокие проводка напряжения внутри блока обработки воздуха и внутри конденсатора / испарителя Блок.
  • Внутри воздухоподготовителя блока, высоковольтная проводка питает внутренний вентилятор, обогреватель и обеспечивает мощность для трансформатора.
  • Внутри блока конденсатора / испарителя, проводка высокого напряжения приводит в действие внешний вентилятор и компрессор.

3- Контроль низкого напряжения часть: Эта часть имеет (2) режим для операции, которые:
  1. A / C Mode,
  2. Тепловой режим.

A- В режиме A / C: (см. Рис. 24)
Рис.24: Электропроводка блока Split Packaged — Блок управления низкого напряжения — Режим переменного тока
Термостат отправить сигнал в (2) направлениях следующим образом:
  • Через Y-провод к включить внешний вентилятор и компрессор,
  • Через провод G к включите комнатный вентилятор.

B- В жару Режим: (см. Рис.25)
902 902 902 902 Так же термостат в этом режиме посылает сигнал в (2) направлениях следующим образом:
  • Через провод G к включить внутренний вентилятор,
  • Через провод W к включить обогреватель.

Итак, полный Схема подключения будет такая же, как на Рис.26 ниже:
Рис.25: Электропроводка Split Packaged unit — Блок управления низкого напряжения — тепловой режим
Рис. 26: Электропроводка Раздельный агрегат — полная схема

Примечание:

Термостат обычно имеют (5) положений: «Выкл.» — «Холодно» — «Авто» — «Включен». Вы можете найти ниже несколько примеров для электрические схемы для раздельно блочных агрегатов с разными способами пуска в Рис.27 .

Рис. 27: Электропроводка Раздельный агрегат с различными способами пуска
6- Унитарные блоки
6,1 Мощность контур для Унитарный комплектный
  • Унитарно в упаковке системы (см. рис.28 ) являются наиболее часто используемым оборудованием для кондиционирования воздуха в коммерческие здания. Компактный кондиционер — это автономный кондиционер. Он обеспечивает охлаждение, нагрев и движение воздуха. Все компоненты, необходимые для охлаждения, нагрева и движения воздуха, собран в стальном кожухе. Большинство В агрегатах в корпусе используются полугерметичные компрессоры, что означает, что двигатель и компрессорные агрегаты смонтированы в одном корпусе.
Рис.28: Крыша сборные единицы Строительство
  • Единично-упакованные единицы представляют собой упакованные единицы, которые входят в состав одного целого. единый пакет, готовый к установке на крыше или на первом этаже для некоторых типов.
  • Комбинированные блоки на крыше могут быть классифицированы по типу поставляемого тепла. Есть агрегаты на крыше с электрическим или газовым обогревом. В обогрев также может быть обеспечен тепловым насосом.Однако электрическое тепло и В основном используются газовые печи.
  • Доступное охлаждение мощность обычных блочных крышных агрегатов составляет от 10 кВт (3 тонны) до 850 кВт (241 тонна). Расход воздуха составляет от 400 л / с (850 фут3 / мин) до 37 800 л / с (80 000 фут3 / мин).

Схема питания для крыши Упакованные единицы показаны на Рис.29.
Рис.29: Схема питания агрегатов на крыше

В следующей статье я объясню электрические схемы для другого оборудования систем кондиционирования воздуха .Итак, продолжайте следить.


Электрическая принципиальная схема, Курсы базовой подготовки военно-морского флота, NAVPERS 10622, Глава 4

Вот « Электричество — Базовые курсы обучения ВМФ » (NAVPERS 10622) целиком. Он должен обеспечивать одну из лучшие ресурсы для людей, ищущих базовый курс по электричеству — вместе с примерами Разработаны. Видеть Авторские права. Видеть Таблица Содержание.• Типография правительства США; 1945 — 618779

Слушая на днях радио, Я слышал, как парень очень технически сообразительный и радиолюбитель произнес: слово «схематический» как «скэм-э-ат-ик». Он не просто шутил, потому что он повторял это на протяжении всего шоу. Это пришло в голову при публикации этого главу под названием «Электрическая принципиальная схема», и я подумал, что вы оцените это (особенно, если вы также обычно неправильно произносите слово).Но я отвлекся … ВМС США на протяжении многих лет подготовили ряд учебных курсов для электричество, связь, механика, навигация и т. д., которые находятся на высоком уровне уважение со стороны военной и частной промышленности. Выпускники курсов, которые обслуживали срок зачисления на выполнение технического обслуживания оборудования всегда был предпочтительным работодателями, ищущими высококлассных технических специалистов.

Некоторое содержание курса NAVPERS требовало обновления по мере того, как технологии и знания эволюционировал.Например, то, что обычно называют «обычным током» определяется как положительный заряд, движущийся от более положительной точки к более отрицательная точка в цепи. Теперь мы знаем, что именно электроны составляют текущий поток, и они перемещаются от более отрицательной точки к более положительной точке в цепи. Итак, когда вы видите стрелки текущего потока, оставляющие положительный терминал и повторный вход в отрицательный терминал, это «обычный поток».» И наоборот, когда вы видите стрелки потока, покидающие отрицательную клемму источника и при повторном входе в положительный полюс это «поток электронов». Это важное различие, которое необходимо сделать при рассмотрении магнитных полей, создаваемых током поток, и индуцированный ток от изменяющегося магнитного поля (см. Правая рука Страница правил на RF Cafe.

Глава 4: Электрические схемы — Электрооборудование Схема

Мужчины, которые лучше всего разбираются в электричестве, «поговорите с диаграммы.»Задайте им вопрос, и они достанут карандаш и сделают быстрый набросок. чтобы показать вам, что к чему. Рассказывая техническую историю, часто используется одна диаграмма. стоит более тысячи слов, если поставить точку в рассказе. Электрики может использовать один из двух типов диаграмм для объяснения электрических установок. При установке или ремонте оборудования вы будете использовать то или иное из эти электрические «чертежи». Два типа — это ЭЛЕКТРИЧЕСКИЕ СХЕМЫ и СХЕМАТИЧЕСКИЕ СХЕМЫ.Вы ДОЛЖНЫ понимать оба типа диаграмм, прежде чем продолжить изучение. электричества. Определенные ЧАСТИ КОНСТРУКЦИИ схемы, а также ЭЛЕКТРИЧЕСКИЕ СОЕДИНЕНИЯ показаны на СХЕМА ЭЛЕКТРОПРОВОДКИ. Однако на СХЕМАТИЧЕСКОЙ ДИАГРАММЕ ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ СОЕДИНЕНИЯ и ЭЛЕКТРИЧЕСКОЕ ОБОРУДОВАНИЕ обозначены символами, а все структурные части исключены Две диаграммы на рис. 14 показывают одно и то же. Оба схема подключения и принципиальная схема иллюстрируют схему подключения катушки в электродвигателе.Обратите внимание на то, как схематическая диаграмма использует сокращение.

Рисунок 14. — Два типа диаграмм.

Рисунок 15 представляет собой таблицу электрических и радиосимволов. Когда вы изучаете схему диаграммы в этой книге, вам будет полезно найти любые символы, которые вы не распознавать. ПОЛНАЯ ЦЕПЬ Все обычные электрические цепи являются ПОЛНЫМИ цепями. У них один путь от источника питания к нагрузке и другой путь от источника питания. нагрузка на источник питания.Изучите A и B на рисунке 16. Обратите внимание, что «батарея источник силы. Следуя стрелкам по цепи, вы обнаружите, что ток, покидающий отрицательную клемму, течет по проводу к лампе, через лампу ко второму проводу и обратно через этот провод к положительной клемме батарея. Этот путь тока — ПОЛНАЯ ЦЕПЬ. Вы можете спросить: «Почему это необходимо обеспечить обратный путь для тока, чтобы вернуться в батарею? » Подумайте, что было бы, если бы не было обратного пути.Текущий будет наваливаться вверх на лампе, пока потенциал лампы не сравняется с потенциалом аккумулятор. Это займет всего долю секунды. С равными потенциалами на лампе и Аккумулятор, НЕ будет течь ток — и лампа не загорится. Очевидно, что все цепи, по которым проходит ток, должны быть ПОЛНЫМИ путями от ИСТОЧНИКА ДО НАГРУЗКИ И НАЗАД К ИСТОЧНИКУ.

Рисунок 15. — Электрические и радио символы.

Рисунок 16.- Направление тока *.

На рисунке 17 показана схема, в которой на лампу и двигатель подается питание. от генератора. Обратите внимание, что ток течет с отрицательной стороны генератора, сначала через лампу, а затем через двигатель, и замыкает цепь, возвращаясь к положительной стороне генератора.

В только что описанных схемах используются два разных источника разности потенциалов. были использованы-генератор и аккумулятор.Почти в каждой схеме используется либо генератор или аккумулятор как источник потенциала. Либо один обеспечивает силу, которая движет ток через цепь. Генераторы и батареи соответствуют насосам в водная система.

Генератор или аккумулятор создают НЕПРЕРЫВНЫЙ высокий отрицательный потенциал на своем отрицательный терминал. В то же время создается НЕПРЕРЫВНЫЙ высокий положительный потенциал. вверх на положительном выводе. Эти два потенциала вызваны электроном. Перенос ВНУТРИ батареи или генератора.С этими высокими потенциалами на обоих концах, цепь находится в напряженном состоянии — слишком много электронов на отрицательном выводе и слишком мало электронов на положительном выводе. Это напряжение можно снять только путем возврата к нейтральному (нормальному) условию — равному количеству электронов и равному количество протонов на обоих терминалах. Поскольку в электрическом контур — идет НЕПРЕРЫВНЫЙ ПОТОК ЭЛЕКТРОНОВ ПО ЦЕПИ ОТ ОТРИЦАТЕЛЬНОЙ ТЕРМИНАЛ К ПОЛОЖИТЕЛЬНОМУ ТЕРМИНАЛУ.Это правило вы будете использовать при отслеживании ток во всех электрических цепях в этой книге.

Принципиальные схемы — это «чертежи» электрика и радиотехника. Они направляют его при установке, эксплуатации и ремонте электрического оборудования. На рисунке 18 показаны шесть различных схем. Практикуйтесь на них. Обращаясь к таблице На рисунке 15 вы должны понимать следующие факты о каждой цепи —

2.Тип потенциального источника.

3. Виды нагрузок на. схемы.

4. Схемы подключения.

5. Цепи управления (переключатели, предохранители и т. Д.).

6. Характеристики кабеля — (узнаете позже).

7. Специальные устройства (особенно в радиосхемах).

Неисправности цепи

Электрические цепи в хорошем рабочем состоянии называются ЗАКРЫТЫМИ или ЗАКРЫТЫМИ цепями.Ваши схемы всегда должны быть в хорошем рабочем состоянии. Вы можете установить и поддерживать ваши схемы должным образом, уделяя разумное внимание вашей работе. Не позволяйте неисправность цепи будет ВАШЕЙ ошибкой!

Неисправности цепи — это все, что вызывает ОТКРЫТИЕ, ЗАЗЕМЛЕНИЕ или КОРОТКОЕ Цепь. Следствием этих неисправностей является уменьшение или отключение тока или увеличение это превышает безопасное значение. Иногда — не часто — ошибки неизбежны. В ваших схемах, убедитесь, что ВСЕ неисправности НЕИСПРАВНЫ.

Открытые схемы

Обрыв цепи может возникнуть из-за грязных или ослабленных соединений, а также из-за небрежности или небрежности. трассы кабеля. Правильные соединения выполняются с помощью зажимных столбов, вилок, переключателей, гнезда, а также паяные или фрикционные проушины. Сращивание НЕ разрешается на борту военно-морского флота. судов, за исключением реальной аварийной ситуации (устранение повреждений).

Хорошие соединения — ЧИСТЫЕ и ПЛОТНЫЕ. Если соединение идеально чистое, контакты на большой площади и плотно прилегает к цепи, НЕ ДОБАВЛЯЕТСЯ СОПРОТИВЛЕНИЯ.Но если соединение загрязнено, имеет небольшую площадь контакта или ослаблено, значительное количество в цепь вводится сопротивление. Обычно грязь — масло, коррозия или пыль — это хороший изолятор. Если такая изоляция остается между двумя соединенными частями цепи, как в B на рисунке 19, может пройти только небольшой ток.

Рисунок 17. — Направление тока при двух нагрузках *.

Рисунок 18. — Практические схемы.

Рисунок 19.- Чистые и грязные контакты.

Рисунок 20. — Ослабленные соединения. (Примечание RF Cafe: снова неверно обозначена цифра 19 в исходном тексте)

Рисунок 21. — Контактное сопротивление.

Избежать грязных соединений можно, потерев соединительные детали деталью. наждачной бумаги или соскребая их тыльной стороной лезвия ножа, пока они не станут яркими. Грязные соединения не являются истинными открытыми, но они классифицируются как открытые, потому что они уменьшить ток.

Возможны неплотные соединения ножей переключателей, пружинных зажимов и болтов. терминалы; а также при аварийных стыках. Плохих соединений можно избежать, если вы руководствуйтесь здравым смыслом. Перед включением питания проверьте соединения во всех точках. схема.

После того, как электрическое устройство проработало некоторое время, могут возникать вибрации. Произошли неплотные связи. Легко заметить неплотное соединение. Это искры, нагревается, и сила тока падает ниже номинального значения.Слабые связи, из-за дугового разряда они представляют опасность пожара и могут вызвать ожог изоляции. На рисунке 20 показано несколько видов неплотного соединения.

При большом увеличении, как на рисунке 21, поверхность проводника выглядит шероховатой. и оборванный. Когда две части схемы соединяются вместе, как на рисунке 21, площадь соприкасающихся поверхностей в месте стыка должна быть большой — помните, только ВЫСОКАЯ ТОЧКИ каждого касания поверхности. Увеличивая контактную поверхность, можно получить больше выступов. прикосновение и сопротивление соединения уменьшается.Припой, потекший в соединение, соприкасается со всеми поверхностями — высокими или низкими. Паяные соединения самые плотные соединения.

Истинный обрыв цепи возникает при обрыве провода или при полном срабатывании соединения. отдельно. Цепь разорвана, ток не течет. Открытие также может быть результатом плохого прокладка кабеля. Кабель не должен иметь перегибов или резких изгибов, которые могут ослабить и сломать.

Короткие замыкания

КОРОТКОЕ ЗАМЫКАНИЕ — это «короткие пути» между двумя выводами генератора или аккумулятор.Представьте себе, что изоляция в кабеле поискового фонаря разрушена. запустить. Два проводника в этом кабеле контактируют друг с другом. Рисунок 22 показывает это схематично. Ток в этой цепи. теперь перемещается от источника к КОРОТКОМУ (точка контакта) и обратно к источнику. Короткий путь предоставил более легкий путь низкого сопротивления.

Ток очень велик, потому что короткое замыкание практически не оказывает сопротивления. к текущему. Этот ток может быть достаточно высоким, чтобы нагреть провода до красного каления, расплавить изоляцию, сжечь генераторы, а иногда и вызвать пожар.Предотвращать повреждение от короткого замыкания, ПРЕДОХРАНИТЕЛЬ вставляется в линию, обычно рядом с генератором или аккумулятор. Предохранитель — это просто кусок металла, плавящийся при довольно низкой температуре. Предохранители рассчитаны на пропускание определенного количества тока. Стандартные текущие рейтинги для предохранителей обычно кратны пяти — 5, 10, 15, 20 и т. д. ампер. 10 ампер предохранитель выдержит любой ток до 10 ампер; но любой ток более 10 ампер будет расплавить металлический предохранитель и разомкнуть цепь.Таким образом, предохранитель, сначала плавясь, предотвращает другие части контура от перегрева. Перегрузки в цепи — слишком много электрические устройства, включенные в ту же цепь, также будут «перегорать» предохранители. Фигура 23 показаны цепь с предохранителем и цепь без защиты. Все флотское освещение цепи защищены предохранителями.

Большинство коротких замыканий случаются случайно. Они возникают, когда вибрация изнашивает изоляцию, когда соленая вода попадает в соединение кабеля, когда тепло тает изоляцию, и когда невнимательность сближает двух проводников.Здравый смысл и разумный уход сведет шорты к минимуму.

Цепи заземления

Заземленные цепи бывают как преднамеренными, так и случайными. Умышленные основания Используется на самолетах и ​​малых моторных катерах. Один вывод аккумулятора или генератора соединяется с фюзеляжем самолета или с двигателем или корпусом ракеты-носителя. Фюзеляж, двигатель или корпус составляют соединение ЗЕМЛИ. Другой терминал источника подключается к нагрузкам, которые также заземлены.Текущий путь идет от источника к нагрузке по проводу и возвращается к источнику через металлический каркас (заземление). Фактически металлический каркас используется как один из двух проводников. Случайный заземление от «горячей» стороны (незаземленная клемма) к каркасу будет коротким кругооборот через самолет или запуск. Конечно, сгорят предохранители.

На штатных кораблях ВМФ силовые цепи не заземлены. Фактически, все схемы периодически проходят испытания для выявления и устранения случайных причин.Опасность кроется в возможности заземления горячей стороны цепей. Результат — короткий схема. Обратите внимание на разницу между преднамеренными и случайными основаниями. на рисунке 24.

Сводка неисправностей цепи

Обрыв, короткое замыкание и случайное заземление либо полностью прерывают цепь. или, по крайней мере, снизить его эффективность. Кроме того, неисправности цепи представляют собой опасность возгорания, а не допускаться на борту корабля. В общем, существует всего несколько причин замыкания неисправности.Просмотрите приведенную ниже таблицу, и вы сможете предотвратить сбои цепи в своей работе.

Неисправности цепи и причины

Причина Неисправность
Грязь и жир плохой контакт, обрыв соединения
Ослабленные проушины и болтовые соединения плохой контакт, обрыв цепи
Тепло шорты, открытое и основание
Изношенная изоляция шорты и шорты
Трение, вибрация, перегибы и зазубрины открывает, шорты и основание
Кислоты и краски Изоляция повреждена, шорты, раскрытие и основание
Перегрузки открывается при нагревании
Соединения для малых площадей нагрев, слабый ток, открывается

Обозначения кабелей

Рисунок 22.- Короткое замыкание.

Рисунок 23. — Незащищенные и защищенные цепи

Рисунок 24 — Умышленное и случайное основание

Чертежи электрических схем всегда содержат группу букв и цифр рядом с каждый проводник. Эти буквы и цифры указывают на тип используемого кабеля. на ходу. Сами кабели несут металлическую или волоконную бирку с такой же маркировкой. буквы и цифры. Первая буква говорит о том, сколько жил в кабеле.«S» обозначает одиночный провод, «D» обозначает двойной провод, «T» обозначает тройной провод, «F» обозначает четыре проводника, а «M» обозначает несколько (подробнее чем четыре) проводников к кабелю. Две буквы «Т» вместе в начале стойки для витой пары, телефона. Средние буквы указывают на использование кабеля. Примеры являются, «LP» для освещения и питания, «RH» для радиовысокого напряжения и «HF» для тепла. и огнестойкий. Последние буквы обозначают внешнее покрытие.«А» означает бронированный, «L» означает свинцовый, «F» — гибкий. Цифры, следующие за буквами, говорят вам две вещи — количество проводников (используется ТОЛЬКО если их больше — чем четыре) и крест площадь сечения каждого проводника в тысячах ЦИРКУЛЯРНЫХ МИЛЬ. Следующая таблица дает вам несколько примеров кабелей для ВМФ. Если вы сохраните систему оценок в имейте в виду, вы сможете распознать ЛЮБУЮ маркировку кабеля.

Маркировка кабелей для военно-морского флота

SLPA-10 Одножильный свето-силовой, бронированный — 10 000 см.
TRHLA-2 Тройной провод, радиоприемник, высоковольтный, с выводами и броней — 2000 см.
FHF A-20 Четыре проводника, жаро- и огнестойкие, бронированные 20 000 см.
МДГА-10-50 Многожильный, размагничивающий, армированный, 10 проводников, 50 000 см. на проводника.
TTHFF-40 Витая пара, телефонная, жаро- и огнестойкая, гибкая, 40 пар.

Глава 4 Викторина

(нажмите здесь)

Опубликовано: 11 мая, 2021

% PDF-1.4 % 791 0 объект > эндобдж xref 791 86 0000000016 00000 н. 0000002089 00000 н. 0000002286 00000 н. 0000002440 00000 н. 0000002471 00000 н. 0000002532 00000 н. 0000002681 00000 н. 0000003366 00000 н. 0000003723 00000 н. 0000003789 00000 н. 0000003946 00000 н. 0000004054 00000 н. 0000004110 00000 н. 0000004166 00000 н. 0000004291 00000 н. 0000004347 00000 п. 0000004443 00000 н. 0000004499 00000 н. 0000004651 00000 п. 0000004804 00000 н. 0000004956 00000 н. 0000005109 00000 п. 0000005262 00000 н. 0000005415 00000 н. 0000005567 00000 н. 0000005721 00000 н. 0000005876 00000 н. 0000006031 00000 н. 0000006187 00000 п. 0000006342 00000 п. 0000006498 00000 н. 0000006653 00000 н. 0000006808 00000 п. 0000006963 00000 н. 0000007118 00000 н. 0000007214 00000 н. 0000007310 00000 н. 0000007406 00000 н. 0000007502 00000 н. 0000007599 00000 н. 0000007694 00000 н. 0000007787 00000 н. 0000007880 00000 н. 0000007974 00000 н. 0000008068 00000 н. 0000008162 00000 н. 0000008256 00000 н. 0000008350 00000 н. 0000008444 00000 н. 0000008540 00000 н. 0000008634 00000 п. 0000008730 00000 н. 0000008824 00000 н. 0000008920 00000 н. 0000009016 00000 н. 0000009110 00000 п. 0000009206 00000 н. 0000009300 00000 н. 0000009395 00000 н. 0000009490 00000 н. 0000009585 00000 н. 0000009680 00000 н. 0000009774 00000 н. 0000009870 00000 п. 0000009964 00000 н. 0000010059 00000 п. 0000010153 00000 п. 0000010248 00000 п. 0000010342 00000 п. 0000010438 00000 п. 0000010532 00000 п. 0000010626 00000 п. 0000010722 00000 п. 0000010818 00000 п. 0000010914 00000 п. 0000011056 00000 п. 0000012158 00000 п. 0000012378 00000 п. 0000013482 00000 п. 0000013694 00000 п. 0000013806 00000 п. 0000014638 00000 п. 0000014745 00000 п. 0000016817 00000 п. 0000002722 00000 н. 0000003344 00000 п. трейлер ] >> startxref 0 %% EOF 792 0 объект > эндобдж 793 0 объект qlJ ֿ \ n> œ ek) / U (

Проектирование платы управления электрооборудованием | Общая техническая информация

Привет, ребята,

На этой странице я покажу вам, как выполнить соединения в электрическом щите, который часто используется в наших домах.

Если вы внимательно изучите соединения, вы также сможете исправить разорванное соединение, когда столкнетесь с этим. Я настоятельно рекомендую вам обратиться к сообщению о подключении ручного переключателя перед просмотром этой страницы.

Итак, если вы посетили страницу подключения ручного переключателя, то поехали!

Здесь у нас есть следующие элементы, которые необходимо подключить, чтобы им можно было легко управлять вручную.

Количество ламп = 2

Количество вентиляторов = 1

Количество 5-контактных разъемов = 1

№регулятора вентилятора = 1

Номер индикатора питания = 1

Количество переключателей = 4

Количество предохранителей = 1

А теперь давайте посмотрим, что мы собираемся делать с этими предметами.

Итак, мы должны расположить наши предметы, как показано на картинке. На изображении выше отсутствуют некоторые элементы, например, предохранитель, индикатор питания и регулятор вентилятора. Мы сделаем это соединение позже.

На изображении выше показан вид спереди электрического щита, который содержит 4 переключателя; первый, второй, третий и четвертый, который управляет вентилятором, лампочкой, другой лампой, 5-контактным гнездом соответственно.

Для того, чтобы установить желаемое соединение для вышеупомянутых элементов, давайте посмотрим на вид сзади, как оно подключено…

Внимательно посмотрите на соединения красного и черного проводов, которые указывают на провод под напряжением и нейтральный провод соответственно. Никогда не присоединяйте красный и черный провода к какой-либо части соединений.

Я думаю, это легко, и вы это поняли.

Узнав о нормальном соединении, пришло время перейти к продвинутому, который включает в себя указанные выше недостающие элементы

Точно так же здесь расположение предметов спереди.

Это называется расширенным подключением, потому что эта электрическая панель управления полна комплектных элементов, которые обычно используются в нашей домашней электропроводке.

Если вы предположили вид спереди, то мы должны выбрать вид сзади…

Вышеупомянутое соединение очень сложное, поэтому внимательно просмотрите его и попробуйте сами.

Я думаю, что это краткие теоретические рекомендации по проектированию платы электрического управления. Уверен, у вас все получится, если вы сами попробуете его у себя дома.

Если у вас возникнут затруднения или проблемы, не стесняйтесь спрашивать меня.

Спасибо.

Как это:

Нравится Загрузка …

ОДНОЛИНЕЙНАЯ СХЕМА КАК ИЗОБРАТЬ ЭЛЕКТРИЧЕСКИЙ УСТАНОВКУ ДОМА

ЧТО ТАКОЕ ОДНОЛИНЕЙНАЯ СХЕМА

Однолинейная схема представляет собой графическое представление электрического установка . Она отличается от других схем, поскольку в случае однолинейной схемы каждая цепь представлена ​​одной линией , в которой представлены все проводники соответствующего участка.

ОСНОВНЫЕ ЭЛЕМЕНТЫ ОДНОЛИНЕЙНОЙ СХЕМЫ

Следуя стандартной электрической символике, основные элементы установки будут представлены на однолинейной схеме. В некоторых из них можно было найти даже более сложные элементы, более характерные для более сложных схем.

РАСПРЕДЕЛИТЕЛЬНАЯ ПАНЕЛЬ

Распределительная панель содержит элементы для защиты и контроля электроснабжения дома . На этой панели организована электрическая система и распределяется мощность установки.

На однолинейной схеме электрическая панель обычно представлена ​​прямоугольником с пунктирной линией.

ЦЕПИ

В обычном доме обычно не менее 5 цепей. На однолинейной схеме мы увидим их в виде линии, в которую включены все проводники.

Верхний конец обычно соответствует началу схемы. Нижний конец обычно подключается к другой цепи или к приемнику.

  • Первая цепь: управляет освещением (интенсивность 10 А)
  • Вторая цепь: показывает большинство вилок (ток 16 А)
  • Третья цепь: представляет розетки для кухни и ванной (интенсивность 16 А)
  • Четвертый контур: для духовки (интенсивность 25А)
  • Пятый контур: объединяет стиральную машину и стиральные машины (интенсивность 20А)
ЭЛЕКТРИЧЕСКИЕ ПРИЕМНИКИ

Электрические приемники представляют все подключенные устройства, являются ли они тепловыми, например, плиты, утюги, духовки и т. д.; или светящиеся, такие как лампы

СИЛОВОЙ ВЫКЛЮЧАТЕЛЬ

Функция силового автоматического выключателя заключается в прекращении подачи электричества в установку в случае короткого замыкания или перенапряжения. Этот переключатель контролирует, чтобы максимально допустимая нагрузка на установку не превышалась.

УСТРОЙСТВО ОСТАТОЧНОГО ТОКА

Его функцию можно спутать с функцией IGA, поскольку устройство остаточного тока также отключает установку, но по другой причине . Устройство остаточного тока отвечает за защиту установки от возможных утечек тока.

В случае отключения установки это произойдет из-за утечки на землю или неисправности какого-либо электрического прибора.

МИНИАТЮРНЫЙ ВЫКЛЮЧАТЕЛЬ (MCB)

Автоматические выключатели несут ответственность за защиту электрических цепей от перегрузок и коротких замыканий. . У них есть:

  • Магнитный триггер, который срабатывает, когда ток превышает его номинальное значение.
  • Тепловой разъединитель, отключающий электрический поток в случае его перегрева.
РАСПРЕДЕЛИТЕЛЬНАЯ ПЛАТА

Она находится в распределительном щите, где расположены элементы безопасности, управления и защиты. Обычно это близко к входной двери в дом

Схемы подключения и заземление: Электрооборудование Онлайн

Заземление имеет первостепенное значение, и каждая розетка и все кабели должны иметь систему заземления и должным образом подключаться как к розетке, так и к устройствам по мере необходимости.

Электрические схемы на нашем сайте обычно не включают заземления, но это не умаляет важности заземления.Я делаю это, чтобы не загромождать электрические схемы и сосредоточиться на том, как заставить схему работать должным образом. Заземляющие провода — это всегда первых соединений, которые вы выполняете при подключении устройств или добавлении цепей, и должны быть последними , которые вы отключаете при удалении устройства.

ЦИК определяет заземление как:

«Постоянный и непрерывный токопроводящий путь к земле с достаточной амплитудой, чтобы нести любой ток короткого замыкания, который может быть наложен на нее, и с достаточно низким импедансом, чтобы ограничить рост напряжения над землей и облегчить работу защитных устройств в схема».

Всегда сверяйтесь с приведенными здесь электрическими схемами, чтобы увидеть, как следует выполнять заземляющие соединения как с розеткой, так и с устройствами.

Типичные способы подключения к электрической розетке или розетке.

Вот типичная электрическая схема коммутационного устройства и соединений розеточной коробки.

Вот типовая электрическая схема подключения осветительной розетки, коробки и светильника.

Пожалуйста, обратитесь к этим схемам подключения, чтобы получить правильные сведения о том, как следует выполнять заземляющие соединения, прежде чем проверять электрическую схему, на которую вы должны ссылаться для конкретного сценария домашней электропроводки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *