Как обозначается на схеме узо: Обозначение УЗО на схеме по ГОСТ. Как обозначается УЗО на однолинейной схеме

Содержание

Обозначение УЗО на схеме по ГОСТ. Как обозначается УЗО на однолинейной схеме

Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется обозначение узо на схеме.

Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать

электрические схемы, но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

Обозначение УЗО на однолинейной схеме

Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным.

На какие нормативные документы следует ссылаться?

Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

  1. — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
  2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

Графическое обозначение УЗО на схеме

Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

Или к примеру УЗО от Schneider Electric:

Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

Как обозначается дифавтомат на схеме?

По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

Буквенное обозначение УЗО на электрических схемах

Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специальногобуквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах.

Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – «дифференцирующий».

Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

Какие можно сделать выводы из вышеописанного?

Ввиду того что обозначение УЗО и дифференциальных автоматов по ГОСТ отсутствует, информация рассмотренная в данной статье, не относится к нормативным документам обязательным для исполнения, а является всего лишь РЕКОМЕНДАЦИЕЙ. Каждый проектировщик может изображать на схемах эти элементы по своему усмотрению. Для этого нужно всего лишь привести условно графические обозначения (УГО) элементов, их расшифровку и пояснения к схеме. Все эти действия предусматриваются в ГОСТ 2.702-2011.

Как обозначается УЗО на однолинейной схеме — пример реального проекта

Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

Розеточные линии на схеме подключаются через диф.автоматы.

Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

Понравилась статья — поделись с друзьями!

 

Автоматический выключатель на схеме: буквенное обозначение по ГОСТу

На чтение 9 мин. Просмотров 425 Опубликовано Обновлено

Для обустройства электроснабжения необходимы проекты чертежей. Чтобы разобраться в чертеже и прочитать его, нужно знать условные обозначения. Автоматический выключатель на схеме указывают по-разному, что часто приводит к недоразумениям, ошибкам при сборке электрощитов и монтаже проводки.

Условные обозначение электрических элементов и виды схем

Выключатель автомат

Первоначальный вопрос, с которым обычно сталкивается каждый электрик, — проектная документация помещения или объекта, который необходимо электрифицировать. Прежде чем приступить к монтажу оборудования, квалифицированный специалист должен ознакомиться с сопровождающими документами.

Оборудование и элементы на схеме могут обозначаться как буквенным, так и графическим изображением. Чертежи разрабатываются в соответствии с ГОСТами и правилами маркировки оборудования и элементов на чертежах и планах. Подробное описание и требования к электрическим схемам приводятся в ГОСТе 2.702-2011 ЕСКД. Кроме графических и буквенных обозначений на схемах проставляют номинальные размеры.

Принципиальная схема квартирного электрощитка

Есть много типов различных схем. В электрике чаще всего используют три основных вида. Функциональные отображают основные узлы устройства, без подробной детализации. Они выглядят как набор отдельных блоков, связанных между собой определенным образом. Схема дает общее представление о работе объекта.

Принципиальная схема содержит подробные указания для каждого элемента, его контакты и связи. Она может описывать как отдельное устройство, так и электросеть. На однолинейных схемах указывают силовые цепи. Способ управления и контроль описывают на отдельном листке. Если устройство не сложное, все размещают на одном документе.

На монтажных схемах указывают элементы и точное их расположение. Если это проводка в квартире или доме, обозначают место установки выключателей, светильников, розеток. Также проставляют расстояния и номиналы. Указывают положение деталей, порядок и способ их соединения.

Устройство защитного отключения (УЗО) и дифавтомат на схеме не имеют определенного геометрического начертания. Для их графического выполнения используют изображение блоков и динамических блоков. Каждому устройству на схеме присваивают буквенную маркировку и указывают позиционный номер.

Кроме того, наносят параметры элементов, которые есть в чертеже. Расписывают основные данные об элементе, чтобы не ошибиться при монтаже и подобрать соответствующее устройство. Эти условные знаки применяют для составления чертежей электроснабжения, силового оборудования и электрического освещения. А также в принципиальной однолинейной схеме электрощитов.

Обозначение автоматического выключателя на схеме

Трехполюсной автоматический выключатель

Условное графическое обозначение автомата на схеме обусловлено ГОСТом 2.755-87 ЕСКД, буквенно-цифровое – ГОСТ 2.710-81 ЕСКД. Особых требований к маркировке нет, поэтому электромонтеры часто используют собственные значения и метки. Можно встретить документацию, когда определение коммутационного аппарата отличается в разных проектах.

Каждый проектировщик, выполняя схему, может изобразить УЗО на свое усмотрение. Достаточно в пояснениях к схеме указать УГО (условные графические обозначения) и их расшифровку.

В зависимости от характеристик устройства элементы имеют разные буквенные символы, а также следующие графические обозначения на электрических схемах.

Автоматические выключатели рекомендуется позиционировать как, QF1, QF2, QF3. Рубильники разъединители – QS1,QS2,QS3. Предохранители на схемах показывают как FU с порядковым номером, где кодировка буквы Q расшифровывается как выключатель или рубильник силовых цепей, а F – защитный. Эта комбинация вполне применима не только к обычным автоматам, но может быть обозначением диф автомата на схеме.

Для УЗО используют комбинацию QSD, обозначение дифференциального автомата на схеме выглядит как QFD.

Обозначение УЗО на однолинейной схеме

Это вид выключающего аппарата, в функции которого входит разъединение сети или ее части, когда произошло превышение определенной отметки дифференциального тока. Устройство способствует повышению электробезопасности, предотвращает возникновение чрезвычайных ситуаций, как в производственной сфере, так и дома. Схема подключения УЗО проста, но недочеты при монтаже могут привести к серьезным неприятностям.

Так можно обозначить УЗО на принципиальной схеме.

УЗО вместе с другими элементами в проектной документации чаще всего выполняют условно, что затрудняет расшифровку принципа работы как всей схемы, так и отдельно взятых элементов. Изображение защитного устройства может выглядеть как обычный выключатель. Но на нелинейной схеме он представляет собой два параллельно расположенных выключателя. На однолинейной –  элементы, провода и полюса изображаются символически.

Подключение нулевого и заземляющего провода после УЗО

Любое схематическое изображение должно быть правильно составлено, а в дальнейшем прочитано. Самый маленький изъян может привести к неисправности УЗО или всей системы. Важно учитывать следующие часто встречающиеся ошибки:

  • Ноль и заземление соединяются после защитного устройства. Если схема неправильно интерпретирована, нейтраль может быть соединена с открытой частью электроустановки или с нулевым защитным проводником.
  • Если устройство подключено неполнофазно, возникает ложное срабатывание автомата.
  • Неправильное соединение проводников в розетках приводит к срабатыванию устройства, даже если в розетку ничего не включено.
  • Соединение нулевых проводников двух автоматов приводит к неконтролированным отключениям.
  • Распространенной ошибкой является ситуация, когда перепутаны фазы и нули, относящиеся к разным устройствам.
  • Несоблюдение полярности ведет к движению токов в одном направлении. Перед установкой следует внимательно ознакомиться с расположением клемм.

Всегда выполняется предварительная схема, с учетом возможных ошибок, происходящих в сети. Если документ составлен правильно, работа защитного устройства приносит эффект.

Важно помнить о технике безопасности. Необходимо периодически проводить осмотр проводов, в случае их повреждения УЗО срабатывает и прекращается подача электроэнергии. Поэтому с ремонтом лучше не медлить.

Пример реального проекта

Трехфазное устройство защитного отключения (УЗО)

Однолинейная принципиальная схема (ОПС) не что иное, как чертеж плана, например, квартиры. На нем должны быть указаны распределительные группы. Для этого необходимо измерить все стены и выполнить чертеж с соблюдением масштаба. Понадобится несколько копий, что бы на каждой изобразить отдельную группу.

Распределительные группы – это точки, которые будут подключены к одному автомату квартирного щитка. Всю проводку нельзя подключать к одной группе. В противном случае понадобится мощный кабель, который будет способен выдержать нагрузку всех приборов.

В зависимости от количества комнат и наличия энергопотребляющих устройств распределительные группы могут выглядеть следующим образом.

  • освещение комнаты, прихожей и кухни;
  • свет и розетки в туалете;
  • розетки в жилой комнате;
  • розетки в коридоре и кухне;
  • электрическая плита.

Помещения с повышенной влажностью рекомендуется подключать отдельной группой, для которой необходима установка УЗО. Если в квартире есть маленькие дети, защитное устройство подключают на каждую группу.

Принципиальная, или однолинейная схема необходима для правильного подключения щитовой и распределительных групп.

В данном примере отражено подключение к трехфазному питанию. Всю квартиру питает вводный кабель из 5 жил, сечением 10 мм2. Фазы пронумерованы, как L1, L2, L3, заземление – PE, которое замыкается с нолем. Вводный автомат (ВА) отключает все автоматы групп, которые маркируются таким же способом.

Количество фаз определяется по количеству черточек на схеме. Однофазная – \,  или трехфазная – \\\. Маркировка провода ВВГ НГ говорит о том, что он с негорящей изоляцией, трехжильный с сечением 1,5 мм2.

Чертеж дает возможность определиться с количеством и маркой нужных защитных устройств. Подсчитать число выключателей и розеток, а также, сколько метров кабеля потребуется.

Все соединения проводов должны находиться в распределительных коробках. Рекомендуется для каждого помещения отдельная коробка. Если, например, в кухне располагается газовый котел и другие электроприборы, потребуются две распределительные коробки.

Особых требований по установлению розеток и выключателей не существует. Их устанавливают так, чтобы было удобно. На кухне и на рабочем месте розетки размещают над столом.

Стационарную бытовую технику, бойлеры, вытяжки, сушилку для полотенец подключают сразу через клеммники. Интернет и телевизионные розетки можно объединять с электрическими.

Обозначение дифференциального автомата на схеме

Дифференциальный автомат совмещает в одном аппарате устройство защитного отключения и автоматический выключатель, чем и отличается от УЗО. В этом случае графическое изображение на схеме выглядит следующим образом.

Если для УЗО принимаются буквенно-цифровые обозначения Q1, то для АВДТ (автоматический выключатель дифференциального тока) – QF1. Буквы говорят о функциях аппарата, а цифры указывают на его порядковый номер в схеме. Другая буквенная комбинация QF1D, где D обозначает «дифференциальный».

Обозначения УЗО

Основной характеристикой таких устройств является номинальный рабочий ток, при котором автомат остается включенным продолжительное время. Эти показатели строго стандартизированы, а ток может иметь значения: 6 Ампер; 10; 16; 25; 50 и т.д.

Другая важная характеристика – это быстродействие. Токовый показатель обозначается буквами B, C, D, стоящими перед значением номинального тока. Например, комбинация C16, говорит, что автомат быстродействия C, рассчитан на номинальный ток в 16 Ампер.

Дифференциальный допустимый показатель укладывается в следующий ряд: 10; 30; 100; 500 миллиампер. На корпусе прибора обозначается знаком «дельта» с цифрой, соответствующей току утечки.

Эксплуатационные возможности автомата рассчитаны на номинальное напряжение в 220 Вольт для однофазной цепи и 380 для трехфазной.

Дифавтоматы различают по типам, в зависимости от тока утечки и маркируются такими буквенными индексами:

  • A – реагирующие на утечку переменного или постоянного пульсирующего тока;
  • AC – рассчитанные на срабатывание при утечке с постоянной составляющей;
  • B – тип устройства, включающий обе предыдущие возможности.

Эта характеристика может маркироваться небольшим рисунком, обозначающим вид тока.

Устройства работают по селективному признаку, обладают способностью задержки по времени срабатывания. Это обеспечивает выборочное отключение прибора от сети и устойчивость системы защиты. Такая характеристика обозначается буквой S и дает задержку в 200–300 миллисекунд. Маркировка G соответствует 60–80 миллисекундам.

Так как пусковые токи превышают рабочее значение, защита устроена так, что электромагнитный независимый расцепитель отключает устройство в том случае, когда ток в несколько раз превышает номинальный размер.

В нормативных документах содержится много специальных шифров и знаков. Большая их часть в быту практически не применяется. Для правильного чтения электрической схемы нужно знать основные обозначения и учитывать некоторые нюансы. Один из них — страна производитель оборудования, кабелей или проводки, так как существует разница в маркировке и условных обозначениях, что затрудняет правильную трактовку чертежа.

Диф автомат обозначение на схеме. Обозначение узо на однолинейной схеме

Действующие государственные стандарты (ГОСТ) не регламентируют графическое и буквенное обозначение УЗО (устройства защитного отключения), отсутствуют дополнительные графические символы, позволяющие точнее описать основные функции и свойства стандартного оборудования.

УЗО является одним из основных элементов электрических однолинейных схем, поэтому производителями модульного оборудования и проектировщиками принято следующее условное обозначение для него:

Такое схематическое отображение устройств защитного отключения, наиболее точно показывает его принцип работы и отличает от другого модульного оборудования, если знать, что такое УЗО и как оно работает.

При этом, так как государственные стандарты не регламентируют вид УЗО, обязательно на схемах и планах нужно показывать блок с условными графическими обозначениями (УГО), в котором давать расшифровку и пояснения к графическим элементам, даже если решено использовать иной от представленного вид. Возможность самим разработать условные обозначения, если их нет в стандартах указана в ГОСТ 2.702-2011.

Буквенная маркировка УЗО — QF, если пользоваться правилами их формирования по ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах». Это полностью совпадает с обозначением автоматического выключателя и некоторых других модульных устройств, делая однолинейные схемы менее читаемыми и понятными.

Многие вводят свои буквенные обозначения: Q, QFD, QDF и т.д. которые, если опираться на актуальные стандарты, неверны, не раскрывают функции УЗО, но помогают отличать от других элементов защитной автоматики на однолинейных схемах.

Это бывает важно, особенно если на схеме одновременно присутствуют УЗО, и дифавтоматы. Их графические обозначения похожи и не всегда их легко отличить друг от друга.Учитывая, что проектировщики электроустановок нередко максимально упрощают применяемые графические символы, опуская важные детали.

Рассмотрим условное Обозначение дифференциального автоматического автомата на однолинейной схеме и сравним его с УЗО.

rozetkaonline.ru

Если вы решили заменить проводку в квартире, то для начала необходимо составить подробную схему. Для того, чтобы правильно составить схему проводки, необходимо знать, как на схеме должны отображаться все ее основные элементы. Помимо этого, в данной статье будут рассмотрены некоторые типовые схемы проводки в квартире.

Разновидности схем проводки

При собственноручной замене проводки в квартире вам понадобится два варианта схемы – электромонтажная и принципиальная.

Схема, на которой показаны основные электрические связи, существующие между всеми элементами, которые изображены с помощью специальных условных графических и буквенно-цифровых обозначений, называется принципиальной схемой. Принципиальная схема чаще всего изображается однолинейной.

Однолинейной схемой называют такую схему, на которой все фазные провода отображены всего одной линией и не отображается нулевой проводник, а защитные аппараты и нагрузки изображены схематично, без указания схемы их подключения.

На электромонтажной схеме на план квартиры, который изображается в масштабе, наносят все обозначения. На электромонтажной схеме обязательно должно быть указано точное прохождение всех линий, расположение квартирного щита, выключателей, монтажных коробок, освещения и розеток.

Условные обозначения, используемые на схемах проводки для квартиры

Для правильного составления схемы проводки, необходимо знать обозначения различных элементов. Все эти обозначения нормируются ГОСТами и называют их условными графическими обозначениями.

Вот два ГОСТа, которые стоит изучить перед составлением схемы проводки: ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и ГОСТ 21.614-88 «Изображения условные графические электрооборудования и проводок на планах».

Обозначения, которые применяются на принципиальных схемах

Автомат или выключатель автоматический (ГОСТ 2.755-87). Он обозначается буквами QF.

УЗО, дифавтомат. Обозначается буквами QF.

Электрический счетчик активной мощности (ГОСТ 2.729-68). Обозначается буквами PI.

Силовой щит (ГОСТ21.614-88).

Лампочка накаливания (ГОСТ 2.732-68). Обозначается буквами EL.

Обозначения, которые применяются на электромонтажных схемах

Все данные по этим обозначениям можно найти в ГОСТ 21.614-88.

Накладная розетка, имеющая защитный контакт.

Розетка со скрытой установкой, имеющая защитный контакт.

Примеры схем проводки в квартире

Первая из предложенных схем, является самой простой однолинейной схемой для однокомнатной или двухкомнатной квартиры. Питание квартиры осуществляется от одной фазы через этажный щит. Помимо этого, в квартиру заводится защитное и рабочее заземление с этажного щита. После этого идет двухполюсный вводный автомат, который отключает ноль и фазу. Согласно правил (п.1.5.36 ПУЭ), автомат должен быть установлен до счетчика электроэнергии – «Для того, чтобы можно было безопасно устанавливать и, по необходимости, заменять счетчики в сетях, имеющих напряжение до 380 В, необходимо предусмотреть возможность отключать счетчик с помощью установленных до него предохранителей или коммутационных аппаратов на расстоянии не больше 10 метров. Должна быть возможность снимать напряжение со всех фаз, присоединенных к счетчику».

За счетчиком должна устанавливаться шина, к которой подключаются автоматы освещения и плиты, а также розетки через дифавтомат (УЗО).

Вторая схема несколько сложнее и предназначена для двухкомнатных и трехкомнатных квартир. Такая схема отличается тем, что розетки запитываются через два двухполюсных дифавтомата (УЗО). Благодаря этому для комнат образуется отдельная линия питания и отдельная линия для кухни, туалета, коридора и ванной. На данной схеме электрическая плита запитывается через двухполюсный дифавтомат (УЗО). Делать это необязательно, но желательно, так как это повысит безопасность от попадания под так называемое косвенное напряжение.

Выше показана схема, которая выполнена с обозначением рабочего и защитного заземления. Данная схема является более подробным вариантом предыдущей схемы.

postroy-sam.com

Схема проводки в квартире | Всё для Вашего дома

Первым шагом при смене проводки в квартире является составление схемы. Для составления схемы необходимо познакомиться с тем как отображаются основные элементы на схеме. Так же в этой статье будут приведены несколько типовых схем проводки в квартире.

Виды схем проводки в квартире

При самостоятельно смене проводки в квартире понадобятся два вида схем: принциаиальная и электромонтажная схема.

Принципиальная схема – это схема показывает основные электрические связи между элементами, изброжённых при помощи специальных буквенно-цифровых и условных графических обозначений (УГО). Обычно принципиальная схема изображается однолинейной.

Однолинейная схема – это такая схема, на которой фазные провода отображаются одной линией, нулевой проводник не отображается, а нагрузки и защитные аппараты показаны схематично без схемы их подключения.

Электромонтажная схема – на такой схеме все обозначения наносят на план квартиры, который в свою очередь выполняется в масштабе. Обычно на электромонтажной схеме показано точное размещение квартирного щита, монтажных коробок, выключателей, розеток, освещения и прохождение всех линий.

Условные обозначения на квартирных схемах проводки

Для того чтобы правильно составить схему, нужно знать как обозначаются различные элементы. Эти обозначения называются условными графическими обозначениями (УГО) и нормируются ГОСТами.

Один из них ГОСТ 21.614-88 «Изображения условные графические электрооборудования и проводок на планах». Так же стоит изучить ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах».

Ниже приведены УГО основных элементов, которые понадобятся Вам при составлении схемы проводки в квартире.

Обозначения, применяемые на принципиальных схемах

Автоматический выключатель, автомат (ГОСТ 2.755-87). Буквенное обозначение – QF.

Дифавтомат, УЗО. Буквенное обозначение – QF.

Счётчик электрический активной мощности (ГОСТ 2.729-68). Буквенное обозначение – PI.

Щит силовой (ГОСТ 21.614-88).

Лампа накаливания (ГОСТ 2.732-68). Буквенное обозначение – EL.

Обозначения, применяемые на электромонтажных схемах

Все эти обозначения взяты из ГОСТ 21.614-88.

Монтажная коробка, осветительная коробка.

Выключатель накладной.

Выключатель скрытой установки.

Розетка накладная с защитным контактом.

Розетка скрытой установки с защитным контактом.

Пример типовых схем для квартирных проводок

Первая из представленных схем, это простейшая однолинейная схема для одно- или двухкомнатной квартиры. Поитание осуществляется через этажный щиток от одной фазы, так же с этажного щитка в квартиру заводится рабочее и защитное заземление. Далее следует вводный двухполюсный автомат, отключающий фазу и ноль. Вводный автомат устанваливается до щётчика электрической энергии согласно п.1.5.36. ПУЭ, который гласит:

«Для безопасной установки и замены счетчиков в сетях напряжением до 380 В должна предусматриваться возможность отключения счетчика установленными до него на расстоянии не более 10 м коммутационным аппаратом или предохранителями. Снятие напряжения должно предусматриваться со всех фаз, присоединяемых к счетчику».

За счётчиком распологается шина, к которой подключены автоматы плиты и освещения, а так же розетки через УЗО (дифавтомат).

Следующая схема немного сложнее и больше подходит для двух- и трёхкомнатных квартир. Эта схема отличается тем, что розетки запитаны через два двухполюсных УЗО (дифавтомата), таким образом, обеспечивается отдельная линия питания для комнат, и отдельная для ванной, туалета, кухни и коридора. Электрическая плита на этой схеме запитана через двухполюсное УЗО (дифавтомат), это делать не обязательно, но всё же желательно, для обеспечения повышенной безопасности от попадания под косвенное напряжение.

Защита проводки от перепадов напряжения требует использования определённых приборов. Дифференциальный автомат является примером того, как могут сочетаться функции контроля и защиты от перенапряжения и утечки тока.

Что это такое

Дифференциальный трехфазный или однофазный автомат – это устройство, предназначенное для защиты проводки от «потери» превышения максимально допустимых показателей сети. В зависимости от потребности он может работать в режиме УЗО (защищает от удара током) или как обычный автоматический выключатель (в таком случае он отключает напряжение в сети).

Прибор состоит из двух конструктивных частей: контрольной и защитной. Контрольная или рабочая часть является простым выключателем напряжения. В зависимости от типа устройства он может быть двухполюсный или четырёхполюсный. В некоторых моделях используется однополюсный выключатель.

Контрольная часть работает по системе УЗО. При наличии утечки, чтобы защитить бытовую и прочую технику и рабочего при поиске и устранении проблемы, нужно полностью отключить питание. Этот модуль работает в комплексе с рабочим. Происходит последовательное отключение рабочей и контрольной частей диф автомата.

Отличие дифференциального автомата от УЗО заключается в том, что защитное устройство не предназначено для защиты оборудования от перенапряжения или прочих проблем сети. В это же время, 1-, 2-, или 4-полюсный вариант помогает защитить не только рабочих от дифференциального тока, но и технику от коротких замыканий.


Принцип работы

Для того чтобы электрический дифференциальный защитный автомат мог контролировать и распознавать ток, в нем встроен специальный мини-трансформатор. Эта деталь срабатывает, если на питающих проводниках ток поступающий и исходящий, имеют разные показатели. Если же показатели равны – то проблем с проводниками нет.


Фото – принцип работы

В сердечнике трансформатора эти токи образуют магнитные направленные потоки. От их направления соответственно зависит ток вторичной обмотки. Если проводники «упускают» электричество, то на этой катушке ток не будет равняться нулю и сработает магнитоэлектрический переключатель.

Принцип работы дифференциального автомата основан на постоянном сравнении входящих и исходящих направленных потоков, поэтому проверить его очень легко. Если дотронуться к фазному проводнику – то баланс магнитного поля нарушится, и защелка сразу же сработает для отключения напряжения.

Видео: устройство защитного отключения

Как подключить автомат

Очень удобным является то, что схема подключения дифференциального автомата очень похожа на монтаж защитного устройства. Более того, многие электрики рекомендуют устанавливать в сеть также УЗО, но только после дифа, чтобы обеспечить максимальную безопасность.


Фото – пример подключения

Перед тем, как подключить дифференциальный защитный автомат, нужно знать самое главное правило: к устройству подключается фаза и нейтраль только той электрической цепи, которую нужно защищать. В противном случае работа прибора будет некорректной. Это очень важно, потому что ноль после нельзя будет объединить с другими нейтральными кабелями.

Пошаговая инструкция, как выполняется установка и подключение дифференциального автомата Шнайдер Электрик, ИЭК и прочих:

  1. Монтаж осуществляется немного выше линии проводки. В большинстве случаев для этого используется дин-рейка;
  2. Провода подключаются последовательно, при этом строго следите за тем, чтобы не соединять кабели разных цепей. В противном случае работа селективной схемы будет невозможна;
  3. Все металлические выводы нужно заземлять;
  4. После окончания монтажа производится контрольная проверка.

Чем отличается селективная схема от не селективной? У селективного дифференциального автомата (скажем, Schneider Electric, Legrand, IEK или АВВ) обозначение на схеме помечается буквой S (С). Это говорит о том, что при проблеме в одной контролируемой цепи он отключает только её.

В это же время, не селективный автомат (DPN N Vigi, EKF и некоторые модели Декрафт) выключит все цепи, независимо от того, в какой именно утечка.

Как выбрать устройство

Перед тем, как купить дифференциальный автомат, нужно обязательно сделать выбор модели, которая подойдет по всем параметрам Вашей сети. В первую очередь, нужно рассчитать количество ампер. Для этого нужно вычислить суммарную мощность всех приборов одной определённой цепи, после этого разделить полученное число на напряжение сети. Например, если у Вас в цепь включены приборы с мощностью 5 кВт, то уравнение будет выглядеть так:

5 кВт = 5000 Ватт / 220 Вольт = 22, 7 А.

Далее, нужно выбрать самый близкий в большую сторону по номиналу прибор. В нашем случае это 25 А. Аналогично производится расчет дифференциального автомата на 16А (скажем, Elcds С 16 или DS-16), на 12 (АД12), 28 (АД-30) и т. д. Желательно всегда брать немного превышающий расчеты, прибор – это обеспечит дополнительную защиту.

Также очень важна маркировка автомата, она помогает отличить дифференциальный прибор от УЗО, определить его назначение и спектр действия. Обозначение может отличаться в зависимости от производителя, но основные данные должны быть указаны на корпусе устройства. Это номинальное напряжение, сила тока и максимальный показатель тока замыкания для отключения электричества. Эти же характеристики обязательно включает в себя паспорт и сертификат качества.


Чаще всего условное обозначение дифференциального автомата выглядит так (на примере модели ABB):

AC-C 6P 60A/40mA тип 6M:

  1. AC-C – автомат селективный;
  2. 6P – трехфазный четырехполюсный автомат;
  3. Максимальный ток 40 Ампер;
  4. Может обнаружить ток утечки размером в 40 Ампер;
  5. 6M – размер устройства. Этот пункт позволяет установить прибор на дин-рейке.

Нужно отметить, что на российских автоматах маркировка немного другая. Указывается сразу максимально допустимый ток без шифрований. Скажем, СВДТ-60 – это значит, что максимум разрешен ток 60 Ампер.

Цена дифференциальных автоматов зависит от марки и номинальных характеристики. Чем выше показатели – тем дороже будет стоить прибор. Сейчас популярны модели Hager ACA (Германия), Siemens, Moeller, и Легранд. Из отечественных аналогов это АВДТ и СВДТ. Стоимость устройств варьируется от нескольких сотен до тысячи, на неё влияют номинальные показатели.

Пример расчета УЗО.

Обозначение УЗО.

Схема подключения УЗО.

Подключаем к клемме L фазу, к N

Схема УЗО в квартире.

Рис. 1 Схема УЗО в квартире.

Установка УЗО значительно повышает уровень безопасности при работе на электроустановках. Если УЗО обладает высокой чувствительностью (30 мА), то при этом обеспечивается защита от прямого контакта (прикосновения).

Тем не менее, установка УЗО не означает от выполнения обычных мер предосторожности при работе на электроустановках.

Кнопку тест необходимо нажимать регулярно, как минимум один раз в 6 месяцев. Если тест не срабатывает, то надо задуматься о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО на панели или корпусе. Подключите оборудование в точном соответствии со схемой. Включите все нагрузки, подключенные к защищаемой сети.

Срабатывает УЗО.

Если УЗО срабатывает, выясните, какое устройство является причиной срабатывания, путем последовательного отключения нагрузки (отключаем по очереди эл. оборудование и смотрим результат). При обнаружении такого устройства его необходимо отключить от сети и проверить. Если электрическая линия имеет очень большую длину, обычные токи утечки могут быть достаточно велики. В этом случае имеется вероятность ложных срабатываний. Чтобы избежать этого, необходимо разделить систему, по крайней мере, на два контура, каждый из которых будет защищен своим УЗО. Можно расчитать длинну электрической линии.

При невозможности определения документальным способом суммы токов утечки проводки и нагрузок, можно пользоваться примерным расчетом (в соответствии с СП 31-110-2003), принимая ток утечки нагрузки равным 0,4мА на 1А потребляемой нагрузкой мощности и ток утечки электросети равным 10мкА на один метр длины фазового провода электропроводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты, мощностью 5 кВт, установленную на кухне малогабаритной квартиры.

Примерное расстояние от щитка до кухни может составлять 11 метров, соответственно расчетная утечка проводки составляет 0,11мА. Электроплита, на полной мощности, потребляет (приближенно) 22.7А и обладает расчетным током утечки 9,1мА. Таким образом, сумма токов утечки данной электроустановки составляет 9,21мА. Для защиты от токов утечки можно использовать УЗО с номиналом тока утечки 27,63мА, что округляется до ближайшего большего значения существующих номиналов по диф. току, а именно УЗО 30мА.

Следующим шагом, является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемым электроплитой, можно использовать номинал (с небольшим запасом) УЗО 25А, или с большим запасом — УЗО 32А.

Таким образом мы расчетно определили номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (надо не забыть защитить УЗО автоматическим выключателем 25А для первого номинала УЗО и 25А или 32А для второго номинала).

Обозначение УЗО.

На схеме УЗО обозначается следующим образом рис. 1 однофазное УЗО, рис. 2 -трехфазное УЗО.

Схема подключения УЗО.

Схема подключения УЗО рассмотрим на примере. На фото. 1 показан фрагмент распределительного шкафа.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото цифра1 УЗО, 2- автоматический выключатель) и однофазных УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому его устанавливают в паре с автоматическим выключателем. Что ставить раньше УЗО или автоматический выключатель в данном случае не принципиально. Номинал УЗО должен быть равным или немного больше наминала автоматическо выключателя. Например, автоматический выключатель 16 Ампер, значит, УЗО ставим 16 или 25 А.

Как видно на фото. 1 на трехфазное УЗО (цифра 1) подходят три фазных и нулевой проводник, а после УЗО подключен автоматический выключатель (цифра 2). Потребитель будет подключаться: фазные проводники (красные стрелки) с автоматического выключателя; нулевой проводник (синяя стрелка) — с УЗО.

Под цифрой 3 на фото показаны дифференциальные автоматы, соединенные сборной шиной, принцип работы диф. автомата такой же, как у УЗО, но он дополнительно защищает от токов короткого замыкания и не требует дополнительной защита от КЗ.

А подключение, что у УЗО, что у диф. автоматов одинаковое.

Подключаем к клемме L фазу, к N ноль (обозначения нанесены на корпусе УЗО). Потребители подключаются также.

Схема УЗО в квартире.

Ниже приведена схема использования УЗО в квартире, для дополнительной защиты от поражения электрическим током.

Рис. 1 Схема УЗО в квартире.

В данном случае УЗО ставится до счетчика, на всю группу автоматических выключателей, чем обеспечивается дополнительная защита от поражения электрическим током и возникновения пожара.

Установка УЗО значительно повышает уровень безопасности при работе на электроустановках. Если УЗО обладает высокой чувствительностью (30 мА), то при этом обеспечивается защита от прямого контакта (прикосновения).

Тем не менее, установка УЗО не означает от выполнения обычных мер предосторожности при работе на электроустановках.

Кнопку тест необходимо нажимать регулярно, как минимум один раз в 6 месяцев. Если тест не срабатывает, то надо задуматься о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО на панели или корпусе. Подключите оборудование в точном соответствии со схемой. Включите все нагрузки, подключенные к защищаемой сети.

Срабатывает УЗО.

Если УЗО срабатывает, выясните, какое устройство является причиной срабатывания, путем последовательного отключения нагрузки (отключаем по очереди эл. оборудование и смотрим результат).

Учимся отличать УЗО от дифференциального автомата – 4 внешних признака

При обнаружении такого устройства его необходимо отключить от сети и проверить. Если электрическая линия имеет очень большую длину, обычные токи утечки могут быть достаточно велики. В этом случае имеется вероятность ложных срабатываний. Чтобы избежать этого, необходимо разделить систему, по крайней мере, на два контура, каждый из которых будет защищен своим УЗО. Можно расчитать длинну электрической линии.

При невозможности определения документальным способом суммы токов утечки проводки и нагрузок, можно пользоваться примерным расчетом (в соответствии с СП 31-110-2003), принимая ток утечки нагрузки равным 0,4мА на 1А потребляемой нагрузкой мощности и ток утечки электросети равным 10мкА на один метр длины фазового провода электропроводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты, мощностью 5 кВт, установленную на кухне малогабаритной квартиры.

Примерное расстояние от щитка до кухни может составлять 11 метров, соответственно расчетная утечка проводки составляет 0,11мА. Электроплита, на полной мощности, потребляет (приближенно) 22.7А и обладает расчетным током утечки 9,1мА. Таким образом, сумма токов утечки данной электроустановки составляет 9,21мА. Для защиты от токов утечки можно использовать УЗО с номиналом тока утечки 27,63мА, что округляется до ближайшего большего значения существующих номиналов по диф. току, а именно УЗО 30мА.

Следующим шагом, является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемым электроплитой, можно использовать номинал (с небольшим запасом) УЗО 25А, или с большим запасом — УЗО 32А.

Таким образом мы расчетно определили номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (надо не забыть защитить УЗО автоматическим выключателем 25А для первого номинала УЗО и 25А или 32А для второго номинала).

Обозначение УЗО.

На схеме УЗО обозначается следующим образом рис. 1 однофазное УЗО, рис. 2 -трехфазное УЗО.

Схема подключения УЗО.

Схема подключения УЗО рассмотрим на примере. На фото. 1 показан фрагмент распределительного шкафа.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото цифра1 УЗО, 2- автоматический выключатель) и однофазных УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому его устанавливают в паре с автоматическим выключателем. Что ставить раньше УЗО или автоматический выключатель в данном случае не принципиально. Номинал УЗО должен быть равным или немного больше наминала автоматическо выключателя. Например, автоматический выключатель 16 Ампер, значит, УЗО ставим 16 или 25 А.

Как видно на фото. 1 на трехфазное УЗО (цифра 1) подходят три фазных и нулевой проводник, а после УЗО подключен автоматический выключатель (цифра 2). Потребитель будет подключаться: фазные проводники (красные стрелки) с автоматического выключателя; нулевой проводник (синяя стрелка) — с УЗО.

Под цифрой 3 на фото показаны дифференциальные автоматы, соединенные сборной шиной, принцип работы диф. автомата такой же, как у УЗО, но он дополнительно защищает от токов короткого замыкания и не требует дополнительной защита от КЗ.

А подключение, что у УЗО, что у диф. автоматов одинаковое.

Подключаем к клемме L фазу, к N ноль (обозначения нанесены на корпусе УЗО). Потребители подключаются также.

Схема УЗО в квартире.

Ниже приведена схема использования УЗО в квартире, для дополнительной защиты от поражения электрическим током.

Рис. 1 Схема УЗО в квартире.

В данном случае УЗО ставится до счетчика, на всю группу автоматических выключателей, чем обеспечивается дополнительная защита от поражения электрическим током и возникновения пожара.

Обозначение узо на схеме по госту

Очень часто неопытные электрики и домашние мастера не знают, как определить, что стоит в щитке – УЗО или дифавтомат. В результате ошибочно можно думать, что электропроводка защищена от перегрузок и утечки тока, хотя на самом деле, от первой небезопасной ситуации защита не предусмотрена, т.к. в щитке стоит обычное устройство защитного отключения. В этой статье мы не только рассмотрим функциональное отличие между двумя этими аппаратами, но и расскажем, как отличить УЗО от дифавтомата визуально.

  • Различие по функциям
  • Визуальная разница

Различие по функциям

Вкратце расскажем, чем устройство защитного отключения отличается от дифференциального автоматического выключателя. Все достаточно просто:

  • УЗО срабатывает только тогда, когда в цепи обнаруживается ток утечки.
  • Дифавтомат включается в себя функции устройства защитного отключения + автоматического выключателя. Итого, дифференциальный автомат срабатывает не только во время утечки тока, но и при коротком замыкании, а также перегрузки сети.
  • В этом основное функциональное отличие между двумя аппаратами. Узнать, что лучше поставить УЗО или дифавтомат, вы можете в нашей соответствующей статье. Сейчас мы расскажем, как по внешнему виду отличить их.

    Визуальная разница

    Сейчас на фото примерах мы будем наглядно показывать, как определить, что именно установлено в щитке. Всего мы расскажем о 4 явных признаках, которые вам нужно обязательно запомнить.

  • Смотрите, что написано на корпусе. Если конечно вы купили дешевую китайскую продукцию, вряд ли на боковой стенке или спереди будет написано, что это такое. Однако все отечественные аппараты, и даже некоторые зарубежные изделия имеют на корпусе четкое обозначение – «выключатель дифференциальный» (он же УЗО) или «автоматический выключатель дифференциального тока» (он же диффавтомат). Этот способ неудобен тем, что для того, чтобы отличить изделия, которые установлены рядом друг с другом, придется снять их с DIN-рейки, иначе название будет закрыто.
  • Еще раз обратите внимание на название. Да, маркировка тоже дает четко понятие о том, что установлено в щитке. Согласно написанному в п.1 полному названию устройств можно понять, что такое «ВД», а что такое «АВДТ». Недостаток этого способа определения – на зарубежных аппаратах может не быть отечественной аббревиатуры, как, к примеру, на продукции Legrand.
  • Смотрим на характеристики. Как на УЗО, так и на дифференциальном автомате, технические характеристики обозначены в виде цифр и букв. Так вот, если вы увидите цифру, а после нее букву «А», к примеру, 16А или 25А, это значит, что в щитке установлено УЗО, на котором обозначен номинальный ток. Если же на корпусе обозначена буква, а потом цифра, к примеру, C16, значит это АВДТ. Буква «С» в этом случае обозначает тип время-токовой характеристики. Подробнее о технических характеристиках автоматических выключателей вы можете узнать в соответствующей статье. Вот по этой методике можно запросто отличить аппараты. На фото ниже еще раз дублируем это правило:
  • Смотрим на схему. Ну и последний, так сказать, контрольный способ, позволяющий отличить УЗО и дифавтомат – посмотреть на схему.

    На схеме дифференциального автомата будут дополнительно обозначены тепловой и электромагнитный расцепитель, которые отсутствуют на схеме выключателя дифференциального. Это отличие тоже является весомым при определении устройства.

  • Основные различия

    Вот мы и предоставили инструкцию для молодых электриков и домашних мастеров. Как вы видите, на самом деле ничего сложного нет, а различие между устройством защитного отключения и дифференциальным автоматом достаточно весомое. Надеемся, теперь вы знаете, как отличить УЗО от дифавтомата визуально!

    Устройство защитного отключения (УЗО) относится к виду выключающих устройств, в основе работы которого лежит автоматическое отключение электросети или ее части, при достижении или превышении определённой отметки дифференциального тока. Его использование в значительной степени повышает электробезопасность потребителя, а также предотвращает возникновение чрезвычайных происшествий, как в домашних условиях, так и на производстве.
    Тем не менее, несмотря на то, что схема включения УЗО на первый взгляд кажется простой, даже малейшие недочёты при подключении могут нанести довольно серьёзный урон. Как не превратить средство защиты в источник неприятностей? Ответ на этот вопрос Вы сможете найти в данной статье.

    Перед тем, как углубиться в вопросы, касающиеся схемы установки УЗО , рассмотрим особенности этих устройств, а также основные требования к ним, на основе которых производится их выбор. В данной статье мы не коснёмся индексации, так как углубление в неё требует серьёзных знаний в области электротехники, а также эта надобность отпадает в связи с тем, что выбор защитного устройства будет совершен исключительно на основе исходных данных. Для этого необходимо выполнить несколько пунктов:

    • Продумать о необходимости подключения отдельного УЗО с автоматом или дифавтомата.
    • Определиться с номинальным током устройства. Для автомата актуально значение данного тока выбирать на одну ступень выше данных тока отсечки, в том же случае, если используется дифавтомат, то указываемое значение должно быть равно току отсечки.
    • С помощью простого расчёта вычислить значение отсечки по экстратоку (перегрузке). Для его расчёта необходимо знать максимально допустимый ток потребления, а затем умножить полученное значение на 1,25. Далее необходимо отталкиваться от таблицы значений стандартного ряда токов. Если результат отличен он указанных параметров, то он округляется в большую сторону.
    • Определить допустимый ток утечки. В обычных устройствах он равен 30 или 100 мА, но бывают и исключения. Выбор будет зависеть от типа проводки.

    Если необходимо использование «пожарного» УЗО, то следует определиться с типом и расположением вторичных «жизненных» устройств.

    Устройство УЗО

    Обозначение УЗО на однолинейной схеме

    Говоря о схемах и проектах, очень важно уметь их правильно прочитать. Как правило, изображение УЗО на графической и проектной документации зачастую выполнено условно, наряду с другими элементами. Это несколько затрудняет понимание принципов работы схемы и отдельных её компонентов в частности. Условное изображение устройства защиты можно сравнить с изображением обычного выключателя, с той лишь разницей, что элемент на нелинейной схеме представлен в виде двух параллельно поставленных выключателей. На однолинейной схеме полюса, провода и элементы не прорисовываются визуально, а изображаются символически.

    Этот момент подробно продемонстрирован на рисунке снизу. На нём изображено двухполюсное УЗО с током утечки 30 мА. На это указывает расположенная в верхней части цифра «2». Около неё можно увидеть пересекающую линию питания косую черту. Двухполюсность устройства дублируется и в нижней части схематического изображения элемента, в качестве двух косых чёрточек.

    Обозначение УЗО на однолинейной схеме

    Разберём типовую схему «квартирного» подключения защитного устройства с учётом наличия счётчика на примере, приведённом на рисунке снизу. Ознакомившись более детально с принципом подключения, можно сделать вывод об оптимальном расположении УЗО, которое должно быть максимально приближенно к вводу. Это должно быть осуществлено таким образом, что бы между ними были расположены счётчик и главный автомат. Тем не менее, существует несколько ограничительных нюансов. Так, например, общее устройство защиты не может быть подключено к системе типа TN-C в связи с её принципиальными особенностями. Устаревший образец советских времён имеет защитный проводник, который напрямую соединён с нейтралью, что и становится причиной «несовместимости».

    Устройство защитного отключения, представляющее собой устаревший образец советских времён с защитным проводником, соединённым с нейтралью, не представляет возможным подключить к ней общее устройство защиты.

    Это лучший пример того, как подключить УЗО с заземлением . Схема также имеет желтые полосы, демонстрирующие принцип подключения дополнительных защитных аппаратов для групп потребителей, которые схематически должны быть расположены за соответствующими им автоматами. При этом номинальный ток каждого вторичного устройства на пару ступней превышает показатель назначенного ему автомата.

    Но всё это характерно для современной электропроводки, с учётом наличия «земли».

    Типовая схема УЗО на примере «квартирной» электросети

    Чтобы в дальнейшем более детально познакомиться с основами УЗО, обозначение на схеме необходимо выучить или по мере изучения статьи возвращаться к ней.

    Подключение УЗО без заземления. Схема и особенности

    Отсутствие контуров заземления в домах – ситуация распространённая, требующая больших усилий и знаний, ведь придётся вспомнить основы электродинамики, но она не является приговором. Главное следовать четырём обобщённым правилам:

    • Проводка типа TN-C не допускает установку дифавтомата или общего УЗО.
    • Следует определить потенциально опасных потребителей и защитить их дополнительным отдельным устройством.
    • Следует выбрать кратчайший «электрический» путь для защитных проводников розеток и розеточных групп на входную нулевую клемму УЗО.
    • Каскадное подключение защитных аппаратов допустимо при условии, что ближайшие к электровводу УЗО являются менее чувствительными, чем оконечные.

    Многие, даже дипломированные, электрики, забыв или банально не зная принципы электродинамики, не задумываются о том, как подключить УЗО без заземления. Схема, предлагаемая ими, выглядит обычно так: ставится общее устройство защиты, а затем все PE (нулевые защитные проводники) заводятся на входной ноль УЗО. С одной стороны, здесь без сомнения видна разумная логическая цепочка, ведь на защитном проводнике не будет происходить коммутация. Но всё гораздо сложнее.

    • В обмотке может произойти кратковременный всплеск тока, компенсирующий разбаланс токов в фазе и нуле, называемый «Анти-дифференциальным» эффектом. Возникает он довольно редко.
    • Более распространённым вариантом является неконтролируемое усиление разбаланса токов, называемое «Супер-дифференциальным» эффектом. Возникновение подобной ситуации заставляет срабатывать устройство защиты без свойственной ему утечки. Тем не менее, это не вызовет серьёзных сбоев или поломок, а лишь принесёт определённый дискомфорт при постоянном «выбивании».

    Сила «эффектов» зависит от длины РЕ. Если его длина превышает два метра, то вероятность несрабатывания УЗО достигает вероятности 1 к 10000. Числовой показатель довольно мал, тем не менее, теория вероятности вещь практически непредсказуемая.

    Схема подключения УЗО в однофазной сети

    Так как в квартирах зачастую используется однофазное подключение сети. В данном случае в качестве защиты оптимально выбирать однофазные двухполюсные УЗО. Существует несколько вариантов схемы подключения для данного устройства, но мы рассмотрим наиболее распространённую, показанную на рисунке ниже.

    Подключение аппарата довольно простое. В паспорте и на приборе указана основная маркировка и точки подключения фазы (L) и нуля (N). На схеме изображены вторичные автоматы, но их установка не является обязательной. Они нужны для распределения подключаемых бытовых приборов и освещения по группам. Таким образом, проблемный участок никак не затронет остальные части или комнаты квартиры. При этом важно учитывать, что установка максимально допустимых токов на автоматах не должна превышать настроек УЗО. Это объясняется отсутствием в устройстве ограничения по току. Внимательно следует отнестись и к подключению фазы с нулём. Невнимательность может привести не только к отсутствию питания микросхемы, но и к поломке устройства защиты.

    Схема включения УЗО в однофазной сети, по мнению специалистов, должна располагаться в непосредственной близости со счетчиком электрической энергии (рядом с источником электропитания)

    Схема подключения УЗО в однофазной сети

    Ошибки и их последствия при подключении УЗО

    Как и любая электрическая схема, схематическое изображение подключения защитного устройства в общую сеть, должно быть составлено, как и прочитано в дальнейшем, без малейших изъянов. Даже самый скромный недочёт может привести к неисправной работе системы в целом или самого УЗО, в то время как серьёзные отклонения могут принести довольно серьёзный ущерб. Ошибки могут быть допущены самые разные, но среди них можно выделить ряд наиболее распространённых:

    • Нейтраль и заземление соединяются после УЗО. В данном случае можно неверно интерпретировать схему, соединив нулевой рабочий проводник , с открытой частью электроустановки или с нулевым защитным проводником. В обоих случаях итог будет идентичен.
    • УЗО может быть подключено неполнофазно. Допущение такой ошибки приведёт к ложному срабатыванию, возникающему, из-за того, что до УЗО нагрузка была подключена к нулевому рабочему проводнику.
    • Пренебрежение правилами соединения в розетках нулевого и заземляющего проводника. Проблема кроется в процессе установки розеток, в котором допускается соединение защитного и нулевого рабочего проводников. При этом устройство будет срабатывать даже тогда, когда в розетку ничего не подключено.
    • Объединение нулей в схеме с двумя устройствам защиты. Распространённой ошибкой является неправильное соединение в зоне защиты нулевых проводников обоих УЗО. Она допускается из-за невнимательности и неудобства электромонтажа внутри стеновой панели. Оплошность приведёт к неконтролируемым выключениям устройств.
    • Применение двух или более УЗО усложняют работу по подключению нулевых проводов. Последствия невнимательности могут быть довольно серьёзными. Не поможет и тестирование, так как при нём работа устройства не вызовет никаких нареканий. Но первое же подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
    • Невнимательность при подключении фазы и нуля, если они взяты с разных УЗО. Проблема возникает при соединении нагрузки с нулевым проводником, относящимся к другому устройству защиты.
    • Несоблюдение полярности подключения, что выражается в подключении фазы и нуля, соответственно сверху и снизу. Это спровоцирует движение токов в одном направлении, вследствие чего создаются условия для невозможности взаимокомпенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть отличным.
    • Пренебрежение деталями при подключении трехфазного УЗО. Распространённой ошибкой в подключении четырёхполюсного УЗО является использование клемм одноимённой фазы. Тем не менее, работа однофазных потребителей никак не повлияет на работу такого защитного устройства.

    Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.

    На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

    Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:


    Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

    Базовые изображения и функциональные признаки

    Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

    Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

    Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.

    Основные функции могут выполнять только неподвижные контакты.

    Условные обозначения однолинейных схем

    Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

    Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

    Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

    Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

    В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

    Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

    Изображение шин и проводов

    В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

    Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

    На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

    Как изображают выключатели, переключатели, розетки

    На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

    Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

    Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

    Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

    В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

    Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

    Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

    Светильники на схемах

    В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

    В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

    Элементы принципиальных электрических схем

    Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

    Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

    Буквенные условные обозначения в электрических схемах

    Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

    В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

    Схема подключения УЗО и её разновидности. Обозначение узо на схеме по госту

    Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.

    На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

    Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:


    Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

    Базовые изображения и функциональные признаки

    Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

    Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

    Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.

    Основные функции могут выполнять только неподвижные контакты.

    Условные обозначения однолинейных схем

    Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

    Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

    Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

    Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

    В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

    Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

    Изображение шин и проводов

    В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

    Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

    На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

    Как изображают выключатели, переключатели, розетки

    На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

    Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

    Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

    Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

    В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

    Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

    Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

    Светильники на схемах

    В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

    В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

    Элементы принципиальных электрических схем

    Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

    Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

    Буквенные условные обозначения в электрических схемах

    Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

    В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

    Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.

    Введение

    Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.

    Виды и типы электрических схем

    Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».


    Исходя из этого норматива, все схемы разделены на 8 типов:

    1. Объединенные.
    2. Расположенные.
    3. Общие.
    4. Подключения.
    5. Монтажные соединений.
    6. Полные принципиальные.
    7. Функциональные.
    8. Структурные.
    9. Среди существующих 10 видов, указанных в данном документе, выделяют:

      1. Комбинированные.
      2. Деления.
      3. Энергетические.
      4. Оптические.
      5. Вакуумные.
      6. Кинематические.
      7. Газовые.
      8. Пневматические.
      9. Гидравлические.
      10. Электрические.

      Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.

      Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.

      В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:

      «Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».

      После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.

      Следует заметить, что чаще в домашней практике используются всего три типа электросхем:

    • Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т.п.
    • Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
    • Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.

    Графические обозначения в электрических схемах


    Документация, в которой указываются правила и способы графического обозначения элементов схемы, представлена тремя ГОСТами:

    • 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
    • 2.721-74 – графические условные обозначения деталей и узлов общего применения.
    • 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.

    В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.

    На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
    В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.

    ВАЖНО: Для обозначения коммутационного оборудования существует:

    4 базовых изображения УГО

    9 функциональных признаков УГО

    Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

    Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

    Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

    Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется .

    Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

    Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы , но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

    Обозначение узо на однолинейной схеме

    Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

    Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

    В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным.

    На какие нормативные документы следует ссылаться?

    Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

    1. — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
    2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

    Графическое обозначение УЗО на схеме

    Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

    Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

    Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

    Или к примеру УЗО от Schneider Electric:

    Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

    По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

    Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

    В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

    Как обозначается дифавтомат на схеме?

    По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

    Буквенное обозначение узо на электрических схемах

    Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

    Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специальногобуквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

    Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .

    Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

    Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

    То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

    Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

    Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – «дифференцирующий».

    Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

    Какие можно сделать выводы из вышеописанного?

    electricvdome.ru

    Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.). Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е. электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.


    Чтобы указать количество фаз, на графической линии используются специальные засечки. Одна засечка обозначает, что электрическое питание однофазное, три засечки – что питание трёхфазное.

    Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

    Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов, контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

    Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления, и т.д.).


    На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.). Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

    Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования. По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.). На принципиальной схеме отображаются как цепи управления, так и силовая часть.


    Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

    На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.

    Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM. Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.

    В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле. Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта. В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т.д.

    В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения. Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение. Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

    Кроме графического и буквенно-цифрового обозначения на некоторых электрических элементах указываются технические характеристики. Например, для автоматического выключателя это номинальный ток в амперах, ток срабатывания отсечки тоже в амперах. Для электродвигателя указывается мощность в киловаттах.

    Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

    aquagroup.ru

    Вернутся в раздел: УЗО и Дифзащита Электрика

    В данной статье рассмотрены несколько примеров подключения УЗО и Дифференциальных автоматов.

    Основным условием при выборе УЗО и диф. автомата является соблюдение селективности (ПУЭ.РАЗДЕЛ 3 ):

    В электротехнике под «селективностью» понимают совместную работу последовательно включенных аппаратов защиты электрических цепей (автоматические выключатели, УЗО, диф. автомат и т.п.) в случае возникновения аварийной ситуации. На рис. 1 привёден пример работы такой схемы, с учётом общего наминала автоматических выключателей 40 А (4шт. по 10А), вводный автомат 63 А.

    Селективность используется при выборе номинала устройств защиты для отключения от общей системы питания только той ее части, где произошла авария. Это достигается за счет срабатывания только того автоматического выключателя, который защищает аварийную линию питания.

    Во общем, для селективной работы автоматических выключателей при перегрузках нужно, чтобы номинальный ток (In) автоматического выключателя со стороны питания был больше In автоматического выключателя со стороны потребителей.

    Условное обозначение УЗО и дифавтомата на электрических схемах:

    Обозначение УЗО на принципиальных электрических схемах см. рис. 2. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек. Условное обозначение Дифавтомата на принципиальных схемах см. рис. 3 и на однолинейных схемах рис. 4. Буквенное обозначение QF.

    Рис. 4
    Рис. 3

    Схемы включения УЗО:

    По конструкции УЗО различных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 приведены наиболее распространенные схемы включения УЗО в различных вариантах:

    Двухполюсные УЗО Рис. 5 (а).

    Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен в фазное напряжение (Рис. 5 (б).

    Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен на линейное напряжение (Рис. 5 (в).

    При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения приведена на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

    Ниже приведены монтажные схемы подключения УЗО (Рис. 6) и дифавтомата (Рис. 7).

    1. Вводный автомат.
    2. Прибор учёта (электросчетчик).
    3. УЗО или дифавтомат.
    4. Автоматический выключатель (освещения, как правило 6 ÷ 10 А, в зависимости от нагрузки светильников).
    5. Автоматический выключатель (розетки, как правило 16 ÷ 25 А, в зависимости от группы розеток).
    6. Автоматический выключатель (розетка «силовая», 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
    7. Нулевая рабочая N — шина.
    8. Нулевая защитная РЕ — шина.

    Более подробно про системы заземления и зануления см. в разделе

    Вернутся в раздел: УЗО и Дифзащита Электрика

    energetik.com.ru

    Рабочий ток и быстродействие

    Особенности конструкции дифавтоматов являются причиной того, что они обладают комбинированными характеристиками, используемыми при описании работы как АВ, так и УЗО. Основной рабочей характеристикой этих электротехнических изделий является номинальный рабочий ток, при котором прибор может оставаться включённым длительное время.

    Данная характеристика прибора относится к строго стандартизированным показателям, вследствие чего ток может принимать лишь значения из определённого ряда (6, 10, 16, 25, 50 Ампер и так далее).

    Помимо этого в обозначении устройств используется связанный с быстродействием токовый показатель, обозначаемый цифрами «B», «C» или «D», стоящими перед значением номинального тока.

    Быстродействие – важная токовая и временная характеристика. Обозначение C16, например, соответствует дифавтомату с временной характеристикой «C», рассчитанный на номинальное значение 16 Ампер.

    Ток отключения и напряжение

    К группе технических характеристик дифавтомата относится ток отключения схемы (дифференциальный показатель), определяемый как «уставка по токовой утечке». Для большинства моделей допустимые значения этой характеристики укладываются в следующий ряд: 10, 30, 100, 300 и 500 миллиампер. На корпусе дифавтомата она обозначается значком «дельта» с числом соответствующим току утечки.

    Ещё одной характеристикой эксплуатационных возможностей дифавтоматов является номинальное напряжение, при котором они способны работать длительное время (220 Вольт – для однофазной сети и 380 Вольт – для трехфазных цепей). Величина рабочего напряжения защитного дифференциального прибора может указываться под обозначением номинала с буквой или под клавишей выключателя.

    Ток утечки и селективность

    Следующая характеристика, по которой различаются все дифавтоматы – тип тока утечки. В соответствии с этим параметром любой из дифавтоматов может иметь следующие обозначения:

    • «A» – реагирующие на утечки синусоидального переменного (пульсирующего постоянного) тока;
    • «AC» – дифавтоматы, рассчитанные на срабатывания от утечек, содержащих постоянную составляющую;
    • «B» – комбинированное исполнение, предполагающее обе указанные ранее возможности.

    Характеристика «тип встроенного УЗО» маркируется буквенным индексом или небольшим рисунком.

    По аналогии с УЗО дифавтоматы могут работать по селективному принципу, предполагающему наличие задержки по времени срабатывания. Указанная возможность обеспечивает определённую выборочность отключения прибора от сети и электродинамическую устойчивость системы защиты. Согласно этой характеристике дифференциальные устройства обозначаются значком «S», что означает задержку порядка 200-300 миллисекунд, либо маркируются знаком «G» (60-80 миллисекунд).

    Основные обозначения

    Более подробно порядок маркировки дифавтомата (расположение его характеристик) рассмотрим на примере отечественного изделия марки «АВДТ32», используемого в цепях защиты промышленных и бытовых электросетей.

    Для удобства систематизации излагаемой информации под графическим обозначением будет пониматься определённая маркировочная позиция.

    На первой позиции указывается наименование и серия дифавтомата. Из этого обозначения следует, что он является АВ дифференциального типа со встроенной защитой от опасных токов утечки. Дифавтомат предназначен к использованию в электросетях однофазного переменного тока с номинальным напряжением 230 Вольт (50 Герц).

    На месте, соответствующем позиции №3 (вверху), указывается такая характеристика, как значение номинального дифференциального тока короткого замыкания.

    Обратите внимание! Иногда в этом месте можно увидеть значение предельной коммутационной способности прибора, свидетельствующей о величине максимального тока, при которой дифавтомат может отключаться многократно.

    На той же позиции, но внизу приводится графическое обозначение типа встроенного автомата (в данном случае это тип «А», рассчитанный на работу с утечками пульсирующего постоянного и синусоидального переменного токов).

    На месте 4-ой позиции можно увидеть модульную схему дифавтомата, на которой указываются входящие в его состав элементы, участвующие в реализации защитных функций. Для АВДТ32 на этой схеме условными знаками обозначаются следующие модули и узлы:

    • электромагнитные и тепловые расцепители, обеспечивающие защиту линий от токов КЗ и перегрузки соответственно;
    • специальная кнопка «Тест», необходимая для ручной проверки исправности автомата;
    • усилительный электронный модуль;
    • исполнительный узел (коммутирующее линию реле).

    На позиции под номером семь на первом месте указывается связанная с быстродействием характеристика аварийного срабатывания электромагнитного расцепителя (для нашего примера – это «С»). Сразу за ним следует показатель номинального тока, означающего величину этого параметра в рабочем режиме (в течение длительного времени).

    Минимальный ток отключения (срабатывания) расцепителя электромагнитного типа для дифавтомата с характеристикой «С» обычно берётся равным примерно пяти номинальным токам. При данной величине токовой характеристики тепловой расцепитель срабатывает примерно через 1,5 секунды.

    На восьмой позиции обычно стоит значок «дельта» с показателем номинального тока утечки, который отключает дифференциальное устройство в случае опасности. Это все основные электрические характеристики.

    Информационные знаки

    На пятой позиции приводится температурная характеристика защитного устройства (от — 25 до + 40 градусов), а на шестой располагаются сразу два знака.
    Один из них информирует пользователя о сертификате соответствия, то есть обозначает действующий отечественный ГОСТ на дифавтомат (ГОСТ Р129 – для данного случая).

    Непосредственно под ним располагается закодированная в виде букв и цифр характеристика. Это обозначение организации, выдавшей сертификат.

    Важно! Этот знак сообщает потребителю о законности происхождения товара и его качестве и при необходимости обеспечивает юридическую защищённость устройства.

    Справа от него приводятся данные по сертификации и ГОСТу этой модели в отношении её пожарной безопасности.

    И, наконец, на месте, соответствующем второй позиции, наносится логотип торговой марки компании-изготовителя (в данном случае – «ИЭК»).

    Размеры и точки подключения

    Основными габаритными характеристиками дифавтомата согласно ГОСТ являются его высота, ширина и толщина, а также размер по высоте и ширине выступающей с лицевой стороны полочки с клавишей управления. Помимо этого, приводятся размеры расположенных на тыльной стороне полочек, ограничивающих зазор для посадки прибора на фиксирующую его дин-рейку.

    Современные модели дифавтомата могут иметь тот или иной размер, с каждым из которых можно ознакомиться в прилагаемой к этому изделию документации. Но в большинстве случаев габаритные характеристики схожи, что упрощает размещение в щитке.

    Относительно контактных точек подключения данного прибора к защищаемой схеме необходимо отметить следующее. В однофазной сети устанавливаются дифференциальные устройства, имеющие по два вводных и два выводных контакта. Одна из этих групп служит для подключения так называемого «фазного» провода, а к другой подсоединяется «нулевая» жила питания. Как правило, все контакты (верхние и нижние) маркируются значками «L» и «N», обозначающими соответственно те места, куда подключаются фаза и ноль.

    При включении устройства в электрическую цепь к верхним контактам подсоединяются фазный и нулевой провода, приходящие от вводно-распределительного устройства или электрического счётчика . Нижние его клеммы предназначаются для коммутации проводников, идущих непосредственно к защищаемой нагрузке (к потребителю).

    Подключение дифференциального прибора в силовые цепи трёхфазного питания полностью аналогично рассмотренному ранее варианту. Отличие в данном случае состоит лишь в том, что к дифавтомату при этом подсоединяются сразу три фазы: «A», «B» и «C». По аналогии со случаем однофазной линии питания 220 Вольт клеммы трёхфазного дифавтомата также маркируются (с целью соблюдать фазировку) и обозначаются как «L1», «L2», «L3» и «N».

    Грамотный выбор подходящего для заявленных целей прибора невозможен без внимательного изучения основных рабочих характеристик дифавтомата и соответствующей им маркировки. В связи с этим перед приобретением дифференциального прибора постарайтесь тщательно изучить весь изложенный в этой статье материал.

    evosnab.ru

    Назначение, технические характеристики и выбор

    Дифавтомат или дифференциальный автомат защиты объединяет в себе функции автомата защиты и УЗО. То есть, одно это устройство защищает проводку от перегрузок, короткого замыкания и тока утечки. Ток утечки образуется при неисправности изоляции или при прикосновении к токоведущим элементам, то есть он еще защищает человека от поражения электричеством.

    Дифавтоматы устанавливаются в электрические распределительные щитки, чаще всего на дин-рейки. Они ставятся вместо связки автомат+УЗО, физически занимают немного меньше места. Насколько конкретно — зависит от производителя и типа исполнения. И это — основной их плюс, который может быть востребован при модернизации сети, когда место в щитке ограничено, а необходимо подключить некоторое количество новых линий.

    Второй положительный момент — экономия средств. Как правило, дифавтомат стоит меньше, чем пара автомат+УЗО с аналогичными характеристиками. Еще один положительный момент — необходимо определиться только с номиналом автомата защиты, а УЗО встроен по умолчанию с требующимися характеристиками.

    Недостатки тоже имеются: при выходе и строя одной из частей дифавтомата менять придется все устройство, а это дороже. Также не все модели снабжены флажками, по которым можно определить, по какой причине сработало устройство — из-за перегрузки или тока утечки — что принципиально важно при выяснении причин.

    Характеристики и выбор

    Так как дифавтомат объединяет в себе два устройства, имеет он характеристики их обоих и при выборе надо учитывать все. Разберемся что обозначают эти характеристики и как выбирать дифференциальный автомат.

    Номинальный ток

    Это максимальный ток, который может длительное время выдерживать автомат без потери работоспособности. Обычно он указывается на лицевой панели. Номинальные токи стандартизованы и могут быть 6 А, 10 А, 16 А, 20 А, 25 А, 32 А, 40 А, 50 А, 63А.

    Малые номиналы — 10 А и 16 А — ставят на линии освещения, средние — на мощных потребителей и розеточные группы, а мощные — 40 А и выше — в основном используют как вводный (общий) дифавтомат. Подбирается в зависимости от сечения кабеля, точно также, как при выборе номинала автомата защиты.

    Время-токовая характеристика или тип электромагнитного расцепителя

    Отображается рядом с номиналом, обозначается латинскими буквами B, C, D. Указывает на то, при каких перегрузках относительно номинала происходит отключение автомата (для игнорирования кратковременных стартовых токов).

    Категория B — если ток превышен в 3-5 раз, C — при превышении номинала в 5-10 раз, тип D отключается при нагрузках, которые превышают номинал в 10-20 раз. В квартирах обычно ставят дифавтоматы типа C, в сельской местности можно ставить B, на предприятиях с мощным оборудованием и большими стартовыми токами — D.

    Номинальное напряжение и частота сети

    Для каких сетей предназначен аппарат — 220 В и 380 В, с частотой 50 Гц. Других в нашей торговой сети не бывает, но все равно, стоит проверить.

    Дифференциальные автоматы могут иметь двойную маркировку — 230/400 V. Это говорит о том, что данное устройство может работать и в сети на 220 В и на 380 В. В трехфазных сетях подобные устройства ставят на розеточные группы или на отдельных потребителей, там где используется лишь одна из фаз.

    В качестве водных дифавтоматов на трехфазные сети необходимы устройства с четырьмя вводами, а они значительно отличаются габаритами. Спутать их невозможно.

    Номинальный отключающий дифференциальный ток или ток утечки (уставки)

    Отображает чувствительность устройства к образующимся токам утечки и показывает, при каких условиях сработает защита. В быту используются только два номинала: 10 мА для установки на линии, в которых установлено только одно мощное устройство или потребитель, в котором сочетаются два опасных фактора — электричество и вода (проточный или накопительный электрический водонагреватель, варочная поверхность, духовой шкаф, посудомоечная машина и т.п.).

    Для линий с группой розеток и наружного освещения ставят дифавтоматы с током утечки 30 мА, на линии освещения внутри дома их не обычно ставят — для экономии.

    На устройстве может быть написан просто значение в миллиамперах (как на фото слева) или может быть нанесено буквенное обозначение тока уставки (на фото справа), после которого стоят цифры в амперах (при 10 мА стоит 0,01 А, при 30 мА цифра 0,03 А).

    Класс дифференциальной защиты

    Показывает от токов утечки какого типа защищает это устройство. Есть буквенное и графическое изображение. Обычно ставят значок, но может быть и буква (смотрите в таблице).

    Буквенное обозначениеГрафическое обозначениеРасшифровкаОбласть применения
    АСРеагирует на переменный синусоидальный токСтавят на линии, к которым подключена простая техника без электронного управления
    АРеагирует на синусоидальный переменный ток и пульсирующий постоянныйПрименяется на линиях, от которых запитывается техника с электронным управлением
    ВУлавливает переменный, импульсный, постоянный и сглаженный постоянный.В основном применяется на производстве с большим количеством разнообразной техники
    SС выдержкой времени отключения 200-300 мсВ сложных схемах
    GС выдержкой времени отключения60-80 мсВ сложных схемах

    Выбор класса дифференциальной защиты дифавтомата происходит исходя из типа нагрузки. Если это техника с микропроцессорами, необходим класс А, на линии освещения или включения питания простых устройств подойдет класс AC. Класс В в частных домах и квартирах ставят редко — нет необходимости «отлавливать» все типы токов утечки. Подключение дифавтомата класса S и G имеет смысл в многоуровневых схемах защиты. Их ставят в качестве входных, если в схеме дальше есть другие дифференциальные устройства отключения. В этом случае при срабатывании одного из нижестоящих по току утечки, входной не отключится и исправные линии будут в работе.

    Номинальная отключающая способность

    Показывает, какой ток в состоянии дифавтомат отключить при возникновении КЗ и остаться при этом работоспособным. Есть несколько стандартных номиналов: 3000 А, 4500 А, 6000 А, 10 000 А.

    Выбор дифавтомата по этому параметру зависит от типа сети и от дальности расположения подстанции. В квартирах и домах на достаточном удалении от подстанции используют дифавтоматы с отключающей способностью 6 000 А, близко к подстанциям ставят на 10 000 А. В сельской местности, при подводе электропитания по воздушке и в давно не модернизированных сетях достаточно 4 500 А.

    На корпусе эта цифра указана в квадратной рамке. Местоположение надписи может быть разным — зависит от производителя.

    Класс токоограничения

    Чтобы ток короткого замыкания принял максимальное значение, должно пройти какое-то время. Чем быстрее будет отключено электропитание от поврежденной линии, тем меньше меньше вероятность получения повреждений. Класс токоограничения отображается цифрами от 1 до 3. Третий класс — отключает линию быстрее всего. Так что выбор дифавтомата по этому признаку прост — желательно использовать устройства третьего класса, но они дороги, зато дольше остаются работоспособными. Так что при наличии финансовой возможности, ставьте дифавтоматы этого класса.

    На корпусе эта характеристика изображена в маленькой квадратной рамке рядом с номинальной отключающей способностью. Она может стоять справа (у Legranda) или снизу (у большинства других производителей). Если вы такой отметки не нашли ни на корпусе, ни в паспорте, значит этот автомат не имеет тоокограничения.

    Температурный режим использования

    Большинство дифференциальных защитных автоматов рассчитаны на работу в помещениях. Они могут эксплуатироваться при температурах от -5°C до + 35°C. В этом случае на корпусе ничего не ставят.

    Иногда щитки стоят на улице и обычные защитные устройства не подойдут. Для таких случаев выпускаются дифавтоматы с более широким диапазоном температур — от -25°C до +40°C. В этом случае на корпусе ставят специальный знак, который немного похож на звездочку.

    Наличие маркеров о причине сработки

    Дифавтоматы не все электрики любят ставить, так как считают, что связка защитный автомат+УЗО более надежна. Вторая причина — если устройство сработает, невозможно определить, что стало тому причиной — перегрузка, и надо просто выключить какой-то прибор, или ток утечки, и надо искать где и что произошло.

    Чтобы решить хотя бы вторую проблему, производители стали делать флажки, которые показывают причину сработки дифавтомата. В некоторых моделях это небольшая площадка, по положению которой определяется причина отключения.

    Если отключение вызвала перегрузка, индикатор остается вровень с корпусом, как а фото справа. Если дифавтомат сработал при наличии тока утечки, флажок выступает на некоторое расстояние от корпуса.

    Тип конструктивного исполнения

    Есть диф автоматы двух типов: электромеханические или электронные. Электромеханические более надежны, так как они сохраняют работоспособность даже при пропадании питания. То есть, если пропадет фаза, они смогут сработать и отключить еще и ноль. Электронные же для работы требуют питания, которое берут с фазного провода и при пропадании фазы теряют работоспособность.

    Производитель и цена

    В электричестве не стоит экономить, тем более на устройствах, которые обеспечивают защиту проводки и жизни. Потому рекомендуют всегда покупать комплектующие известных производителей. Лидирует на рынке Legrand (Легранд) и Schneider (Шнайдер), Hager (Хагер) но их продукция дорога, да и много подделок. Не настолько высокие цены у IEK (ИЕК), ABB (АББ), но и проблем с нм бывает больше. С неизвестными производителями в данном случае лучше не связываться, так как они зачастую просто неработоспособны.

    Выбор на самом деле не такой и маленький, даже если ограничиться только этими пятью фирмами. У каждого производителя есть несколько линеек, которые отличаются по цене, причем значительно. Чтобы понять в чем разница, надо внимательно смотреть на технические характеристики. На цену оказывает влияние каждая и них, так что внимательно изучайте все данные перед покупкой.

    Как подключить дифавтомат

    Начнем со способов монтажа и порядка подключения проводников. Все очень просто, никаких особых сложностей нет. В большинстве случаев монтируется он на динрейку. Для этого есть специальные выступы, которые удерживают устройство на месте.

    Электрическое подключение

    Подключение дифавтомата к электросети происходит проводами в изоляции. Сечение выбирается исходя из номинала. Обычно линия (подвод питания) подключается в верхние гнезда — они подписываются нечетными цифрами, нагрузка — в нижние — подписываются четными цифрами. Так как к дифференциальному автомату подключается и фаза и ноль, чтобы не перепутать, гнезда для «ноля» подписаны латинской буквой N.

    В некоторых линейках подключать линию можно и в верхние, и в нижние гнезда. Пример такого устройства на фото выше (слева). В этом случае на схеме пишется нумерация через дробь — 1/2 вверху и 2/1 внизу, 3/4 вверху и 4/3 внизу. Это и обозначает, что не имеет значения сверху или снизу подключать линию.

    Перед подключением линии с проводов снимают изоляцию примерно на расстоянии 8-10 мм от края. На нужной клемме слегка ослабляют крепежный винт, вставляют проводник, винт затягивают с достаточно большим усилием. ЗАтем провод несколько раз дергают, чтобы убедиться что контакт нормальный.

    Проверка работоспособности

    После того, как вы подключили дифавтомат, подали питание, необходимо проверить работоспособность системы и правильность установки. Для начала тестируем сам агрегат. Для этого есть специальная кнопка, подписанная «Test» или просто буквой T. После того, как перевели переключатели в рабочее состояние, нажимаем на эту кнопку. При этом устройство должно «выбить». Эта кнопка искусственно создает ток утечки, так что мы проверили работоспособность дифавтомата. Если сработки не было — надо проверить правильность подключения, если все верно, устройство неисправно

    Дальнейшая проверка — подключение простой нагрузки к каждой розетке. Этим вы проверите правильность расключения розеточных групп. И последнее — поочередное включение бытовой техники, на которую заведены отдельные линии электропитания.

    Схемы

    При разработке схемы электропроводки в квартире или доме может быть много вариантов. Отличаться они могут удобством и надежностью эксплуатации, степенью защиты. Есть простые варианты, требующие минимума затрат. Они обычно реализуются в небольших сетях. Например, на дачах, в небольших квартирах с малым количеством бытовой техники. В большинстве случаев приходится ставить большое количество устройств, которые обеспечивают безопасность проводки и защищают от поражения током людей.

    Простая схема

    Не всегда имеет смысл устанавливать большое количество защитных устройств. Например, на даче сезонного посещения, где есть всего несколько розеток и освещение, достаточно поставить всего один дифавтомат на входе, от которого на группы потребителей — розетки и освещение — через автоматы пойдут отдельные линии.

    Эта схема не потребует больших затрат, но при появлении тока утечки на любой из линий дифавтомат сработает, обесточив все. До выяснения и устранения причин света не будет.

    Более надежная защита

    Как уже говорили, отдельные дифавтоматы ставят на «мокрые» группы. К ним относятся кухня, ванная, наружное освещение, а также техника, использующая воду (кроме стиральной машинки). Такой способ построения системы дает более высокую степень безопасности и лучше защищает проводку, оборудование и человека.

    Реализация этого способа устройства проводки потребует больших материальных затрат, но работать система будет более надежно и стабильно. Так как при сработке одного из защитных устройств, остальная часть останется работоспособной. Такое подключение дифавтомата применяется в большинстве квартир и в небольших домах.

    Селективные схемы

    В разветвленных сетях электроснабжения возникает необходимость сделать систему еще более сложной и дорогостоящей. В таком варианте после счетчика устанавливается входной дифференциальный автомат класса S или G. Далее, на каждую группу идет свой автомат, а при необходимости ставятся еще и на отдельных потребителей. Подключение дифавтомата для этого случая смотрите на фото ниже.

    При таком построении системы при сработке одного из линейных устройств все остальные останутся в работе, так как входной автомат дифференциального отключения имеет задержку в срабатывании.

    Основные ошибки подключения дифавтоматов

    Иногда после подключения дифавтомата он не включается или вырубается при подключении любой нагрузки. Это значит, что что-то сделано не так. Есть несколько типичных ошибок, которые встречаются при самостоятельной сборке щитка:

    • Провода защитного нуля (земля) и рабочего нуля (нейтраль) где-то объединены. При такой ошибке дифавтомат вообще не включается — рычаги не фиксируются в верхнем положении. Придется искать где объединены или перепутаны «земля» и «ноль».
    • Иногда при подключении дифавтомата ноль на нагрузку или на ниже расположенные автоматы взят не с выхода устройства, а напрямую с нулевой шины. В таком случае рубильники становятся в рабочее положение, но при попытке подключить нагрузку, они моментально отключаются.
    • С выхода дифавтомата ноль подается не на нагрузку, а идет обратно на шину. Ноль на нагрузку тоже берется с шины. В этом случае рубильники становятся в рабочее положение, но кнопка «Тест» не работает и при попытке включить нагрузку происходит отключение.
    • Перепутано подключение ноля. С нулевой шины провод должен идти на соответствующий вход, обозначенный буквой N, который находится вверху, а не вниз. С нижней нулевой клеммы провод должен уходить на нагрузку. Симптомы аналогичны: рубильники включаются, «Тест» не работает, при подключении нагрузки происходит срабатывание.
    • При наличии в схеме двух дифавтоматов перепутаны нулевые провода. При такой ошибке оба устройства включаются, «Тест» работает на обоих устройствах, но при включении любой нагрузки выбивает сразу оба автомата.
    • При наличии двух дифавтоматов, идущие от них нули где-то дальше соединили. В этом случае оба автомата взводятся, но при нажатии на кнопку «тест» одного из них, вырубаются сразу два устройства. Аналогичная ситуация возникает при включении любой нагрузки.

    Теперь вы не только можете выбрать и подключить дифференциальный автомат защиты, но и понять почему он выбивает, что именно пошло не так и самостоятельно исправить ситуацию.

    stroychik.ru

    Что нужно знать об УЗО

    Перед тем, как углубиться в вопросы, касающиеся схемы установки УЗО, рассмотрим особенности этих устройств, а также основные требования к ним, на основе которых производится их выбор. В данной статье мы не коснёмся индексации, так как углубление в неё требует серьёзных знаний в области электротехники, а также эта надобность отпадает в связи с тем, что выбор защитного устройства будет совершен исключительно на основе исходных данных. Для этого необходимо выполнить несколько пунктов:

    • Продумать о необходимости подключения отдельного УЗО с автоматом или дифавтомата.
    • Определиться с номинальным током устройства. Для автомата актуально значение данного тока выбирать на одну ступень выше данных тока отсечки, в том же случае, если используется дифавтомат, то указываемое значение должно быть равно току отсечки.
    • С помощью простого расчёта вычислить значение отсечки по экстратоку (перегрузке). Для его расчёта необходимо знать максимально допустимый ток потребления, а затем умножить полученное значение на 1,25. Далее необходимо отталкиваться от таблицы значений стандартного ряда токов. Если результат отличен он указанных параметров, то он округляется в большую сторону.
    • Определить допустимый ток утечки. В обычных устройствах он равен 30 или 100 мА, но бывают и исключения. Выбор будет зависеть от типа проводки.

    Если необходимо использование «пожарного» УЗО, то следует определиться с типом и расположением вторичных «жизненных» устройств.

    Обозначение УЗО на однолинейной схеме

    Говоря о схемах и проектах, очень важно уметь их правильно прочитать. Как правило, изображение УЗО на графической и проектной документации зачастую выполнено условно, наряду с другими элементами. Это несколько затрудняет понимание принципов работы схемы и отдельных её компонентов в частности. Условное изображение устройства защиты можно сравнить с изображением обычного выключателя, с той лишь разницей, что элемент на нелинейной схеме представлен в виде двух параллельно поставленных выключателей. На однолинейной схеме полюса, провода и элементы не прорисовываются визуально, а изображаются символически.

    Этот момент подробно продемонстрирован на рисунке снизу. На нём изображено двухполюсное УЗО с током утечки 30 мА. На это указывает расположенная в верхней части цифра «2». Около неё можно увидеть пересекающую линию питания косую черту. Двухполюсность устройства дублируется и в нижней части схематического изображения элемента, в качестве двух косых чёрточек.

    Разберём типовую схему «квартирного» подключения защитного устройства с учётом наличия счётчика на примере, приведённом на рисунке снизу. Ознакомившись более детально с принципом подключения, можно сделать вывод об оптимальном расположении УЗО, которое должно быть максимально приближенно к вводу. Это должно быть осуществлено таким образом, что бы между ними были расположены счётчик и главный автомат. Тем не менее, существует несколько ограничительных нюансов. Так, например, общее устройство защиты не может быть подключено к системе типа TN-C в связи с её принципиальными особенностями. Устаревший образец советских времён имеет защитный проводник, который напрямую соединён с нейтралью, что и становится причиной «несовместимости».

    Устройство защитного отключения, представляющее собой устаревший образец советских времён с защитным проводником, соединённым с нейтралью, не представляет возможным подключить к ней общее устройство защиты.

    Это лучший пример того, как подключить УЗО с заземлением. Схема также имеет желтые полосы, демонстрирующие принцип подключения дополнительных защитных аппаратов для групп потребителей, которые схематически должны быть расположены за соответствующими им автоматами. При этом номинальный ток каждого вторичного устройства на пару ступней превышает показатель назначенного ему автомата.

    Но всё это характерно для современной электропроводки, с учётом наличия «земли».

    Чтобы в дальнейшем более детально познакомиться с основами УЗО, обозначение на схеме необходимо выучить или по мере изучения статьи возвращаться к ней.

    Подключение УЗО без заземления. Схема и особенности

    Отсутствие контуров заземления в домах – ситуация распространённая, требующая больших усилий и знаний, ведь придётся вспомнить основы электродинамики, но она не является приговором. Главное следовать четырём обобщённым правилам:

    • Проводка типа TN-C не допускает установку дифавтомата или общего УЗО.
    • Следует определить потенциально опасных потребителей и защитить их дополнительным отдельным устройством.
    • Следует выбрать кратчайший «электрический» путь для защитных проводников розеток и розеточных групп на входную нулевую клемму УЗО.
    • Каскадное подключение защитных аппаратов допустимо при условии, что ближайшие к электровводу УЗО являются менее чувствительными, чем оконечные.

    Многие, даже дипломированные, электрики, забыв или банально не зная принципы электродинамики, не задумываются о том, как подключить УЗО без заземления. Схема, предлагаемая ими, выглядит обычно так: ставится общее устройство защиты, а затем все PE (нулевые защитные проводники) заводятся на входной ноль УЗО. С одной стороны, здесь без сомнения видна разумная логическая цепочка, ведь на защитном проводнике не будет происходить коммутация. Но всё гораздо сложнее.

    • В обмотке может произойти кратковременный всплеск тока, компенсирующий разбаланс токов в фазе и нуле, называемый «Анти-дифференциальным» эффектом. Возникает он довольно редко.
    • Более распространённым вариантом является неконтролируемое усиление разбаланса токов, называемое «Супер-дифференциальным» эффектом. Возникновение подобной ситуации заставляет срабатывать устройство защиты без свойственной ему утечки. Тем не менее, это не вызовет серьёзных сбоев или поломок, а лишь принесёт определённый дискомфорт при постоянном «выбивании».

    Сила «эффектов» зависит от длины РЕ. Если его длина превышает два метра, то вероятность несрабатывания УЗО достигает вероятности 1 к 10000. Числовой показатель довольно мал, тем не менее, теория вероятности вещь практически непредсказуемая.

    Схема подключения УЗО в однофазной сети

    Так как в квартирах зачастую используется однофазное подключение сети. В данном случае в качестве защиты оптимально выбирать однофазные двухполюсные УЗО. Существует несколько вариантов схемы подключения для данного устройства, но мы рассмотрим наиболее распространённую, показанную на рисунке ниже.

    Подключение аппарата довольно простое. В паспорте и на приборе указана основная маркировка и точки подключения фазы (L) и нуля (N). На схеме изображены вторичные автоматы, но их установка не является обязательной. Они нужны для распределения подключаемых бытовых приборов и освещения по группам. Таким образом, проблемный участок никак не затронет остальные части или комнаты квартиры. При этом важно учитывать, что установка максимально допустимых токов на автоматах не должна превышать настроек УЗО. Это объясняется отсутствием в устройстве ограничения по току. Внимательно следует отнестись и к подключению фазы с нулём. Невнимательность может привести не только к отсутствию питания микросхемы, но и к поломке устройства защиты.

    Схема включения УЗО в однофазной сети, по мнению специалистов, должна располагаться в непосредственной близости со счетчиком электрической энергии (рядом с источником электропитания)

    Ошибки и их последствия при подключении УЗО

    Как и любая электрическая схема, схематическое изображение подключения защитного устройства в общую сеть, должно быть составлено, как и прочитано в дальнейшем, без малейших изъянов. Даже самый скромный недочёт может привести к неисправной работе системы в целом или самого УЗО, в то время как серьёзные отклонения могут принести довольно серьёзный ущерб. Ошибки могут быть допущены самые разные, но среди них можно выделить ряд наиболее распространённых:

    • Нейтраль и заземление соединяются после УЗО. В данном случае можно неверно интерпретировать схему, соединив нулевой рабочий проводник, с открытой частью электроустановки или с нулевым защитным проводником. В обоих случаях итог будет идентичен.
    • УЗО может быть подключено неполнофазно. Допущение такой ошибки приведёт к ложному срабатыванию, возникающему, из-за того, что до УЗО нагрузка была подключена к нулевому рабочему проводнику.
    • Пренебрежение правилами соединения в розетках нулевого и заземляющего проводника. Проблема кроется в процессе установки розеток, в котором допускается соединение защитного и нулевого рабочего проводников. При этом устройство будет срабатывать даже тогда, когда в розетку ничего не подключено.
    • Объединение нулей в схеме с двумя устройствам защиты. Распространённой ошибкой является неправильное соединение в зоне защиты нулевых проводников обоих УЗО. Она допускается из-за невнимательности и неудобства электромонтажа внутри стеновой панели. Оплошность приведёт к неконтролируемым выключениям устройств.
    • Применение двух или более УЗО усложняют работу по подключению нулевых проводов. Последствия невнимательности могут быть довольно серьёзными. Не поможет и тестирование, так как при нём работа устройства не вызовет никаких нареканий. Но первое же подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
    • Невнимательность при подключении фазы и нуля, если они взяты с разных УЗО. Проблема возникает при соединении нагрузки с нулевым проводником, относящимся к другому устройству защиты.
    • Несоблюдение полярности подключения, что выражается в подключении фазы и нуля, соответственно сверху и снизу. Это спровоцирует движение токов в одном направлении, вследствие чего создаются условия для невозможности взаимокомпенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть отличным.
    • Пренебрежение деталями при подключении трехфазного УЗО. Распространённой ошибкой в подключении четырёхполюсного УЗО является использование клемм одноимённой фазы. Тем не менее, работа однофазных потребителей никак не повлияет на работу такого защитного устройства.

    prokommunikacii.ru

    Установка УЗО значительно повышает уровень безопасности при работе на электроустановках. Если УЗО обладает высокой чувствительностью (30 мА), то при этом обеспечивается защита от прямого контакта (прикосновения).

    Тем не менее, установка УЗО не означает от выполнения обычных мер предосторожности при работе на электроустановках.

    Кнопку тест необходимо нажимать регулярно, как минимум один раз в 6 месяцев. Если тест не срабатывает, то надо задуматься о замене УЗО, так как уровень электробезопасности снизился.

    Установите УЗО на панели или корпусе. Подключите оборудование в точном соответствии со схемой. Включите все нагрузки, подключенные к защищаемой сети.

    Срабатывает УЗО.

    Если УЗО срабатывает, выясните, какое устройство является причиной срабатывания, путем последовательного отключения нагрузки (отключаем по очереди эл. оборудование и смотрим результат). При обнаружении такого устройства его необходимо отключить от сети и проверить. Если электрическая линия имеет очень большую длину, обычные токи утечки могут быть достаточно велики. В этом случае имеется вероятность ложных срабатываний. Чтобы избежать этого, необходимо разделить систему, по крайней мере, на два контура, каждый из которых будет защищен своим УЗО. Можно расчитать длинну электрической линии.

    При невозможности определения документальным способом суммы токов утечки проводки и нагрузок, можно пользоваться примерным расчетом (в соответствии с СП 31-110-2003), принимая ток утечки нагрузки равным 0,4мА на 1А потребляемой нагрузкой мощности и ток утечки электросети равным 10мкА на один метр длины фазового провода электропроводки.

    Пример расчета УЗО.

    Для примера рассчитаем УЗО для электроплиты, мощностью 5 кВт, установленную на кухне малогабаритной квартиры.

    Примерное расстояние от щитка до кухни может составлять 11 метров, соответственно расчетная утечка проводки составляет 0,11мА. Электроплита, на полной мощности, потребляет (приближенно) 22.7А и обладает расчетным током утечки 9,1мА. Таким образом, сумма токов утечки данной электроустановки составляет 9,21мА. Для защиты от токов утечки можно использовать УЗО с номиналом тока утечки 27,63мА, что округляется до ближайшего большего значения существующих номиналов по диф. току, а именно УЗО 30мА.

    Следующим шагом, является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемым электроплитой, можно использовать номинал (с небольшим запасом) УЗО 25А, или с большим запасом — УЗО 32А.

    Таким образом мы расчетно определили номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (надо не забыть защитить УЗО автоматическим выключателем 25А для первого номинала УЗО и 25А или 32А для второго номинала).

    Обозначение УЗО.

    На схеме УЗО обозначается следующим образом рис. 1 однофазное УЗО, рис. 2 -трехфазное УЗО.

    Схема подключения УЗО рассмотрим на примере. На фото. 1 показан фрагмент распределительного шкафа.

    Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото цифра1 УЗО, 2- автоматический выключатель) и однофазных УЗО (3).

    УЗО не защищает от токов короткого замыкания, поэтому его устанавливают в паре с автоматическим выключателем. Что ставить раньше УЗО или автоматический выключатель в данном случае не принципиально. Номинал УЗО должен быть равным или немного больше наминала автоматическо выключателя. Например, автоматический выключатель 16 Ампер, значит, УЗО ставим 16 или 25 А.

    Как видно на фото. 1 на трехфазное УЗО (цифра 1) подходят три фазных и нулевой проводник, а после УЗО подключен автоматический выключатель (цифра 2). Потребитель будет подключаться: фазные проводники (красные стрелки) с автоматического выключателя; нулевой проводник (синяя стрелка) — с УЗО.

    Под цифрой 3 на фото показаны дифференциальные автоматы, соединенные сборной шиной, принцип работы диф. автомата такой же, как у УЗО, но он дополнительно защищает от токов короткого замыкания и не требует дополнительной защита от КЗ.

    А подключение, что у УЗО, что у диф. автоматов одинаковое.

    Подключаем к клемме L фазу, к N ноль (обозначения нанесены на корпусе УЗО). Потребители подключаются также.

    www.mirpodelki.ru

    УГО Наименование
    Дугогашение
    Без самовозврата
    С самовозвратом
    Концевой или путевой выключатель
    С автоматическим срабатыванием
    Выключатель-разъединитель
    Разъединитель
    Выключатель
    Контактор

    ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.

    Основные УГО для однолинейных схем электрощитов

    УГО Наименование
    Тепловое реле
    Контакт контактора
    Рубильник – выключатель нагрузки
    Автомат – автоматический выключатель
    Предохранитель
    Дифференциальный автоматический выключатель
    УЗО
    Трансформатор напряжения
    Трансформатор тока
    Рубильник (выключатель нагрузки) с предохранителем
    Автомат для защиты двигателя (со встроенным тепловым реле)
    Частотный преобразователь
    Электросчетчик
    Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления
    Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления
    Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления
    Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления
    Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании
    Замыкающий контакт с замедленным действием, который инициируется только при срабатывании
    Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании
    Замыкающий контакт с замедленным действием, который срабатывает только при возврате
    Замыкающий контакт с замедленным действием, который включается только при срабатывании
    Катушка временного реле
    Катушка фотореле
    Катушка реле импульсного
    Общее обозначение катушки реле или катушки контактора
    Лампочка индикационная (световая), осветительная
    Мотор-привод
    Клемма (разборное соединение)
    Варистор, ОПН (ограничитель перенапряжения)
    Разрядник
    Розетка (разъемное соединение):
    Нагревательный элемент

    Обозначение измерительных электроприборов для характеристики параметров цепи

    ГОСТ 2.271-74 приняты следующие обозначения в электрощитах для шин и проводов:

    Буквенные обозначения в электрических схемах

    Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:

    Наименование Обозначение
    Выключатель автоматический в силовой цепиQF
    Выключатель автоматический в управляющей цепиSF
    Выключатель автоматический с дифференциальной защитой или дифавтоматQFD
    Рубильник или выключатель нагрузкиQS
    УЗО (устройство защитного отключения)QSD
    КонтакторKM
    Реле тепловоеF, KK
    Временное релеKT
    Реле напряженияKV
    Импульсное релеKI
    ФоторелеKL
    ОПН, разрядникFV
    Предохранитель плавкийFU
    Трансформатор напряженияTV
    Трансформатор токаTA
    Частотный преобразовательUZ
    АмперметрPA
    ВаттметрPW
    ЧастотомерPF
    ВольтметрPV
    Счетчик энергии активнойPI
    Счетчик энергии реактивнойPK
    Элемент нагреванияEK
    ФотоэлементBL
    Осветительная лампаEL
    Лампочка или прибор индикации световойHL
    Разъем штепсельный или розеткаXS
    Переключатель или выключатель в управляющих цепяхSA
    Кнопочный выключатель в управляющих цепяхSB
    КлеммыXT

    Изображение электрооборудования на планах

    Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.

    Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.

    Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.

    Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

    Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2.302 в масштабе чертежа по фактическим габаритам.

    Условные графические обозначения линий проводок и токопроводов

    Условные графические изображения шин и шинопроводов

    ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.

    Условные графические изображения коробок, шкафов, щитов и пультов

    Условные графические обозначения выключателей, переключателей

    На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.

    Условные графические обозначения штепсельных розеток

    Условные графические обозначения светильников и прожекторов

    Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.

    Условные графические обозначения аппаратов контроля и управления

    Заключение

    Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.

    Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.

    Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.

    В этой статье вы найдете 15 схем установки УЗО (устройства защитного отключения). При проектировании электропроводки УЗО располагаются в зонах защиты электрических цепей потребителей, с наибольшей вероятностью поражения малыми токами замыканий. Под эти условия попадают все бытовые приборы, имеющие контакт с водой, расположенных в мокрых и влажных комнатах, а также в детских комнатах для повышения безопасности.

    При проектировании (установки) УЗО принимается во внимание ранжирование опасности и в различных схемах, количество УЗО, равно плановых помещений, может меняться. Для наиболее опасных, в смысле поражения током, бытовые приборов защищаются УЗО отдельно.

    В каких цепях ставится УЗО

    По своему основному назначению, УЗО защищает человека от малых токов, замыкания фазных проводов на проводящие корпуса приборов. Второе назначение УЗО это косвенное слежение за состоянием электропроводки и плотностью крепления жил проводов. Это позволяет использовать его, как защитное средство от пожаров.

    15 схем установки УЗО, устройства защитного отключения

    Для начала, посмотрим, как обозначаются УЗО в принципиальных электрических схемах. По УЗО и дифференциальные автоматы защиты обозначаются следующим образом.

    Буквенно-цифровое обозначение УЗО, согласно , выглядит так.

    УЗО и групповые цепи

    По нормативам, УЗО ставится на групповые цепи (функциональные группы) розеток, освещения, силового оборудования, а также, в электрических цепях одиночных установок (приборов).

    Схема 3, подключение УЗО 380 В, 11 кВт

    На данной схеме, УЗО подключаются в электрическую сеть, 380 Вольт, и расчетной нагрузкой до 11 кВт. Это может быть частный дом или квартира. Согласно схеме, общее противопожарное УЗО (25 А/100 мА) ставится вместе со счетчиком в УЭРМ (Устройство этажное распределительное многоящичное – современный этажный щит). Электросеть помещения разделена на 5 групп, три из которых защищены УЗО 16 А/30мА и цепь ванной, защищена УЗО 25А/10мА.

    Схема 4, 8 групповых цепей

    На схеме 4, УЗО подключаются в электрической сети 380 Вольт, и расчетной нагрузкой до 11 кВт. Данная схема, предусматривает 8 групповых цепей, 6 из которых защищены УЗО. (4 узо 16А/30мА и 1 узо 25А/10мА)

    Примечание. Согласно стандартам, УЗО ставятся в распределительные, квартирные щитки и другие электрические шкафы. Открытая установка УЗО запрещена.

    Схема 5, подключение УЗО в частном доме

    Установка УЗО в частном доме с . Напряжение питания 220 Вольт.

    Противопожарное УЗО (32А/100мА) ставится на вводе кабеля питания в ЩКВс (щит квартирный встраиваемый со стеклом) вместе со счетчиком. Вполне щит ЩКВс может быть заменен ЩКНс (щит квартирный навесной) или щитом ЩВУ (щит вводно-учетный).

    Электрическая схема электропроводки большой квартиры или дома. Вводное защитное устройство поставлено до счетчика, вопрос зачем? Если мы говорим об установке УЗО, как такового, то такая установка УЗО до счетчика неправильная. Возможна установка защитного устройства до счетчика, если это дифференциальный автомат защиты, но здесь уже стоит автомат защиты.

    Примечание. Номинал УЗО устанавливаемого после автомата защиты, должно иметь номинал на шаг больше номинала автомата защиты.

    Схема 7, УЗО в сети tn-s

    Устройство защитного отключения в квартире, без противопожарного узо, в сети типа tn-s.

    Примечание: Сеть типа tn-s предполагает разделение нулевого рабочего (N) и защитного проводника (PE).

    Если рассматривать данную схему, как схему только квартиры, то вполне допустимо, разделение PEN проводника на PE и N проводники в этажном щите, а сама сеть типа: tn-c-s.

    Схемы 9 и 10, правильное и не правльное подключения узо

    Это простые принципиальные схемы по правильному и не правильному подключению УЗО. Стоит обратить внимание, на неправильное подключение УЗО.

    Примечание: К сожалению, на принципиальных схемах, не показаны особенности подключения нескольких узо для разных групповых цепей. Здесь важно, для каждой группы, на которой стоит УЗО, нужно ставить свою, независимую шину заземления и розетки этой группы присоединять только к этой шине.

    На схеме 10

    • (1) это подключение дифференциального автомата,
    • (2) и (3) это подключение УЗО с автоматами защиты.

    Схема 11 и схема 12, узо на принципиальных схемах

    Простые принципиальные схемы, 220 Вольт. На них прекрасно и правильно показано подключение УЗО в сборке: вводной автомат-счетчик учета- УЗО противопожарное.

    Схема 13, Муниципальная схема подключения квартиры

    Муниципальная схема подключения квартиры. Противопожарное УЗО (50А/100мА) в этажном щите и общее УЗО в квартирном щитке (40А/30мА). Название говорит само за себя, схема экономичная.

    Схема 14, Минимальная схема подключения квартиры

    Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

    Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

    Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

    Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется .

    Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

    Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы , но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

    Обозначение узо на однолинейной схеме

    Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

    Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

    В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным .

    На какие нормативные документы следует ссылаться?

    Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

    1. — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
    2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

    Графическое обозначение УЗО на схеме

    Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

    Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

    Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

    Или к примеру УЗО от Schneider Electric:

    Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

    По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

    Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

    В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

    Как обозначается дифавтомат на схеме?

    По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

    Буквенное обозначение узо на электрических схемах

    Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

    Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специальногобуквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

    Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах .

    Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

    Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

    То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

    Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

    Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – «дифференцирующий ».

    Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

    Какие можно сделать выводы из вышеописанного?

    Как обозначается узо на однолинейной схеме — пример реального проекта

    Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

    Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

    Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

    Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

    Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

    Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

    Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

    графические и буквенные по ГОСТ

    Как невозможно читать книгу без знания букв, так невозможно понять ни один электрический чертеж без знания условных обозначений.

    В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.

    Введение


    Но начнем немного издалека…
    Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.

    Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.

    Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?

    «Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»

    Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».

    Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.

    В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.

    Виды и типы электрических схем

    Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
    В соответствии с этим ГОСТ, схемы разделяются на 10 видов:

    1. Схема электрическая
    2. Схема гидравлическая
    3. Схема пневматическая
    4. Схема газовая
    5. Схема кинематическая
    6. Схема вакуумная
    7. Схема оптическая
    8. Схема энергетическая
    9. Схема деления
    10. Схема комбинированная

    Виды схем подразделяются на восемь типов:

    1. Схема структурная
    2. Схема функциональная
    3. Схема принципиальная (полная)
    4. Схема соединений (монтажная)
    5. Схема подключения
    6. Схема общая
    7. Схема расположения
    8. Схема объединенная

    Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.

    ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.

    ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.

    Графические обозначения в электрических схемах

    В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

    • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
    • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
    • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

    Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

    Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

    Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

    Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

    с использованием девяти функциональных признаков:

    Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

    НаименованиеИзображение
    Автоматический выключатель (автомат)
    Выключатель нагрузки (рубильник)
    Контакт контактора
    Тепловое реле
    УЗО
    Дифференциальный автомат
    Предохранитель
    Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
    Выключатель нагрузки с предохранителем (рубильник с предохранителем)
    Трансформатор тока
    Трансформатор напряжения
    Счетчик электрической энергии
    Частотный преобразователь
    Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления автоматически
    Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
    Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вытягивания кнопки
    Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
    Контакт замыкающий с замедлением, действующим при срабатывании
    Контакт замыкающий с замедлением, действующим при возврате
    Контакт замыкающий с замедлением, действующим при срабатывании и возврате
    Контакт размыкающий с замедлением, действующим при срабатывании 
     Контакт размыкающий с замедлением, действующим при возврате 
     Контакт замыкающий с замедлением, действующим при срабатывании и возврате
    Катушка контактора, общее обозначение катушки реле
    Катушка импульсного реле
    Катушка фотореле
    Катушка реле времени
    Мотор-привод
    Лампа осветительная, световая индикация (лампочка)
    Нагревательный элемент
    Разъемное соединение (розетка):
    гнездо
    штырь
    Разрядник
    Ограничитель перенапряжения (ОПН), варистор
    Разборное соединение (клемма)
    Амперметр
    Вольтметр
    Ваттметр
    Частотометр

    Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.

    Буквенные обозначения в электрических схемах

    Буквенные обозначения определены ГОСТ 2.710-81 «ЕСКД. Обозначения буквенно-цифровые в электрических схемах».

    Обозначения дифавтоматов и УЗО в этом ГОСТ отсутствует. На различных сайтах и форумах в интернете долго обсуждали как же правильно обозначать УЗО и дифавтомат. ГОСТ 2.710-81 в п.2.2.12. допускает использование многобуквенных кодов (а не только одно- и двухбуквенных), поэтому до введения нормативного обозначения я для себя принял трехбуквенное обозначение УЗО и дифавтомата. К двухбуквенному обозначению рубильника я добавил букву D и получил обозначение УЗО. Аналогично поступил с дифавтоматом.

    Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено.

    Обозначения основных элементов, используемых в однолинейных схемах электрических щитов:

    НаименованиеОбозначение
    Автоматический выключатель в силовых цепяхQF
    Автоматический выключатель в цепях управленияSF
    Автоматический выключатель с дифференциальной защитой (дифавтомат)QFD
    Выключатель нагрузки (рубильник)QS
    Устройство защитного отключения (УЗО)QSD
    КонтакторKM
    Тепловое релеF, KK
    Реле времениKT
    Реле напряженияKV
    ФоторелеKL
    Импульсное релеKI
    Разрядник, ОПНFV
    Плавкий предохранительFU
    Трансформатор токаTA
    Трансформатор напряженияTV
    Частотный преобразовательUZ
    АмперметрPA
    ВольтметрPV
    ВаттметрPW
    ЧастотометрPF
    Счетчик активной энергииPI
    Счетчик реактивной энергииPK
    ФотоэлементBL
    Нагревательный элементEK
    Лампа осветительнаяEL
    Прибор световой индикации (лампочка)HL
    Штепсельный разъем (розетка)XS
    Выключатель или переключатель в цепях управленияSA
    Выключатель кнопочный в цепях управленияSB
    КлеммыXT

    Изображение электрооборудования на планах

    Хотя ГОСТ 2.701-2008 и ГОСТ 2.702-2011 предусматривают вид электрической схемы «схема расположения», при проектировании зданий и сооружений следует руководствоваться ГОСТ 21.210-2014 «СПДС. Изображения условные графические электрооборудования и проводок на планах». Данный ГОСТ устанавливает условные обозначения электропроводок, прокладок шин, шинопроводов, кабельных линий, электрического оборудования (трансформаторов, электрических щитов, розеток, выключателей, светильников) на планах прокладки электрических сетей.

    Эти условные обозначения применяются при выполнении чертежей электроснабжения, силового электрооборудования, электрического освещения и других чертежей. Также данные обозначения используются для изображении потребителей в однолинейных принципиальных схемах электрических щитов.

    Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

    Условные графические обозначения линий проводок и токопроводов

    К сожалению, AutoCAD в базовой поставке не содержит все необходимые типы линий.

    Проектировщики решают эту проблему по-разному:

    • большинство выполняет отрисовку проводки обычной линией, а потом дополняет обозначениями кружков, квадратиков и пр.;
    • продвинутые пользователи AutoCAD создают собственные типы линий.

    Я — сторонник второго способа, т.к. он гораздо удобнее. Если вы используете специальный тип линии, то при её перемещении все «дополнительные» обозначения также перемещаются, ведь они часть линии.

    Создать собственный тип линии в AutoCAD достаточно просто. Вы потратите некоторое время на освоение этого навыка, зато сэкономите потом массу времени при проектировании.

    Изображение вертикальной прокладки удобнее всего сделать при помощи блоков AutoCAD, а лучше при помощи динамических блоков.

    Условные графические изображения шин и шинопроводов

    Отрисовку шин и шинопроводов в AutoCAD удобно выполнять при помощи полилинии и/или динамических блоков.

    Условные графические изображения коробок, шкафов, щитов и пультов

    НаименованиеИзображение
    Коробка ответвительная
    Коробка вводная
    Коробка протяжная, ящик протяжной
    Коробка, ящик с зажимами
    Шкаф распределительный
    Щиток групповой рабочего освещения
    Щиток групповой аварийного освещения
    Щиток лабораторный
    Ящик с аппаратурой
    Ящик управления
    Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления
    Шкаф, панель двухстороннего обслуживания
    Шкаф, щит, пульт из нескольких панелей одностороннего обслуживания
    Шкаф, щит, пульт из нескольких панелей двухстороннего обслуживания
    Щит открытый
    Ящик трансформаторный понижающий (ЯТП)

    Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.

    Условные графические обозначения выключателей, переключателей

    ГОСТ 21.210-2014 не предусматривает условных изображения для светорегуляторов (диммеров) и отдельного изображения для кнопочных выключателей, поэтому я ввёл для них собственные обозначения в соответствии с п.4.7.

    Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов выключателей.

    Условные графические обозначения штепсельных розеток

    Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов розеток.

    Условные графические обозначения светильников и прожекторов

    Радует, что в обновленной версии ГОСТ добавлены изображения светодиодных светильников и светильников с компактными люминесцентными лампами.

    Отрисовку светильников в AutoCAD удобно выполнять при помощи динамических блоков.

    Условные графические обозначения аппаратов контроля и управления

    Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков.


    Подпишитесь и получайте уведомления о новых статьях на e-mail

    Читайте также:

    Обозначение дифференциального автомата на схеме

    Обозначение автоматического выключателя на схеме

    Для обустройства электроснабжения необходимы проекты чертежей. Чтобы разобраться в чертеже и прочитать его, нужно знать условные обозначения. Автоматический выключатель на схеме указывают по-разному, что часто приводит к недоразумениям, ошибкам при сборке электрощитов и монтаже проводки.

    Условные обозначение электрических элементов и виды схем

    Первоначальный вопрос, с которым обычно сталкивается каждый электрик, – проектная документация помещения или объекта, который необходимо электрифицировать. Прежде чем приступить к монтажу оборудования, квалифицированный специалист должен ознакомиться с сопровождающими документами.

    Оборудование и элементы на схеме могут обозначаться как буквенным, так и графическим изображением. Чертежи разрабатываются в соответствии с ГОСТами и правилами маркировки оборудования и элементов на чертежах и планах. Подробное описание и требования к электрическим схемам приводятся в ГОСТе 2.702-2011 ЕСКД. Кроме графических и буквенных обозначений на схемах проставляют номинальные размеры.

    Есть много типов различных схем. В электрике чаще всего используют три основных вида. Функциональные отображают основные узлы устройства, без подробной детализации. Они выглядят как набор отдельных блоков, связанных между собой определенным образом. Схема дает общее представление о работе объекта.

    Принципиальная схема содержит подробные указания для каждого элемента, его контакты и связи. Она может описывать как отдельное устройство, так и электросеть. На однолинейных схемах указывают силовые цепи. Способ управления и контроль описывают на отдельном листке. Если устройство не сложное, все размещают на одном документе.

    На монтажных схемах указывают элементы и точное их расположение. Если это проводка в квартире или доме, обозначают место установки выключателей, светильников, розеток. Также проставляют расстояния и номиналы. Указывают положение деталей, порядок и способ их соединения.

    Устройство защитного отключения (УЗО) и дифавтомат на схеме не имеют определенного геометрического начертания. Для их графического выполнения используют изображение блоков и динамических блоков. Каждому устройству на схеме присваивают буквенную маркировку и указывают позиционный номер.

    Кроме того, наносят параметры элементов, которые есть в чертеже. Расписывают основные данные об элементе, чтобы не ошибиться при монтаже и подобрать соответствующее устройство. Эти условные знаки применяют для составления чертежей электроснабжения, силового оборудования и электрического освещения. А также в принципиальной однолинейной схеме электрощитов.

    Обозначение автоматического выключателя на схеме

    Условное графическое обозначение автомата на схеме обусловлено ГОСТом 2.755-87 ЕСКД, буквенно-цифровое – ГОСТ 2.710-81 ЕСКД. Особых требований к маркировке нет, поэтому электромонтеры часто используют собственные значения и метки. Можно встретить документацию, когда определение коммутационного аппарата отличается в разных проектах.

    Каждый проектировщик, выполняя схему, может изобразить УЗО на свое усмотрение. Достаточно в пояснениях к схеме указать УГО (условные графические обозначения) и их расшифровку.

    В зависимости от характеристик устройства элементы имеют разные буквенные символы, а также следующие графические обозначения на электрических схемах.

    Автоматические выключатели рекомендуется позиционировать как, QF1, QF2, QF3. Рубильники разъединители – QS1,QS2,QS3. Предохранители на схемах показывают как FU с порядковым номером, где кодировка буквы Q расшифровывается как выключатель или рубильник силовых цепей, а F – защитный. Эта комбинация вполне применима не только к обычным автоматам, но может быть обозначением диф автомата на схеме.

    Для УЗО используют комбинацию QSD, обозначение дифференциального автомата на схеме выглядит как QFD.

    Обозначение УЗО на однолинейной схеме

    Это вид выключающего аппарата, в функции которого входит разъединение сети или ее части, когда произошло превышение определенной отметки дифференциального тока. Устройство способствует повышению электробезопасности, предотвращает возникновение чрезвычайных ситуаций, как в производственной сфере, так и дома. Схема подключения УЗО проста, но недочеты при монтаже могут привести к серьезным неприятностям.

    Так можно обозначить УЗО на принципиальной схеме.

    УЗО вместе с другими элементами в проектной документации чаще всего выполняют условно, что затрудняет расшифровку принципа работы как всей схемы, так и отдельно взятых элементов. Изображение защитного устройства может выглядеть как обычный выключатель. Но на нелинейной схеме он представляет собой два параллельно расположенных выключателя. На однолинейной – элементы, провода и полюса изображаются символически.

    Любое схематическое изображение должно быть правильно составлено, а в дальнейшем прочитано. Самый маленький изъян может привести к неисправности УЗО или всей системы. Важно учитывать следующие часто встречающиеся ошибки:

    • Ноль и заземление соединяются после защитного устройства. Если схема неправильно интерпретирована, нейтраль может быть соединена с открытой частью электроустановки или с нулевым защитным проводником.
    • Если устройство подключено неполнофазно, возникает ложное срабатывание автомата.
    • Неправильное соединение проводников в розетках приводит к срабатыванию устройства, даже если в розетку ничего не включено.
    • Соединение нулевых проводников двух автоматов приводит к неконтролированным отключениям.
    • Распространенной ошибкой является ситуация, когда перепутаны фазы и нули, относящиеся к разным устройствам.
    • Несоблюдение полярности ведет к движению токов в одном направлении. Перед установкой следует внимательно ознакомиться с расположением клемм.

    Всегда выполняется предварительная схема, с учетом возможных ошибок, происходящих в сети. Если документ составлен правильно, работа защитного устройства приносит эффект.

    Важно помнить о технике безопасности. Необходимо периодически проводить осмотр проводов, в случае их повреждения УЗО срабатывает и прекращается подача электроэнергии. Поэтому с ремонтом лучше не медлить.

    Пример реального проекта

    Однолинейная принципиальная схема (ОПС) не что иное, как чертеж плана, например, квартиры. На нем должны быть указаны распределительные группы. Для этого необходимо измерить все стены и выполнить чертеж с соблюдением масштаба. Понадобится несколько копий, что бы на каждой изобразить отдельную группу.

    Распределительные группы – это точки, которые будут подключены к одному автомату квартирного щитка. Всю проводку нельзя подключать к одной группе. В противном случае понадобится мощный кабель, который будет способен выдержать нагрузку всех приборов.

    В зависимости от количества комнат и наличия энергопотребляющих устройств распределительные группы могут выглядеть следующим образом.

    • освещение комнаты, прихожей и кухни;
    • свет и розетки в туалете;
    • розетки в жилой комнате;
    • розетки в коридоре и кухне;
    • электрическая плита.

    Помещения с повышенной влажностью рекомендуется подключать отдельной группой, для которой необходима установка УЗО. Если в квартире есть маленькие дети, защитное устройство подключают на каждую группу.

    Принципиальная, или однолинейная схема необходима для правильного подключения щитовой и распределительных групп.

    В данном примере отражено подключение к трехфазному питанию. Всю квартиру питает вводный кабель из 5 жил, сечением 10 мм2. Фазы пронумерованы, как L1, L2, L3, заземление – PE, которое замыкается с нолем. Вводный автомат (ВА) отключает все автоматы групп, которые маркируются таким же способом.

    Количество фаз определяется по количеству черточек на схеме. Однофазная – , или трехфазная – \. Маркировка провода ВВГ НГ говорит о том, что он с негорящей изоляцией, трехжильный с сечением 1,5 мм2.

    Чертеж дает возможность определиться с количеством и маркой нужных защитных устройств. Подсчитать число выключателей и розеток, а также, сколько метров кабеля потребуется.

    Все соединения проводов должны находиться в распределительных коробках. Рекомендуется для каждого помещения отдельная коробка. Если, например, в кухне располагается газовый котел и другие электроприборы, потребуются две распределительные коробки.

    Особых требований по установлению розеток и выключателей не существует. Их устанавливают так, чтобы было удобно. На кухне и на рабочем месте розетки размещают над столом.

    Стационарную бытовую технику, бойлеры, вытяжки, сушилку для полотенец подключают сразу через клеммники. Интернет и телевизионные розетки можно объединять с электрическими.

    Обозначение дифференциального автомата на схеме

    Дифференциальный автомат совмещает в одном аппарате устройство защитного отключения и автоматический выключатель, чем и отличается от УЗО. В этом случае графическое изображение на схеме выглядит следующим образом.

    Если для УЗО принимаются буквенно-цифровые обозначения Q1, то для АВДТ (автоматический выключатель дифференциального тока) – QF1. Буквы говорят о функциях аппарата, а цифры указывают на его порядковый номер в схеме. Другая буквенная комбинация QF1D, где D обозначает «дифференциальный».

    Основной характеристикой таких устройств является номинальный рабочий ток, при котором автомат остается включенным продолжительное время. Эти показатели строго стандартизированы, а ток может иметь значения: 6 Ампер; 10; 16; 25; 50 и т.д.

    Другая важная характеристика – это быстродействие. Токовый показатель обозначается буквами B, C, D, стоящими перед значением номинального тока. Например, комбинация C16, говорит, что автомат быстродействия C, рассчитан на номинальный ток в 16 Ампер.

    Дифференциальный допустимый показатель укладывается в следующий ряд: 10; 30; 100; 500 миллиампер. На корпусе прибора обозначается знаком «дельта» с цифрой, соответствующей току утечки.

    Эксплуатационные возможности автомата рассчитаны на номинальное напряжение в 220 Вольт для однофазной цепи и 380 для трехфазной.

    Дифавтоматы различают по типам, в зависимости от тока утечки и маркируются такими буквенными индексами:

    • A – реагирующие на утечку переменного или постоянного пульсирующего тока;
    • AC – рассчитанные на срабатывание при утечке с постоянной составляющей;
    • B – тип устройства, включающий обе предыдущие возможности.

    Эта характеристика может маркироваться небольшим рисунком, обозначающим вид тока.

    Устройства работают по селективному признаку, обладают способностью задержки по времени срабатывания. Это обеспечивает выборочное отключение прибора от сети и устойчивость системы защиты. Такая характеристика обозначается буквой S и дает задержку в 200–300 миллисекунд. Маркировка G соответствует 60–80 миллисекундам.

    Так как пусковые токи превышают рабочее значение, защита устроена так, что электромагнитный независимый расцепитель отключает устройство в том случае, когда ток в несколько раз превышает номинальный размер.

    В нормативных документах содержится много специальных шифров и знаков. Большая их часть в быту практически не применяется. Для правильного чтения электрической схемы нужно знать основные обозначения и учитывать некоторые нюансы. Один из них – страна производитель оборудования, кабелей или проводки, так как существует разница в маркировке и условных обозначениях, что затрудняет правильную трактовку чертежа.

    Обозначения в эл. схемах

    Обозначение УЗО и дифференциального автомата.

    На данный момент в ГОСТ нет каких либо рекомендаций относительно условных графических обозначений УЗО и дифференциальных автоматов. Изображения обозначений, которые используют в схемах отличаются друг от друга.

    По этому, в данной статье, я хочу дать свои рекомендации и предложить вариант обозначений УЗО и дифференциального автомата, который по моему мнению, будет соответствовать функциональному назначению этих электрических аппаратов.

    Функционально УЗО можно определить как быстродействующий выключатель, реагирующий на дифференциальный ток — ток утечки в проводниках, подводящих электроэнергию к защищаемой электроустановке. В качестве датчика дифференциального тока и основного функционального элемента УЗО используется трансформатор тока, который часто называют трансформатором тока нулевой последовательности (что не совсем правильно, но думаю приемлемо).

    Из выше сказанного следует что изображение условного обозначения УЗО, должно состоять из обозначения выключателя и трансформатора тока нулевой последовательности, сигнал от которого (ток нулевой последовательности), воздействует на механизм отключения контактной группы аппарата.

    Этому требованию подходят следующие обозначения:

    Дифференциальный автомат, отличается от УЗО тем, что совмещает в одном электрическом аппарате два устройства, автоматический выключатель и устройство защитного отключения. По этому можно использовать следующее обозначение:

    Буквенно-цифровое обозначение УЗО и дифференциальных автоматов, на мой взгляд, можно наносить на схеме следующим образом:

    Где Q1 и QF1 обозначают функции выключателя и автоматического выключателя соответственно и порядковый номер аппарата в схеме. Значение дифференциального тока, обозначает функцию устройства защитного отключения

    Второй вариант буквенно-цифрового обозначения, который часто применяется: QD1 для УЗО и QFD1 для дифференциального автомата. И хотя согласно ГОСТ 2.710 код буквы D обозначает схемы интегральные, более подходящего символа в данном ГОСТ нету. Будем считать, что D, от слова дифференциальный.

    Данный вариант условных графических обозначений УЗО и дифференциальных автоматов, до момента публикации каких либо рекомендаций в нормативных документах, на мой взгляд является наиболее приемлемым. Поэтому, я решил включить трафареты рассмотренных выше электрических аппаратов в Комплект для черчения электрических схем.

    Комментарии

    То что в ГОСТ 2.710 функциональное значение элемента как дифференцирующе е обозначается буквой D, Вы правы.
    Но в данном случае я писал о позиционном обозначении.
    Вернее пытался хоть каким-то образом сопоставить с ГОСТ позиционное обозначение, которое придумал не я, а которое спонтанно начали применять в большинстве схем.
    Согласно ГОСТ 2.710 позиционное обозначение от функционального значения отличается тем что символ функционального значения должен находится уже после позиционного обозначения, то есть после цифр.

    К примеру обозначение QF21D, имело бы более правильное обозначение для дифференциально го автомата, и не противоречило ГОСТ.

    Хотел бы заметить, что ГОСТ 2.710, написан таким языком, что возникает мысль что его перевели с какого то иностранного языка с помощью «машинного» переводчика.
    Возможно я что то не верно понял и возможно не прав.

    энергетик

    Примеры подключения УЗО и Диф. автоматов

    Вернутся в раздел: УЗО и ДифзащитаЭлектрика

    В данной статье рассмотрены несколько примеров подключения УЗО и Дифференциальных автоматов.

    Основным условием при выборе УЗО и диф. автомата является соблюдение селективности ( ПУЭ.РАЗДЕЛ 3 ):

    В электротехнике под «селективностью» понимают совместную работу последовательно включенных аппаратов защиты электрических цепей (автоматические выключатели, УЗО, диф. автомат и т.п.) в случае возникновения аварийной ситуации. На рис. 1 привёден пример работы такой схемы, с учётом общего наминала автоматических выключателей 40 А (4шт. по 10А), вводный автомат 63 А.

    Селективность используется при выборе номинала устройств защиты для отключения от общей системы питания только той ее части, где произошла авария. Это достигается за счет срабатывания только того автоматического выключателя, который защищает аварийную линию питания.

    Во общем, для селективной работы автоматических выключателей при перегрузках нужно, чтобы номинальный ток (In) автоматического выключателя со стороны питания был больше In автоматического выключателя со стороны потребителей.

    Условное обозначение УЗО и дифавтомата на электрических схемах:

    Обозначение УЗО на принципиальных электрических схемах см. рис. 2. Слева – однофазное УЗО с током срабатывания 30 мА, справа – трехфазное УЗО на 100 мА. Сверху развернутое изображение, снизу однолинейное. Число полюсов при однолинейном представлении можно изображать и числом (вверху) и числом черточек. Условное обозначение Дифавтомата на принципиальных схемах см. рис. 3 и на однолинейных схемах рис. 4. Буквенное обозначение QF.

    Схемы включения УЗО:

    По конструкции УЗО различных производителей могут отличаться друг от друга не только параметрами, но и схемами подключения. На рис. 5 приведены наиболее распространенные схемы включения УЗО в различных вариантах:

    Двухполюсные УЗО Рис. 5 (а).

    Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен в фазное напряжение (Рис. 5 (б).

    Четырехполюсные УЗО, в которых резистор, имитирующий дифференциальный ток, подключен на линейное напряжение (Рис. 5 (в).

    При включении УЗО (дифавтомата) в любом случае смотрите схему, схема подключения приведена на лицевой или боковой поверхности корпуса УЗО, а также в паспорте технического устройства.

    Ниже приведены монтажные схемы подключения УЗО (Рис. 6) и дифавтомата (Рис. 7).

    1. Вводный автомат.
    2. Прибор учёта (электросчетчик).
    3. УЗО или дифавтомат.
    4. Автоматический выключатель (освещения, как правило 6 ÷ 10 А, в зависимости от нагрузки светильников).
    5. Автоматический выключатель (розетки, как правило 16 ÷ 25 А, в зависимости от группы розеток).
    6. Автоматический выключатель (розетка «силовая», 16 ÷ 25 А, в зависимости от нагрузки электроплиты).
    7. Нулевая рабочая N — шина.
    8. Нулевая защитная РЕ — шина.

    Более подробно про системы заземления и зануления см. в разделе

    Вернутся в раздел: УЗО и ДифзащитаЭлектрика

    This entry was posted on Четверг, Январь 21st, 2016 at 08:27 and is filled under:

    Условное обозначение узо на схеме

    Ни один человек, каким бы талантливым и смекалистым он не был, не сможет научиться понимать электрические чертежи без предварительного знакомства с условными обозначениями, которые используются в электромонтаже практически на каждом шагу. Опытные специалисты утверждают, что шанс стать настоящим профессионалом своего дела может быть только у того электрика, которые досконально изучил и усвоил все общепринятые обозначения, используемые в проектной документации.

    Приветствую всех друзья на сайте «Электрик в доме». Сегодня я бы хотел уделить внимание одному из первоначальным вопросов, с которым сталкиваются все электрики перед монтажом — это проектная документация объекта.

    Кто то составляет ее сам, кому то предоставляет заказчик. Среди множества этой документации можно встретить экземпляры, в которых встречаются различия между условными обозначениями тех или иных элементов. Например в разных проектах один и тот же коммутационный аппарат графически может отображаться по разному. Встречалось такое?

    Понятно, что обсудить обозначение всех элементов в пределах одной статьи невозможно, поэтому тема данного урока будет сужена, и сегодня обсудим и рассмотрим, как выполняется обозначение узо на схеме.

    Каждый начинающий мастер обязан внимательно ознакомиться с общепринятыми ГОСТами и правилами маркировки электрических элементов и оборудования на план-схемах и чертежах. Многие пользователи могут со мной не согласится, аргументируя это тем, что зачем мне знать ГОСТ, я всего лишь занимаюсь установкой розеток и выключателей в квартирах. Схемы должны знать инженера проектировщики и профессора в университетах.

    Уверяю вас это не так. Любой уважающий себя специалист обязан не только понимать и уметь читать электрические схемы, но и должен знать, как графически отображаются на схемах различные коммуникационные аппараты, защитные устройства, приборы учета, розетки и выключатели. В общем, активно применять проектную документацию в своей повседневной работе.

    Обозначение узо на однолинейной схеме

    Основные группы обозначений УЗО (графические и буквенные) используются электромонтерами очень часто. Работа по составлению рабочих схем, графиков и планов требует очень большой внимательности и аккуратности, так как одно-единственное неточное указание или пометка могу привести к серьезной ошибке в дальнейшей работе и стать причиной выхода из строя дорогостоящего оборудования.

    Кроме того, неверные данные могут ввести в заблуждение сторонних специалистов, привлеченных для электромонтажа и стать причиной возникновения сложностей при монтаже электрических коммуникаций.

    В настоящее время любое обозначение узо на схеме может быть представлено двумя способами: графическим и буквенным .

    На какие нормативные документы следует ссылаться?

    Из основных документов для электрических схем, которые ссылаются на графическое и буквенное обозначение коммутационных устройств можно выделить следующие:

    1. — ГОСТ 2.755-87 ЕСКД «Обозначения условные графические в электрических схемах устройства коммутационные и контактные соединения»;
    2. — ГОСТ 2.710-81 ЕСКД «Обозначения буквенно-цифровые в электрических схемах».

    Графическое обозначение УЗО на схеме

    Итак, выше я представил основные документы, по которым регулируется обозначения в электрических схемах. Что нам дают указанные ГОСТы по изучению нашего вопроса? Мне стыдно признаться, но абсолютно ничего. Дело в том, что на сегодняшний день в данных документах отсутствует информация о том, как должно выполняться обозначение узо на однолинейной схеме.

    Действующий на сегодня ГОСТ никаких особых требований к правилам составления и использования графических обозначений УЗО не выдвигает. Именно поэтому некоторые электромонтеры предпочитают использовать для маркировки определенных узлов и устройств свои собственные наборы значений и меток, каждая из которых может несколько отличаться от привычных нашему взгляду значений.

    Для примера давайте рассмотрим, какие обозначения наносятся на корпусе самих устройств. Устройство защитного отключения фирмы hager:

    Или к примеру УЗО от Schneider Electric:

    Чтобы избежать путаницы, предлагаю Вам совместно разработать универсальный вариант обозначений УЗО, которым можно руководствоваться практически в любой рабочей ситуации.

    По своему функциональному назначению устройство защитного отключения можно описать так – это выключатель, который при нормальной работе способен включать/отключать свои контакты и автоматически размыкать контакты при появлении тока утечки. Ток утечки это дифференциальный ток, возникающий при ненормальной работе электроустановки. Какой орган реагирует на дифференциальный ток? Специальный датчик — трансформатор тока нулевой последовательности.

    Если представить все вышеописанное в графической форме, то получается что условное обозначение УЗО на схеме можно представить в виде двух второстепенных обозначений — выключателя и датчика реагирующего на дифференциальный ток (трансформатора тока нулевой последовательности) который воздействует на механизм отключения контактов.

    В этом случае графическое обозначение узо на однолинейной схеме будет выглядеть так.

    Как обозначается дифавтомат на схеме?

    По поводу обозначений дифавтоматов в ГОСТ на данный момент тоже нет данных. Но, исходя из вышеизложенной схемы, дифавтомат графически также можно представить в виде двух элементов — УЗО и автоматического выключателя. В этом случае графическое обозначение дифавтомата на схеме будет выглядеть так.

    Буквенное обозначение узо на электрических схемах

    Любому элементу на электрических схемах присваивается не только графическое обозначение, но и буквенное с указанием позиционного номера. Такой стандарт регулируется ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах» и обязателен для применения ко всем элементам в электрических схемах.

    Так, например, согласно ГОСТ 2.710-81 автоматические выключатели принято обозначать путем специального буквенно-цифрового позиционного обозначения таким образом: QF1, QF2, QF3 и т.д. Рубильники (разъединители) обозначаются как QS1, QS2, QS3 и т.д. Предохранители на схемах обозначаются как FU с соответствующим порядковым номером.

    Аналогично, как и с графическими обозначениями, в ГОСТ 2.710-81 нет конкретных данных, как выполнять буквенно-цифровое обозначение УЗО и дифференциальных автоматов на схемах.

    Как быть в таком случае? В этом случае многие мастера используют два варианта обозначений.

    Первый вариант воспользоваться самым удобным буквенно-цифровым обозначением Q1 (для УЗО) и QF1 (для АВДТ), которые обозначают функции выключателей и указывают на порядковый номер аппарата, находящегося в схеме.

    То есть кодировка буквы Q означает – «выключатель или рубильник в силовых цепях», что вполне может быть применима к обозначению УЗО.

    Кодовая комбинация QF расшифровывается как Q – «выключатель или рубильник в силовых цепях», F – «защитный», что вполне может быть применима не только к обычным автоматам, но и к диф.автоматам.

    Второй вариант это использовать буквенно-цифровую комбинацию Q1D — для УЗО и комбинацию QF1D — для дифференциального автомата. По приложению 2 таблицы 1 ГОСТ 2.710 функциональное значение буквы D означает – « дифференцирующий ».

    Я очень часто встречал на реальных схемах такое обозначение QD1 – для устройств защитного отключения, QFD1 – для дифференциальных автоматов.

    Какие можно сделать выводы из вышеописанного?

    Как обозначается узо на однолинейной схеме — пример реального проекта

    Как говорится в известной пословице «лучше один раз увидеть, чем сто раз услышать», поэтому давайте рассмотрим на реальном примере.

    Предположим, что перед нами находится однолинейная схема электроснабжения квартиры. Из всех этих графических обозначение можно выделить следующее:

    Вводное устройство защитного отключения расположено сразу после счетчика. Кстати как вы могли заметить буквенное обозначение УЗО – QD. Еще один пример как обозначается узо:

    Заметьте, что на схеме помимо УГО элементов также наносится их маркировка, то есть: тип устройства по роду тока (А, АС), номинальный ток, дифференциальный ток утечки, количество полюсов. Далее переходим к УГО и маркировке дифференциальных автоматов:

    Розеточные линии на схеме подключаются через диф.автоматы. Буквенное обозначение дифавтомата на схеме QFD1, QFD2, QFD3 и т.д.

    Еще один пример как обозначаются диф.автоматы на однолинейной схеме магазина.

    Вот и все дорогие друзья. На этом наш сегодняшний урок подошел к концу. Надеюсь, данная статья была для вас полезной и Вы нашли здесь ответ на свой вопрос. Если остались вопросы задавайте их в комментариях, с удовольствием отвечу. Давайте делиться опытом, кто как обозначает УЗО и АВДТ на схемах. Буду признателен на репост в соц.сетях))).

    Графические и буквенные условные обозначения в электрических схемах

    Как невозможно читать книгу без знания букв, так невозможно понять ни один электрический чертеж без знания условных обозначений.

    В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.

    Но начнем немного издалека.
    Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.

    Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.

    Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?

    «Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»

    Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».

    Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.

    В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.

    Виды и типы электрических схем

    Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
    В соответствии с этим ГОСТ, схемы разделяются на 10 видов:

    1. Схема электрическая
    2. Схема гидравлическая
    3. Схема пневматическая
    4. Схема газовая
    5. Схема кинематическая
    6. Схема вакуумная
    7. Схема оптическая
    8. Схема энергетическая
    9. Схема деления
    10. Схема комбинированная

    Виды схем подразделяются на восемь типов:

    1. Схема структурная
    2. Схема функциональная
    3. Схема принципиальная (полная)
    4. Схема соединений (монтажная)
    5. Схема подключения
    6. Схема общая
    7. Схема расположения
    8. Схема объединенная

    Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.

    ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.

    ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.

    Графические обозначения в электрических схемах

    В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

    • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
    • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
    • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

    Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

    Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

    Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

    Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

    с использованием девяти функциональных признаков:

    Что такое дифференциальный автомат и как его подключают?

    Автоматические выключатели способны обеспечить безопасность проводки, поддерживая условия, влияющие на работоспособность приборов. Однако эти устройства не могут защитить людей и животных от поражения электротоком при случайном касании к токоведущим частям подключённого оборудования. Дифференциальный автомат сочетает в себе функции автоматического выключателя нагрузки и УЗО. Он чувствителен не только к перегрузкам, но и к току утечки, что позволяет применять его для защиты людей от опасного напряжения.

    Отключение питания дифавтоматом происходит за доли секунды (менее 0,04 с) после изменения параметров дифференциальных токов. За это время человек, попавший под напряжение, не успевает получить серьёзную травму, находясь под защитой автомата. Так же быстро расцепитель срабатывает при возникновении условий, соответствующих короткому замыканию, либо в результате других аварийных ситуаций, угрожающих разрушением электропроводки.

    Назначение

    Дифференциальные автоматы разрабатывались с целью комплексной защиты от опасных напряжений:

    • человека, случайно коснувшегося оголенного провода или других токоведущих элементов различных электрических приборов;
    • электрооборудования и бытовых приборов от перегрузок и сверхтоков, возникающих при КЗ;
    • электрической проводки, оказавшейся под перенапряжениями в локальных электрических сетях.

    Благодаря компактным габаритам и удобным крепёжным приспособлениям, упрощающим монтаж в электрическом щитке, эти устройства активно применяются в домашних сетях, офисных и производственных помещениях. Современные дифференциальные автоматы обладают функциями защиты, которые есть как у автоматических выключателей, так и в УЗО.

    Сегодня всё чаще дифференциальные автоматы устанавливаются для защиты электрооборудования и людей в однофазных сетях (рисунок 1), так и в цепях с трёхфазным питанием. При этом контакты дифавтомата защищены дугогасительными камерами, поэтому способны выдерживать многократные коммутации в диапазоне номинальных напряжений, поддерживаемых в однофазных и трехфазных сетях.

    Рис. 1. Дифференциальный автомат для однофазной сети

    Несмотря на многофункциональность данного электромеханического устройства, его не целесообразно устанавливать в сетях со старой электропроводкой. Дело в том, что в случае утечки электрического тока, имеющей место в цепях с изношенной изоляцией проводов, работа дифференциального автомата, будет сопровождаться частыми защитными отключениями. По той же причине не рекомендуется установка дифавтомата для защиты линий с подключенными компьютерами.

    Конструкция и принцип работы

    Конструктивно дифференциальный автомат сочетает в себе два устройства: автоматический выключатель и встроенный узел УЗО. Общий принцип построения дифференциального автомата прекрасно объясняет иллюстрация, показанная на рисунке 2. Обратите внимание на синюю кнопку «Тест». С её помощью в любое время можно проверить работоспособность автомата.

    Рис. 2. Образное представление конструкции дифавтомата

    В реальности эти устройства смонтированы в одном корпусе. У них имеется один рычаг управления, а размыкание контактов происходит под действием общего расцепителя. Разумеется, датчик срабатывания дифавтомата состоит из двух независимых механизмов: биметаллических пластин автоматического выключателя и дифференциального устройства УЗО.

    Дифавтомат в разрезе показан на рис. 3.

    Рис. 3. Конструкция дифавтомата

    Защита цепей от перегрузок работает довольно просто. При значительном превышении допустимых величин номинальных токов или при длительной перегрузке линии происходит нагревание пластин. Одна из них выгибается, воздействуя на коромысло механизма расцепителя. Под действием пружины происходит резкое срабатывание защиты и контакты размыкаются. Для защиты от сверхтоков, возникающих при КЗ, применяется катушка токовой отсечки.

    Рассмотрим более детально принцип работы модуля защиты УЗО. Для этого приведём пример структурной схемы дифференциального автомата (рис. 4).

    Рис. 4. Структурная схема АВДТ

    На схеме видно 2 взаимосвязанных узла: дифференциальный трансформатор (обозначен цифрой 3) и реле напряжения (4). Они образуют модуль дифференциальной защиты. В некоторых конструкциях дополнительно применяются электронные усилители с зависимым или с независимым питанием.

    Дифференциальный трансформатор являет собой тороид с обмоткой. Сквозь него проходят силовые проводники (в данном примере их 2 – фаза и ноль). При протекании по ним токов нагрузки, образуются одинаковые по значению, но противоположно направленные магнитные потоки. При таких условиях они не могут наводить напряжения в обмотке трансформатора. Поэтому модуль дифференциальной защиты находится в стабильном равновесии и электричество свободно протекает сквозь замкнутые контакты.

    Равновесие системы нарушается при появлении утечки в результате повреждения изоляции, пробивании на корпус и по другим причинам, включая прикосновение человека к токоведущим элементам, например к корпусу прибора, находящемуся под напряжением. В таких случаях возбуждаются обмотки трансформатора, а токи наводки поступают (обычно через усилитель с электронным модулем) на катушку магнитоэлектрического реле. Магнитное поле через якорь воздействует на шток, который запускает механизм расцепителя, в результате чего происходит молниеносное отключение участка защищаемой линии.

    Защитный модуль реагирует появление дифференциального тока, а при его обнаружении процесс завершается защитным отключением. Порог срабатывания автомата задают путём регулировки уставок. В зависимости от конкретного предназначения дифавтомата его порог чувствительности может иметь разные значения. В частности, для защиты персонала, селективный дифавтомат должен среагировать при обнаружении дифференциального тока, величина которого не более 30 миллиампер.

    Замыкание контактов выполняется внешним усилием на управляющий рычаг.

    Обратим ваше внимание на одну важную деталь: трансформаторы тока возбуждаются только при утечке «на землю», например, при наличии защитного заземления. Это значит, что если человек попал под напряжение между проводом фазы и нейтралью (то есть, нет замыкания на землю) то прибор не сработает. Данное обстоятельство следует учитывать при обслуживании линий различных электросетей.

    Аналогичная ситуация происходит при обрыве нулевых проводов или в случае отсутствия напряжения питания усилителя. Неисправность можно проверить кнопкой «Тест». Для обеспечения полной безопасности при выполнении ремонтных работ следует отключать дифференциальный автомат вручную, или вводный автомат.

    Отличие дифавтомата от УЗО

    Всякое устройство, предназначенное для защитного отключения, реагирует только на наличие дифференциальных токов, а дифавтомат отсекает ещё токи перегрузок и сверхтоки при КЗ. В этом главное отличие этих защитных аппаратов.

    Визуально дифференциальный автомат от УЗО трудно отличить. У них одинаковые корпуса и даже габариты не слишком отличаются. Но эти устройства можно отличить по другим признакам:

    • способу маркировки по номинальному току;
    • по изображению электрической схемы на корпусе электроприбора;
    • аббревиатурной надписи;
    • названию устройства.

    Рассмотрите внимательно рис. 5. На изображении видно условные надписи и схемы. По некоторым из них различают указанные приборы.

    Рис. 5. Обозначения на корпусе

    Расшифровка обозначений на корпусе

    Маркировка.

    На корпусе устройства указаны параметры по номинальному току. В нашем случае, на рисунке указано «50 А». Такая надпись проставляется на УЗО. В случае с дифавтоматом перед цифрой 50 добавляются большие латинские буквы B, C либо D, характеризующие тип расцепителя. Например, С32 означает что перед нами дифференциальный автомат, рассчитанный на номинальный ток 32 А, со встроенным расцепителем типа C.

    Изображение схемы.

    Смотрим на рисунок 5, справа. На схеме дифавтомата присутствуют дополнительные элементы: электромагнитный и тепловой расцепители. Этих элементов нет на схеме УЗО.

    Аббревиатура.

    На нашем рисунке указана серия устройства: ВД1-63. Буквы ВД обозначают выключатель дифференциальный, то есть УЗО. На дифавтомате будет красоваться надпись: «АВДТ», что расшифровывается как автоматический выключатель дифференциального тока.

    Название.

    Некоторые производители пишут название устройства на корпусе сбоку. Для УЗО – «Выключатель дифференциальный», а для дифавтомата – «Автоматический выключатель дифференциального тока».

    Общие обозначения для обоих типов выключателей (см. рис. 5):

    • напряжение переменного тока;
    • дифференциальный ток;
    • условный сверхток КЗ;
    • тип УЗО;
    • температурный диапазон.

    Технические параметры

    Приводим основные характеристики двухполюсных дифавтоматов, наиболее часто применяемых для защиты в однофазных сетях.

    Обозначение узо на схеме — советы электрика

    Обозначения в эл. схемах

    На данный момент в ГОСТ нет каких либо рекомендаций относительно условных графических обозначений УЗО и дифференциальных автоматов. Изображения обозначений, которые используют в схемах отличаются друг от друга.

    По этому, в данной статье, я хочу дать свои рекомендации и предложить вариант обозначений УЗО и дифференциального автомата, который по моему мнению, будет соответствовать функциональному назначению этих электрических аппаратов.

    Функционально УЗО можно определить как быстродействующий выключатель, реагирующий на дифференциальный ток – ток утечки в проводниках, подводящих электроэнергию к защищаемой электроустановке.

    Обратите внимание

    В качестве датчика дифференциального тока и основного функционального элемента УЗО используется трансформатор тока, который часто называют трансформатором тока нулевой последовательности (что не совсем правильно, но думаю приемлемо).

    Из выше сказанного следует что изображение условного обозначения УЗО, должно состоять из обозначения выключателя и трансформатора тока нулевой последовательности, сигнал от которого (ток нулевой последовательности), воздействует на механизм отключения контактной группы аппарата.

    Этому требованию подходят следующие обозначения:

    Дифференциальный автомат, отличается от УЗО тем, что совмещает в одном электрическом аппарате два устройства, автоматический выключатель и устройство защитного отключения. По этому можно использовать следующее обозначение:

    С использование распространенного обозначения автоматического выключателя
     
    С использованием обозначения автоматического выключателя по ГОСТ 2.755
     

    Буквенно-цифровое обозначение УЗО и дифференциальных автоматов, на мой взгляд, можно наносить на схеме следующим образом:

    Где Q1 и QF1 обозначают функции выключателя и автоматического выключателя соответственно и порядковый номер аппарата в схеме. Значение дифференциального тока, обозначает функцию устройства защитного отключения

    Второй вариант буквенно-цифрового обозначения, который часто применяется: QD1 для УЗО и QFD1 для дифференциального автомата. И хотя согласно ГОСТ 2.710 код буквы D обозначает схемы интегральные, более подходящего символа в данном ГОСТ нету. Будем считать, что D, от слова дифференциальный.

    Данный вариант условных графических обозначений УЗО и дифференциальных автоматов, до момента публикации каких либо рекомендаций в нормативных документах, на мой взгляд является наиболее приемлемым. Поэтому, я решил включить трафареты рассмотренных выше электрических аппаратов в Комплект для черчения электрических схем.

    Источник: https://elektroshema.ru/2009-02-05-22-57-45/ugo-2/64-uzo.html

    Схема включения УЗО, обозначение УЗО на схеме, схема подключения однофазного и трехфазного УЗО

    Установка УЗО значительно повышает уровень безопасности при работе на электроустановках. Если УЗО обладает высокой чувствительностью (30 мА), то при этом обеспечивается защита от прямого контакта (прикосновения).

    Тем не менее, установка УЗО не означает от выполнения обычных мер предосторожности при работе на электроустановках.

    Кнопку тест необходимо нажимать регулярно, как минимум один раз в 6 месяцев. Если тест не срабатывает, то надо задуматься о замене УЗО, так как уровень электробезопасности снизился.

    Установите УЗО на панели или корпусе. Подключите оборудование в точном соответствии со схемой. Включите все нагрузки, подключенные к защищаемой сети.

    Срабатывает УЗО

    Если УЗО срабатывает, выясните, какое устройство является причиной срабатывания, путем последовательного отключения нагрузки (отключаем по очереди эл. оборудование и смотрим результат). При обнаружении такого устройства его необходимо отключить от сети и проверить.

    Если электрическая линия имеет очень большую длину, обычные токи утечки могут быть достаточно велики. В этом случае имеется вероятность ложных срабатываний. Чтобы избежать этого, необходимо разделить систему, по крайней мере, на два контура, каждый из которых будет защищен своим УЗО.

    Можно расчитать длинну электрической линии. 

    При невозможности определения документальным способом суммы токов утечки проводки и нагрузок, можно пользоваться примерным расчетом (в соответствии с СП 31-110-2003), принимая ток утечки нагрузки равным 0,4мА на 1А потребляемой нагрузкой мощности и ток утечки электросети равным 10мкА на один метр длины фазового провода электропроводки.

    Пример расчета УЗО

    Для примера рассчитаем УЗО для электроплиты, мощностью 5 кВт, установленную на кухне малогабаритной квартиры.

    Примерное расстояние от щитка до кухни может составлять 11 метров, соответственно расчетная утечка проводки составляет 0,11мА. Электроплита, на полной мощности, потребляет (приближенно) 22.7А и обладает расчетным током утечки 9,1мА.

    Таким образом, сумма токов утечки данной электроустановки составляет 9,21мА. Для защиты от токов утечки можно использовать УЗО с номиналом тока утечки 27,63мА, что округляется до ближайшего большего значения существующих номиналов по диф.

    току, а именно УЗО 30мА.

    Важно

    Следующим шагом, является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемым электроплитой, можно использовать номинал (с небольшим запасом) УЗО 25А, или с большим запасом – УЗО 32А.

    Таким образом мы расчетно определили номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (надо не забыть защитить УЗО автоматическим выключателем 25А для первого номинала УЗО и 25А или 32А для второго номинала).

    Обозначение УЗО

    На схеме УЗО обозначается следующим образом рис. 1 однофазное УЗО, рис. 2 –трехфазное УЗО.

    Схема подключения УЗО

    Схема подключения УЗО рассмотрим на примере. На фото.  1 показан фрагмент распределительного шкафа.

    Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото цифра1 УЗО, 2- автоматический выключатель) и однофазных УЗО (3).

    УЗО не защищает от токов короткого замыкания, поэтому его устанавливают в паре  с автоматическим выключателем. Что ставить раньше УЗО или автоматический выключатель в данном случае не принципиально. Номинал УЗО должен быть равным или немного больше  наминала автоматическо выключателя. Например, автоматический выключатель 16 Ампер, значит, УЗО  ставим 16 или 25 А.

    Как видно на фото. 1 на трехфазное УЗО (цифра 1) подходят три фазных и нулевой проводник, а после УЗО подключен автоматический выключатель (цифра 2). Потребитель будет подключаться: фазные проводники (красные стрелки) с автоматического выключателя; нулевой проводник (синяя стрелка) – с УЗО.

    Под цифрой 3 на фото показаны дифференциальные автоматы , соединенные сборной шиной, принцип работы диф. автомата такой же, как у УЗО, но он дополнительно защищает от токов короткого замыкания и не требует дополнительной защита от КЗ.

    А подключение, что у УЗО, что у диф. автоматов одинаковое.

    Подключаем к клемме L фазу, к N ноль (обозначения нанесены на корпусе УЗО). Потребители подключаются также.

    Схема УЗО в квартире

    Ниже приведена схема использования УЗО в квартире, для дополнительной защиты от поражения электрическим током.

    Рис. 1 Схема УЗО в квартире.

    В данном случае УЗО ставится до счетчика, на всю группу автоматических выключателей, чем обеспечивается дополнительная защита от поражения электрическим током и возникновения пожара.

    Источник: https://www.mirpodelki.ru/index.php?id=413

    Узо в электрике: где ставить, обозначение и схема

    Устройство защитного отключения или сокращённо УЗО — это приспособление, которое обеспечивает безопасность электроцепи от перегрузок и короткого замыкания. По некоторым принципам действия оно похоже на хорошо известные многим людям «автоматы», которые обычно устанавливаются в электрощите рядом со счётчиком, отмеряющим количество использованной электроэнергии.

    УЗО появились на рынке электротехники СНГ сравнительно недавно, например, люди из старшего поколения большую часть своей жизни прожили, не зная о том, что такое УЗО и зачем оно нужно, потому что примерно лет двадцать-тридцать назад они не были так широко распространены в быту.

    Если говорить терминами, принятыми в электротехнике, то УЗО — это прибор механического коммутационного типа, который предназначен для того, чтобы автоматически прервать электрическую цепь в случае, если ток утечки выйдет за пределы максимально допустимого значения, и, таким образом, защитить электроцепь от разрушения, а человека от получения опасных для жизни электротравм.

    Как выглядит УЗО

    Стандартные устройства защитного отключения, применяемые в электрике для защиты цепей от воздействия тока утечки, обычно делают из поливинилхлорида, обладающего свойствами, препятствующими его возгоранию от перегрева.

    В технике, выпускаемой некоторыми производителями, для её защиты от коротких замыканий и других проблем с электричеством по умолчанию стоит устройство, подобное УЗО. Это позволяет людям, купившим эту технику, не беспокоиться о том, как обезопасить её от тока утечки.

    Как классифицируются устройства для защиты электрики

    Первая и единственная классификация подобных устройств строится на основе следующего критерия: мощность проходящего через них тока утечки. В связи с этим УЗО подразделяются по мощности тока утечки на:

    • пропускающие через себя максимум десять миллиампер;
    • пропускающие через себя максимальную мощность, равную тридцати миллиамперам;
    • обеспечивающие защиту от предельной мощности тока в сто миллиампер;
    • защищающие от тока утечки мощностью до 300 миллиампер;
    • обеспечивающие безопасность техники и электропроводки от тока утечки, в максимуме равного пятистам миллиампер.

    Узо применение

    Основное предназначение устройства заключается в защите электропроводки и приборов, запитываемых от электричества. Их нужно применять везде, где невозможно обеспечить безопасность электрических цепей и устройств от потенциального вмешательства посторонних лиц, которые могут нарушить их нормальное функционирование и в итоге получить электротравму.

    Тридцать лет назад такой защитой электропроводки обладали, пожалуй, только промышленные предприятия, да и то они использовали более простой по схеме и принципу действия заземляющий контур.

    В то же время у людей, проживающих в многоэтажках, не было надёжной защиты их электросетей от утечки тока и от риска получения случайного удара электротоком.

    Написанное выше в полной мере относится, например, и к офисным электросетям, где ранее обычно отсутствовало какое-либо заземление, не говоря уже об устройстве защитного отключения.

    Итак, УЗО — это электрический прибор, который защищает человека от случайного удара электротоком, если произошла утечка тока на корпус электроприбора в сетях с напряжением двести двадцать и триста восемьдесят вольт.

    Чем отличается УЗО от «автомата»

    «Автомат» или, иными словами, автоматический выключатель и устройство защитного отключения — это не одно и то же. У этих электроприборов разные принципы действия, а также назначение. Они различаются следующим:

    1. «Автомат» является по своему основному предназначению прибором защиты электропроводки от коротких замыканий, а также перегрева. Устройство защитного отключения выполняет функцию по обеспечению безопасности людей от поражения электротоком при утечке тока.
    2. УЗО не предохраняет проводку от воздействия на неё коротких замыканий и не реагирует на перегрев цепи.

    Где установить УЗО

    Типичное место для размещения устройств защитного отключения — это электрический щит. Обычно УЗО монтируют непосредственно перед самой нагрузкой, но обязательно после электросчётчика.

    Если вы планируете установить в электросеть дополнительно ещё и автоматический выключатель, то установите его в цепь после электросчётчика и строго перед устройством защитного отключения.

    По каким параметрам осуществляется выбор УЗО

    Первое, на что вы должны обратить своё внимание при выборе устройства защитного отключения, — это то, на какой максимальный ток утечки оно рассчитано.

    Если вы собираетесь оснастить электропроводку дополнительно автоматическим выключателем, то посмотрите на значение тока нагрузки как для УЗО, так и для «автомата».

    Имейте в виду, что в этом случае вам нужно сделать выбор в пользу УЗО, которое может выдержать больший ток нагрузки, чем автоматический выключатель.

    Дело в этом случае заключается в том, что устройство защитного отключения — достаточно дорогой прибор, поэтому, приобретая УЗО и автоматический выключатель согласно вышеописанным рекомендациям, вам не придётся покупать УЗО чаще, чем необходимо. При возникновении коротких замыканий в данном случае на себя весь удар примет «автомат», который в результате этого может выйти из строя, а устройство защитного отключения останется работоспособным.

    Что влияет на цену УЗО

    Как было сказано выше, стоимость устройства защитного отключения на рынке весьма высока. Она такова ввиду следующих причин:

    • В конструкцию устройства защитного отключения входит трансформатор дифференциальный, который изготовляется из дорогих полупроводников. Как правило, пятьдесят процентов цены прибора составляет именно этот трансформатор.
    • Играет роль и фактор того, сколько полюсов для присоединения проводки предлагает производитель.
    • Важное значение имеет следующий факт: конструкция реле в приборе. Оно электронное или электромеханическое? Разумеется, электронное будет стоить дороже.
    • Кто производитель прибора? Например, российские фирмы предлагают свои устройства защитного отключения как минимум в два раза дешевле, чем всемирно известный бренд Legrand.

    Схема, установка и подключение УЗО самостоятельно

    Перед началом работы обязательно найдите схему, которая поможет вам правильно установить устройство защитного отключения в электроцепь, или воспользуйтесь предложенной ниже.

    Разобравшись со схемой, начинайте собирать приборы и инструменты, которые потребуются вам для монтажа устройства защитного отключения:

    • Непосредственно само устройство защитного отключения;
    • Нож монтажный;
    • Перфоратор;
    • Мультиметр;
    • Свёрла;
    • Провода для соединения;
    • Крестообразная отвёртка;
    • Корпус, специально сделанный под УЗО. Он нужен в том случае, если вы планируете установить прибор рядом с потребителем тока.

    Этапы монтажа устройства защитного отключения

    Если вы монтируете прибор в электрическом щите, то выполните следующую последовательность действий:

    1. Отыщите требующиеся вам провода и определите, какой из них плюсовой, а какой — минусовой.
    2. Обесточьте цепь и затем зачистите проводники.
    3. После этого закрепите устройство защитного отключения на специальную DIN-рейку.
    4. Прикрутите провода к соответствующим разъёмам УЗО.
    5. Заново включите питание цепи.
    6. Проведите тест на работоспособность УЗО.

    В том случае, если вы монтируете УЗО рядом с потребителем тока, выполните следующий алгоритм действий:

    1. Определите место, куда вы хотите установить устройство защитного отключения, и разметьте отверстия.
    2. Просверлите необходимые для монтажа отверстия.
    3. Закрепите корпус прибора.
    4. Подведите провода к устройству защитного отключения.
    5. Присоедините электропроводку к УЗО, предварительно убедившись, что вы не ошиблись с полярностью.
    6. Включите электропитание и протестируйте прибор. Для этого нажмите на кнопку, расположенную на корпусе УЗО и называющуюся «TEST».

    Источник: https://remontoni.guru/elektrika/chto-takoe-uzo.html

    Обозначение электрических элементов на схемах

    Чтобы понять, что конкретно нарисовано на схеме или чертеже, необходимо знать расшифровку тех значков, которые на ней есть. Это распознавание еще называют чтением чертежей.

    А чтоб облегчить это занятие почти все элементы имеют свои условные значки. Почти, потому что стандарты давно не обновлялись и некоторые элементы рисуют каждый как может.

    Совет

    Но, в большинстве своем, условные обозначения в электрических схемах есть в нормативны документах.

    Условные обозначения в электрических схемах: лампы,трансформаторы, измерительные приборы, основная элементная база

    Нормативная база

    Разновидностей электрических схем насчитывается около десятка, количество различных элементов, которые могут там встречаться, исчисляется десятками если не сотнями. Чтобы облегчить распознавание этих элементов, введены единые условные обозначения в электрических схемах. Все правила прописаны в ГОСТах. Этих нормативов немало, но основная информация есть в следующих стандартах:

    Нормативные документы, в которых прописаны графические обозначения элементной базы электрических схем

    Изучение ГОСТов дело полезное, но требующее времени, которое не у всех есть в достаточном количестве. Потому в статье приведем условные обозначения в электрических схемах — основную элементную базу для создания чертежей и схем электропроводки, принципиальных схем устройств.

    Некоторые специалисты внимательно посмотрев на схему, могут сказать что это и как оно работает. Некоторые даже могут сразу выдать возможные проблемы, которые могут возникнуть при эксплуатации.

    Все просто — они хороша знают схемотехнику и элементную базу, а также хорошо ориентируются в условных обозначениях элементов схем.

    Такой навык нарабатывается годами, а, для «чайников», важно запомнить для начала наиболее распространенные.

    Обозначение светодиода, стабилитрона, транзистора (разного типа)

    Электрические щиты, шкафы, коробки

    На схемах электроснабжения дома или квартиры обязательно будет присутствовать обозначение электрического щитка или шкафа. В квартирах, в основном устанавливается там оконечное устройство, так как проводка дальше не идет.

    В домах могут запроектировать установку разветвительного электрошкафа — если из него будет идти трасса на освещение других построек, находящихся на некотором расстоянии от дома — бани, летней кухни, гостевого дома.

    Эти другие обозначения есть на следующей картинке.

    Обозначение электрических элементов на схемах: шкафы, щитки, пульты

    Если говорить об изображениях «начинки» электрических щитков, она тоже стандартизована. Есть условные обозначения УЗО, автоматических выключателей, кнопок, трансформаторов тока и напряжения и некоторых других элементов. Они приведены следующей таблице (в таблице две страницы, листайте нажав на слово «Следующая»)

    НомерНазваниеИзображение на схеме
    1Автоматический выключатель (автомат)
    2Рубильник (выключатель нагрузки)
    3Тепловое реле (защита от перегрева)
    4УЗО (устройство защитного отключения)
    5Дифференциальный автомат (дифавтомат)
    6Предохранитель
    7Выключатель (рубильник) с предохранителем
    8Автоматический выключатель со встроенным тепловым реле (для защиты двигателя)
    9Трансформатор тока
    10Трансформатор напряжения
    11Счетчик электроэнергии
    12Частотный преобразователь
    13Кнопка с автоматическим размыканием контактов после нажатия
    14Кнопка с размыканием контактов при повторном нажатии
    15Кнопка со специальным переключателем для отключения (стоп, например)

    Элементная база для схем электропроводки

    При составлении или чтении схемы пригодятся также обозначения проводов, клемм, заземления, нуля и т.д. Это то, что просто необходимо начинающему электрику или для того чтобы понять, что же изображено на чертеже и в какой последовательности соединены ее элементы.

    НомерНазваниеОбозначение электрических элементов на схемах
    1Фазный проводник
    2Нейтраль (нулевой рабочий) N
    3Защитный проводник (“земля”) PE
    4Объединенные защитный и нулевой проводники PEN
    5Линия электрической связи, шины
    6Шина (если ее необходимо выделить)
    7Отводы от шин (сделаны при помощи пайки)

    Пример использования приведенных выше графических изображений есть на следующей схеме. Благодаря буквенным обозначениям все и без графики понятно, но дублирование информации в схемах никогда лишним не было.

    Пример схемы электропитания и графическое изображение проводов на ней

    Изображение розеток

    На схеме электропроводки должны быть отмечены места установки розеток и выключателей.

    Типов розеток много — на 220 В, на 380 в, скрытого и открытого типа установки, с разным количеством «посадочных» мест, влагозащищенные и т.д. Приводить обозначение каждой — слишком длинно и ни к чему.

    Важно запомнить как изображаются основные группы, а количество групп контактов определяется по штрихам.

    Обозначение розеток на чертежах

    Обратите внимание

    Розетки для однофазной сети 220 В обозначаются на схемах в виде полукруга с одним или несколькими торчащими вверх отрезками. Количество отрезков — количество розеток на одном корпусе (на фото ниже иллюстрация). Если в розетку можно включить только одну вилку — вверх рисуют один отрезок, если два — два, и т.д.

    Условные обозначения розеток в электрических схемах

    Если посмотрите на изображения внимательно, обратите внимание, что условное изображение, которое находится справа, не имеет горизонтальной черты, которая отделяет две части значка.

    Эта черта указывает на то, что розетка скрытого монтажа, то есть под нее необходимо в стене сделать отверстие, установить подрозетник и т.д. Вариант справа — для открытого монтажа.

    На стену крепится токонепроводящая подложка, на нее сама розетка.

    Также обратите внимание, что нижняя часть левого схематического изображения перечеркнута вертикальной линией. Так обозначают наличие защитного контакта, к которому подводится заземление. Установка розеток с заземлением обязательна при включении сложной бытовой техники типа стиральной или посудомоечной машины, духовки и т.д.

    Обозначение трехфазной розетки на чертежах

    Ни с чем не перепутаешь условное обозначение трехфазной розетки (на 380 В). Количество торчащих вверх отрезков равно количеству проводников, которые к данному устройству подключаются — три фазы, ноль и земля. Итого пять.

    Бывает, что нижняя часть изображения закрашена черным (темным). Это обозначает что розетка влагозащищенная. Такие ставят на улице, в помещениях с повышенной влажностью (бани, бассейны и т.д.).

    Отображение выключателей

    Схематическое обозначение выключателей выглядит как небольшого размера кружок с одним или несколькими Г- или Т- образными ответвлениями. Отводы в виде буквы «Г» обозначают выключатель открытого монтажа, с виде буквы «Т» — скрытого монтажа. Количество отводов отображает количество клавиш на этом устройстве.

    Условные графические обозначения выключателей на электрических схемах

    Кроме обычных могут стоять проходные выключатели — для возможности включения/выключения одного источника света из нескольких точек. К такой же небольшой окружности с противоположных сторон пририсовывают две буквы «Г». Так обозначается одноклавишный проходной переключатель.

    Как выглядит схематичное изображение проходных выключателей

    В отличие от обычных выключателей, в этих при использовании двухклавишных моделей добавляется еще одна планка, параллельная верхней.

    Лампы и светильники

    Свои обозначения имеют лампы. Причем отличаются лампы дневного света (люминесцентные) и лампы накаливания. На схемах отображается даже форма и размеры светильников. В данном случае надо только запомнить как выглядит на схеме каждый из типов ламп.

    Изображение светильников на схемах и чертежах

    Радиоэлементы

    При прочтении принципиальных схем устройств, необходимо знать условные обозначения диодов, резисторов, и других подобных элементов.

    Условные обозначения радиоэлементов в чертежах

    Знание условных графических элементов поможет вам прочесть практически любую схему — какого-нибудь устройства или электропроводки. Номиналы требуемых деталей иногда проставляются рядом с изображением, но в больших многоэлементных схемах они прописываются в отдельной таблице. В ней стоят буквенные обозначения элементов схемы и номиналы.

    Буквенные обозначения

    Кроме того, что элементы на схемах имеют условные графические названия, они имеют буквенные обозначения, причем тоже стандартизованные (ГОСТ 7624-55).

     Название элемента электрической схемыБуквенное обозначение
    1Выключатель, контролер, переключательВ
    2ЭлектрогенераторГ
    3ДиодД
    4ВыпрямительВп
    5Звуковая сигнализация (звонок, сирена)Зв
    6КнопкаКн
    7Лампа накаливанияЛ
    8Электрический двигательМ
    9ПредохранительПр
    10Контактор, магнитный пускательК
    11РелеР
    12Трансформатор (автотрансформатор)Тр
    13Штепсельный разъемШ
    14ЭлектромагнитЭм
    15РезисторR
    16КонденсаторС
    17Катушка индуктивностиL
    18Кнопка управленияКу
    19Конечный выключательКв
    20ДроссельДр
    21ТелефонТ
    22МикрофонМк
    23ГромкоговорительГр
    24Батарея (гальванический элемент)Б
    25Главный двигательДг
    26Двигатель насоса охлажденияДо

    Обратите внимание, что в большинстве случаев используются русские буквы, но резистор, конденсатор и катушка индуктивности обозначаются латинскими буквами.

    Есть одна тонкость в обозначении реле. Они бывают разного типа, соответственно маркируются:

    • реле тока — РТ;
    • мощности — РМ;
    • напряжения — РН;
    • времени — РВ;
    • сопротивления — РС;
    • указательное — РУ;
    • промежуточное — РП;
    • газовое — РГ;
    • с выдержкой времени — РТВ.

    В основном, это только наиболее условные обозначения в электрических схемах.  Но большую часть чертежей и планов вы теперь сможете понять. Если потребуется знать изображения более редких элементов, изучайте ГОСТы.

    Источник: https://stroychik.ru/elektrika/uslovnye-oboznacheniya-na-shemah

    Сходство и различия УЗО и дифференциального автоматического выключателя

    Сходства:

    — Однообразный принцип контроля тока утечки – с внедрением дифференциального трансформатора тока

    — Однообразный метод защиты персонала – методом отключения от электронной сети всех рабочих проводников, подходящих к электроустановке с внедрением высоконадежного механического расцепителя с сильной контактной группой и механизмом взвода отключающих пружин с индикатором положения.

    — Однообразный метод проверки работоспособности – методом искусственно создаваемого дифференциального тока с внедрением специальной электронной цепи тестирования.

    Различия:

    — Наличие только у УЗО (дифференциального выключателя) чувствительного элемента, который не имеет собственного употребления электроэнергии и потому всегда сохраняет работоспособность.

    У дифференциального автомата этот чувствительный элемент представляет собой электрическое пороговое устройство с источником питания, которое может утратить работоспособность при выходе из строя электрических компонент, также при обрыве фазного либо нулевого проводника до места установки дифференциального автомата.

    — Наличие только у дифференциального автомата интегрированной защиты от перегрузок и всех видов тока недлинного замыкания в электронной сети и потому наличие у него более массивных силовых контактов с системой дугогашения.

    В отличие от этого, поочередно с УЗО рекомендуется устанавливать автоматический выключатель с номинальным током расцепителя на ступень ниже, чем его номинальный ток, тем не допускается отключение токов однофазового недлинного замыкания самим УЗО (на токи трехфазного и двухфазного недлинного замыкания УЗО не реагирует).

    — Наличие только у дифференциального автомата электромагнита сброса, который накрепко сдергивает защелку механизма независящего расцепления. Но этот электромагнит также запитан от источника питания средством электрического усилителя с пороговым устройством.

    У УЗО воздействие на механизм свободного расцепления производит магнитоэлектрическая защелка, которая не имеет специального источника питания и потому всегда сохраняет работоспособность.

    Электронные схемы и условное графическое обозначение УЗО и дифференциального автомата

    Рис. 1. Дифференциальный выключатель (УЗО): а) электронные схемы б) условное графическое обозначение

    Важно

    Рис. 2. Дифференциальный автомат: а) электронные схемы б) условное графическое обозначение

    Школа для электрика

    Источник: http://elektrica.info/shodstvo-i-razlichiya-uzo-i-differentsial-nogo-avtomaticheskogo-vy-klyuchatelya/

    Пять различных тройных систем, представляющих структурирование до Узо и …

    Контекст 1

    … мы рассмотрели только одну конкретную систему для нашего подробного МУРН / малоуглового рассеяния рентгеновских лучей / широкоугольного рентгеновского излучения. Исследование рассеяния света, на основании согласия с результатами рассеяния света, мы уверены, что результаты динамического рассеяния света / статического рассеяния света многих других тройных систем намекают на аналогичную структуру и механизм (рис. 5). Например, ДМСО, ацетонитрил и другие растворители также могут играть роль второго смешивающегося с водой растворителя или гидротропа (13).Даже воду можно заменить глицерином и другими растворителями, такими как ионные жидкости и глубокие эвтектики. Как указано во введении, кажется, что единственным критерием является то, что два несовместимых или только …

    Контекст 2

    … далее проверить общность явления структурирования до Узо и наш обобщенный подход DLVO. , мы выбрали пять других тройных систем вблизи щели смешиваемости (рис. 5). Для сравнения также включена кривая рассеяния 1-октанол / этанол / вода.В случае обнаружения структурирования до Узо указывается характерный размер домена ξ. Как видно на рис. 5, три образца демонстрируют видимую структурированность при высоких значениях Q, сосуществующую с OZ-подобным рассеянием при низких Q. …

    Контекст 3

    … явление структурирования и наше Обобщенный подход DLVO, мы выбрали пять других тройных систем около разрыва смешиваемости (рис. 5). Для сравнения также включена кривая рассеяния 1-октанол / этанол / вода.В случае обнаружения структурирования до Узо указывается характерный размер домена ξ. Как видно на фиг. 5, три образца демонстрируют видимое структурирование при высоких значениях Q, сосуществующее с OZ-подобным рассеянием при низких значениях Q. «Поверхностно-активное вещество», обогащенное на границе раздела, относится либо к этанолу, либо к 1,5-пентандиолу. Эти размеры являются теми, которые ожидаются для разумного уменьшения сил гидратации, а также контактного давления (SI Materials and Methods, Energetic …

    Выбор растворителя вызывает заметные сдвиги «области Узо» для сополимера лактида и гликолида. ) наночастицы, полученные методом нанопреципитации

    Полимерные наночастицы (НЧ)

    предлагают разнообразные новые биологические свойства, представляющие интерес для приложений доставки лекарств.«Диаграммы Узо» позволили систематически производить определенные коллоидные составы с помощью широко используемого процесса нанопреципитации. Удивительно, но, несмотря на хорошо задокументированную значимость применяемого органического растворителя для нанопреципитации, его влияние на фактический статус «региона Узо» до сих пор не изучено. Здесь были предприняты исследования для учета потенциального влияния типа растворителя на «диаграммы Узо» для поли (лактид- co -гликолида) (PLGA) и тетрагидрофурана (THF), 1,4-диоксана, ацетона и диметилового эфира. сульфоксид (ДМСО).«Область Узо» значительно сдвинулась в сторону более высоких фракций полимера при смене растворителя (порядок ранжирования: ТГФ <1,4-диоксан <ацетон <ДМСО). Предполагая однозначное преобразование отделившихся капель растворителя, несущих PLGA (диаметр капель для ТГФ: ∼800 нм, 1,4-диоксана: ∼700 нм, ацетона: ∼500 нм и ДМСО: ∼300 нм) в не- делящиеся полимерные агрегаты при вытеснении растворителя, что позволяет предсказать размер НЧ, обнаруженных в «области Узо» (диапазон размеров: 40–200 нм). В заключение следует отметить, что применение «диаграмм Узо» является ценным инструментом для исследования доставки лекарств и, скорее всего, заменит подход «проб и ошибок» для определения рабочего окна для производства стабильных коллоидных составов методом нанопреципитации.

    У вас есть доступ к этой статье

    Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуйте еще раз?

    Универсальные нанокапли разветвляются от ограничения эффекта Узо

    Значение

    Явление спонтанного образования нанокапель, называемое «эффектом Узо», является основой многих процессов, от приготовления фармацевтических продуктов до создания косметических средств и инсектицидов, до жидкости-жидкости. микроэкстракция.В этой работе делается попытка отделить эффекты градиентов концентрации от внешней динамики перемешивания путем пространственно-временного отслеживания образования нанокапель из-за эффекта Узо, заключенного в квазидвумерной геометрии. Мы наблюдаем поразительные универсальные разветвленные структуры зарождающихся капель под действием внешнего диффузионного поля, аналогичные разветвлению потоковых сетей в крупном масштабе, и повышенную локальную подвижность коллоидных частиц, обусловленную градиентом концентрации, возникающим в результате развития структур ветвлений.Мы также демонстрируем, что эти нанокапли могут быть использованы для одноэтапной наноэкстракции и обнаружения.

    Abstract

    Мы сообщаем о самоорганизации универсальных паттернов ветвления масляных нанокапелек под действием Узо [Vitale S, Katz J (2003) Langmuir 19: 4105–4110] — феномен, при котором спонтанное образование капель происходит при разбавление органического раствора масла водой. Смешивание органической и водной фаз ограничено квазидвумерной геометрией.Аналогично разветвлению сетей наземных потоков [Devauchelle O, Petroff AP, Seybold HF, Rothman DH (2012) Proc Natl Acad Sci USA 109: 20832–20836 и Cohen Y, et al. (2015) Proc Natl Acad Sci USA 112: 14132–14137], но в масштабе на 10 порядков меньше, углы между ветвями капель демонстрируют удивительную универсальность со значением около 74 ° ± 2 °, независимо различных управляющих параметров процесса. Численное моделирование показывает, что эти схемы ветвления нанокапель регулируются взаимодействием между локальным градиентом концентрации, диффузией и коллективными взаимодействиями.Мы также демонстрируем способность локального градиента концентрации управлять автономным движением коллоидных частиц в сильно ограниченном пространстве и возможность использования зародышевых нанокапель для наноэкстракции гидрофобных растворенных веществ. Понимание, полученное в результате этой работы, обеспечивает основу для количественного понимания сложных динамических аспектов, связанных с эффектом Узо. Мы ожидаем, что это будет способствовать улучшенному контролю образования нанокапель для многих приложений, начиная от приготовления фармацевтических полимерных носителей и заканчивая рецептурой косметики и инсектицидов, производством наноструктурированных материалов, концентрацией и разделением следовых количеств аналитов в жидкости — жидкая микроэкстракция.

    Эффект Узо возникает в тройной смеси, обычно состоящей из воды, масла и этанола, когда масло, растворенное в спирте, выпадает в осадок с образованием крошечных капель при добавлении воды (1). Этот эффект также можно увидеть, например, когда дезинфицирующие средства на основе эвкалипта и репелленты от комаров разбавляются водой, когда масла смешиваются со спиртом, но не смешиваются с водой. Это спонтанное образование капель не требует механического перемешивания для диспергирования жидкости или добавления поверхностно-активных веществ или других стабилизаторов.Таким образом, он составляет основу для образования стабильных капель эмульсии в широком диапазоне применений, таких как приготовление напитков, парфюмерии и инсектицидов (2–4), а также изготовление полых наноматериалов (5, 6). При жидкостно-жидкостной микроэкстракции капли масла, полученные в результате эффекта Узо, используются для концентрирования и отделения следов гидрофобных аналитов от их водных проб перед судебно-медицинским анализом, биомедицинской диагностикой или мониторингом окружающей среды / безопасности (7–9). Небольшие гидрофобные органические молекулы, липиды или полимеры, растворенные в полярном органическом растворителе, проявляют эффекты, аналогичные эффектам масляной фазы, образуя субмикронные частицы с узким распределением по размерам при разбавлении водой.В процессе, называемом нанопреципитацией, смещением растворителя или смещением растворителя (10⇓ – 12), нерастворимые в воде лекарственные средства могут быть включены в биополимерные наноносители с возможностью адаптации их распределения по размерам при доставке с контролируемым высвобождением.

    Несмотря на долгую историю эффекта Узо и его актуальность для широкого круга приложений, количественное понимание его основного механизма и способность предсказывать рост и стабильность нанокапелек остается неуловимым.Более конкретно, эффект имеет место, когда составы воды, растворенного вещества и органического растворителя лежат в метастабильной области между спинодальной и бинодальной кривыми на тройной фазовой диаграмме. Гомогенное зародышеобразование капель, которое представляет собой быстрый процесс в ответ на внезапное увеличение перенасыщения в результате добавления водной фазы, требует чрезвычайно быстрого перемешивания между двумя фазами, например, путем совместного движения потоков в микрожидкостном устройстве, что мешает струи или непрерывное турбулентное перемешивание (13⇓ – 15).Размер и распределение капель определяется не только физико-химическими свойствами и концентрациями растворителей, но также временными и пространственными характеристиками, связанными с динамикой перемешивания (12, 16–20). Сложные физические явления, такие как быстрая диффузия растворителя, межфазная нестабильность и перенос массы, обусловленный локальным градиентом концентрации, были предложены для объяснения таких динамических аспектов на ранних стадиях образования капель. Тем не менее, лежащий в основе механизм, ответственный за эффект Узо, может быть выяснен только в значительной степени через понимание более поздних или заключительных стадий эволюции тройной системы из-за чрезвычайно короткого порядка масштаба времени микросигнала и малых размеров зарождающихся нанокапель.Таким образом, поиск оптимального рабочего окна для достижения желаемого размера капель на сегодняшний день по-прежнему зависит от метода проб и ошибок, что требует скрининга большой библиотеки комбинаций растворителей и условий впрыска растворителя. Лучшее понимание фундаментальных физико-химических механизмов, лежащих в основе эффекта Узо, поэтому будет чрезвычайно полезно для руководства рациональным дизайном соответствующих решений и условий смешивания для образования капель.

    В этой работе мы различаем связанные эффекты между градиентом концентрации и внешней динамикой перемешивания в объеме жидкости, ограничивая эффект Узо в пределах квазидвумерной геометрии жидкости, так что в процессе преобладает диффузия.Учитывая, что водная фаза теперь приводится в контакт с органической фазой исключительно за счет диффузии, можно, таким образом, пространственно и во времени проследить динамику образования нанокапель. Мы наблюдаем формирование универсальных паттернов ветвлений нанокапель, которые удивительно напоминают разветвление потоков подземных вод, хотя и в гораздо меньших масштабах. Наше моделирование подтверждает, что ветви нанокапель являются результатом взаимодействия между локальным градиентом концентрации, диффузией и коллективными взаимодействиями.Ярко выраженный локальный градиент концентрации, выходящий из ветвей капель, четко проявляется в усилении транспорта коллоидных частиц по ветвям в этом сильно ограниченном пространстве. Помимо демонстрации того, что эти ветви капель предлагают возможность в качестве одношаговой техники наноэкстракции, мы также ожидаем, что понимание динамических аспектов эффекта Узо будет полезно для лучшего понимания способов управления образованием капель в других приложениях.

    Результаты и обсуждение

    Ограниченный эффект Узо в квазидвумерной геометрии.

    Ограниченный эффект Узо в наших экспериментах был реализован в горизонтальном прямоугольном проточном канале, как показано на рис. 1 A . Изначально весь канал был заполнен первым раствором, который представляет собой масло, растворенное в водном растворе этанола (т.е. раствор Узо). Слабый растворитель, вода, впрыскивался из одного конца канала, протекая внутри более глубоких боковых каналов 1,7 мм к другому концу.В направлении, перпендикулярном первичному потоку, вода диффундирует вбок в квазидвумерный основной канал высотой 20 мкм от внутреннего края бокового канала.

    Рис. 1.

    ( A ) Трехмерная схематическая иллюстрация устройства канала жидкости, используемого для формирования ответвлений нанокапли. Горизонтальная проточная ячейка состояла из подложки и стеклянного окна, основной проточный канал которого примыкал к двум узким боковым каналам, как показано оранжевыми зонами на эскизе. Длина была 7.65 см как для основного, так и для боковых каналов, тогда как ширина составляла 6 мм и 250 мкм, а глубина составляла 20 мкм и 1,7 мм для основного и бокового каналов соответственно. Течение было в направлении, указанном черной стрелкой. В этой экспериментальной геометрии боковые каналы были достаточно глубокими, чтобы вода текла почти исключительно по ним, поскольку очень тонкая (похожая на Хеле-Шоу) щель (главный канал), заполненная узо между двумя глубоководными каналами, обеспечивала высокое гидродинамическое сопротивление. Ветви (зеленые) переходили в основной канал.( B D ) Оптические изображения и ( E ) АСМ-изображение репрезентативных структур ветвей; крупным планом ( C и D ) показаны отдельные капли вдоль ветвей. Врезка в D показывает определение полного угла и местного угла вблизи точки слияния. Морфологические особенности ветвей будут характеризоваться этими двумя углами.

    По мере того, как вода смешивается с раствором Узо, мы наблюдаем появление ярких разветвлений внутри основного канала.Оптические изображения высокого разрешения на рис. 1 C и D показывают, что эти ветви состоят из дискретных нанокапелек, что дополнительно подтверждается изображениями полимеризованных капель с помощью атомно-силовой микроскопии на рис. 1 E . Отдельные капли обычно вырастают до 3–6 мкм в поперечном диаметре и от 100 нм до 1 мкм в высоту (и поэтому их просто называют нанокаплями). Ветви состоят, самое большее, из нескольких отдельных капель по ширине (Рис. 1 C E ), которая незначительна по сравнению с ее протяженностью в миллиметры.

    Верхняя часть ветвей капли начинается от внутреннего края бокового канала или из нескольких точек в основном канале. Для данного канала концы ответвлений всегда начинаются с одних и тех же мест на ободе бокового канала, в местах, содержащих структурные дефекты размером в несколько микрон (видеоролики S1 и S2). Чтобы проверить роль этих дефектов в формировании ответвлений, мы намеренно сделали отступы на равномерно распределенных микроструктурах вдоль края бокового канала, после чего наблюдали, что положение концов ветвей также равномерно распределено по краю (Movie S3).Таким образом, результаты ясно показывают, что начало ветвления капли определяется локальными геометрическими структурами. В квази-двумерном основном канале соседние ветви наклоняются друг к другу и сливаются в местах, более удаленных от бокового канала. Морфология всей ветвящейся структуры является дендритной, аналогичной дереву с вершиной на краю бокового канала и с корнем, простирающимся во внутреннюю область главного 2D-канала.

    Универсальность в угле слияния.

    Чтобы изучить универсальность образования ответвлений от ограниченного эффекта Узо, мы варьировали скорость потока воды в боковом канале, состав раствора Узо и гидрофобность стенки основного канала. Как показано на рис. 2 A C , общая морфология сформированных ветвей была очень похожей в широком диапазоне исследованных условий.

    Рис. 2.

    Формирование ветвей нанокапли до 400 с после начала роста ветвей. Цвет в любом месте указывает время, когда ветвь достигла данного места.( A C ) Оптические изображения ветвей, сформированных в восьми различных условиях. ( A ) Расход воды в боковом канале составлял 100 мкл / мин, 200 мкл / мин и 400 мкл / мин. Состав раствора Узо был одинаковым для всех трех скоростей потока (вода: этанол: масло = 50: 50: 2). ( B ) Соотношение воды, этанола и масла в растворе Узо составляло 40: 60: 2, 40: 60: 4 и 40: 60: 6 при скорости потока воды 100 мкл / мин. ( C ) Подложки были гидрофильными или гидрофобными, а край бокового канала был либо шероховатым, либо гладким.Расход воды составлял 100 мкл / мин, а состав раствора Узо составлял 50: 50: 2. ( D и E ) Соответствующие PDF углов между двумя объединенными ветвями ( D ) во всем их диапазоне и ( E ) от сегментов вблизи точки слияния. Гидрофобный и грубый канал использовался для всех случаев в A и B ; 100 мкл / мин в A представлен на графиках как «гидрофобный, грубый».

    Чтобы количественно определить общие черты разветвленной структуры, мы измерили и проанализировали в общей сложности 660 углов между сливающимися ветвями.Для сравнения мы определяли полный угол точно так же, как это было сделано в работе по разветвлению грунтового потока (21, 22). Во всех восьми случаях, показанных на рис. 2, соответствующие функции распределения вероятностей (PDF) угла слияния нанесены на график на рис. 2 D , при этом между ними не наблюдается значительных различий. Средний угол ветвления для всех 660 углов составил 74 ± 2 ° (95% доверительный интервал).

    Хотя процесс образования ветвей в целом универсален в отношении морфологии, углового распределения и значения наиболее вероятного угла, более внимательное рассмотрение восьми случаев, проанализированных на рис.2 показывает некоторые подробные изменения: по мере увеличения концентрации масла количество ветвей увеличивается, и основные ветви становятся более «волосатыми» с крошечными выступами, возникающими с обеих сторон. Кроме того, более высокий расход воды в боковом канале вызывает более выраженный наклон всей конструкции ответвлений в сторону потока.

    Динамика роста с преобладанием диффузии.

    Чтобы выявить механизм развития ветвей капель, мы проследили рост капель с помощью визуализации в светлом поле и перенос окрашенной воды в 2D-канале отдельно с помощью флуоресцентной визуализации.Фильмы S1 и S2 показывают, что ответвления продолжались одновременно с движущимся фронтом воды в основной квази-2D канал. С другой стороны, возникающие ветви на движущемся фронте во внутренней области росли по направлению к ближайшей родительской ветви. В любом случае было замечено, что все дерево ветвей простирается к «корню дерева» в направлении внутреннего основного канала.

    Для количественной оценки скорости роста мы измерили длину ветви ℓ от вершины ветви до фронта воды в разное время t, построив график зависимости данных от t1 / 2 на рис.3 С . Видно, что после короткого начального переходного процесса длина ответвления увеличивается примерно как t1 / 2, независимо от расхода воды, состава раствора или свойств подложки. Такое поведение t1 / 2 в расширении ветви, очевидно, предполагает, что в формировании ветви преобладает диффузия; то есть смешивание двух растворов происходит за счет поперечной диффузии воды. Подгоняя данные (исключая переходные процессы для t <50 с) с одномерным диффузионным соотношением ℓ = (2Dt) 1/2, мы получили эффективные константы диффузии D в диапазоне 2 × 10−9m2⋅s − 1 для самой маленькой нефти концентрация раствора Узо, которая сравнима с коэффициентом диффузии воды в этаноле.Мы отмечаем, что для более высоких концентраций масла в растворе Узо скорости роста и, следовательно, подобранные эффективные константы диффузии D ветвей в 10 раз больше, предположительно из-за некоторого конвективного вклада, что приводит к несколько более крутому увеличению, чем t1 / 2.

    Рис. 3.

    Рост ветвей капли. ( A ) Светлопольные и ( B ) флуоресцентные изображения растущих ветвей. Вода была окрашена в зеленый цвет, а темные линии на изображениях — это ветви нанокапли.( C ) Графики расстояния ℓ от начала ветви до ее растущего фронта в зависимости от t1 / 2. Почти линейная зависимость между ℓ и t1 / 2 после начального переходного процесса обнаруживает близкое к диффузионному поведению, которое лежит в основе роста ветви. Отметим, однако, что диффузиофорез также вызовет некоторые конвективные эффекты, как мы увидим из рис. 5. Оптические изображения сформированных ветвей показаны на рис. 2 A C .

    Механизм и моделирование образования ветвей.

    Теперь мы предлагаем механизм ограниченного эффекта Узо и универсальные углы слияния двух ветвей капли. Во-первых, вода, диффундирующая из бокового канала в квази-2D основной канал, заполненный раствором Узо, приводит к локальному снижению концентрации этанола, так что масло становится перенасыщенным — эффект Узо. Неровности, такие как микроструктуры на краю бокового канала по направлению к квазидвумерному основному каналу, затем способствуют зарождению капель из перенасыщенного маслом раствора, тем самым инициируя разветвление.В квазидвумерной геометрии градиент концентрации наиболее резкий на движущемся фронте воды в богатый нефтью раствор в основном канале. Хотя фронт воды [обеспечивающий импульс локального перенасыщения нефтью в растворе Узо (18)] перемещается по всему поперечному сечению основного канала, новые капли только выборочно зарождаются позади старых, показывая, что равномерная и невозмущенная диффузия воды в раствора Узо недостаточно для инициирования зародышеобразования капель, но необходимы локальные искажения.Они возникают из-за старых капель или, в некоторых случаях, из-за неровностей в основном канале, из которых выходят новые ветви. Расширение старой ветви может вызвать асимметрию градиента концентрации, которая направляет рост новых боковых ветвей к ней, что в конечном итоге приводит к слиянию двух ветвей.

    Процесс роста и слияния ветвей напоминает разветвление сетей ручьев, прорезанных подземными водами, где характерный угол разветвления составляет около 72∘ (21, 22), что близко к найденному здесь значению 74∘ ± 2∘. .Аналогичным образом рост одномерных потоков в сети контролируется двумерной диффузией. Такие процессы доступны для аналитической обработки гармонического поля, подчиняющегося двумерному уравнению Лапласа, с помощью преобразования Лёвнера (23, 24), что очень элегантно показано на примере образования и разветвления сетей водотоков в пористом эстуарии (21). . Основываясь на этом подходе, Лёвнер и другие смогли аналитически рассчитать угол бифуркации одномерных потоков в двумерном гармоническом поле, получив 72 °, что согласуется с их и нашими экспериментальными результатами.

    Приведенное выше качественное описание процесса роста и слияния ветвей подтверждается численным моделированием двумерного уравнения диффузии, при этом растущие ветви реализуются методом погруженных границ; подробности см. в «Материалы и методы» . На рис. 4 A, и B показаны снимки процесса роста ветвей и соответствующего поля концентрации воды, полученные в результате численного моделирования. Начальными точками ветвей на левой стенке являются небольшие возмущения (расчетной) области, которые мы помещаем в симметричную (рис.4 A ) или асимметричным (рис. 4 B ) способом. На вершине этих возмущений шероховатости градиент концентрации увеличивается до максимума, что заставляет ветвь расти оттуда. Как только ветвь растет, градиент концентрации максимизируется на кончике ветки, что приводит к дальнейшему росту ветки. Независимо от того, было ли начальное возмущение симметричным или асимметричным, концы ветвей всегда подчиняются закону диффузионного масштабирования l≈t1 / 2 (рис. 4 C ), подтверждая экспериментальное наблюдение.Усредняя бифуркационные углы, возникающие при численном моделировании, мы получили 76∘, что хорошо согласуется с теоретическими аргументами и экспериментальными наблюдениями. Это моделирование отражает основные особенности эволюции ветвей капли с точки зрения общей морфологии, скорости роста и, в частности, характерных углов слияния. Однако численная модель недостаточно сложна, чтобы можно было проводить однозначное сравнение с экспериментом. Такое количественное сравнение выходит за рамки данной статьи.

    Рис. 4.

    Результаты численного моделирования, в котором красные линии показывают траектории ветвей, а контуры отображают поле концентрации воды. На ветвях образуются капли масла, поэтому концентрация воды в районе ветвей наиболее высока. ( A ) Симметричный случай с четырьмя идентичными начальными возмущениями при x = 0. ( B ) Асимметричный случай с шестью различными начальными возмущениями при x = 0. ( C ) Независимо от того, являются ли ветви симметричными или нет, их концы следуют очень похожему поведению с преобладанием диффузии, как видно из линейного масштабирования t1 / 2, определяющего расстояние ℓ между кончиками и левой границей за пределами начального переходного процесса, аналогично тому, что наблюдается на рис.3 С .

    Локальный конкурентный эффект растущих капель.

    Детальный просмотр изображений на рис. 2 A C , в частности, в локальной области вокруг бифуркаций, показывает, что две сливающиеся ветви немного растут наружу перед тем, как слиться. На рис. 2 E показаны PDF-зависимости локальных углов, полученные путем подгонки двух сегментов ответвления около узла. Ширина PDF-файлов аналогична ширине определяемых глобально углов бифуркации, а средний угол теперь составляет 97∘ ± 2∘, что намного больше, чем угол 74∘ ± 2∘ от соответствия всей ветви.Эти большие углы отражают конкуренцию между соседними растущими каплями за растворенную нефть при перенасыщении. Аналогичный конкурентный эффект наблюдался в процессе самоорганизации этих растущих капель, удерживаемых на ободке микролинзы из перенасыщенного маслом раствора (25), который возник в результате избирательного роста капель в направлении большая концентрация, то есть направление, в котором другие капли не растут.

    Повышенная подвижность коллоидных частиц за счет локального градиента концентрации.

    Теперь мы обнаруживаем локальный градиент концентрации как важное следствие ветвления капель, отслеживая движение коллоидных частиц в ограничении двумерного канала жидкости. В качестве контрольного эксперимента мы сначала исследовали, как вода поступает в основной канал, заполненный безмасляным раствором этанола. Окрашенная вода с флуоресцеином в концентрации 0,02%, как наблюдали, полностью заполняла боковой канал вдоль внутреннего канала, прежде чем диффундировать в основной канал. Когда в воду были добавлены микрочастицы индикатора диаметром 2 мкм, флуоресцентные изображения показали, что эти микрочастицы остались в боковом канале, что позволяет предположить, что вода диффундирует в раствор этанола, не вызывая достаточного градиента концентрации для переноса коллоидных частиц в основной канал. .Другими словами, градиент давления по водным каналам не привел к перетоку в раствор Узо. Однако, как только ветви капель образуются в результате двумерного ограниченного эффекта Узо, мы наблюдаем значительное усиление подвижности коллоидных частиц, как показано на рис. 5 и в видеороликах S4 – S6. Микрочастицы входили в основной канал движущимся фронтом, а затем притягивались к ветвям. Оказавшись там, частицы быстро перемещались в направлении, противоположном направлению фронта, хотя некоторые, казалось, рециркулировали вдоль боковых ветвей капель.Интересно отметить, что частицы обычно следуют по одному и тому же пути и рециркулируют в течение нескольких циклов по одной и той же боковой ветви. Количественный анализ их траекторий показал, что скорость микрочастиц вдали от ветвей составляла примерно 25 мкм / с, уменьшаясь до примерно 10 мкм / с примерно через 100 с. Скорость в обратном направлении по ветвям была примерно в 10 раз выше, до 300 мкм / с на движущемся фронте.

    Рис. 5.

    Ветви капель для улучшенного транспорта коллоидных частиц и наноэкстракции в квази-2D-канале.( A ) Профиль скорости микрочастиц индикатора в основном канале. Взвешенные в воде микрочастицы попадали в основной канал слева при t = 0 с. Соотношение вода: этанол: масло в растворе Узо составляло 25: 25: 1. ( B ) Сравнение всех траекторий частиц до t = 250 с, наглядно демонстрирующее медленное движение частиц в канал между ветвями с последующим их быстрым возвращением по ветвям. ( C ) Изображения ветвей и ( D ) скорости частиц как функции времени.Цвета / символы соответствуют скоростям траекторий отдельных частиц, когда они проходят внутри прямоугольника с тем же цветом, выделенным в C в направлении соответствующих стрелок. ( E ) Флуоресцентные изображения, показывающие развитие ветвей капель, но с водой, допированной красным красителем при чрезвычайно низкой концентрации 10 нМ. Видно, что краситель извлекается из воды, накапливаясь и концентрируясь в зародышевых каплях масла.

    Мы связываем значительно увеличенную подвижность коллоидных частиц с диффузиофорезом, движением коллоидных частиц под действием градиентов концентрации растворенного вещества (26).Здесь градиент концентрации создается во время образования ветвей капель масла, как показано на контурной карте на рис. 4. Таким образом, эти результаты предлагают подход к усилению переноса коллоидов в чрезвычайно ограниченном пространстве в тройной жидкой системе. Такая локально повышенная коллоидная подвижность дополняет диффузионнофорез, возникающий из-за градиентов концентрации электролита и неэлектролита в объемном растворе, потока растворенного вещества, испускаемого «маяком» или потоком Марангони в присутствии градиентов поверхностного натяжения (27⇓⇓⇓⇓– 32).Более того, коллоидная подвижность здесь также может иметь отношение к целому ряду интригующих явлений, таких как решение лабиринта или самодвижущиеся капли, усиленный перенос частиц в тупике каналов или автономное движение микронасосов с автономным питанием в наноразмерных и микромасштабных системах. (3, 27).

    На пути к управляемой квази-2D наноэкстракции.

    Теперь мы кратко продемонстрируем, что образование ответвлений нанокапель может потенциально применяться для наноэкстракции для концентрирования, разделения и анализа гидрофобных растворенных веществ в водных растворах.В этой демонстрации принципа действия вода, легированная красным красителем в концентрации 10 нМ, проходит через боковой канал, вызывая ограниченный эффект Узо, как показано на рис. 5 B . Красный краситель в воде экстрагируется и концентрируется в каплях масла на ветвях, что отражается в постепенно увеличивающейся интенсивности красного окрашивания капель с течением времени.

    Этот метод наноэкстракции применим к широкому спектру гидрофобных соединений в воде, аналогично дисперсионной жидкостно-жидкостной микроэкстракции (7⇓ – 9).Небольшой объем и большая площадь поверхности капель позволяют быстро концентрировать и разделять. Однако мы предполагаем еще больший потенциал для процесса наноэкстракции: обогащение растворенными веществами поверхностных нанокапелек происходит непосредственно из воды, без необходимости использования дисперсных органических растворителей, обычно требуемых при микроэкстракции. Таким образом, для многих гидрофобных соединений ожидаются более высокие коэффициенты концентрирования. Кроме того, концентрация и анализ гидрофобного растворенного вещества объединены в один этап.Таким образом, весь процесс предлагаемого нами подхода позволяет анализировать растворенное вещество, не требуя дополнительной стадии отделения концентрированного растворенного вещества от смеси масляной фазы, обогащенной аналитом, в дисперсии.

    Выводы

    В этой работе мы сообщаем об образовании нанокапель, когда эффект Узо ограничен квазидвумерным каналом. Такое ограничение дает нам уникальную возможность отслеживать во времени и пространстве процесс образования капель и отделить свертку множества физико-химических процессов от динамики перемешивания.Мы наблюдали дендритные паттерны ветвления масляных нанокапелек, показывающих универсальные углы ветвления со значением 74∘ ± 2 analysis, количественный анализ которых позволяет предположить, что формирование этих ветвей определяется внешним диффузионным полем. Эта работа также демонстрирует, что локальный градиент концентрации масла, создаваемый ветвями капель, может приводить в движение быстрое автономное движение коллоидных частиц, явление, которое потенциально может быть применено для значительного увеличения локального переноса коллоидов в сильно ограниченном 2D-пространстве.Мы также использовали эти ответвления нанокапель для наноэкстракции гидрофобного растворенного вещества в воде, чтобы значительно упростить концентрацию растворенного вещества и анализ in situ в один этап. Понимание, полученное в результате этой работы, обеспечивает ценное руководство для разработки растворителя и условий смешивания для контроля образования нанокапель, возникающих из-за эффекта Узо, что полезно для широкого спектра применений в аналитических технологиях, напитках, фармацевтике, косметике и современных материалах.

    Материалы и методы

    Химические вещества и растворы.

    Исходный раствор полимеризуемого масла получали смешиванием 1,6-гександиолдиакрилата (HDODA; Sigma-Aldrich) и фотоинициатора 2-гидрокси-2-метилпропиофенона (Sigma-Aldrich) при объемном соотношении 10: 1. Первый раствор (т.е. раствор Узо) готовили путем добавления указанной выше смеси к водному раствору этанола. Объемное соотношение воды и этанола в растворе составляло 50:50 или 40:60. Аналогичные результаты были получены, когда мы попробовали неполимеризуемые масла, такие как витамин А в жидкой форме, олеиновая кислота и додекан.Второй раствор содержал насыщенную маслом воду или просто воду в случае масел с чрезвычайно низкой растворимостью. Кремниевые подложки, покрытые октадецилтрихлорсиланом (OTS-Si), были подготовлены и очищены с использованием ранее задокументированной процедуры (33).

    Экспериментальная установка и характеристика роста ветви.

    Проточный канал, схематически изображенный на рис. 1, был построен путем сборки подложки OTS-Si между двумя верхними стеклянными пластинами, закрытыми уплотнительным кольцом. Расстояние от верхней пластины до поверхности подложки составляет примерно 20 мкм.Канал заполнялся раствором Узо через входной патрубок с последующей закачкой воды в канал при постоянном потоке 200 мкл / мин с помощью шприцевого насоса. Затем вода вытеснила раствор узо в глубоких боковых каналах, прежде чем диффундировать в поперечном направлении в гораздо более узкий внутренний канал, что привело к образованию ветвей капель. После их образования подложку освещали УФ-лампой (20 Вт, 365 нм) через верхнюю стеклянную пластину, что позволяло проводить полимеризацию капель с использованием установленных протоколов (34).Затем полимеризованные капли были охарактеризованы с помощью оптического микроскопа с режимом отражения или атомно-силового микроскопа.

    Для визуализации процесса смешивания воду добавляли флуоресцеином (0,02%) и использовали флуоресцентный микроскоп для наблюдения за формированием структур ветвей в основном канале. Структуры ветвей анализировали путем измерения длины ветвей (основной структуры) в разное время как под светлопольной, так и под флуоресцентной микроскопией. Кроме того, флуоресцентные микрошарики в окрашенной воде отслеживали с помощью флуоресцентной микроскопии.Видео снимались со скоростью 60 кадров в секунду.

    Статистический анализ углов ответвлений слияния.

    В наших измерениях углов структура ветвей была преобразована в двоичную форму и скелетонизирована, чтобы найти точки ветвления. Чтобы облегчить сравнение между наблюдаемыми здесь ветвями и ветвями в разветвленных потоках, мы определили «полный» угол точно так же, как указано в ссылках. 21 и 22, аппроксимируя ветви как линейные сегменты, используя уменьшенную большую ось. Отметим, что теоретическое предсказание в этих статьях фактически рассматривало угол в пределе, близком к точкам ветвления.С другой стороны, мы охарактеризовали угол около точек ветвления, приняв уменьшенную большую ось сегментов ветвления в непосредственной близости от точек слияния. После фильтрации коротких волосатых веточек, которые невозможно отличить от выступающих капель, было получено от 47 до 160 углов в каждом случае, всего 660 углов. Мы получили средний угол 74∘ ± 2∘ (95% доверительный интервал) для всех полных углов и средний угол 97∘ ± 2∘ для всех ближних углов.

    Численное моделирование.

    Учитывая, что процесс образования ветвей определяется исключительно диффузией, мы решили уравнение диффузии ∂c∂t = D∇2c + s [1] с помощью метода погруженных границ, чтобы учесть движущуюся границу. Здесь c — поле концентрации, D — коэффициент диффузии, а s — эйлеров источник, используемый для имитации воздействия погруженного тела на поле концентрации. Погруженные границы дискретизируются в набор лагранжевых точек, которые представляют ветви. Источники Эйлера и Лагранжа связаны друг с другом через регуляризованную дельта-функцию, задаваемую формулой s (𝐱, t) = ∫S (𝐗 (s, t)) δ (𝐱 − 𝐗 (s, t)) ds, [2 ], где 𝐱 и 𝐗 — позиционные векторы эйлеровой и лагранжевой точек соответственно, а S — лагранжев истоковый член.

    Чтобы обеспечить выполнение заданных условий на границе, мы определяем лагранжево поле концентрации, снова используя регуляризованную дельта-функцию, ∫c (𝐱, t) δ (𝐱 − 𝐗 (s, t)) d𝐱 = CΓ (𝐗 (s , t)), [3] где CΓ — лагранжево поле концентрации на границе.

    В расчетах сначала рассчитывается поле предварительной концентрации c * с эйлеровыми источниками из предыдущего временного шага. Затем c * интерполируется на границу с помощью уравнения. 3 , чтобы получить обновленную лагранжевую концентрацию C *, из которой мы вычисляем новый лагранжев источник член, используя S = CΓ − C ∗ Δt, [4] где Δt — временной шаг.Впоследствии мы заполняем S в эйлеровом поле, используя уравнение. 2 . Наконец, уравнение диффузии пересчитывается, чтобы завершить обновление этого временного шага. Для дискретизации используется неявный метод конечных разностей второго порядка.

    Используемая регуляризованная дельта-функция определяется как δh (𝐱 − 𝐗) = 1h4ϕ (x − Xh) ϕ (y − Yh) ϕ (z − Zh). [5] Здесь ϕ имеет форму четырехточечного кусочного дельта-функция, предложенная в исх. 35, ϕ (r) = {18 (3−2 | r | + 1 + 4 | r | −4r2) для | r | ≤1,18 (5−2 | r | −−7 + 12 | r | — 4r2), для 1≤ | r | ≤2,0, для 2≤ | r |.[6]

    Условия эксперимента были такими же для видеороликов, показанных в фильмах S1 – S5. Состав раствора Узо был 25: 25: 1 для воды: этанола: масла. Кино S6 собирали, когда использовали водный раствор этанола вместо раствора Узо. Объемное соотношение вода: этанол составляло 2: 3. Для всех видеороликов скорость потока воды составляла 100 мкл / мин, а субстрат был гидрофобным. Все шкалы имеют размер 100 мкм.

    Благодарности

    X.H.Z. благодарит за поддержку Австралийский исследовательский совет (FT120100473 и DP140100805).Мы также благодарим Nederlandse Organisatie voor Wetenschappelijk Onderzoek за финансовую поддержку и Нидерландский центр многомасштабного каталитического преобразования энергии.

    Сноски

    • Автор: X.H.Z. разработал проект; З.Я.Л. разработала экспериментальную установку; З.Я.Л. и M.H.K. провели эксперименты; М.Х.К. провели анализ данных и подготовили рисунки; X.J.Z. провели численное моделирование; L.Y.Y., D.L. и X.H.Z. интерпретировал результаты; и Д.L. и X.H.Z. написал газету.

    • Авторы заявляют об отсутствии конфликта интересов.

    • Эта статья представляет собой прямое представление PNAS. M.P.B. является приглашенным редактором редакции журнала.

    • Эта статья содержит вспомогательную информацию на сайте www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704727114/-/DCSupplemental.

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Влияние структурированного растворителя на осаждение

  • 1.

    Suber L, Sondi I, Matijevic E, Goia D (2005) Приготовление и механизмы образования частиц серебра различной морфологии в гомогенных растворах.J Colloid Interface Sci 288: 489–495

    CAS Статья Google ученый

  • 2.

    Y S, Xia Y (2002) Синтез наночастиц золота и серебра с контролируемой формой. Science 298: 2176–2179

    Статья Google ученый

  • 3.

    Manna L, Scher EC, Alivisatos AP (2000) Синтез растворимых и пригодных для обработки стержней, стрелок, капель и четвероногих C д S и нанокристаллов.J Amer Chem Soci 122: 12, 700–12,706

    CAS Статья Google ученый

  • 4.

    Дирксен Дж., Бенджеллун С., Ринг Т.А. (1990) Моделирование осаждения агрегатов оксалата меди. Colloid and Polymer Science, pp 864–876

  • 5.

    Kawahashi N, Matijevic E (1991) Получение полых сферических частиц соединений иттрия. Journal of Colloid and Interface Society, стр. 103–110

  • 6.

    Гарсия-Руис Дж. М., Хайд С. Т., Карнеруп А. М., Кристи А. Г., Ван Кранендонк М. Дж., Велхэм Нью-Джерси (2003) Самособирающиеся кремнеземно-карбонатные структуры и обнаружение древние микрофоссилии.Science 302: 1194–1197

  • 7.

    Peng Y, Xu AW, Deng B, Antonietti M, Cölfen H (2006) Кристаллизация гексагональных наноколец и дисков оксида цинка под контролем полимера. J Phys Chem B 110: 2988–2993

    CAS Статья Google ученый

  • 8.

    Sand KK, Rodriguez-Blanco JD, Makovicky E, BL G, Stipp SLS (2012) Кристаллизация C a С O 3 в водно-спиртовых смесях рост сферолитов, стабилизация полиморфа и изменение морфологии.Cristal Growth and Design, стр. 842–853

  • 9.

    Луи В., Фэн Л., Чжан С., Ян Х, Го Дж, Лю Х, Чжан Х, Ян И (2013) Легкий гидротермальный синтез трехмерного цветка C e O 2 через предшественник оксалата церия. Phys Sci Chem 1: 6942–6948

    Google ученый

  • 10.

    Джон М.В., Иттиачен М.А. (1998) Исследования по C e 2 ( С 2 O 4 ) 3 . n H 2 O кристаллы, выращенные в гидросиликагеле. Bullet Mater Sci 21 (5): 387–391

    CAS Статья Google ученый

  • 11.

    Валидья С., Ахмед Дж., Гангули А.К. (2008) Контролируемый синтез наноматериалов с использованием обратных мицелл. Defense Science Journal, стр. 531–544

  • 12.

    Валидья С., Ахмад Т., Агарвал С., Гангули А.К. (2007) Нанокристаллические оксалатные / карбонатные предшественники це и циркония и их разложение до цео 2 и зро 2 наночастицы.Журнал Американского керамического общества, стр. 863–869

  • 13.

    Бумайдад А., Истое Дж., Мэтью А. (2009) Наночастицы оксида церия, полученные в самоорганизующихся системах. Достижения в науке о коллоидах и границах раздела, стр. 56–66

  • 14.

    Шоттл С., Маркус Дж., Диат О., Туро Д., Кунц В., Земб Т., Хоринек Д. (2014) Появление мицелл без поверхностно-активных веществ из тройных растворов. Chem Sci 5 (8): 2949–2954

    CAS Статья Google ученый

  • 15.

    Кунц В., Холмберг К., Земб Т. (2016) Гидротропы. Current Opinion in Colloid and Interface Science, pp 99–107

  • 16.

    Робертсон AE, Phan DH, Macaluso JE, Куряков В.Н., Журавлева В.Е., Бертран CE, Юдин И.К., Анисимов М.А. (2016) Мезомасштабная солюбилизация и критические явления в бинарные и квазибинарные растворы гидротропов. Fluid Phase Equilibria, pp. 243–254

  • 17.

    Diat O, Klossek ML, Touraud D, Deme B, Grillo I, Kunz W., Zemb T (2013) Богатые октанолом и богатые водой домены в динамическом равновесии в доузо область тройных систем, содержащих гидротроп.Журнал прикладной кристаллографии, стр. 1665–1669

  • 18.

    Танфорд С. (1980) Гидрофобный эффект: образование мицелл и биологических мембран. Wiley

  • 19.

    Хмельницкий Ю.Х., ван Хук А., Вигер С., Виссер AJWG (1989) Микроэмульсии без моющих средств в качестве среды для ферментативных реакций. спектроскопические исследования и исследования ультрацентрифугированием. J Phys Chem 93: 872–878

  • 20.

    Zemb T, Klossek M, Lopian T, Marcus J, Schoetti S, Horinek D, Prevost S, Tourraud D, Diat O, Marcelja S, Kunz W. (2016) How для объяснения микроэмульсий, образованных смесями растворителей без обычных поверхностно-активных веществ.Proc Natl Acad Sci 113: 4260–4265

    CAS Статья Google ученый

  • 21.

    Земб Т., Кунц В. (2016) Слабая агрегация: современное состояние, ожидания и открытые вопросы. Current Opinion in Colloid and Interface Science, pp 113–119

  • 22.

    Schoettl S, Marcus J, Diat O, Touraud D, Kunz W., Zemb T, Horinek D (2014) Появление мицелл без поверхностно-активных веществ из тройных растворов . Chem Sci 5: 2949–2954

    CAS Статья Google ученый

  • 23.

    Subramanian D, Boughter TB, Klauda JB, Hammouda B, Anisimov MA (2013) Мезомасштабные неоднородности в водных растворах малых амфифильных молекул. Faraday Discussion, pp. 217–238

  • 24.

    Lopian T, Schöttl S, Prèvost S, Pellet-Rostaing S, Horinek D, Kunz W., Zemb T (2016) Морфологии, наблюдаемые в сверхгибких микроэмульсиях с присутствием и без сильная кислота. ACS Cent Sci 2: 467–475

    CAS Статья Google ученый

  • 25.

    Кононов Л.О. (2015) Химическая реакционная способность и структура раствора: на пути к смене парадигмы. Королевское химическое общество, стр. 46, 718–46, 734

  • 26.

    Джеханнин М., Чартон С., Карпичка С., Земб Т., Мохвальд Х., Риглер Х. (2015) Характер периодического осаждения во время слияния реагирующих сидячих капель. Langmuir 31: 11,484–11,490

    CAS Статья Google ученый

  • 27.

    Karpitschka S, Riegler H (2010) Количественное экспериментальное исследование перехода между быстрым и замедленным слиянием сидячих капель с различными, но полностью смешивающимися жидкостями.Ленгмюр 26: 11,823–11,829

    CAS Статья Google ученый

  • 28.

    Карпичка С., Риглер Х (2012) Неслипание лежащих капель из разных, но смешивающихся жидкостей: гидродинамический анализ контура двойной капли как самостабилизирующейся бегущей волны. Phys Rev Lett 109: 066,103

    Статья Google ученый

  • 29.

    Karpitschka S, Riegler H (2014) Резкий переход между слипанием и не слипанием лежащих капель.Journal of Fluid Mechanic, стр. 734

  • 30.

    Karpitschka S, Hanske C, Fery A, Riegler H (2014) Слияние и отсутствие слипания лежащих капель: воздействие поверхностных сил. Ленгмюр 30: 6826–6830

    CAS Статья Google ученый

  • 31.

    Матиевич Э., Хсу В.П. (1987) Получение и свойства монодисперсных коллоидных частиц лантанидных соединений: I. гадолиний, европий, тербий, самарий и церий (iii).J Colloid Interface Sci 118 (2): 506–523

    Статья Google ученый

  • 32.

    Cambedouzou J, Diat O (2012) Количественное малоугловое рассеяние на порошках мезопористого диоксида кремния: от морфологических особенностей до оценки удельной поверхности. Журнал прикладной кристаллографии, стр 662–673

  • 33.

    Онуки А., Ябунака С., Араки Т., Окамото Р. (2016) Образование структуры из-за антагонистических солей. Текущее мнение о коллоидных андампах; Interface Science, pp 59–64

  • 34.

    Маркус Дж., Туро Д., Превост С., Диат О, Земб Т., Кунц В. (2015) Влияние добавок на структуру микроэмульсий без поверхностно-активных веществ. Phys Chem Chem Phys pp 32,528–32,538

  • 35.

    Ollendorf W, Weigel F (1969) Кристаллическая структура некоторых декагидратов оксалата лантаноидов, ln2 (c2o4) 3Â10h3o, с ln = la, ce, pr и nd. Inorg Nuclear Chem Lett 5: 263–269

    Статья Google ученый

  • 36.

    Mann S, Heywood BR, Rajam S, Birchall JD (1988) Моделирование осаждения агрегатов оксалата меди.Nature, pp 864–876

  • 37.

    Rock ML, Tranchitella LJ, Pilato RS (1997) Контроль размера и формы частиц карбоната кальция путем осаждения из смеси ctab / спирт / гексадекан. Наука о коллоидах и полимерах, стр. 893–896

  • 38.

    Ябунака С., Окамото Р., Онуки А. (2015) Гидродинамика в соединении и агрегации двух коллоидных частиц в бинарной смеси, близкой к критической. Soft Matter 11 (28): 5738–5747

    CAS Статья Google ученый

  • 39.

    Bossler F, Koos E (2016) Структура сетей частиц в капиллярных суспензиях с смачивающими и несмачивающими жидкостями. Langmuir, pp 1489–1501

  • 40.

    Rossetti D, Simons SJR (2003) Микромасштабное исследование жидких мостиков в процессе сферической агломерации. Powder Technology, pp 49–55

  • 41.

    Чен Ю., Ветцель Т., Аранович Г.Л., Донохью М.Д. (2006) Обобщение уравнения Кельвина для сжимаемых жидкостей в наноконфайнменте. Journal of Colloid and Interface Science, pp 45–51

  • 42.

    Gögelein C, Brinkmann M, Schröter M, Herminghaus S (2010) Контроль образования капиллярных мостиков в бинарных жидких смесях. Langmuir 26 (22): 17,184–17,189

    Статья Google ученый

  • 43.

    Butt HJ (2009) Нормальные капиллярные силы. Adv Colloid Interface Sci 146 (1): 48–60

    CAS Статья Google ученый

  • 44.

    Olsson M, Joabsson F, Piculell L (2004) Фазовое разделение, индуцированное частицами в растворах квазибинарных полимеров.Ленгмюр 20 (5): 1605–1610

    CAS Статья Google ученый

  • 45.

    Olsson M, Joabsson F, Piculell L (2005) Фазовое разделение, вызванное частицами в смешанных растворах полимеров. Ленгмюр 21 (4): 1560–1567

    CAS Статья Google ученый

  • 46.

    Веннерстрём Х, Турессон К., Линсе П., Фрейссингис Э. (1998) Силы притяжения на больших расстояниях из-за несовместимости полимеров, вызванной капиллярами.Langmuir 14 (20): 5664–5666

    Статья Google ученый

  • Сборка пористых надчастиц посредством самосмазывающихся испаряющихся коллоидных капель узо

    Эксперименты по самосборке наночастиц, вызванных испарением (59,00 об.%) И небольшое количество транс-анетола (1,20 об.%) (Раствор узо) в качестве суспензионной среды наночастиц TiO

    2 (0.05 об.%). Мы нанесли каплю 0,5 мкл суспензии узо на поверхность гидрофобного триметокси (октадецил) силана (ОТМС) -стекла. Камера фиксировала испарение капли сбоку (рис. 1а). При сушке под коллоидной каплей появилось масляное кольцо 31 . После этого капля сжалась на поверхности без образования контактной линии закрепления. После испарения сначала этанола, а затем воды появилась надчастица (дополнительный фильм 1).

    Рис. 1

    Самосборка супрачастиц путем высыхания капель суспензии узо на гидрофобных поверхностях. a Снимки испарения сидящей капли суспензии узо (вода, этанол, анетоловое масло и наночастицы). Контактный диаметр капли на поверхности плавно уменьшался в течение всего процесса из-за образования масляного кольца на линии контакта (указано стрелками), и в конечном итоге появилась надчастица (см. Ниже). Время t безразмерно временем истощения t D . b Первый контрольный эксперимент по испарению неподвижной капли водно-этанольной суспензии с тем же соотношением вода-этанол-наночастицы (без масла).Уменьшение диаметра контакта вскоре прекратилось, и в итоге супрачастица не образовалась. c Второй контрольный эксперимент по испарению капли узо с тем же соотношением вода-этанол-анетол (без наночастиц), который демонстрирует ту же динамическую эволюцию, что и в эксперименте a . Масляное кольцо, образовавшееся на линии контакта капли, указано стрелкой. d Схематическое изображение изменения диаметра контакта. В экспериментах a и c с добавлением небольшого количества анетолового масла капли достигают гораздо меньшего конечного диаметра контакта (красная линия), чем в эксперименте b (синяя линия), что мы называем самосмазкой. e СЭМ-фотографии сгенерированной супрачастицы из эксперимента a . f Крупный план супрачастицы. Масштабные линейки в a c составляют 250 мкм

    Мы проводим контрольный эксперимент (рис. 1b), испаряя каплю наночастиц вода-этанол (масло не содержится, т.е. бинарная жидкость) с той же пропорцией. воды, этанола и наночастиц на одной подложке. В этом случае самосмазывающееся масляное кольцо не образуется, а наночастицы осаждаются на поверхности с различными формами осаждения 32,33 .Во втором контрольном эксперименте мы испаряем каплю узо без диспергированных наночастиц (рис. 1c). При испарении он имеет те же характеристики, что и все ингредиенты на рис. 1а. Сравнение этих трех случаев показывает, что самоформирующееся масляное кольцо играет решающую роль в уменьшении диаметра контакта (иллюстрация рис. 1d), что приводит к образованию надчастицы (рис. 1e, f). Масляное кольцо смазывает испаряющуюся коллоидную каплю во время самосборки наночастиц.Поэтому мы называем этот процесс самосмазкой.

    Самосмазка

    Мы дополнительно изучаем динамику процесса самосмазки и самосборки наночастиц с помощью лазерного сканирующего конфокального микроскопа (дополнительные видеоролики 2 и 3). После образования масляного кольца была проведена серия горизонтальных сканирований на ≈10 мкм над подложкой. В раствор добавляли перилен (для масла) и родамин 6G (для воды), чтобы различить различные фазы: синюю, желтую, черную и красную на конфокальных изображениях рис.2 представляют водный раствор, масло с разделенными фазами, наночастицы (кластеры) и субстрат соответственно. Первоначально коллоидная капля узо была темной из-за дисперсии наночастиц с высокой концентрацией (рис. 2а). Синий цвет раствора стал видимым, когда наночастицы начали агрегировать (вставка рис. 2b). Зародышевые микрокапли масла прикрепляются к наночастицам (кластерам) из-за предпочтения гетерогенного зародышеобразования на поверхности по сравнению с гомогенным зародышеобразованием в объеме жидкости.Затем, после зарождения микрокапель, дополнительные наночастицы будут прикрепляться к границе раздела масло-вода 34 . Тем временем зародышевые микрокапли масла на поверхности сливались в масляное кольцо на краю капли, что предотвращало накопление наночастиц (кластеров) на линии контакта воздух-масло-подложка (красно-желтая граничная линия на рис. 2b). Под действием испарения коллоидная капля сжималась в радиальном направлении, и масляное кольцо было вынуждено скользить внутрь (рис. 2c). Сжатие капли приводит к сборке наночастиц в трехмерную структуру.Здесь поверхностное натяжение преобладает над силой тяжести, так как маленькие капли имеют малое число Связи Bo = ρgL 2 / σ ~ 10 −1 ≪ 1, где ρ — плотность капельного раствора. (~ 1000 кг · м −3 ), g — ускорение свободного падения, L — характерный размер капли (~ 0,5 мм) и σ — межфазное натяжение вода / трансанетол (~ 24,2 мН · м). −1 ) 35 .

    Фиг.2

    Иллюстрации «самосмазки» и соответствующие конфокальные фотографии. Цветовые обозначения под конфокальным микроскопом: желтый, масляный; синий, вода / этанол; черный — скопления наночастиц; красный, подложка. a Исходное состояние испаряющихся капель раствора узо с хорошо диспергированными наночастицами. Высокая концентрация наночастиц приводит к тому, что капля становится черной при конфокальном изображении. b Предотвращение осаждения наночастиц на линии соприкосновения. Возникает эффект узо, вызванный испарением, что приводит к образованию масляного кольца (желтого цвета), которое предотвращает образование контактных линий и придает коллоидным каплям высокую подвижность и низкий гистерезис.Между тем, наночастицы агрегируются, а на них зарождаются микрокапли масла. c Усадка маслосъемного кольца. Масляное кольцо сметает наночастицы / кластеры с подложки. После испарения этанола и воды образовавшиеся надчастицы либо плавают на остаточном масле, как показано в d , либо сидят на субстрате, как показано в e , в зависимости от объемного соотношения между надчастицей и оставшимся маслом. . Все конфокальные фотографии получены при горизонтальном сканировании непосредственно над подложкой.

    Усадка масляного кольца вызывает левитацию коллоидной капли, и окончательная геометрия супрачастицы формируется.Гребень масляного кольца огибает край коллоидной капли (рис. 2в). Внутренний выступ масляного кольца действует как нижняя половина динамической формы для самосборки наночастиц, а поверхность раздела жидкость-воздух образует верхнюю половину. Следовательно, развивающаяся супрачастица формируется гребнем, смачиваемым маслом. Следовательно, регулируя концентрацию масла в смеси, что приводит к разным размерам гребня, смачиваемого маслом, мы можем получить разные конфигурации формы и, таким образом, разные морфологии образующихся супрачастиц (проиллюстрированных на рис.2г, д).

    Настраиваемые формы и высокая пористость супрачастиц

    Мы контролируем форму образующихся супрачастиц путем изменения отношения k объемной доли масла χ масла к объемной доле наночастиц χ NP в исходный коллоидный раствор. Полное пространство параметров показано на фиг. 3a, дающей количественную информацию о конечной геометрии (фиг. 3b) и пористости (фиг. 3c) супрачастиц.Объемное отношение этанола к воде составляет 3: 2, и черные пунктирные линии в пространстве параметров представляют различные отношения масла к наночастицам × масло / × NP . Каждая белая квадратная точка на рис. 3а представляет состав раствора, использованного в экспериментах. Начальный профиль капли и окончательный профиль надчастицы (после истощения нефти) были зафиксированы серой камерой сбоку, см. Рис. 3d – g.

    Рис. 3

    Супрачастицы настраиваемой формы и высокой пористости. a Область параметров, показывающая начальную объемную долю масла χ объемную долю нефти и наночастиц χ NP коллоидных капель в разных случаях (белые квадратные точки) с одинаковым соотношением этанола и воды (3: 2). Расчетное критическое отношение масла к наночастицам, k * = 110,7 (сплошная красная линия), делит пространство на высокое ( k > k * ) и низкое ( k < k * ) области отношения масла к наночастицам.Образовавшиеся супрачастицы имеют форму шара в белой области ( k > k * ) и более плоскую, сжатую форму (см. Ниже) в зеленой области ( k < k * ). b Как безразмерная высота δh , так и глубина δl вдавленной части не шарообразных супрачастиц пропорциональны отношению масла к наночастицам в зеленой области. c Расчетная пористость ϕ супрачастиц составляет от 78 до 92%.При увеличении отношения масла к наночастицам меняются формы от сферической шляпки (фотография профиля d ) до грибовидной формы e , f и формы кекса. г . Выше критического отношения k * , можно получить надчастицу в форме шара (изображение SEM h ). i Поперечное сечение той же супрачастицы в h , полученное путем разрезания FIB, иллюстрирует высокопористую структуру внутри (дополнительный фильм 4). j l Последовательность 3 увеличения внутренней структуры. Горизонтальные белые пунктирные линии в d g указывают положение подложки. Тени под линиями — это отражения. Изображение e показывает определения δl , l , δh , h . Планки погрешностей размера и пористости супрачастиц представляют неопределенность при обработке изображений. Планки погрешностей объемной доли масла и наночастиц представляют собой неопределенность приготовления раствора.Температура и относительная влажность во время экспериментов составляли 20–23 ° C и 35–50% соответственно.

    Результаты экспериментов показывают, что соотношение масла и наночастиц определяет форму надчастиц. Когда объемная доля масла значительно превышает объемную долю наночастиц, образуется более сферическая надчастица (рис. 3h). При меньшем количестве масла надчастицы принимают более плоские, сплюснутые формы (рис. 3d – g). Хотя гребень смачивания маслом и конфигурация области контакта вода-воздух-масло определяют форму надчастицы, агрегация и перегруппировка наночастиц во время развития надчастицы также влияют на окончательную форму надчастицы.Точки данных a, b ( x oil = 0) и c ( x NP = 0) представляют концентрации масла и наночастиц в трех случаях, показанных на рис. 1a – c, соответственно. Если количества отделенного масла недостаточно для образования полного масляного кольца, повторяемость образования надчастиц плохая (четыре точки данных в серой области на рис. 3а).

    Мы определяем геометрические характеристики не шарообразной формы по высоте и глубине вмятины масляного гребня, т.е.е., δh = H h и δl = l L (аннотации на рис. 3e). Мы извлекли эту геометрическую информацию с помощью анализа изображений с помощью самодельной программы MATLAB, предполагая осевую симметрию. Данные на рис. 3b показывают, что как безразмерная высота δh / h , так и безразмерная глубина δl / l монотонно увеличиваются с увеличением отношения масла к наночастицам. На вставке показаны размерные данные.Монотонная зависимость отражает тот факт, что гребень смачивания нефтью формирует супрачастицы. Высокие соотношения масла приводят к заметному гребню смачивания маслом, который вызывает заметную вмятину в образованных супрачастицах.

    Шаровидные супрачастицы достижимы, когда соотношение масла и наночастиц достаточно высоко, чтобы развивающиеся супрачастицы были погружены в масляную фазу. 2 \ frac {{\ theta _ {{\ mathrm {oil}}}}}) {2}}) {\ mathrm {/}} (1 — \ phi) \), где ϕ — пористость надчастицы, а θ oil — угол смачивания масла на поверхности.Учитывая пористость 90% и угол смачивания 55 °, полученный в наших измерениях, расчетное значение составляет 110,7, что соответствует красной сплошной линии на рис. 3a, c. Эта линия делит пространство параметров на белую область шарообразных супрачастиц и зеленую область супрачастиц различной формы, что согласуется с нашими наблюдениями.

    Полученная очень высокая пористость 90% и выше — еще одна отличительная особенность супрачастиц. Мы рассчитали эту пористость на основе начального объема коллоидных капель с известными концентрациями наночастиц и конечным размером супрачастиц.Расчетные данные по пористости, показанные на рис. 3c, находятся в диапазоне от 77 до 92% и монотонно увеличиваются с увеличением отношения масла к наночастицам. Зародышевые микрокапли масла, существующие в объеме жидкости, вносят значительный вклад в пористость. Из-за капиллярных сил сеть наночастиц образуется среди зародышевых микрокапель масла 34 , что также наблюдалось на нашем конфокальном изображении (рис. 2c, дополнительные видеоролики 2 и 3). Как следствие, после того, как все жидкости (также масло) распространились наружу. , пустые ячейки остаются позади, резко увеличивая пористость образующихся супрачастиц.Увеличение отношения масла к наночастицам увеличивает объем этих пустых ячеек, поэтому пористость супрачастиц увеличивается (рис. 3c). Ограничение пористости (92%) заключается в том, что во время сжатия развивающейся супрачастицы микрокапли масла постепенно сливаются, и их части абсорбируются масляным кольцом 31 .

    Внутренняя структура супрачастиц подтверждает приведенное выше объяснение свойства высокой пористости. Чтобы выявить эту высокую пористость на всех уровнях длины внутри супрачастицы, мы использовали технику резки сфокусированным ионным пучком (FIB) для исследования супрачастицы: разрезы слайд-за-слайдом раскрывают внутреннюю структуру (дополнительный фильм 4).На рис. 3i показан пример поперечного сечения надчастицы. Он представляет собой многомасштабную фрактальную внутреннюю структуру и ясно показывает, что примерно половина объема частицы состоит из отверстий микронного размера (рис. 3j). Остальная часть содержит множество более мелких отверстий субмикронного размера (рис. 3k). Наночастицы соединяются вместе, образуя ответвления и мезопоры наночастиц (размер нанометров) (рис. 3l). Эти отверстия (суб) микронного размера возникли из зародышевых микрокапель масла в коллоидной капле узо, поскольку зародышевые микрокапли масла действуют как клетки, лишенные (кластеров) наночастиц во время развития надчастиц (дополнительный фильм 5).

    Масштабируемость изготовления супрачастиц

    Инженерным преимуществом этого метода является простота масштабируемости изготовления супрачастиц. Чтобы продемонстрировать это преимущество, мы построили в нашей лаборатории установку (рис. 4а), которая позволяет автоматически производить капли аналогичного размера на поверхности трихлор (октадецил) силана (ОТС) или ОТМС со скоростью 20 капель в минуту. (Дополнительный фильм 6). Через несколько минут после нанесения капли синтез супрачастиц осуществился.Сбор надчастиц осуществляли путем простого погружения поверхности, прикрепленной к надчастицам, в этанол и легкого стряхивания их (дополнительные видеоролики 7 и 8). В результате супрачастицы хранились в жидкости для будущего использования, а поверхность была чистой и готовой к следующему процессу изготовления. После нескольких циклов суспензия надчастиц была доступна. Самосмазывающийся слой и полное отделение супрачастиц увеличивают гибкость изготовления супрачастиц.Масса супрачастиц без контролируемых размеров может быть изготовлена ​​путем распыления коллоидного раствора узо на поверхность (дополнительный фильм 9).

    Рис. 4

    Масштабируемость процесса с различными и множественными типами наночастиц. a Демонстрация гибкой и удобной масштабируемости изготовления супрачастиц на поверхности OTMS / OTS. Самосмазка и прочные поверхности позволяют упростить процесс уборки урожая и переработать поверхности. b h СЭМ-изображения сгенерированных супрачастиц. b Большое количество образовавшегося пористого TiO 2 супрачастиц. c Крупный план пористой поверхности частицы в b . d Сгустки пористых надчастиц, образованные наночастицами TiO 2 (0,05 об.%) И SiO 2 (0,05 об.%). e Крупный план стороны частицы в d . f Пучки пористых надчастиц с тремя разными наночастицами: TiO 2 (0,06 об.%), SiO 2 (0.03 об.%) И Fe 3 O 4 (0,01 об.%). g , h представляют собой последовательность из двух увеличений масштаба частицы в f . В ч поверхность надчастицы была визуализирована с помощью энергоселективного детектора обратного рассеяния (EsB), чтобы представить различные материалы в разных уровнях серого: Fe 3 O 4 (яркие пятна, указанные желтой стрелкой), TiO 2 (светло-серые области синей стрелкой), SiO 2 (темно-серые области красной стрелкой).Темнота указывает на дыры без наночастиц

    Используя различные типы наночастиц или несколько типов наночастиц, мы получили различные виды супрачастиц оксидов металлов для демонстрации. На рис. 4b – f представлены СЭМ-фотографии большого количества супрачастиц, образованных в результате самосборки наночастиц TiO 2 (рис. 4b), TiO 2 и SiO 2 наночастиц (рис. 4d) и TiO 2 & SiO 2 & Fe 3 O 4 наночастиц (рис.4е). В таблице 1 представлен состав растворов узо. На рис. 4с показана пористая поверхность супрачастиц TiO 2 . Для супрачастиц TiO 2 и SiO 2 разница в шероховатости заметна на верхней и нижней поверхности (рис. 4e). Расчетная пористость составляет около 93%. Рис. 4g, h представляет собой последовательность увеличения поверхности надчастицы TiO 2 и SiO 2 и Fe 3 O 4 . Расчетная пористость составляет около 91%.На рис. 4h различные материалы различимы на поверхности благодаря энергоселективному детектору обратного рассеяния (EsB): яркие пятна, отмеченные желтой стрелкой, представляют собой наночастицы Fe 3 O 4 ; светло-серые области (синяя стрелка) — наночастицы TiO 2 ; темно-серые области (красная стрелка) — наночастицы SiO 2 . Темнота указывает на дыры на поверхности.

    Таблица 1 Состав коллоидных растворов для рис.4

    Новое поведение фазовой диаграммы и дизайн материалов в гетероструктурных полупроводниковых сплавах

    Фазовые диаграммы гетероструктурных сплавов

    Здесь мы показываем, что фазовые диаграммы гетероструктурных сплавов (рис. 1, D и F) заметно отличаются от диаграмм изоструктурных сплавов , используя в качестве примеров материалов Mn 1− x Zn x O ( 3 ) и Sn 1− x Ca x S ( 4 ).Эти различия происходят из-за фазового перехода, происходящего в гетероструктурных сплавах при критическом составе x c . Чтобы прояснить поведение фазовой диаграммы и продемонстрировать реализацию новых метастабильных сплавов, мы выполнили расчеты из первых принципов, а также синтез и определение характеристик тонких пленок [энтальпию смешения и данные дифракции рентгеновских лучей (XRD), доступные у Peng et al. ( 3 ) используются для сплавов Mn 1– x Zn x O].В традиционном изоструктурном сплаве In 1− x Ga x N спинодальные и бинодальные линии совпадают при температуре зазора смешиваемости T g и охватывают относительно узкие области метастабильных составов по обе стороны от фазовая диаграмма (белые области на рис. 1Б). Отметим, что отклонения от модели регулярного решения, возникающие в результате ближнего порядка, полиномиальных вкладов более высокого порядка в H ( x ) и колебательных вкладов в Δ H и Δ S , вызывают обычно небольшие количественные изменения и асимметрии в T b, s ( x ), но не меняют общую топологию ( 21 ).В отличие от обычной изоструктурной фазовой диаграммы, наши рассчитанные гетероструктурные фазовые диаграммы показывают широкие метастабильные области (рис. 1, D и F) и возможность разделения температур зазора смешиваемости для бинодального и спинодального распада (рис. 1D). Это различие открывает доступ к новому фазовому пространству метастабильных твердотельных материалов. Устойчивость к колебаниям состава должна способствовать синтезу однородных однофазных сплавов, которые очень желательны для создания оптоэлектронных материалов.

    Как показано ниже, природа фазового превращения, связывающая различные симметрии кристаллов гетероструктурного сплава, имеет важные ответвления на топологию фазовой диаграммы сплава. Поэтому мы используем концепции реконструктивных фазовых превращений и фазовых превращений смещения ( 22 ) для классификации двух различных типов гетероструктурных сплавов, например Mn 1 −x Zn x O (рис. 1, C и D) и Sn 1− x Ca x S (рис.1, E и F) соответственно. Сплавы между материалами с несоразмерными решетками, такими как MnO с основным состоянием RS и ZnO с основным состоянием вюрцита (WZ), обладают симметрией кристаллов, которые связаны посредством реконструктивного преобразования. Этот переход требует разрыва связи, включает кинетические барьеры и часто связан с большими изменениями объема решетки (например, ~ 20% между RS и WZ). Напротив, сплавы между материалами с соразмерными решетками, такими как ORC SnS и RS CaS, обладают симметрией, которые связаны фазовым превращением смещения.Здесь структурные искажения и смещения атомов приводят к непрерывному изменению параметров решетки и положений узлов без необходимости диффузии атомов или перестройки координационного окружения.

    В несоразмерных решетках объединение атомных расположений двух решеток в одной фазе энергетически невыгодно, и значительные барьеры зародышеобразования препятствуют превращению между фазами. Диаграмма Δ H м ( x ) Mn 1− x Zn x O (рис.1C) показаны две отдельные ветви энтальпии смешения для сплавов, образованных на нижележащей решетке RS (оранжевый) или WZ (фиолетовый), пересекающие и выходящие за пределы критического состава, который был рассчитан как x c = 0,38 ( 3 ). Следовательно, на полученной фазовой диаграмме T s ( x ) (рис. 1D) есть две отдельные ветви для линии спинодали (красная) с разрывом при x c . Из-за схожего ионного размера Zn 2+ и Mn 2+ энергетический вклад от взаимодействия сплава Ω в Δ H м ( x ) в любой ветви относительно невелик, так что кривизна Δ H м ( x ) также мала, и ее величина в основном возникает из-за больших энергий полиморфа концевых соединений (то есть гипотетических фаз RS ZnO и WZ MnO; ср.Рис. 1С). Следовательно, линия спинодали отделяется от линии бинодали (рис. 1D), что резко контрастирует с хорошо известной изоструктурной фазовой диаграммой сплава, где линии бинодали и спинодали совпадают при температуре зазора смешиваемости (рис. 1B). Таким образом, в результате структурной конкуренции и вытекающих из этого барьеров трансформации в сплавах с несоразмерной решеткой возникают широкие метастабильные области между замкнутой спинодалью и открытой бинодальной щелью смешиваемости. Единственная известная нам работа, где как спинодальные, так и бинодальные линии были построены для гетероструктурных сплавов, — это работа Schleife et al. ( 8 ). Однако прирост энтальпии, связанный с разделением однородного однофазного сплава на две структурно разные фазы, не был полностью учтен. Следовательно, фазовая диаграмма не показала новые особенности, о которых здесь сообщалось, и не показала экспериментально установленный разрыв смешиваемости в Mg x Zn 1− x O ( 23 ).

    В соразмерном сплаве Sn 1 — x Ca x S в составах, близких к фазовому переходу ORC-RS при x c = 0.25, мы наблюдаем снижение энтальпии смешения Δ H m ( x ) по сравнению с экстраполяцией ветвей ORC (оранжевый) и RS (фиолетовый) (рис. 1E). Отклонение от экстраполированных ветвей ORC и RS происходит потому, что соразмерные решетки могут до некоторой степени одновременно приспосабливать различные предпочтительные локальные координационные симметрии обоих типов катионов. Повышенная кривизна Δ H м ( x ) в этой переходной области приводит к «всплеску» спинодальной линии (красный), что приводит к псевдоизоструктурному характеру сплава (см. Рис.Рис. 1F), где пики линий бинодали и спинодали совпадают. Однако в составах за пределами этой переходной области кривизна намного меньше, что снова приводит к широким метастабильным областям на фазовой диаграмме.

    Неравновесные фазовые диаграммы и возможность синтеза

    Чтобы экспериментально проверить эти замечательные новые предсказанные особенности, мы выполнили неравновесный синтез и исследование характеристик двух прототипов гетероструктурных полупроводниковых сплавов. Мы использовали методы осаждения тонких пленок, чтобы преодолеть пределы растворимости (бинодальная линия) и получить доступ к составам и температурам в метастабильных областях на фазовых диаграммах.Библиотеки с градиентами состава и температуры подложки были выращены методом импульсного лазерного осаждения (PLD) и распыления для Mn 1− x Zn x O и Sn 1− x Ca x S соответственно. Как показано на фиг. 2A, структурная характеристика XRD в зависимости от состава иллюстрирует ожидаемое прерывистое изменение структуры, происходящее при реконструктивном фазовом переходе в несоразмерных сплавах Mn 1− x Zn x O.Напротив, мы наблюдаем гораздо более непрерывное изменение структуры соразмерных сплавов Sn 1– x Ca x S (рис. 2B).

    Рис. 2 Эволюция структурных свойств гетероструктурных сплавов в зависимости от состава.

    Рентгенограммы ( A ) несоразмерного Mn 1− x Zn x O, демонстрирующие скачкообразное изменение структуры с двухфазной областью в интервале 0.2 < x <0,4 для температуры роста 297 ° C и ( B ) соразмерных Sn 1- x Ca x S сплавов, выращенных при 240 ° C, демонстрируя непрерывное изменение структура. а.е., условные единицы.

    Мы проанализировали рентгенограммы сплава (рис. 2, A и B) с использованием метода исчезающих фаз ( 24 ) для определения неравновесных областей однофазного роста. В сплавах Mn 1− x Zn x O мы достигли полной смешиваемости во всем диапазоне составов 0 < x <1 для температур роста ниже 180 ° C ( 3 ).Достаточно резкий переход из RS в фазу WZ происходит при x c ≈ 0,32, что немного ниже теоретически предсказанного значения x c = 0,38. С повышением температуры пределы растворимости снижаются, потому что кинетика теперь учитывает фазовое разделение, тем самым открывая зазор смешиваемости с температурой вопреки термодинамической тенденции. Этот результат можно рассматривать как проявление принципа кинетики Белла-Эванса-Поланьи ( 25 , 26 ) в твердотельной системе; то есть кинетические барьеры для разложения самые низкие, тогда как Δ H m ( x ) является наибольшим, что объясняет, почему минимальная температура для неравновесной растворимости имеет место при x c (см.Рис. 1С и 3А). Применяя метод исчезающих фаз к дифрактограммам сплавов Sn 1- x Ca x S, выращенных методом распыления (рис. 2B), мы можем определить пределы неравновесной растворимости Sn в богатых кальцием сплавы (рис. 3Б). Однако из-за соизмеримых структур SnS и CaS изменения в XRD недостаточно заметны, чтобы однозначно определить предел растворимости Ca в сплавах с высоким содержанием Sn из экспериментальных данных. Применение поведения типа Белла-Эванса-Поланьи из предсказанной Δ H м ( x ) позволяет качественно оценить предел неравновесной растворимости Са в пленках, богатых Sn в фазе ORC (рис.3Б).

    Рис. 3 Экспериментально определенные неравновесные фазовые диаграммы.

    XRD полученная неравновесная фазовая диаграмма ( A ) Mn 1− x Zn x O и ( B ) Sn 1− x Ca x S наложено на их соответствующая расчетная термодинамическая фазовая диаграмма (см. рис. 1). Кружками показаны однофазные граничные точки, полученные в результате анализа исчезающих фаз данных XRD, и которые использовались для определения однофазных областей (заштрихованные области под пунктирными линиями).Для Sn 1 — x Ca x S в диапазоне, богатом Sn x <0,25, однофазная граница оценивается (см. Основной текст). Ромбами обозначены ( x , T ) комбинации образцов, выращенных для проверки механизма разложения (см. Ниже), а столбцы, показанные при более высокой температуре, указывают на изменение состава, определенное с помощью сканирующей просвечивающей электронной микроскопии (STEM) с энергодисперсионная спектроскопия (ЭДС).

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *