Сбор нагрузок на плиту перекрытия: Сбор нагрузок на перекрытие

Содержание

Сбор нагрузок на плиту перекрытия

– железобетонная плита перекрытия (многопустотная) толщиной 220 мм

– цементно-песчаная стяжка (ρ=1800 кг/м3) толщиной 30 мм

Как собрать нагрузку от перегородок

В ДБН В.1.2-2:2006 «Нагрузки и воздействия» о сборе нагрузок от перегородок сказано скупо:

Давайте разберемся, как рациональней собирать нагрузку от перегородок для различных ситуаций.

Что такое характеристическая нагрузка? Это нормативная нагрузка еще безо всяких коэффициентов, т.е. фактический вес перегородок. Этот фактический вес, по сути, распределен по очень узкой площади (т.к. толщина перегородки обычно не превышает 150 мм), и наиболее правдоподобным будет принимать нагрузку от перегородки как линейную. Что это значит?

Пример 1. Есть кирпичная перегородка высотой 2,5 м, толщиной 0,12 м, длиной 3 м, ее объемный вес равен 1,8 т/м 3 . Нужно собрать нагрузку от перегородки на плиту.

Она оштукатурена с двух сторон, каждый слой штукатурки имеет толщину 0,02 м, объемный вес штукатурки 1,6 т/м 3 . Нужно найти нормативную (характеристическую) нагрузку от перегородки для расчета плиты перекрытия.

Найдем вес 1 м 2 перегородки:

(1,8∙0,12 + 1,6∙2∙0,02)∙1 = 0,28 т/м 2 (здесь 1 – это площадь перегородки).

Зная высоту перегородки, определим, сколько будет весить погонный метр перегородки:

Таким образом, мы получили погонную линейную нагрузку 0,7 т/м, которая будет действовать на плиту перекрытия под всей перегородкой (каждый метр перегородки весит 0,7 т/м). Суммарный же вес перегородки будет равен 0,7∙3 = 2,1 т, но такое значение для расчета нужно далеко не всегда.

Теперь рассмотрим, в каких ситуациях нагрузку от перегородок следует оставлять в виде линейной нагрузки, а когда – переводить в равномерно распределенные по площади нагрузки, как это рекомендуется в п. 6.6 ДБН «Нагрузки и воздействия».

Сразу оговорюсь, если вы считаете перекрытие в программном комплексе, позволяющем с легкостью задавать перегородки или линейную нагрузку от них, следует воспользоваться этой возможностью и делать наиболее приближенный к жизни расчет – такой, где все нагрузки от перегородок в виде линейно-распределенных расположены каждая на своем месте.

Если же вы считаете вручную или же по каким-то причинам хотите упростить программный счет (вдруг, компьютер не тянет такое обилие перегородок), следует проанализировать, как это делать и делать ли.

Как собрать нагрузку от перегородок для расчета монолитной плиты

Рассмотрим варианты с монолитным перекрытием. Допустим, есть у нас фрагмент монолитного перекрытия, на который необходимо собрать нагрузку от перегородок, превратив ее в равномерно распределенную.

Что для этого нужно? Во-первых, как в примере 1, нужно определить нагрузку от 1 погонного метра перегородки, а также суммарную длину перегородок.

Допустим, погонная нагрузка у нас 0,3 т/м (перегородки газобетонные), а суммарная длина всех перегородок 76 м. Площадь участка перекрытия 143 м 2 .

Первое, что мы можем сделать, это размазать нагрузку от всех перегородок по имеющейся площади перекрытия (найдя вес всех перегородок и разделив его на площадь плиты):

0,3∙76/143 = 0,16 т/м 2 .

Казалось бы, можно так и оставить, и приложить нагрузку на все перекрытие и сделать расчет. Но давайте присмотримся, у нас есть разные по интенсивности загруженности участки перекрытия. Где-то перегородок вообще нет, а где-то (в районе вентканалов) их особенно много. Справедливо ли по всему перекрытию оставлять одинаковую нагрузку? Нет. Давайте разобьем плиту на участки с примерно одинаковой загруженностью перегородками.

На желтом участке перегородок нет вообще, справедливо будет, если нагрузка на этой площади будет равна 0 т/м 2 .

На зеленом участке общая длина перегородок составляет 15,3 м. Площадь участка 12 м 2 (заметьте, площадь лучше брать не строго по перегородкам, а отступая от них где-то на толщину перекрытия, т.к. нагрузка на плиту передается не строго вертикально, а расширяется под углом 45 градусов). Тогда нагрузка на этом участке будет равна:

0,3∙15,3/12 = 0,38 т/м 2 .

На розовом участке общая длина перегородок составляет 38,5 м, а площадь участка равна 58 м 2 . Нагрузка на этом участке равна:

0,3∙38,5/58 = 0,2 т/м 2 .

На каждом синем участке общая длина перегородок составляет 11,1 м, а площадь каждого синего участка равна 5 м 2 . Нагрузка на синих участках равна:

0,3∙11,1/5 = 0,67 т/м 2 .

В итоге, мы имеем следующую картину по нагрузке (смотрим на рисунок ниже):

Видите, как значительно различаются нагрузки на этих участках? Естественно, если сделать расчет при первом (одинаковом для всей плиты) и втором (уточненном) варианте загружения, то армирование будет разным.

Делаем вывод: всегда нужно тщательно анализировать, какую часть плиты загружать равномерной нагрузкой от перегородок, чтобы результат расчета был правдоподобным.

Если вы собираете нагрузку от перегородок на перекрытие, опирающееся на стены по четырем сторонам, то следует руководствоваться следующим принципом:

Как собрать нагрузку от перегородок для расчета колонн и фундаментов

Теперь рассмотрим на том же примере, как следует собирать нагрузку от перегородок для расчета колонн и стен или фундаментов под ними. Конечно, если вы делаете расчет перекрытия, то в результате такого расчета вы получите реакции на опорах, которые и будут нагрузками на колонны и стены. Но если перекрытие по каким-то причинам не считаете, а требуется просто собрать нагрузку от перегородок, то как быть?

Здесь начинать нужно не с анализа загруженности частей плиты. Первый шаг в таком случае – это разделить плиту на грузовые площади для каждой колонны и стены.

На рисунке показано, как это сделать. Расстояние между колоннами делится пополам и проводятся горизонтальные линии. Точно так же ровно посередине между колоннами и между колоннами и нижней стеной проводятся горизонтали. В итоге в районе колонн плита поделена на квадраты. Все перегородки, попадающие в квадрат конкретной колонны, нагружают именно эту колонну. А на стену приходится нагрузка с полосы, ширина которой равна половине пролета.

Остается только на каждом участке, где есть перегородки, посчитать суммарную длину этих перегородок и весь их вес передать на колонну.

Пример 2. Собрать нормативную (характеристическую) нагрузку от перегородок на розовую колонну и на стену с рисунка выше.

Вес одного погонного метра перегородки 0,35 кг. Суммарная длина перегородок в квадрате розовой колонны 5,4 м (из этих 5,4 м, одна перегородка длиной 1,4 м находится ровно на границе между двумя колоннами, а 4 м – в квадрате сбора нагрузки). Суммарная длина перегородок на полосе сбора нагрузки для стены – 18 м, длина стены 15,4 м.

Соберем нагрузку на колонну:

0,35∙4 + 0,35∙1,4/2 = 1,65 т.

Здесь мы взяли всю нагрузку от четырех метров стен и половину нагрузки от стены длиной 1,4 м (вторая половина пойдет на другую колонну).

На колонну также придется изгибающий момент от веса перегородок (если перекрытие опирается жестко), но без расчета плиты момент определить сложно.

Соберем нагрузку на стену. Нагрузка собирается на 1 погонный метр стены. Так как перегородки расположены довольно равномерно, находится общий вес всех перегородок и делится на длину стены:

0,35∙18/15,4 = 0,41 т/м.

Как собрать нагрузку от перегородок для расчета (или проверки) сборной плиты

Так как сборные плиты имеют четкую конфигурацию и схему опирания (обычно по двум сторонам), то подход для сбора нагрузок от перегородок должен быть особенным. Рассмотрим варианты сбора нагрузок на примерах.

Пример 3. Перегородка проходит поперек плиты.

Толщина перегородки 0,12 м, высота 3 м, объемный вес 1,8 т/м 3 ; два слоя штукатурки по 0,02 м толщиной каждый, объемным весом 1,6 т/м 3 . Ширина плиты 1,2 м.

Так как плита считается как балка на двух опорах, то нагрузку от перегородки следует брать сосредоточенную – в виде вертикальной силы, приложенной к «балке» в месте опирания перегородки. Величина сосредоточенной силы равна весу всей перегородки:

0,12∙3∙1,2∙1,8 + 2∙0,02∙3∙1,2∙1,6 = 1,0 т.

Пример 4. Перегородка проходит вдоль сборной плиты.

В таком случае, не зависимо от того, где находится перегородка – посередине или на краю плиты, нагрузка от нее берется равномерно распределенной вдоль плиты. Эта нагрузка собирается на 1 погонный метр плиты.

Толщина перегородки 0,1 м, высота 2,5 м, объемный вес 0,25 т/м 3 .

Определим равномерно распределенную нагрузку 1 п.м плиты:

0,1∙2,5∙1∙0,25 = 0,06 т/м.

Пример 5. Перегородки находятся над частью плиты.

Когда плиту пересекает несколько перегородок, у нас есть два варианта:

1) выделить нагрузку от продольных перегородок в равномерно распределенную, а нагрузку от поперечных перегородок – в сосредоточенную;

2) всю нагрузку сделать равномерно распределенной, «размазав» ее по участку плиты с перегородками.

Толщина перегородки 0,1 м, высота 2,5 м, объемный вес 0,25 т/м 3 . Ширина плиты 1,5 м, длина продольной перегородки 3 м, длина двух самых коротких перегородок 0,7 м.

Определим нагрузку на плиту по варианту 1.

Равномерно распределенная нагрузка равна:

0,1∙2,5∙1∙0,25 = 0,06 т/м.

Сосредоточенная нагрузка от крайней правой перегородки равна:

0,1∙2,5∙1,5∙0,25 = 0,1 т.

Сосредоточенная нагрузка от каждой из двух коротких перегородок равна:

0,1∙2,5∙0,7∙0,25 = 0,044 т.

Определим нагрузку на плиту по варианту 2.

Найдем общий вес всех перегородок:

0,1∙2,5∙0,25∙(3 + 1,5 + 0,7∙2) = 0,37 т.

Найдем длину перегородки, на которой действует нагрузка:

Найдем величину равномерно распределенной нагрузки на участке 3,1 м:

Пример 1.1 Сбор нагрузок на плиту перекрытия жилого здания

Требуется собрать нагрузки на монолитную плиту перекрытия жилого дома. Толщина плиты 200 мм. Состав пола представлен на рис. 1.


Решение

Определим нормативные значения действующих нагрузок. Для удобства восприятия материала постоянные нагрузки будем обозначать индексом q, кратковременные — индексом ν, длительные — индексом p.

Жилые здания относятся ко II уровню ответственности, следовательно, коэффициент надежности по ответственности γн = 1,0. На этот коэффициент будем умножать значения всех нагрузок. (Для выбора коэффициента см. статью Коэффициент надежности по ответственности зданий и сооружений )

Сначала рассмотрим нагрузки от плиты перекрытия и конструкции пола. Эти нагрузки являются постоянными, т.к. действуют на всем протяжении эксплуатации здания.

1. Объемный вес железобетона равен 2500 кг/м3 (25 кН/м3). Толщина плиты δ1 = 200 мм = 0,2 м, тогда нормативное значение нагрузки от собственного веса плиты перекрытия составляет:

q1 = 25*δ1*γн = 25*0,2*1,0 = 5,0 кН/м2.

2. Нормативная нагрузка от звукоизоляционного слоя из экструдированного пенополистирола плотностью ρ2 = 35 кг/м3 (0,35 кН/м3) и толщиной δ2 = 30 мм = 0,03 м:

q2 = ρ2*δ2*γн = 0,35*0,03*1,0 = 0,01 кН/м2.

3. Нормативная нагрузка от цементно-песчаной стяжки плотностью ρ3 = 1800 кг/м3 (18 кН/м3) и толщиной δ3 = 40 мм = 0,04 м:

q3 = ρ3*δ3*γн = 18*0,04*1,0 = 0,72 кН/м2.

4. Нормативная нагрузка от плиты ДВП плотностью ρ4 = 800 кг/м3 (8 кН/м3) и толщиной δ4 = 5 мм = 0,005 м:

q4 = ρ4*δ4*γн = 8*0,005*1,0 = 0,04 кН/м2.

5. Нормативная нагрузка от паркетной доски плотностью ρ5 = 600 кг/м3 (6 кН/м3) и толщиной δ5 = 20 мм = 0,02 м:

q5 = ρ5*δ5*γн = 6*0,02*1,0 = 0,12 кН/м2.

Суммарная нормативная постоянная нагрузка составляет

q = q1 + q2 + q3 + q4 + q5 = 5 + 0,01 + 0,72 + 0,04 + 0,12 +5,89 кН/м2.

Расчетное значение нагрузки получаем путем умножения ее нормативного значения на коэффициент надежности по нагрузке γt.

Теперь определим временные (кратковременные и длительные) нагрузки. Полное (кратковременное) нормативное значение нагрузки от людей и мебели (так называемая полезная нагрузка) для квартир жилых зданий составляет 1,5 кПа (1,5 кН/м2). Учитывая коэффициент надежности по ответственности здания γн = 1,0, итоговая кратковременная нагрузка от людей составляет:

ν1p = ν1*γt = 1,5*1,3 = 1,95 кН/м2.

Длительную нагрузку от людей и мебели получаем путем умножения ее полного значения на коэффициент 0,35, указанный в табл. 6, т.е:

р1 = 0,35*ν1 = 0,35*1,5 = 0,53 кН/м2;

р1р = р1*γt =0,53*1,3 = 0,69 кН/м2.

Полученные данные запишем в таблицу 1.

Помимо нагрузки от людей необходимо учесть нагрузки от перегородок. Поскольку мы проектируем современное здание со свободной планировкой и заранее не знаем расположение перегородок (нам известно лишь то, что они будут кирпичными толщиной 120 мм при высоте этажа 3,3 м), принимаем эквивалентную равномерно распределенную нагрузку с нормативным значением 0,5 кН/м2. С учетом коэффициента γн = 1,0 окончательное значение составит:

р2 = 0,5*γн = 0,5*1,9 =0,5 кН/м2.

При соответствующем обосновании в случае необходимости нормативная нагрузка от перегородок может приниматься и большего значения.

Коэффициент надежности по нагрузке γt = 1,3, поскольку перегородки выполняются на строительной площадке. Тогда расчетное значение нагрузки от перегородок составит:

р2р = р2*γt = 0,5*1,3 = 0,65 кН/м2.

(Для выбора плотности основных строй материалов см. статьи:

Для удобства все найденные значения запишем в таблицу сбора нагрузок (табл.1).

Таблица 1

Сбор нагрузок на плиту перекрытия

Сбор нагрузок на стену первого этажа

Начинаем публикацию статей по расчету кирпичных стен. Прежде, чем приступить к расчетам, необходимо собрать нагрузки. На стены здания в пределах каждого этажа действуют нагрузки от вышележащих этажей, нагрузки от плит перекрытия рассматриваемого этажа и собственный вес отдельных участков стен.

Для начала давайте определимся, какие же нагрузки бывают?

Нагрузки бывают:

расчетные – значения расчетных нагрузок определяются путем умножения нормативных на коэффициент надежности по нагрузке (γƒ)

Также они классифицируются на:

временные, которые в свою очередь бывают:

К постоянным относится собственный вес конструкций, который находится путем умножения объема на плотность.

К кратковременным относятся нагрузки от людей, снега, ветра (полные значения) и пр.

К длительным – перегородки, оборудование и пр., а также пониженные кратковременные от людей и снега.

В СНиПе указаны дополнительно особые нагрузки, но в данном примере они нас не интересуют.

Давайте для наглядности представим, что нам необходимо произвести сбор нагрузок на стену первого этажа двухэтажного коттеджа. Высота этажа 3м, длина 6м. Перекрытия железобетонные толщиной 220мм. Для упрощения расчетов принимаем плоскую рулонную кровлю.

Для начала произведем подсчет нагрузок на 1 м 2 перекрытия и покрытия и внесем данные в таблицу. Предположим, что пол второго этажа состоит из стяжки, поверх которой уложен ламинат. Покрытие второго этажа состоит из пароизоляции, утеплителя, цементно-песчаной стяжки и трехслойного гидроизоляционного ковра.

Собственный вес плиты перекрытия 0,22м*1м*1м*2,5 т/м 3

НаименованиеНормативная нагрузка, тγƒРасчетная нагрузка, т
Покрытие
Собственный вес плиты покрытия 0,22м*1м*1м*2,5 т/м 30,551,10,61
Пароизоляция из 1 слоя рубероида0,0031,30,004
Утеплитель из керамзита плотностью 400 кг/м 3 , толщина 100мм0,041,30,052
Цементно-песчаная стяжка толщиной 30мм, плотностью 1800 кг/м 30,0541,30,07
Гидроизоляционный ковер из 3 слоев рубероида0,011,30,013
Итого постоянная0,749
Временная для прочих покрытий (таблица 3, п.9, в)0,051,30,065
Временная снеговая (в районе III -180 кг/м 2 ). Внимание! В СНиП Нагрузки и воздействия дана уже расчетная нагрузка. Нормативная нагрузка определяется путем умножения расчетного значения на 0,7. (μ=1)0,1261,40,18
Итого временная0,245
Полная нагрузка на 1м 2 покрытия0,994
Перекрытие первого этажа
0,551,10,61
Цементно-песчаная стяжка толщиной 30мм, плотностью 1800 кг/м 30,0541,30,07
Ламинат толщиной 10мм + подложка 3мм0,0081,20,01
Итого постоянная0,69
Временная для помещений жилых зданий0,151,30,2
Итого временная0,2
Полная нагрузка на 1м 2 перекрытия0,89

Теперь нам нужно определить грузовую площадь. Чтобы лучше понять, что такое грузовая площадь, посмотрим на картинку ниже.

Если нагрузка собирается для 1 погонного метра стены, то грузовая площадь будет равна произведению 1-го метра на половину расстояния между наружной и внутренней несущей стеной.

Розовым цветом отмечена грузовая площадь для средней стены, а зеленым цветом – для наружных стен.

Таким образом, для рассматриваемого нами участка кладки грузовая площадь будет равна 1м*2м=2м 2

Перемножив грузовую площадь на значения из таблицы, получим нагрузку от перекрытия и покрытия для 1 погонного метра кирпичной кладки.

От покрытия:

– постоянная – 0,749*2=1,498 т

– временная – 0,245*2=0,49 т

Полная P2= 0,994*2=1,988 тонны

От перекрытия:

– постоянная – 0,69*2=1,4 т

– временная – 0,2*2=0,4 т

Полная P1= 0,89*2=1,8 тонн

Осталось посчитать вес кладки второго этажа (G2) и вес парапета (Gп). Высота 2го этажа – 3 м, парапета – 0,7 м. Толщина – 0,25 м, плотность кладки – 1,8 т/м 3 .

Вес 1 погонного метра равен:

Полная нагрузка, которая действует на 1 пог.м кладки первого этажа составит:

Для дальнейших расчетов нам также понадобится значение длительной продольной силы. Она равна сумме постоянной нагрузки от перекрытий и покрытий, веса вышележащих стен и длительной временной от перекрытий и покрытий. В нашем примере длительную временную мы не рассматривали.

Теперь, когда все нагрузки собраны, можно приступать к Расчету стены на прочность.

Статья была для Вас полезной?

Сбор нагрузок на плиту перекрытия

Пример Сбор нагрузок на плиту перекрытия жилого здания

Требуется собрать нагрузки на монолитную плиту перекрытия жилого дома. Толщина плиты 200 мм. Состав пола представлен на рис. 1.


Решение

Определим нормативные значения действующих нагрузок. Для удобства восприятия материала постоянные нагрузки будем обозначать индексом q, кратковременные — индексом ν, длительные — индексом p.

Жилые здания относятся ко II уровню ответственности, следовательно, коэффициент надежности по ответственности γн = 1,0. На этот коэффициент будем умножать значения всех нагрузок.

Сначала рассмотрим нагрузки от плиты перекрытия и конструкции пола. Эти нагрузки являются постоянными, т.к. действуют на всем протяжении эксплуатации здания.

1. Объемный вес железобетона равен 2500 кг/м3 (25 кН/м3). Толщина плиты δ1 = 200 мм = 0,2 м, тогда нормативное значение нагрузки от собственного веса плиты перекрытия составляет:

q1 = 25*δ1*γн = 25*0,2*1,0 = 5,0 кН/м2.

2. Нормативная нагрузка от звукоизоляционного слоя из экструдированного пенополистирола плотностью ρ2 = 35 кг/м3 (0,35 кН/м3) и толщиной δ2 = 30 мм = 0,03 м:

q2 = ρ2*δ2*γн = 0,35*0,03*1,0 = 0,01 кН/м2.

3. Нормативная нагрузка от цементно-песчаной стяжки плотностью ρ3 = 1800 кг/м3 (18 кН/м3) и толщиной δ3 = 40 мм = 0,04 м:

q3 = ρ3*δ3*γн = 18*0,04*1,0 = 0,72 кН/м2.

4. Нормативная нагрузка от плиты ДВП плотностью ρ4 = 800 кг/м3 (8 кН/м3) и толщиной δ4 = 5 мм = 0,005 м:

q4 = ρ4*δ4*γн = 8*0,005*1,0 = 0,04 кН/м2.

5. Нормативная нагрузка от паркетной доски плотностью ρ5 = 600 кг/м3 (6 кН/м3) и толщиной δ5 = 20 мм = 0,02 м:

q5 = ρ5*δ5*γн = 6*0,02*1,0 = 0,12 кН/м2.

Суммарная нормативная постоянная нагрузка составляет

q = q1 + q2 + q3 + q4 + q5 = 5 + 0,01 + 0,72 + 0,04 + 0,12 +5,89 кН/м2.

Расчетное значение нагрузки получаем путем умножения ее нормативного значения на коэффициент надежности по нагрузке γt.

Теперь определим временные (кратковременные и длительные) нагрузки. Полное (кратковременное) нормативное значение нагрузки от людей и мебели (так называемая полезная нагрузка) для квартир жилых зданий составляет 1,5 кПа (1,5 кН/м2). Учитывая коэффициент надежности по ответственности здания γн = 1,0, итоговая кратковременная нагрузка от людей составляет:

ν1p = ν1*γt = 1,5*1,3 = 1,95 кН/м2.

Длительную нагрузку от людей и мебели получаем путем умножения ее полного значения на коэффициент 0,35, указанный в табл. 6, т.е:

р1 = 0,35*ν1 = 0,35*1,5 = 0,53 кН/м2;

р1р = р1*γt =0,53*1,3 = 0,69 кН/м2.

Полученные данные запишем в таблицу 1.

Помимо нагрузки от людей необходимо учесть нагрузки от перегородок. Поскольку мы проектируем современное здание со свободной планировкой и заранее не знаем расположение перегородок (нам известно лишь то, что они будут кирпичными толщиной 120 мм при высоте этажа 3,3 м), принимаем эквивалентную равномерно распределенную нагрузку с нормативным значением 0,5 кН/м2. С учетом коэффициента γн = 1,0 окончательное значение составит:

р2 = 0,5*γн = 0,5*1,9 =0,5 кН/м2.

При соответствующем обосновании в случае необходимости нормативная нагрузка от перегородок может приниматься и большего значения.

Коэффициент надежности по нагрузке γt = 1,3, поскольку перегородки выполняются на строительной площадке. Тогда расчетное значение нагрузки от перегородок составит:

р2р = р2*γt = 0,5*1,3 = 0,65 кН/м2.

Для удобства все найденные значения запишем в таблицу сбора нагрузок (табл.1).

Таблица 1

Сбор нагрузок на плиту перекрытия

Вид нагрузкиНорм. кН/м2Коэф. γtРасч. кН/м2
Постоянная нагрузка
1. Ж.б. плита5,01,15,5
2. Пенополистирол0,011,30,013
3. Цем — песч. стяжка0,721,30,94
4. Плита ДВП0,041,10,044
5. Паркетная доска0,121,10,132
Всего:5,896,63
Временная нагрузка
1. Полезная нагрузка
кратковременная ν11,51,31,95
длительная р10,531,30,69
2. Перегородки (длительная) р20,51,30,65

В нашем примере сейсмические, взрывные и т.п. воздействия (т.е. особые нагрузки) отсутствуют. Следовательно, будем рассматривать основные сочетания нагрузок.

I сочетание: постоянная нагрузка (собственный вес перекрытия и пола) + полезная (кратковременная).

При учете основных сочетаний, включающих постоянные нагрузки и одну временную нагрузку (длительную или кратковременную), коэффициенты Ψl, Ψt вводить не следует.

Тогда qI = q + ν1 = 5,89 + 1,5 = 7,39, кН/м2;

qIр = qp + ν1p = 6,63 + 1,95 = 8,58 кН/м2.

II вариант: постоянная нагрузка (собственный вес перекрытия и пола) + полезная (кратковременная) + нагрузка от перегородок (длительная).

Для основных сочетаний коэффициент сочетаний длительных нагрузок Ψl принимается: для первой (по степени влияния) длительной нагрузки — 1,0, для остальных — 0,95. Коэффициент Ψt для кратковременных нагрузок принимается: для первой (по степени влияния) кратковременной нагрузки — 1,0, для второй — 0,9, для остальных — 0,7.

Поскольку во II сочетании присутствует одна кратковременная и одна длительная нагрузка, то коэффициенты Ψl и Ψt = 1,0.

qII = q + ν1 + p2 = 5,89 + 1,5 + 0,5 =7,89 кН/м2;

qIIр = qр + ν1р + p2р = 6,63+ 1,95 + 0,65 =9,23 кН/м2.

Совершенно очевидно, что II основное сочетание дает наибольшие значения нормативной и расчетной нагрузки.

Оценка статьи:

Сохранить себе в: Сбор нагрузок на плиту перекрытия Ссылка на основную публикацию wpDiscuzAdblock
detector

Сбор нагрузок онлайн калькулятор по сбору нагрузок на колонну/балку/плиту перекрытия

Сбор нагрузок на: плиту перекрытиябалкуколонну

Характеристика плиты

Длина плиты: мм

Ширина плиты: мм

Характеристика перегородок

Длина перегородки на плите: мм

Толщина перегородки: мм

Высота перегородки: мм

Материал перегородки: ЖелезобетонКирпич силикатныйКирпич глиняный полнотелыйКирпич глиняный пустотелыйГазосиликат Р=300 кг/м3Газосиликат Р=500 кг/м3Газосиликат Р=700 кг/м3Дерево

Характеристика слоев над плитой Временные нагрузки

Снеговой район: Не учитыватьI — 50 кг/м2II — 100 кг/м2III — 150 кг/м2IV — 200 кг/м2V — 250 кг/м2VI — 300 кг/м2VII — 350 кг/м2VIII — 400 кг/м2

Полезная нагрузка: Не учитыватьЖилые помещения, террасыСлужебные, бытовые помещения (гардеробные, душевые, умывальные, уборные)Кабинеты, лаборатории, технические этажиЧитальные залыОбеденные залы (в кафе, ресторанах, столовых)Залы собраний, спортзалы, зрительные залыТорговые и выставочные залыКнигохранилища, архивыСцены зрелищных предприятийТрибуны с закрепленными сиденьямиТрибуны для стоящих зрителейЧердачные помещенияПокрытия на участках с возможным скоплением людейПокрытия на участках для отдыхаПокрытия на прочих участкахБалконы/лоджии с учетом полосовой равномерной нагрузки на участке шириной 0,8 м вдоль ограждения балкона/лоджииБалконы/лоджии с учетом сплошной равномерной нагрузки на площадки балкона/лоджииУчастки обслуживания и ремонта оборудования в производственных помещенияхВестибюли, фойе, коридоры, лестницы примыкающие к жилым, служ. , быт. помещениям, кабинетам, лабораториямВестибюли, фойе, коридоры, лестницы примыкающие к залам, книгохранилищам, архивам, сценам Вестибюли, фойе, коридоры, лестницы примыкающие к трибунамПерроны вокзаловПомещения для мелкого скотаПомещения для крупного скота

Характеристика балки

Длина балки L: мм

Шаг балок B: мм

Сечение балки: ПрямоугольноеДвутаврШвеллерПрофильная трубаУголок

Высота балки: мм

Ширина балки: мм

ГОСТ: СТО АСЧМ 20-93Двутавр по Р40-93Двутавр доп. серии по ГОСТ 26020-83Двутавр с уклоном полок по ГОСТ 8239-89Двутавр стальной горячекат. по ГОСТ 26020-83

Номер двутавра 10Б1 12Б1 12Б1 14Б1 14Б2 16Б1 16Б2 18Б1 18Б2 20Б1 25Б1 25Б2 30Б1 30Б2 35Б1 35Б2 40Б1 40Б2 45Б1 45Б2 50Б1 50Б2 50Б3 55Б1 55Б2 60Б1 60Б2 70Б0 70Б1 70Б2 ——- 20К1 20К2 25К1 25К2 25К3 30К1 30К2 30К3 30К4 35К1 35К2 40К1 40К2 40К3 40К4 40К5 ——- 20Ш1 25Ш1 30Ш1 30Ш2 35Ш1 35Ш2 40Ш1 40Ш2 45Ш1 50Ш1 50Ш2 50Ш3 50Ш4 60Ш1 60Ш2 60Ш3 60Ш4 70Ш1 70Ш2 70Ш3 70Ш4 70Ш5 80Ш1 80Ш2 90Ш1 90Ш2 100Ш1 100Ш2 100Ш3 100Ш4 ——- 24М 30М 36М 45М КХБ-515 КХБ-526 40ЕС

Номер двутавра: 20Д1А20Д2А25Д2А25Д3А36У1А36У2А15К1А15К2А15К3А20К2А20К3А20К4А20К5А

Номер двутавра: 24ДБ127ДБ136ДБ135ДБ140ДБ145ДБ145ДБ230ДШ140ДШ150ДШ1

Номер двутавра: 1012141618202224273033364045505560

Номер двутавра: 10Б1 12Б1 12Б2 14Б1 14Б2 16Б1 16Б2 18Б1 18Б2 20Б1 23Б1 26Б1 26Б2 30Б1 30Б2 35Б1 35Б2 40Б1 40Б2 45Б1 45Б2 50Б1 50Б2 55Б1 55Б2 60Б1 60Б2 70Б1 70Б2 80Б1 80Б2 90Б1 90Б2 100Б1 100Б2 100Б3 100Б4 ——- 20Ш1 23Ш1 26Ш1 26Ш2 30Ш1 30Ш2 30Ш3 35Ш1 35Ш2 35Ш3 40Ш1 40Ш2 40Ш3 50Ш1 50Ш2 50Ш3 50Ш4 60Ш1 60Ш2 60Ш3 60Ш4 70Ш1 70Ш2 70Ш3 70Ш4 70Ш5 ——- 20К1 20К2 23К1 23К2 26К1 26К2 26К3 30К1 30К2 30К3 35К1 35К2 35К3 40К1 40К2 40К3 40К4 40К5

ГОСТ: Швеллер с парал. полками (П) ГОСТ 8240-89Швеллер с уклоном полок (У) ГОСТ 8240-89Швеллер гнутый равнополочный ГОСТ 8278-83

Номер швеллера: 5П 6.5П 8П 10П 12П 14П 16П 16aП 18П 18aП 20П 22П 24П 27П 30П 33П 36П 40П

Номер швеллера: 5 6.5 8 10 12 14 16 16a 18 18a 20 22 24 27 30 33 36 40

Номер швеллера: 25x26x2 25x30x2 28x27x2.5 30x25x3 30x30x2 32x25x3 32x32x2 38x95x2.5 40x20x2 40x20x3 40x30x2 40x30x2.5 40x40x2 40x40x2.5 40x40x3 42x42x4 43x45x2 45x25x3 45x31x2 48x70x5 50x30x2 50x30x2.5 50x32x2.5 50x40x2 50x40x2.5 50x40x3 50x40x4 50x47x6 50x50x2.5 50x50x3 50x50x4 60x26x2.5 60x30x2.5 60x30x3 60x32x2.5 60x32x3 60x32x4 60x40x2 60x40x3 60x50x3 60x60x3 60x60x4 60x80x3 60x90x5 63x21x2.2 65x75x4 68x27x1 70x30x2 70x40x3 70x50x3 70x50x4 70x60x4 78x46x6 80x25x4 80x32x4 80x35x4 80x40x2.5 80x40x3 80x50x4 80x60x3 80x60x4 80x60x6 80x80x3 80x80x4 80x85x4 80x100x6 900x50x3.5 90x54x5 90x100x2.5 100x40x2.5 100x40x3 100x50x3 100x50x4 100x50x5 100x50x6 100x60x3 100x60x4 100x80x3 100x80x4 100x80x5 100x100x3 100x100x6 100x160x4 104x20x2 106x50x4 108x70x6 110x26x2.5 110x50x4 110x50x5 110x100x4 120x25x4 120x50x3 120x50x4 120x50x6 120x60x5 120x60x6 120x70x5 120x80x4 120x80x5 140x40x2.5 140x40x3 140x60x3 140x60x5 140x60x6 140x70x5 140x80x4 140x80x5 145x65x3 148x25x4 160x40x2 160x40x3 160x40x5 160x50x2.5 160x50x4 160x50x5 160x50x6 160x60x2.5 160x60x3 160x60x4 160x60x5 160x60x6 160x70x4 160x80x2.5 160x80x3 160x80x4 160x80x5 160x80x6 160x100x3 160x100x6 160x120x5 160x120x6 160x160x6 170x60x4 170x70x5 170x70x6 180x40x3 180x40x4 180x50x4 180x70x6 180x80x4 180x80x5 180x80x6 180x100x5 180x100x6 180x130x8 185x100x3 200x50x3 200x50x4 200x80x4 200x80x5 200x80x6 200x100x3 200x100x6 200x180x6 205x38x2. 5 206x75x6 210x57x4 250x35x3 250x60x3 250x60x4 250x60x5 250x60x6 250x125x6 270x100x7 280x60x3.9 280x140x5 300x80x6 300x100x8 310x100x6 380x65x6 400x95x8 410x65x6

ГОСТ: Профиль прямоугольный ГОСТ 30245-2003Профиль квадратный ГОСТ 30245-2003

Номер проф. трубы: 15х10х1 15х10х1.5 20х10х1 20х10х1.5 20х15х1 20х15х1.5 25х10х1 25х10х1.5 25х15х1 25х15х1.5 30х10х1 30х10х1.5 30х15х1 30х15х1.5 30х15х2 40х20х2 40х20х2.5 40х20х3 40х25х2 40х25х2.5 40х25х3 40х30х2 50х25х2 50х25х2.5 50х25х3 50х25х3.5 50х25х4 50х30х2 50х30х2.5 50х30х3 50х30х3.5 50х30х4 50х30х5 50х40х2 50х40х2.5 50х40х3 50х40х3.5 50х40х4 50х40х4.5 50х40х5 60х30х2 60х30х2.5 60х30х3 60х30х3.5 60х30х4 60х30х4.5 60х30х5 60х30х5.5 60х30х6 60х40х2 60х40х2.5 60х40х3 60х40х3.5 60х40х4 60х40х4.5 60х40х5 60х40х5.5 60х40х6 70х50х2 70х50х2.5 70х50х3 70х50х3.5 70х50х4 70х50х4.5 70х50х5 70х50х5.5 70х50х6 80х40х2 80х40х2.5 80х40х3 80х40х3.5 80х40х4 80х40х4.5 80х40х5 80х40х5.5 80х40х6 80х60х2 80х60х2.5 80х60х3 80х60х3.5 80х60х4 80х60х4.5 80х60х5 80х60х5.5 80х60х6 80х60х6.5 80х60х7 80х70х3 80х70х3.5 80х70х4 80х70х4.5 80х70х5 80х70х5.5 80х70х6 80х70х6.5 80х70х7 90х50х3 90х50х3.5 90х50х4 90х50х4.5 90х50х5 90х50х5.5 90х50х6 90х50х6.5 90х50х7 90х60х3 90х60х3.5 90х60х4 90х60х4.5 90х60х5 90х60х5.5 90х60х6 90х60х7 100х40х3 100х40х3.5 100х40х4 100х40х4.5 100х40х5 100х40х5.5 100х40х6 100х40х6.5 100х40х7 100х50х3 100х50х3.5 100х50х4 100х50х4.5 100х50х5 100х50х5.5 100х50х6 100х50х6.5 100х50х7 100х60х3 100х60х3.5 100х60х4 100х60х4.5 100х60х5 100х60х5.5 100х60х6 100х60х6.5 100х60х7 120х40х3 120х40х3.5 120х40х4 120х40х4.5 120х40х5 120х40х5.5 120х40х6 120х40х6.5 120х40х7 120х60х3 120х60х3.5 120х60х4 120х60х4.5 120х60х5 120х60х5.5 120х60х6 120х60х6.5 120х60х7 120х80х3 120х80х3.5 120х80х4 120х80х4. 5 120х80х5 120х80х5.5 120х80х6 120х80х6.5 120х80х7 140х60х3 140х60х3.5 140х60х4 140х60х4.5 140х60х5 140х60х5.5 140х60х6 140х60х6.5 140х60х7 140х100х4 140х100х4.5 140х100х5 140х100х5.5 140х100х6 140х100х6.5 140х100х7 140х120х4 140х120х4.5 140х120х5 140х120х5.5 140х120х6 140х120х6.5 140х120х7 140х120х7.5 140х120х8 150х100х4 150х100х4.5 150х100х5 150х100х5.5 150х100х6 150х100х6.5 150х100х7 160х40х3 160х40х3.5 160х40х4 160х40х4.5 160х40х5 160х40х5.5 160х40х6 160х40х6.5 160х40х7 160х80х4 160х80х4.5 160х80х5 160х80х5.5 160х80х6 160х80х6.5 160х80х7 160х100х4 160х100х4.5 160х100х5 160х100х5.5 160х100х6 160х100х6.5 160х100х7 160х100х7.5 160х100х8 160х120х4 160х120х4.5 160х120х5 160х120х5.5 160х120х6 160х120х6.5 160х120х7 160х120х7.5 160х120х8 160х140х5 160х140х5.5 160х140х6 160х140х6.5 160х140х7 160х140х7.5 160х140х8 180х60х4 180х60х4.5 180х60х5 180х60х5.5 180х60х6 180х60х6.5 180х60х7 180х60х7.5 180х60х8 180х80х4 180х80х4.5 180х80х5 180х80х5.5 180х80х6 180х80х6.5 180х80х7 180х80х7.5 180х80х8 180х100х4 180х100х4.5 180х100х5 180х100х5.5 180х100х6 180х100х6.5 180х100х7 180х100х7.5 180х100х8 180х140х4 180х140х4.5 180х140х5 180х140х5.5 180х140х6 180х140х6.5 180х140х7 180х140х7.5 180х140х8 200х40х4 200х40х4.5 200х40х5 200х40х5.5 200х40х6 200х40х6.5 200х40х7 200х80х4 200х80х4.5 200х80х5 200х80х5.5 200х80х6 200х80х6.5 200х80х7 200х80х7.5 200х80х8 200х100х4 200х100х4.5 200х100х5 200х100х5.5 200х100х6 200х100х6.5 200х100х7 200х100х7.5 200х100х8 200х120х4 200х120х4.5 200х120х5 200х120х5.5 200х120х6 200х120х6.5 200х120х7 200х120х7.5 200х120х8 200х160х5 200х160х5.5 200х160х6 200х160х6.5 200х160х7 200х160х7.5 200х160х8 200х160х8.5 200х160х9 200х160х9.5 200х160х10 220х100х4 220х100х4.5 220х100х5 220х100х5.5 220х100х6 220х100х6.5 220х100х7 220х100х7.5 220х100х8 220х140х5 220х140х5.5 220х140х6 220х140х6.5 220х140х7 220х140х7. 5 220х140х8 240х120х5 240х120х5.5 240х120х6 240х120х6.5 240х120х7 240х120х7.5 240х120х8 240х160х6 240х160х6.5 240х160х7 240х160х7.5 240х160х8 240х160х8.5 240х160х9 240х160х9.5 240х160х10 240х160х10.5 240х160х11 240х160х11.5 240х160х12 250х150х6 250х150х6.5 250х150х7 250х150х7.5 250х150х8 260х130х6 260х130х6.5 260х130х7 260х130х7.5 260х130х8 260х130х8.5 260х130х9 260х130х9.5 260х130х10 260х130х10.5 260х130х11 260х130х11.5 260х130х12 300х100х6 300х100х6.5 300х100х7 300х100х7.5 300х100х8 300х100х8.5 300х100х9 300х100х9.5 300х100х10 300х200х6 300х200х6.5 300х200х7 300х200х7.5 300х200х8 300х200х8.5 300х200х9 300х200х9.5 300х200х10 300х200х10.5 300х200х11 300х200х11.5 300х200х12 320х180х6 320х180х6.5 320х180х7 320х180х7.5 320х180х8 320х180х8.5 320х180х9 320х180х9.5 320х180х10 320х180х10.5 320х180х11 320х180х11.5 320х180х12 350х250х6 350х250х6.5 350х250х7 350х250х7.5 350х250х8 350х250х8.5 350х250х9 350х250х9.5 350х250х10 350х250х10.5 350х250х11 350х250х11.5 350х250х12 350х300х6 350х300х6.5 350х300х7 350х300х7.5 350х300х8 350х300х8.5 350х300х9 350х300х9.5 350х300х10 350х300х10.5 350х300х11 350х300х11.5 350х300х12 380х220х6 380х220х6.5 380х220х7 380х220х7.5 380х220х8 400х200х10 400х200х10.5 400х200х11 400х200х11.5 400х200х12

Номер проф. трубы: 15х1 15х1.5 15х2 20х1 20х1.5 20х2 25х1.5 25х2 25х2.2 25х2.5 25х2.8 25х3 30х2 30х2.5 30х3 30х4 40х2 40х2.5 40х3 40х3.5 40х4 50х2 50х2.5 50х3 50х3.5 50х4 50х4.5 50х5 50х5.5 50х6 60х2 60х2.5 60х3 60х3.5 60х4 60х4.5 60х5 60х5.5 60х6 70х2 70х2.5 70х3 70х3.5 70х4 70х4.5 70х5 70х5.5 70х6 70х6.5 70х7 80х3 80х3.5 80х4 80х4.5 80х5 80х5.5 80х6 80х6.5 80х7 80х7.5 80х8 90х3 90х3.5 90х4 90х4.5 90х5 90х5.5 90х6 90х6.5 90х7 90х7.5 90х8 100х3 100х3.5 100х4 100х4.5 100х5 100х5.5 100х6 100х6.5 100х7 100х7.5 100х8 120х3 120х3.5 120х4 120х4. 5 120х5 120х5.5 120х6 120х6.5 120х7 120х7.5 120х8 140х4 140х4.5 140х5 140х5.5 140х6 140х6.5 140х7 140х7.5 140х8 150х4 150х4.5 150х5 150х5.5 150х6 150х6.5 150х7 150х7.5 150х8 160х4 160х4.5 160х5 160х5.5 160х6 160х6.5 160х7 160х7.5 160х8 180х5 180х5.5 180х6 180х6.5 180х7 180х7.5 180х8 180х8.5 180х9 180х9.5 180х10 200х5 200х6 200х6.5 200х7 200х7.5 200х8 200х8.5 200х9 200х9.5 200х10 200х10.5 200х11 200х11.5 200х12 250х6 250х6.5 250х7 250х7.5 250х8 250х8.5 250х9 250х9.5 250х10 250х10.5 250х11 250х11.5 250х12 300х6 300х6.5 300х7 300х7.5 300х8 300х8.5 300х9 300х9.5 300х10 300х10.5 300х11 300х11.5 300х12

ГОСТ: Уголок равнополочный по ГОСТ 8509-93Уголок неравнополочный по ГОСТ 8510-86*

Номер уголка: L20x3 L20x4 L25x3 L25x4 L25x5 L28x3 L30x3 L30x4 L30x5 L32x3 L32x4 L35x3 L35x4 L35x5 L40x3 L40x4 L40x5 L40x6 L45x3 L45x4 L45x5 L45x6 L50x3 L50x4 L50x5 L50x6 L50x7 L50x8 L56x4 L56x5 L60x4 L60x5 L60x6 L60x8 L60x0 L63x4 L63x5 L63x6 L65x6 L65x8 L70x4 L70x5 L70x6 L70x7 L70x8 L70x0 L75x5 L75x6 L75x7 L75x8 L75x9 L80x5 L80x6 L80x7 L80x8 L80x10 L80x12 L90x6 L90x7 L90x8 L90x9 L90x10 L90x12 L100x6.5 L100x7 L100x8 L100x10 L100x12 L100x14 L100x15 L100x16 L110x7 L110x8 L120x8 L120x10 L120x12 L120x15 L125x8 L125x9 L125x10 L125x12 L125x14 L125x16 L140x9 L140x10 L140x12 L150x10 L150x12 L150x15 L150x18 L160x10 L160x11 L160x12 L160x14 L160x16 L160x18 L160x20 L180x11 L180x12 L180x15 L180x18 L180x20 L200x12 L200x13 L200x14 L200x16 L200x18 L200x20 L200x24 L200x25 L200x30 L220x14 L220x16 L250x16 L250x18 L250x20 L250x22 L250x25 L250x28 L250x30 L250x35

Номер уголка: L25x16x3 L30x20x3 L30x20x4 L32x20x3 L32x20x4 L40x25x3 L40x25x4 L40x25x5 L40x30x4 L40x30x5 L45x28x3 L45x28x4 L50x32x3 L50x32x4 L56x36x4 L56x36x5 L63x40x4 L63x40x5 L63x40x6 L63x40x8 L65x50x5 L65x50x6 L65x50x7 L65x50x8 L70x45x5 L75x60x5 L75x60x6 L75x60x7 L75x60x8 L80x50x5 L80x50x6 L80x60x6 L80x60x7 L80x60x8 L90x56x5 L90x56x6 L90x56x8 L100x63x6 L100x63x7 L100x63x8 L100x63x10 L100x65x7 L100x65x8 L100x65x10 L110x70x6 L110x70x8 L125x80x7 L125x80x8 L125x80x10 L125x80x12 L140x90x8 L140x90x10 L160x100x9 L160x100x10 L160x100x12 L160x100x14 L180x110x10 L180x110x12 L200x125x11 L200x125x12 L200x125x14 L200x125x16

Материал балки: ЖелезобетонДерево

Материал балки: Сталь

балка несёт массу перегородок

на балку опираются вспомог. балки

Вспомогательные балки

Сечение балки: ПрямоугольноеДвутаврШвеллерПрофильная трубаУголок

ГОСТ: СТО АСЧМ 20-93Двутавр по Р40-93Двутавр доп. серии по ГОСТ 26020-83Двутавр с уклоном полок по ГОСТ 8239-89Двутавр стальной горячекат. по ГОСТ 26020-83

Номер двутавра: 10Б1 12Б1 12Б1 14Б1 14Б2 16Б1 16Б2 18Б1 18Б2 20Б1 25Б1 25Б2 30Б1 30Б2 35Б1 35Б2 40Б1 40Б2 45Б1 45Б2 50Б1 50Б2 50Б3 55Б1 55Б2 60Б1 60Б2 70Б0 70Б1 70Б2 ——- 20К1 20К2 25К1 25К2 25К3 30К1 30К2 30К3 30К4 35К1 35К2 40К1 40К2 40К3 40К4 40К5 ——- 20Ш1 25Ш1 30Ш1 30Ш2 35Ш1 35Ш2 40Ш1 40Ш2 45Ш1 50Ш1 50Ш2 50Ш3 50Ш4 60Ш1 60Ш2 60Ш3 60Ш4 70Ш1 70Ш2 70Ш3 70Ш4 70Ш5 80Ш1 80Ш2 90Ш1 90Ш2 100Ш1 100Ш2 100Ш3 100Ш4 ——- 24М 30М 36М 45М КХБ-515 КХБ-526 40ЕС

Номер двутавра: 20Д1А20Д2А25Д2А25Д3А36У1А36У2А15К1А15К2А15К3А20К2А20К3А20К4А20К5А

Номер двутавра: 24ДБ127ДБ136ДБ135ДБ140ДБ145ДБ145ДБ230ДШ140ДШ150ДШ1

Номер двутавра: 1012141618202224273033364045505560

Номер двутавра: 10Б1 12Б1 12Б2 14Б1 14Б2 16Б1 16Б2 18Б1 18Б2 20Б1 23Б1 26Б1 26Б2 30Б1 30Б2 35Б1 35Б2 40Б1 40Б2 45Б1 45Б2 50Б1 50Б2 55Б1 55Б2 60Б1 60Б2 70Б1 70Б2 80Б1 80Б2 90Б1 90Б2 100Б1 100Б2 100Б3 100Б4 ——- 20Ш1 23Ш1 26Ш1 26Ш2 30Ш1 30Ш2 30Ш3 35Ш1 35Ш2 35Ш3 40Ш1 40Ш2 40Ш3 50Ш1 50Ш2 50Ш3 50Ш4 60Ш1 60Ш2 60Ш3 60Ш4 70Ш1 70Ш2 70Ш3 70Ш4 70Ш5 ——- 20К1 20К2 23К1 23К2 26К1 26К2 26К3 30К1 30К2 30К3 35К1 35К2 35К3 40К1 40К2 40К3 40К4 40К5

ГОСТ: Швеллер с парал. полками (П) ГОСТ 8240-89Швеллер с уклоном полок (У) ГОСТ 8240-89Швеллер гнутый равнополочный ГОСТ 8278-83

Номер швеллера: 5П 6.5П 8П 10П 12П 14П 16П 16aП 18П 18aП 20П 22П 24П 27П 30П 33П 36П 40П

Номер швеллера: 5 6.5 8 10 12 14 16 16a 18 18a 20 22 24 27 30 33 36 40

Номер швеллера: 25x26x2 25x30x2 28x27x2.5 30x25x3 30x30x2 32x25x3 32x32x2 38x95x2.5 40x20x2 40x20x3 40x30x2 40x30x2.5 40x40x2 40x40x2.5 40x40x3 42x42x4 43x45x2 45x25x3 45x31x2 48x70x5 50x30x2 50x30x2.5 50x32x2.5 50x40x2 50x40x2.5 50x40x3 50x40x4 50x47x6 50x50x2.5 50x50x3 50x50x4 60x26x2.5 60x30x2.5 60x30x3 60x32x2.5 60x32x3 60x32x4 60x40x2 60x40x3 60x50x3 60x60x3 60x60x4 60x80x3 60x90x5 63x21x2.2 65x75x4 68x27x1 70x30x2 70x40x3 70x50x3 70x50x4 70x60x4 78x46x6 80x25x4 80x32x4 80x35x4 80x40x2.5 80x40x3 80x50x4 80x60x3 80x60x4 80x60x6 80x80x3 80x80x4 80x85x4 80x100x6 900x50x3.5 90x54x5 90x100x2.5 100x40x2.5 100x40x3 100x50x3 100x50x4 100x50x5 100x50x6 100x60x3 100x60x4 100x80x3 100x80x4 100x80x5 100x100x3 100x100x6 100x160x4 104x20x2 106x50x4 108x70x6 110x26x2.5 110x50x4 110x50x5 110x100x4 120x25x4 120x50x3 120x50x4 120x50x6 120x60x5 120x60x6 120x70x5 120x80x4 120x80x5 140x40x2.5 140x40x3 140x60x3 140x60x5 140x60x6 140x70x5 140x80x4 140x80x5 145x65x3 148x25x4 160x40x2 160x40x3 160x40x5 160x50x2.5 160x50x4 160x50x5 160x50x6 160x60x2.5 160x60x3 160x60x4 160x60x5 160x60x6 160x70x4 160x80x2.5 160x80x3 160x80x4 160x80x5 160x80x6 160x100x3 160x100x6 160x120x5 160x120x6 160x160x6 170x60x4 170x70x5 170x70x6 180x40x3 180x40x4 180x50x4 180x70x6 180x80x4 180x80x5 180x80x6 180x100x5 180x100x6 180x130x8 185x100x3 200x50x3 200x50x4 200x80x4 200x80x5 200x80x6 200x100x3 200x100x6 200x180x6 205x38x2. 5 206x75x6 210x57x4 250x35x3 250x60x3 250x60x4 250x60x5 250x60x6 250x125x6 270x100x7 280x60x3.9 280x140x5 300x80x6 300x100x8 310x100x6 380x65x6 400x95x8 410x65x6

ГОСТ: Профиль прямоугольный ГОСТ 30245-2003Профиль квадратный ГОСТ 30245-2003

Номер: 15х10х1 15х10х1.5 20х10х1 20х10х1.5 20х15х1 20х15х1.5 25х10х1 25х10х1.5 25х15х1 25х15х1.5 30х10х1 30х10х1.5 30х15х1 30х15х1.5 30х15х2 40х20х2 40х20х2.5 40х20х3 40х25х2 40х25х2.5 40х25х3 40х30х2 50х25х2 50х25х2.5 50х25х3 50х25х3.5 50х25х4 50х30х2 50х30х2.5 50х30х3 50х30х3.5 50х30х4 50х30х5 50х40х2 50х40х2.5 50х40х3 50х40х3.5 50х40х4 50х40х4.5 50х40х5 60х30х2 60х30х2.5 60х30х3 60х30х3.5 60х30х4 60х30х4.5 60х30х5 60х30х5.5 60х30х6 60х40х2 60х40х2.5 60х40х3 60х40х3.5 60х40х4 60х40х4.5 60х40х5 60х40х5.5 60х40х6 70х50х2 70х50х2.5 70х50х3 70х50х3.5 70х50х4 70х50х4.5 70х50х5 70х50х5.5 70х50х6 80х40х2 80х40х2.5 80х40х3 80х40х3.5 80х40х4 80х40х4.5 80х40х5 80х40х5.5 80х40х6 80х60х2 80х60х2.5 80х60х3 80х60х3.5 80х60х4 80х60х4.5 80х60х5 80х60х5.5 80х60х6 80х60х6.5 80х60х7 80х70х3 80х70х3.5 80х70х4 80х70х4.5 80х70х5 80х70х5.5 80х70х6 80х70х6.5 80х70х7 90х50х3 90х50х3.5 90х50х4 90х50х4.5 90х50х5 90х50х5.5 90х50х6 90х50х6.5 90х50х7 90х60х3 90х60х3.5 90х60х4 90х60х4.5 90х60х5 90х60х5.5 90х60х6 90х60х7 100х40х3 100х40х3.5 100х40х4 100х40х4.5 100х40х5 100х40х5.5 100х40х6 100х40х6.5 100х40х7 100х50х3 100х50х3.5 100х50х4 100х50х4.5 100х50х5 100х50х5.5 100х50х6 100х50х6.5 100х50х7 100х60х3 100х60х3.5 100х60х4 100х60х4.5 100х60х5 100х60х5.5 100х60х6 100х60х6.5 100х60х7 120х40х3 120х40х3.5 120х40х4 120х40х4.5 120х40х5 120х40х5.5 120х40х6 120х40х6.5 120х40х7 120х60х3 120х60х3.5 120х60х4 120х60х4.5 120х60х5 120х60х5.5 120х60х6 120х60х6.5 120х60х7 120х80х3 120х80х3.5 120х80х4 120х80х4.5 120х80х5 120х80х5. 5 120х80х6 120х80х6.5 120х80х7 140х60х3 140х60х3.5 140х60х4 140х60х4.5 140х60х5 140х60х5.5 140х60х6 140х60х6.5 140х60х7 140х100х4 140х100х4.5 140х100х5 140х100х5.5 140х100х6 140х100х6.5 140х100х7 140х120х4 140х120х4.5 140х120х5 140х120х5.5 140х120х6 140х120х6.5 140х120х7 140х120х7.5 140х120х8 150х100х4 150х100х4.5 150х100х5 150х100х5.5 150х100х6 150х100х6.5 150х100х7 160х40х3 160х40х3.5 160х40х4 160х40х4.5 160х40х5 160х40х5.5 160х40х6 160х40х6.5 160х40х7 160х80х4 160х80х4.5 160х80х5 160х80х5.5 160х80х6 160х80х6.5 160х80х7 160х100х4 160х100х4.5 160х100х5 160х100х5.5 160х100х6 160х100х6.5 160х100х7 160х100х7.5 160х100х8 160х120х4 160х120х4.5 160х120х5 160х120х5.5 160х120х6 160х120х6.5 160х120х7 160х120х7.5 160х120х8 160х140х5 160х140х5.5 160х140х6 160х140х6.5 160х140х7 160х140х7.5 160х140х8 180х60х4 180х60х4.5 180х60х5 180х60х5.5 180х60х6 180х60х6.5 180х60х7 180х60х7.5 180х60х8 180х80х4 180х80х4.5 180х80х5 180х80х5.5 180х80х6 180х80х6.5 180х80х7 180х80х7.5 180х80х8 180х100х4 180х100х4.5 180х100х5 180х100х5.5 180х100х6 180х100х6.5 180х100х7 180х100х7.5 180х100х8 180х140х4 180х140х4.5 180х140х5 180х140х5.5 180х140х6 180х140х6.5 180х140х7 180х140х7.5 180х140х8 200х40х4 200х40х4.5 200х40х5 200х40х5.5 200х40х6 200х40х6.5 200х40х7 200х80х4 200х80х4.5 200х80х5 200х80х5.5 200х80х6 200х80х6.5 200х80х7 200х80х7.5 200х80х8 200х100х4 200х100х4.5 200х100х5 200х100х5.5 200х100х6 200х100х6.5 200х100х7 200х100х7.5 200х100х8 200х120х4 200х120х4.5 200х120х5 200х120х5.5 200х120х6 200х120х6.5 200х120х7 200х120х7.5 200х120х8 200х160х5 200х160х5.5 200х160х6 200х160х6.5 200х160х7 200х160х7.5 200х160х8 200х160х8.5 200х160х9 200х160х9.5 200х160х10 220х100х4 220х100х4.5 220х100х5 220х100х5.5 220х100х6 220х100х6.5 220х100х7 220х100х7.5 220х100х8 220х140х5 220х140х5.5 220х140х6 220х140х6.5 220х140х7 220х140х7.5 220х140х8 240х120х5 240х120х5. 5 240х120х6 240х120х6.5 240х120х7 240х120х7.5 240х120х8 240х160х6 240х160х6.5 240х160х7 240х160х7.5 240х160х8 240х160х8.5 240х160х9 240х160х9.5 240х160х10 240х160х10.5 240х160х11 240х160х11.5 240х160х12 250х150х6 250х150х6.5 250х150х7 250х150х7.5 250х150х8 260х130х6 260х130х6.5 260х130х7 260х130х7.5 260х130х8 260х130х8.5 260х130х9 260х130х9.5 260х130х10 260х130х10.5 260х130х11 260х130х11.5 260х130х12 300х100х6 300х100х6.5 300х100х7 300х100х7.5 300х100х8 300х100х8.5 300х100х9 300х100х9.5 300х100х10 300х200х6 300х200х6.5 300х200х7 300х200х7.5 300х200х8 300х200х8.5 300х200х9 300х200х9.5 300х200х10 300х200х10.5 300х200х11 300х200х11.5 300х200х12 320х180х6 320х180х6.5 320х180х7 320х180х7.5 320х180х8 320х180х8.5 320х180х9 320х180х9.5 320х180х10 320х180х10.5 320х180х11 320х180х11.5 320х180х12 350х250х6 350х250х6.5 350х250х7 350х250х7.5 350х250х8 350х250х8.5 350х250х9 350х250х9.5 350х250х10 350х250х10.5 350х250х11 350х250х11.5 350х250х12 350х300х6 350х300х6.5 350х300х7 350х300х7.5 350х300х8 350х300х8.5 350х300х9 350х300х9.5 350х300х10 350х300х10.5 350х300х11 350х300х11.5 350х300х12 380х220х6 380х220х6.5 380х220х7 380х220х7.5 380х220х8 400х200х10 400х200х10.5 400х200х11 400х200х11.5 400х200х12

Номер: 15х1 15х1.5 15х2 20х1 20х1.5 20х2 25х1.5 25х2 25х2.2 25х2.5 25х2.8 25х3 30х2 30х2.5 30х3 30х4 40х2 40х2.5 40х3 40х3.5 40х4 50х2 50х2.5 50х3 50х3.5 50х4 50х4.5 50х5 50х5.5 50х6 60х2 60х2.5 60х3 60х3.5 60х4 60х4.5 60х5 60х5.5 60х6 70х2 70х2.5 70х3 70х3.5 70х4 70х4.5 70х5 70х5.5 70х6 70х6.5 70х7 80х3 80х3.5 80х4 80х4.5 80х5 80х5.5 80х6 80х6.5 80х7 80х7.5 80х8 90х3 90х3.5 90х4 90х4.5 90х5 90х5.5 90х6 90х6.5 90х7 90х7.5 90х8 100х3 100х3.5 100х4 100х4.5 100х5 100х5.5 100х6 100х6.5 100х7 100х7.5 100х8 120х3 120х3.5 120х4 120х4.5 120х5 120х5.5 120х6 120х6. 5 120х7 120х7.5 120х8 140х4 140х4.5 140х5 140х5.5 140х6 140х6.5 140х7 140х7.5 140х8 150х4 150х4.5 150х5 150х5.5 150х6 150х6.5 150х7 150х7.5 150х8 160х4 160х4.5 160х5 160х5.5 160х6 160х6.5 160х7 160х7.5 160х8 180х5 180х5.5 180х6 180х6.5 180х7 180х7.5 180х8 180х8.5 180х9 180х9.5 180х10 200х5 200х6 200х6.5 200х7 200х7.5 200х8 200х8.5 200х9 200х9.5 200х10 200х10.5 200х11 200х11.5 200х12 250х6 250х6.5 250х7 250х7.5 250х8 250х8.5 250х9 250х9.5 250х10 250х10.5 250х11 250х11.5 250х12 300х6 300х6.5 300х7 300х7.5 300х8 300х8.5 300х9 300х9.5 300х10 300х10.5 300х11 300х11.5 300х12

ГОСТ: Уголок равнополочный по ГОСТ 8509-93Уголок неравнополочный по ГОСТ 8510-86*

Номер уголка: L20x3 L20x4 L25x3 L25x4 L25x5 L28x3 L30x3 L30x4 L30x5 L32x3 L32x4 L35x3 L35x4 L35x5 L40x3 L40x4 L40x5 L40x6 L45x3 L45x4 L45x5 L45x6 L50x3 L50x4 L50x5 L50x6 L50x7 L50x8 L56x4 L56x5 L60x4 L60x5 L60x6 L60x8 L60x0 L63x4 L63x5 L63x6 L65x6 L65x8 L70x4 L70x5 L70x6 L70x7 L70x8 L70x0 L75x5 L75x6 L75x7 L75x8 L75x9 L80x5 L80x6 L80x7 L80x8 L80x10 L80x12 L90x6 L90x7 L90x8 L90x9 L90x10 L90x12 L100x6.5 L100x7 L100x8 L100x10 L100x12 L100x14 L100x15 L100x16 L110x7 L110x8 L120x8 L120x10 L120x12 L120x15 L125x8 L125x9 L125x10 L125x12 L125x14 L125x16 L140x9 L140x10 L140x12 L150x10 L150x12 L150x15 L150x18 L160x10 L160x11 L160x12 L160x14 L160x16 L160x18 L160x20 L180x11 L180x12 L180x15 L180x18 L180x20 L200x12 L200x13 L200x14 L200x16 L200x18 L200x20 L200x24 L200x25 L200x30 L220x14 L220x16 L250x16 L250x18 L250x20 L250x22 L250x25 L250x28 L250x30 L250x35

Номер уголка: L25x16x3 L30x20x3 L30x20x4 L32x20x3 L32x20x4 L40x25x3 L40x25x4 L40x25x5 L40x30x4 L40x30x5 L45x28x3 L45x28x4 L50x32x3 L50x32x4 L56x36x4 L56x36x5 L63x40x4 L63x40x5 L63x40x6 L63x40x8 L65x50x5 L65x50x6 L65x50x7 L65x50x8 L70x45x5 L75x60x5 L75x60x6 L75x60x7 L75x60x8 L80x50x5 L80x50x6 L80x60x6 L80x60x7 L80x60x8 L90x56x5 L90x56x6 L90x56x8 L100x63x6 L100x63x7 L100x63x8 L100x63x10 L100x65x7 L100x65x8 L100x65x10 L110x70x6 L110x70x8 L125x80x7 L125x80x8 L125x80x10 L125x80x12 L140x90x8 L140x90x10 L160x100x9 L160x100x10 L160x100x12 L160x100x14 L180x110x10 L180x110x12 L200x125x11 L200x125x12 L200x125x14 L200x125x16

Высота балки: мм

Ширина балки: мм

Материал балки: ЖелезобетонДерево

Материал балки: Сталь

Шаг балок L1: мм

Характеристика перегородок

Длина перегородки на уч-ке: мм

Толщина перегородки: мм

Высота перегородки: мм

Материал перегородки: ЖелезобетонКирпич силикатныйКирпич глиняный полнотелыйКирпич глиняный пустотелыйГазосиликат Р=300 кг/м3Газосиликат Р=500 кг/м3Газосиликат Р=700 кг/м3Дерево

Количество слоев: 1 слой2 слоя3 слоя4 слоя5 слоев6 слоев

Временные нагрузки

Снеговой район: Не учитыватьI — 50 кг/м2II — 100 кг/м2III — 150 кг/м2IV — 200 кг/м2V — 250 кг/м2VI — 300 кг/м2VII — 350 кг/м2VIII — 400 кг/м2

Полезная нагрузка: Не учитыватьЖилые помещения, террасыСлужебные, бытовые помещения (гардеробные, душевые, умывальные, уборные)Кабинеты, лаборатории, технические этажиЧитальные залыОбеденные залы (в кафе, ресторанах, столовых)Залы собраний, спортзалы, зрительные залыТорговые и выставочные залыКнигохранилища, архивыСцены зрелищных предприятийТрибуны с закрепленными сиденьямиТрибуны для стоящих зрителейЧердачные помещенияПокрытия на участках с возможным скоплением людейПокрытия на участках для отдыхаПокрытия на прочих участкахБалконы/лоджии с учетом полосовой равномерной нагрузки на участке шириной 0,8 м вдоль ограждения балкона/лоджииБалконы/лоджии с учетом сплошной равномерной нагрузки на площадки балкона/лоджииУчастки обслуживания и ремонта оборудования в производственных помещенияхВестибюли, фойе, коридоры, лестницы примыкающие к жилым, служ. , быт. помещениям, кабинетам, лабораториямВестибюли, фойе, коридоры, лестницы примыкающие к залам, книгохранилищам, архивам, сценам Вестибюли, фойе, коридоры, лестницы примыкающие к трибунамПерроны вокзаловПомещения для мелкого скотаПомещения для крупного скота

Характеристика колонны

Высота колонны H: мм

Длина L (см. рис.): мм

Ширина B (см. рис.): мм

Сечение колонны: ПрямоугольноеДвутаврШвеллерПрофильная трубаУголок

ГОСТ: СТО АСЧМ 20-93Двутавр по Р40-93Двутавр доп. серии по ГОСТ 26020-83Двутавр с уклоном полок по ГОСТ 8239-89Двутавр стальной горячекат. по ГОСТ 26020-83

Номер двутавра: 10Б1 12Б1 12Б1 14Б1 14Б2 16Б1 16Б2 18Б1 18Б2 20Б1 25Б1 25Б2 30Б1 30Б2 35Б1 35Б2 40Б1 40Б2 45Б1 45Б2 50Б1 50Б2 50Б3 55Б1 55Б2 60Б1 60Б2 70Б0 70Б1 70Б2 ——- 20К1 20К2 25К1 25К2 25К3 30К1 30К2 30К3 30К4 35К1 35К2 40К1 40К2 40К3 40К4 40К5 ——- 20Ш1 25Ш1 30Ш1 30Ш2 35Ш1 35Ш2 40Ш1 40Ш2 45Ш1 50Ш1 50Ш2 50Ш3 50Ш4 60Ш1 60Ш2 60Ш3 60Ш4 70Ш1 70Ш2 70Ш3 70Ш4 70Ш5 80Ш1 80Ш2 90Ш1 90Ш2 100Ш1 100Ш2 100Ш3 100Ш4 ——- 24М 30М 36М 45М КХБ-515 КХБ-526 40ЕС

Номер двутавра: 20Д1А20Д2А25Д2А25Д3А36У1А36У2А15К1А15К2А15К3А20К2А20К3А20К4А20К5А

Номер двутавра: 24ДБ127ДБ136ДБ135ДБ140ДБ145ДБ145ДБ230ДШ140ДШ150ДШ1

Номер двутавра: 1012141618202224273033364045505560

Номер двутавра: 10Б1 12Б1 12Б2 14Б1 14Б2 16Б1 16Б2 18Б1 18Б2 20Б1 23Б1 26Б1 26Б2 30Б1 30Б2 35Б1 35Б2 40Б1 40Б2 45Б1 45Б2 50Б1 50Б2 55Б1 55Б2 60Б1 60Б2 70Б1 70Б2 80Б1 80Б2 90Б1 90Б2 100Б1 100Б2 100Б3 100Б4 ——- 20Ш1 23Ш1 26Ш1 26Ш2 30Ш1 30Ш2 30Ш3 35Ш1 35Ш2 35Ш3 40Ш1 40Ш2 40Ш3 50Ш1 50Ш2 50Ш3 50Ш4 60Ш1 60Ш2 60Ш3 60Ш4 70Ш1 70Ш2 70Ш3 70Ш4 70Ш5 ——- 20К1 20К2 23К1 23К2 26К1 26К2 26К3 30К1 30К2 30К3 35К1 35К2 35К3 40К1 40К2 40К3 40К4 40К5

ГОСТ: Швеллер с парал. полками (П) ГОСТ 8240-89Швеллер с уклоном полок (У) ГОСТ 8240-89Швеллер гнутый равнополочный ГОСТ 8278-83

Номер швеллера: 5П 6.5П 8П 10П 12П 14П 16П 16aП 18П 18aП 20П 22П 24П 27П 30П 33П 36П 40П

Номер швеллера: 5 6.5 8 10 12 14 16 16a 18 18a 20 22 24 27 30 33 36 40

Номер швеллера: 25x26x2 25x30x2 28x27x2.5 30x25x3 30x30x2 32x25x3 32x32x2 38x95x2.5 40x20x2 40x20x3 40x30x2 40x30x2.5 40x40x2 40x40x2.5 40x40x3 42x42x4 43x45x2 45x25x3 45x31x2 48x70x5 50x30x2 50x30x2.5 50x32x2.5 50x40x2 50x40x2.5 50x40x3 50x40x4 50x47x6 50x50x2.5 50x50x3 50x50x4 60x26x2.5 60x30x2.5 60x30x3 60x32x2.5 60x32x3 60x32x4 60x40x2 60x40x3 60x50x3 60x60x3 60x60x4 60x80x3 60x90x5 63x21x2.2 65x75x4 68x27x1 70x30x2 70x40x3 70x50x3 70x50x4 70x60x4 78x46x6 80x25x4 80x32x4 80x35x4 80x40x2.5 80x40x3 80x50x4 80x60x3 80x60x4 80x60x6 80x80x3 80x80x4 80x85x4 80x100x6 900x50x3.5 90x54x5 90x100x2.5 100x40x2.5 100x40x3 100x50x3 100x50x4 100x50x5 100x50x6 100x60x3 100x60x4 100x80x3 100x80x4 100x80x5 100x100x3 100x100x6 100x160x4 104x20x2 106x50x4 108x70x6 110x26x2.5 110x50x4 110x50x5 110x100x4 120x25x4 120x50x3 120x50x4 120x50x6 120x60x5 120x60x6 120x70x5 120x80x4 120x80x5 140x40x2.5 140x40x3 140x60x3 140x60x5 140x60x6 140x70x5 140x80x4 140x80x5 145x65x3 148x25x4 160x40x2 160x40x3 160x40x5 160x50x2.5 160x50x4 160x50x5 160x50x6 160x60x2.5 160x60x3 160x60x4 160x60x5 160x60x6 160x70x4 160x80x2.5 160x80x3 160x80x4 160x80x5 160x80x6 160x100x3 160x100x6 160x120x5 160x120x6 160x160x6 170x60x4 170x70x5 170x70x6 180x40x3 180x40x4 180x50x4 180x70x6 180x80x4 180x80x5 180x80x6 180x100x5 180x100x6 180x130x8 185x100x3 200x50x3 200x50x4 200x80x4 200x80x5 200x80x6 200x100x3 200x100x6 200x180x6 205x38x2.5 206x75x6 210x57x4 250x35x3 250x60x3 250x60x4 250x60x5 250x60x6 250x125x6 270x100x7 280x60x3.9 280x140x5 300x80x6 300x100x8 310x100x6 380x65x6 400x95x8 410x65x6

ГОСТ: Профиль прямоугольный ГОСТ 30245-2003Профиль квадратный ГОСТ 30245-2003

Номер проф. трубы 15х10х1 15х10х1.5 20х10х1 20х10х1.5 20х15х1 20х15х1.5 25х10х1 25х10х1.5 25х15х1 25х15х1.5 30х10х1 30х10х1.5 30х15х1 30х15х1.5 30х15х2 40х20х2 40х20х2.5 40х20х3 40х25х2 40х25х2.5 40х25х3 40х30х2 50х25х2 50х25х2.5 50х25х3 50х25х3.5 50х25х4 50х30х2 50х30х2.5 50х30х3 50х30х3.5 50х30х4 50х30х5 50х40х2 50х40х2.5 50х40х3 50х40х3.5 50х40х4 50х40х4.5 50х40х5 60х30х2 60х30х2.5 60х30х3 60х30х3.5 60х30х4 60х30х4.5 60х30х5 60х30х5.5 60х30х6 60х40х2 60х40х2.5 60х40х3 60х40х3.5 60х40х4 60х40х4.5 60х40х5 60х40х5.5 60х40х6 70х50х2 70х50х2.5 70х50х3 70х50х3.5 70х50х4 70х50х4.5 70х50х5 70х50х5.5 70х50х6 80х40х2 80х40х2.5 80х40х3 80х40х3.5 80х40х4 80х40х4.5 80х40х5 80х40х5.5 80х40х6 80х60х2 80х60х2.5 80х60х3 80х60х3.5 80х60х4 80х60х4.5 80х60х5 80х60х5.5 80х60х6 80х60х6.5 80х60х7 80х70х3 80х70х3.5 80х70х4 80х70х4.5 80х70х5 80х70х5.5 80х70х6 80х70х6.5 80х70х7 90х50х3 90х50х3.5 90х50х4 90х50х4.5 90х50х5 90х50х5.5 90х50х6 90х50х6.5 90х50х7 90х60х3 90х60х3.5 90х60х4 90х60х4.5 90х60х5 90х60х5.5 90х60х6 90х60х7 100х40х3 100х40х3.5 100х40х4 100х40х4.5 100х40х5 100х40х5.5 100х40х6 100х40х6.5 100х40х7 100х50х3 100х50х3.5 100х50х4 100х50х4.5 100х50х5 100х50х5.5 100х50х6 100х50х6.5 100х50х7 100х60х3 100х60х3.5 100х60х4 100х60х4.5 100х60х5 100х60х5.5 100х60х6 100х60х6.5 100х60х7 120х40х3 120х40х3.5 120х40х4 120х40х4.5 120х40х5 120х40х5.5 120х40х6 120х40х6.5 120х40х7 120х60х3 120х60х3.5 120х60х4 120х60х4.5 120х60х5 120х60х5.5 120х60х6 120х60х6.5 120х60х7 120х80х3 120х80х3.5 120х80х4 120х80х4.5 120х80х5 120х80х5.5 120х80х6 120х80х6.5 120х80х7 140х60х3 140х60х3.5 140х60х4 140х60х4.5 140х60х5 140х60х5.5 140х60х6 140х60х6.5 140х60х7 140х100х4 140х100х4.5 140х100х5 140х100х5.5 140х100х6 140х100х6.5 140х100х7 140х120х4 140х120х4.5 140х120х5 140х120х5.5 140х120х6 140х120х6.5 140х120х7 140х120х7.5 140х120х8 150х100х4 150х100х4.5 150х100х5 150х100х5.5 150х100х6 150х100х6.5 150х100х7 160х40х3 160х40х3.5 160х40х4 160х40х4.5 160х40х5 160х40х5.5 160х40х6 160х40х6.5 160х40х7 160х80х4 160х80х4.5 160х80х5 160х80х5.5 160х80х6 160х80х6.5 160х80х7 160х100х4 160х100х4.5 160х100х5 160х100х5.5 160х100х6 160х100х6.5 160х100х7 160х100х7.5 160х100х8 160х120х4 160х120х4.5 160х120х5 160х120х5.5 160х120х6 160х120х6.5 160х120х7 160х120х7.5 160х120х8 160х140х5 160х140х5.5 160х140х6 160х140х6.5 160х140х7 160х140х7.5 160х140х8 180х60х4 180х60х4.5 180х60х5 180х60х5.5 180х60х6 180х60х6.5 180х60х7 180х60х7.5 180х60х8 180х80х4 180х80х4.5 180х80х5 180х80х5.5 180х80х6 180х80х6.5 180х80х7 180х80х7.5 180х80х8 180х100х4 180х100х4.5 180х100х5 180х100х5.5 180х100х6 180х100х6.5 180х100х7 180х100х7.5 180х100х8 180х140х4 180х140х4.5 180х140х5 180х140х5.5 180х140х6 180х140х6.5 180х140х7 180х140х7.5 180х140х8 200х40х4 200х40х4.5 200х40х5 200х40х5.5 200х40х6 200х40х6.5 200х40х7 200х80х4 200х80х4.5 200х80х5 200х80х5.5 200х80х6 200х80х6.5 200х80х7 200х80х7.5 200х80х8 200х100х4 200х100х4.5 200х100х5 200х100х5.5 200х100х6 200х100х6.5 200х100х7 200х100х7.5 200х100х8 200х120х4 200х120х4.5 200х120х5 200х120х5.5 200х120х6 200х120х6.5 200х120х7 200х120х7.5 200х120х8 200х160х5 200х160х5.5 200х160х6 200х160х6.5 200х160х7 200х160х7.5 200х160х8 200х160х8.5 200х160х9 200х160х9.5 200х160х10 220х100х4 220х100х4.5 220х100х5 220х100х5.5 220х100х6 220х100х6.5 220х100х7 220х100х7.5 220х100х8 220х140х5 220х140х5.5 220х140х6 220х140х6.5 220х140х7 220х140х7.5 220х140х8 240х120х5 240х120х5.5 240х120х6 240х120х6.5 240х120х7 240х120х7.5 240х120х8 240х160х6 240х160х6.5 240х160х7 240х160х7.5 240х160х8 240х160х8.5 240х160х9 240х160х9.5 240х160х10 240х160х10.5 240х160х11 240х160х11.5 240х160х12 250х150х6 250х150х6.5 250х150х7 250х150х7.5 250х150х8 260х130х6 260х130х6.5 260х130х7 260х130х7.5 260х130х8 260х130х8.5 260х130х9 260х130х9.5 260х130х10 260х130х10.5 260х130х11 260х130х11.5 260х130х12 300х100х6 300х100х6.5 300х100х7 300х100х7.5 300х100х8 300х100х8.5 300х100х9 300х100х9.5 300х100х10 300х200х6 300х200х6.5 300х200х7 300х200х7.5 300х200х8 300х200х8.5 300х200х9 300х200х9.5 300х200х10 300х200х10.5 300х200х11 300х200х11.5 300х200х12 320х180х6 320х180х6.5 320х180х7 320х180х7.5 320х180х8 320х180х8.5 320х180х9 320х180х9.5 320х180х10 320х180х10.5 320х180х11 320х180х11.5 320х180х12 350х250х6 350х250х6.5 350х250х7 350х250х7.5 350х250х8 350х250х8.5 350х250х9 350х250х9.5 350х250х10 350х250х10.5 350х250х11 350х250х11.5 350х250х12 350х300х6 350х300х6.5 350х300х7 350х300х7.5 350х300х8 350х300х8.5 350х300х9 350х300х9.5 350х300х10 350х300х10.5 350х300х11 350х300х11.5 350х300х12 380х220х6 380х220х6.5 380х220х7 380х220х7.5 380х220х8 400х200х10 400х200х10.5 400х200х11 400х200х11.5 400х200х12

Номер проф. трубы: 15х1 15х1.5 15х2 20х1 20х1.5 20х2 25х1.5 25х2 25х2.2 25х2.5 25х2.8 25х3 30х2 30х2.5 30х3 30х4 40х2 40х2.5 40х3 40х3.5 40х4 50х2 50х2.5 50х3 50х3.5 50х4 50х4.5 50х5 50х5.5 50х6 60х2 60х2.5 60х3 60х3.5 60х4 60х4.5 60х5 60х5.5 60х6 70х2 70х2.5 70х3 70х3.5 70х4 70х4.5 70х5 70х5.5 70х6 70х6.5 70х7 80х3 80х3.5 80х4 80х4.5 80х5 80х5.5 80х6 80х6.5 80х7 80х7.5 80х8 90х3 90х3.5 90х4 90х4.5 90х5 90х5.5 90х6 90х6.5 90х7 90х7.5 90х8 100х3 100х3.5 100х4 100х4.5 100х5 100х5.5 100х6 100х6.5 100х7 100х7.5 100х8 120х3 120х3.5 120х4 120х4.5 120х5 120х5.5 120х6 120х6.5 120х7 120х7.5 120х8 140х4 140х4.5 140х5 140х5.5 140х6 140х6.5 140х7 140х7.5 140х8 150х4 150х4.5 150х5 150х5.5 150х6 150х6.5 150х7 150х7.5 150х8 160х4 160х4.5 160х5 160х5.5 160х6 160х6.5 160х7 160х7.5 160х8 180х5 180х5.5 180х6 180х6.5 180х7 180х7.5 180х8 180х8.5 180х9 180х9.5 180х10 200х5 200х6 200х6.5 200х7 200х7.5 200х8 200х8.5 200х9 200х9.5 200х10 200х10.5 200х11 200х11.5 200х12 250х6 250х6.5 250х7 250х7.5 250х8 250х8.5 250х9 250х9.5 250х10 250х10.5 250х11 250х11.5 250х12 300х6 300х6.5 300х7 300х7.5 300х8 300х8.5 300х9 300х9.5 300х10 300х10.5 300х11 300х11.5 300х12

ГОСТ: Уголок равнополочный по ГОСТ 8509-93Уголок неравнополочный по ГОСТ 8510-86*

Номер уголка: L20x3 L20x4 L25x3 L25x4 L25x5 L28x3 L30x3 L30x4 L30x5 L32x3 L32x4 L35x3 L35x4 L35x5 L40x3 L40x4 L40x5 L40x6 L45x3 L45x4 L45x5 L45x6 L50x3 L50x4 L50x5 L50x6 L50x7 L50x8 L56x4 L56x5 L60x4 L60x5 L60x6 L60x8 L60x0 L63x4 L63x5 L63x6 L65x6 L65x8 L70x4 L70x5 L70x6 L70x7 L70x8 L70x0 L75x5 L75x6 L75x7 L75x8 L75x9 L80x5 L80x6 L80x7 L80x8 L80x10 L80x12 L90x6 L90x7 L90x8 L90x9 L90x10 L90x12 L100x6.5 L100x7 L100x8 L100x10 L100x12 L100x14 L100x15 L100x16 L110x7 L110x8 L120x8 L120x10 L120x12 L120x15 L125x8 L125x9 L125x10 L125x12 L125x14 L125x16 L140x9 L140x10 L140x12 L150x10 L150x12 L150x15 L150x18 L160x10 L160x11 L160x12 L160x14 L160x16 L160x18 L160x20 L180x11 L180x12 L180x15 L180x18 L180x20 L200x12 L200x13 L200x14 L200x16 L200x18 L200x20 L200x24 L200x25 L200x30 L220x14 L220x16 L250x16 L250x18 L250x20 L250x22 L250x25 L250x28 L250x30 L250x35

Номер уголка: L25x16x3 L30x20x3 L30x20x4 L32x20x3 L32x20x4 L40x25x3 L40x25x4 L40x25x5 L40x30x4 L40x30x5 L45x28x3 L45x28x4 L50x32x3 L50x32x4 L56x36x4 L56x36x5 L63x40x4 L63x40x5 L63x40x6 L63x40x8 L65x50x5 L65x50x6 L65x50x7 L65x50x8 L70x45x5 L75x60x5 L75x60x6 L75x60x7 L75x60x8 L80x50x5 L80x50x6 L80x60x6 L80x60x7 L80x60x8 L90x56x5 L90x56x6 L90x56x8 L100x63x6 L100x63x7 L100x63x8 L100x63x10 L100x65x7 L100x65x8 L100x65x10 L110x70x6 L110x70x8 L125x80x7 L125x80x8 L125x80x10 L125x80x12 L140x90x8 L140x90x10 L160x100x9 L160x100x10 L160x100x12 L160x100x14 L180x110x10 L180x110x12 L200x125x11 L200x125x12 L200x125x14 L200x125x16

Материал колонны: ЖелезобетонДерево

Материал балки: Сталь

колонна несёт массу перегородок

Характеристика балки

Сечение балки: ПрямоугольноеДвутаврШвеллерПрофильная трубаУголок

ГОСТ: СТО АСЧМ 20-93Двутавр по Р40-93Двутавр доп. серии по ГОСТ 26020-83Двутавр с уклоном полок по ГОСТ 8239-89Двутавр стальной горячекат. по ГОСТ 26020-83

Номер двутавра: 10Б1 12Б1 12Б1 14Б1 14Б2 16Б1 16Б2 18Б1 18Б2 20Б1 25Б1 25Б2 30Б1 30Б2 35Б1 35Б2 40Б1 40Б2 45Б1 45Б2 50Б1 50Б2 50Б3 55Б1 55Б2 60Б1 60Б2 70Б0 70Б1 70Б2 ——- 20К1 20К2 25К1 25К2 25К3 30К1 30К2 30К3 30К4 35К1 35К2 40К1 40К2 40К3 40К4 40К5 ——- 20Ш1 25Ш1 30Ш1 30Ш2 35Ш1 35Ш2 40Ш1 40Ш2 45Ш1 50Ш1 50Ш2 50Ш3 50Ш4 60Ш1 60Ш2 60Ш3 60Ш4 70Ш1 70Ш2 70Ш3 70Ш4 70Ш5 80Ш1 80Ш2 90Ш1 90Ш2 100Ш1 100Ш2 100Ш3 100Ш4 ——- 24М 30М 36М 45М КХБ-515 КХБ-526 40ЕС

Номер двутавра: 20Д1А20Д2А25Д2А25Д3А36У1А36У2А15К1А15К2А15К3А20К2А20К3А20К4А20К5А

Номер двутавра: 24ДБ127ДБ136ДБ135ДБ140ДБ145ДБ145ДБ230ДШ140ДШ150ДШ1

Номер двутавра: 1012141618202224273033364045505560

Номер двутавра: 10Б1 12Б1 12Б2 14Б1 14Б2 16Б1 16Б2 18Б1 18Б2 20Б1 23Б1 26Б1 26Б2 30Б1 30Б2 35Б1 35Б2 40Б1 40Б2 45Б1 45Б2 50Б1 50Б2 55Б1 55Б2 60Б1 60Б2 70Б1 70Б2 80Б1 80Б2 90Б1 90Б2 100Б1 100Б2 100Б3 100Б4 ——- 20Ш1 23Ш1 26Ш1 26Ш2 30Ш1 30Ш2 30Ш3 35Ш1 35Ш2 35Ш3 40Ш1 40Ш2 40Ш3 50Ш1 50Ш2 50Ш3 50Ш4 60Ш1 60Ш2 60Ш3 60Ш4 70Ш1 70Ш2 70Ш3 70Ш4 70Ш5 ——- 20К1 20К2 23К1 23К2 26К1 26К2 26К3 30К1 30К2 30К3 35К1 35К2 35К3 40К1 40К2 40К3 40К4 40К5

ГОСТ: Швеллер с парал. полками (П) ГОСТ 8240-89Швеллер с уклоном полок (У) ГОСТ 8240-89Швеллер гнутый равнополочный ГОСТ 8278-83

Номер швеллера 5П 6.5П 8П 10П 12П 14П 16П 16aП 18П 18aП 20П 22П 24П 27П 30П 33П 36П 40П

Номер швеллера 5 6.5 8 10 12 14 16 16a 18 18a 20 22 24 27 30 33 36 40

Номер швеллера 25x26x2 25x30x2 28x27x2.5 30x25x3 30x30x2 32x25x3 32x32x2 38x95x2.5 40x20x2 40x20x3 40x30x2 40x30x2.5 40x40x2 40x40x2.5 40x40x3 42x42x4 43x45x2 45x25x3 45x31x2 48x70x5 50x30x2 50x30x2.5 50x32x2.5 50x40x2 50x40x2.5 50x40x3 50x40x4 50x47x6 50x50x2.5 50x50x3 50x50x4 60x26x2.5 60x30x2.5 60x30x3 60x32x2.5 60x32x3 60x32x4 60x40x2 60x40x3 60x50x3 60x60x3 60x60x4 60x80x3 60x90x5 63x21x2.2 65x75x4 68x27x1 70x30x2 70x40x3 70x50x3 70x50x4 70x60x4 78x46x6 80x25x4 80x32x4 80x35x4 80x40x2.5 80x40x3 80x50x4 80x60x3 80x60x4 80x60x6 80x80x3 80x80x4 80x85x4 80x100x6 900x50x3.5 90x54x5 90x100x2.5 100x40x2.5 100x40x3 100x50x3 100x50x4 100x50x5 100x50x6 100x60x3 100x60x4 100x80x3 100x80x4 100x80x5 100x100x3 100x100x6 100x160x4 104x20x2 106x50x4 108x70x6 110x26x2.5 110x50x4 110x50x5 110x100x4 120x25x4 120x50x3 120x50x4 120x50x6 120x60x5 120x60x6 120x70x5 120x80x4 120x80x5 140x40x2.5 140x40x3 140x60x3 140x60x5 140x60x6 140x70x5 140x80x4 140x80x5 145x65x3 148x25x4 160x40x2 160x40x3 160x40x5 160x50x2.5 160x50x4 160x50x5 160x50x6 160x60x2.5 160x60x3 160x60x4 160x60x5 160x60x6 160x70x4 160x80x2.5 160x80x3 160x80x4 160x80x5 160x80x6 160x100x3 160x100x6 160x120x5 160x120x6 160x160x6 170x60x4 170x70x5 170x70x6 180x40x3 180x40x4 180x50x4 180x70x6 180x80x4 180x80x5 180x80x6 180x100x5 180x100x6 180x130x8 185x100x3 200x50x3 200x50x4 200x80x4 200x80x5 200x80x6 200x100x3 200x100x6 200x180x6 205x38x2.5 206x75x6 210x57x4 250x35x3 250x60x3 250x60x4 250x60x5 250x60x6 250x125x6 270x100x7 280x60x3.9 280x140x5 300x80x6 300x100x8 310x100x6 380x65x6 400x95x8 410x65x6

ГОСТ: Профиль прямоугольный ГОСТ 30245-2003Профиль квадратный ГОСТ 30245-2003

Номер проф. трубы: 15х10х1 15х10х1.5 20х10х1 20х10х1.5 20х15х1 20х15х1.5 25х10х1 25х10х1.5 25х15х1 25х15х1.5 30х10х1 30х10х1.5 30х15х1 30х15х1.5 30х15х2 40х20х2 40х20х2.5 40х20х3 40х25х2 40х25х2.5 40х25х3 40х30х2 50х25х2 50х25х2.5 50х25х3 50х25х3.5 50х25х4 50х30х2 50х30х2.5 50х30х3 50х30х3.5 50х30х4 50х30х5 50х40х2 50х40х2.5 50х40х3 50х40х3.5 50х40х4 50х40х4.5 50х40х5 60х30х2 60х30х2.5 60х30х3 60х30х3.5 60х30х4 60х30х4.5 60х30х5 60х30х5.5 60х30х6 60х40х2 60х40х2.5 60х40х3 60х40х3.5 60х40х4 60х40х4.5 60х40х5 60х40х5.5 60х40х6 70х50х2 70х50х2.5 70х50х3 70х50х3.5 70х50х4 70х50х4.5 70х50х5 70х50х5.5 70х50х6 80х40х2 80х40х2.5 80х40х3 80х40х3.5 80х40х4 80х40х4.5 80х40х5 80х40х5.5 80х40х6 80х60х2 80х60х2.5 80х60х3 80х60х3.5 80х60х4 80х60х4.5 80х60х5 80х60х5.5 80х60х6 80х60х6.5 80х60х7 80х70х3 80х70х3.5 80х70х4 80х70х4.5 80х70х5 80х70х5.5 80х70х6 80х70х6.5 80х70х7 90х50х3 90х50х3.5 90х50х4 90х50х4.5 90х50х5 90х50х5.5 90х50х6 90х50х6.5 90х50х7 90х60х3 90х60х3.5 90х60х4 90х60х4.5 90х60х5 90х60х5.5 90х60х6 90х60х7 100х40х3 100х40х3.5 100х40х4 100х40х4.5 100х40х5 100х40х5.5 100х40х6 100х40х6.5 100х40х7 100х50х3 100х50х3.5 100х50х4 100х50х4.5 100х50х5 100х50х5.5 100х50х6 100х50х6.5 100х50х7 100х60х3 100х60х3.5 100х60х4 100х60х4.5 100х60х5 100х60х5.5 100х60х6 100х60х6.5 100х60х7 120х40х3 120х40х3.5 120х40х4 120х40х4.5 120х40х5 120х40х5.5 120х40х6 120х40х6.5 120х40х7 120х60х3 120х60х3.5 120х60х4 120х60х4.5 120х60х5 120х60х5.5 120х60х6 120х60х6.5 120х60х7 120х80х3 120х80х3.5 120х80х4 120х80х4.5 120х80х5 120х80х5.5 120х80х6 120х80х6.5 120х80х7 140х60х3 140х60х3.5 140х60х4 140х60х4.5 140х60х5 140х60х5.5 140х60х6 140х60х6.5 140х60х7 140х100х4 140х100х4.5 140х100х5 140х100х5.5 140х100х6 140х100х6.5 140х100х7 140х120х4 140х120х4.5 140х120х5 140х120х5.5 140х120х6 140х120х6.5 140х120х7 140х120х7.5 140х120х8 150х100х4 150х100х4.5 150х100х5 150х100х5.5 150х100х6 150х100х6.5 150х100х7 160х40х3 160х40х3.5 160х40х4 160х40х4.5 160х40х5 160х40х5.5 160х40х6 160х40х6.5 160х40х7 160х80х4 160х80х4.5 160х80х5 160х80х5.5 160х80х6 160х80х6.5 160х80х7 160х100х4 160х100х4.5 160х100х5 160х100х5.5 160х100х6 160х100х6.5 160х100х7 160х100х7.5 160х100х8 160х120х4 160х120х4.5 160х120х5 160х120х5.5 160х120х6 160х120х6.5 160х120х7 160х120х7.5 160х120х8 160х140х5 160х140х5.5 160х140х6 160х140х6.5 160х140х7 160х140х7.5 160х140х8 180х60х4 180х60х4.5 180х60х5 180х60х5.5 180х60х6 180х60х6.5 180х60х7 180х60х7.5 180х60х8 180х80х4 180х80х4.5 180х80х5 180х80х5.5 180х80х6 180х80х6.5 180х80х7 180х80х7.5 180х80х8 180х100х4 180х100х4.5 180х100х5 180х100х5.5 180х100х6 180х100х6.5 180х100х7 180х100х7.5 180х100х8 180х140х4 180х140х4.5 180х140х5 180х140х5.5 180х140х6 180х140х6.5 180х140х7 180х140х7.5 180х140х8 200х40х4 200х40х4.5 200х40х5 200х40х5.5 200х40х6 200х40х6.5 200х40х7 200х80х4 200х80х4.5 200х80х5 200х80х5.5 200х80х6 200х80х6.5 200х80х7 200х80х7.5 200х80х8 200х100х4 200х100х4.5 200х100х5 200х100х5.5 200х100х6 200х100х6.5 200х100х7 200х100х7.5 200х100х8 200х120х4 200х120х4.5 200х120х5 200х120х5.5 200х120х6 200х120х6.5 200х120х7 200х120х7.5 200х120х8 200х160х5 200х160х5.5 200х160х6 200х160х6.5 200х160х7 200х160х7.5 200х160х8 200х160х8.5 200х160х9 200х160х9.5 200х160х10 220х100х4 220х100х4.5 220х100х5 220х100х5.5 220х100х6 220х100х6.5 220х100х7 220х100х7.5 220х100х8 220х140х5 220х140х5.5 220х140х6 220х140х6.5 220х140х7 220х140х7.5 220х140х8 240х120х5 240х120х5.5 240х120х6 240х120х6.5 240х120х7 240х120х7.5 240х120х8 240х160х6 240х160х6.5 240х160х7 240х160х7.5 240х160х8 240х160х8.5 240х160х9 240х160х9.5 240х160х10 240х160х10.5 240х160х11 240х160х11.5 240х160х12 250х150х6 250х150х6.5 250х150х7 250х150х7.5 250х150х8 260х130х6 260х130х6.5 260х130х7 260х130х7.5 260х130х8 260х130х8.5 260х130х9 260х130х9.5 260х130х10 260х130х10.5 260х130х11 260х130х11.5 260х130х12 300х100х6 300х100х6.5 300х100х7 300х100х7.5 300х100х8 300х100х8.5 300х100х9 300х100х9.5 300х100х10 300х200х6 300х200х6.5 300х200х7 300х200х7.5 300х200х8 300х200х8.5 300х200х9 300х200х9.5 300х200х10 300х200х10.5 300х200х11 300х200х11.5 300х200х12 320х180х6 320х180х6.5 320х180х7 320х180х7.5 320х180х8 320х180х8.5 320х180х9 320х180х9.5 320х180х10 320х180х10.5 320х180х11 320х180х11.5 320х180х12 350х250х6 350х250х6.5 350х250х7 350х250х7.5 350х250х8 350х250х8.5 350х250х9 350х250х9.5 350х250х10 350х250х10.5 350х250х11 350х250х11.5 350х250х12 350х300х6 350х300х6.5 350х300х7 350х300х7.5 350х300х8 350х300х8.5 350х300х9 350х300х9.5 350х300х10 350х300х10.5 350х300х11 350х300х11.5 350х300х12 380х220х6 380х220х6.5 380х220х7 380х220х7.5 380х220х8 400х200х10 400х200х10.5 400х200х11 400х200х11.5 400х200х12

Номер проф. трубы: 15х1 15х1.5 15х2 20х1 20х1.5 20х2 25х1.5 25х2 25х2.2 25х2.5 25х2.8 25х3 30х2 30х2.5 30х3 30х4 40х2 40х2.5 40х3 40х3.5 40х4 50х2 50х2.5 50х3 50х3.5 50х4 50х4.5 50х5 50х5.5 50х6 60х2 60х2.5 60х3 60х3.5 60х4 60х4.5 60х5 60х5.5 60х6 70х2 70х2.5 70х3 70х3.5 70х4 70х4.5 70х5 70х5.5 70х6 70х6.5 70х7 80х3 80х3.5 80х4 80х4.5 80х5 80х5.5 80х6 80х6.5 80х7 80х7.5 80х8 90х3 90х3.5 90х4 90х4.5 90х5 90х5.5 90х6 90х6.5 90х7 90х7.5 90х8 100х3 100х3.5 100х4 100х4.5 100х5 100х5.5 100х6 100х6.5 100х7 100х7.5 100х8 120х3 120х3.5 120х4 120х4.5 120х5 120х5.5 120х6 120х6.5 120х7 120х7.5 120х8 140х4 140х4.5 140х5 140х5.5 140х6 140х6.5 140х7 140х7.5 140х8 150х4 150х4.5 150х5 150х5.5 150х6 150х6.5 150х7 150х7.5 150х8 160х4 160х4.5 160х5 160х5.5 160х6 160х6.5 160х7 160х7.5 160х8 180х5 180х5.5 180х6 180х6.5 180х7 180х7.5 180х8 180х8.5 180х9 180х9.5 180х10 200х5 200х6 200х6.5 200х7 200х7.5 200х8 200х8.5 200х9 200х9.5 200х10 200х10.5 200х11 200х11.5 200х12 250х6 250х6.5 250х7 250х7.5 250х8 250х8.5 250х9 250х9.5 250х10 250х10.5 250х11 250х11.5 250х12 300х6 300х6.5 300х7 300х7.5 300х8 300х8.5 300х9 300х9.5 300х10 300х10.5 300х11 300х11.5 300х12

ГОСТ: Уголок равнополочный по ГОСТ 8509-93Уголок неравнополочный по ГОСТ 8510-86*

Номер уголка: L20x3 L20x4 L25x3 L25x4 L25x5 L28x3 L30x3 L30x4 L30x5 L32x3 L32x4 L35x3 L35x4 L35x5 L40x3 L40x4 L40x5 L40x6 L45x3 L45x4 L45x5 L45x6 L50x3 L50x4 L50x5 L50x6 L50x7 L50x8 L56x4 L56x5 L60x4 L60x5 L60x6 L60x8 L60x0 L63x4 L63x5 L63x6 L65x6 L65x8 L70x4 L70x5 L70x6 L70x7 L70x8 L70x0 L75x5 L75x6 L75x7 L75x8 L75x9 L80x5 L80x6 L80x7 L80x8 L80x10 L80x12 L90x6 L90x7 L90x8 L90x9 L90x10 L90x12 L100x6.5 L100x7 L100x8 L100x10 L100x12 L100x14 L100x15 L100x16 L110x7 L110x8 L120x8 L120x10 L120x12 L120x15 L125x8 L125x9 L125x10 L125x12 L125x14 L125x16 L140x9 L140x10 L140x12 L150x10 L150x12 L150x15 L150x18 L160x10 L160x11 L160x12 L160x14 L160x16 L160x18 L160x20 L180x11 L180x12 L180x15 L180x18 L180x20 L200x12 L200x13 L200x14 L200x16 L200x18 L200x20 L200x24 L200x25 L200x30 L220x14 L220x16 L250x16 L250x18 L250x20 L250x22 L250x25 L250x28 L250x30 L250x35

Номер уголка: L25x16x3 L30x20x3 L30x20x4 L32x20x3 L32x20x4 L40x25x3 L40x25x4 L40x25x5 L40x30x4 L40x30x5 L45x28x3 L45x28x4 L50x32x3 L50x32x4 L56x36x4 L56x36x5 L63x40x4 L63x40x5 L63x40x6 L63x40x8 L65x50x5 L65x50x6 L65x50x7 L65x50x8 L70x45x5 L75x60x5 L75x60x6 L75x60x7 L75x60x8 L80x50x5 L80x50x6 L80x60x6 L80x60x7 L80x60x8 L90x56x5 L90x56x6 L90x56x8 L100x63x6 L100x63x7 L100x63x8 L100x63x10 L100x65x7 L100x65x8 L100x65x10 L110x70x6 L110x70x8 L125x80x7 L125x80x8 L125x80x10 L125x80x12 L140x90x8 L140x90x10 L160x100x9 L160x100x10 L160x100x12 L160x100x14 L180x110x10 L180x110x12 L200x125x11 L200x125x12 L200x125x14 L200x125x16

Материал балки: ЖелезобетонДерево

Материал балки: Сталь

на балку опираются вспомог. балки

Вспомогательные балки

Сечение балки: ПрямоугольноеДвутаврШвеллерПрофильная трубаУголок

ГОСТ: СТО АСЧМ 20-93Двутавр по Р40-93Двутавр доп. серии по ГОСТ 26020-83Двутавр с уклоном полок по ГОСТ 8239-89Двутавр стальной горячекат. по ГОСТ 26020-83

Номер двутавра: 10Б1 12Б1 12Б1 14Б1 14Б2 16Б1 16Б2 18Б1 18Б2 20Б1 25Б1 25Б2 30Б1 30Б2 35Б1 35Б2 40Б1 40Б2 45Б1 45Б2 50Б1 50Б2 50Б3 55Б1 55Б2 60Б1 60Б2 70Б0 70Б1 70Б2 ——- 20К1 20К2 25К1 25К2 25К3 30К1 30К2 30К3 30К4 35К1 35К2 40К1 40К2 40К3 40К4 40К5 ——- 20Ш1 25Ш1 30Ш1 30Ш2 35Ш1 35Ш2 40Ш1 40Ш2 45Ш1 50Ш1 50Ш2 50Ш3 50Ш4 60Ш1 60Ш2 60Ш3 60Ш4 70Ш1 70Ш2 70Ш3 70Ш4 70Ш5 80Ш1 80Ш2 90Ш1 90Ш2 100Ш1 100Ш2 100Ш3 100Ш4 ——- 24М 30М 36М 45М КХБ-515 КХБ-526 40ЕС

Номер двутавра: 20Д1А20Д2А25Д2А25Д3А36У1А36У2А15К1А15К2А15К3А20К2А20К3А20К4А20К5А

Номер двутавра: 24ДБ127ДБ136ДБ135ДБ140ДБ145ДБ145ДБ230ДШ140ДШ150ДШ1

Номер двутавра: 1012141618202224273033364045505560

Номер двутавра: 10Б1 12Б1 12Б2 14Б1 14Б2 16Б1 16Б2 18Б1 18Б2 20Б1 23Б1 26Б1 26Б2 30Б1 30Б2 35Б1 35Б2 40Б1 40Б2 45Б1 45Б2 50Б1 50Б2 55Б1 55Б2 60Б1 60Б2 70Б1 70Б2 80Б1 80Б2 90Б1 90Б2 100Б1 100Б2 100Б3 100Б4 ——- 20Ш1 23Ш1 26Ш1 26Ш2 30Ш1 30Ш2 30Ш3 35Ш1 35Ш2 35Ш3 40Ш1 40Ш2 40Ш3 50Ш1 50Ш2 50Ш3 50Ш4 60Ш1 60Ш2 60Ш3 60Ш4 70Ш1 70Ш2 70Ш3 70Ш4 70Ш5 ——- 20К1 20К2 23К1 23К2 26К1 26К2 26К3 30К1 30К2 30К3 35К1 35К2 35К3 40К1 40К2 40К3 40К4 40К5

ГОСТ: Швеллер с парал. полками (П) ГОСТ 8240-89Швеллер с уклоном полок (У) ГОСТ 8240-89Швеллер гнутый равнополочный ГОСТ 8278-83

Номер швеллера: 5П 6.5П 8П 10П 12П 14П 16П 16aП 18П 18aП 20П 22П 24П 27П 30П 33П 36П 40П

Номер швеллера: 5 6.5 8 10 12 14 16 16a 18 18a 20 22 24 27 30 33 36 40

Номер швеллера: 25x26x2 25x30x2 28x27x2.5 30x25x3 30x30x2 32x25x3 32x32x2 38x95x2.5 40x20x2 40x20x3 40x30x2 40x30x2.5 40x40x2 40x40x2.5 40x40x3 42x42x4 43x45x2 45x25x3 45x31x2 48x70x5 50x30x2 50x30x2.5 50x32x2.5 50x40x2 50x40x2.5 50x40x3 50x40x4 50x47x6 50x50x2.5 50x50x3 50x50x4 60x26x2.5 60x30x2.5 60x30x3 60x32x2.5 60x32x3 60x32x4 60x40x2 60x40x3 60x50x3 60x60x3 60x60x4 60x80x3 60x90x5 63x21x2.2 65x75x4 68x27x1 70x30x2 70x40x3 70x50x3 70x50x4 70x60x4 78x46x6 80x25x4 80x32x4 80x35x4 80x40x2.5 80x40x3 80x50x4 80x60x3 80x60x4 80x60x6 80x80x3 80x80x4 80x85x4 80x100x6 900x50x3.5 90x54x5 90x100x2.5 100x40x2.5 100x40x3 100x50x3 100x50x4 100x50x5 100x50x6 100x60x3 100x60x4 100x80x3 100x80x4 100x80x5 100x100x3 100x100x6 100x160x4 104x20x2 106x50x4 108x70x6 110x26x2.5 110x50x4 110x50x5 110x100x4 120x25x4 120x50x3 120x50x4 120x50x6 120x60x5 120x60x6 120x70x5 120x80x4 120x80x5 140x40x2.5 140x40x3 140x60x3 140x60x5 140x60x6 140x70x5 140x80x4 140x80x5 145x65x3 148x25x4 160x40x2 160x40x3 160x40x5 160x50x2.5 160x50x4 160x50x5 160x50x6 160x60x2.5 160x60x3 160x60x4 160x60x5 160x60x6 160x70x4 160x80x2.5 160x80x3 160x80x4 160x80x5 160x80x6 160x100x3 160x100x6 160x120x5 160x120x6 160x160x6 170x60x4 170x70x5 170x70x6 180x40x3 180x40x4 180x50x4 180x70x6 180x80x4 180x80x5 180x80x6 180x100x5 180x100x6 180x130x8 185x100x3 200x50x3 200x50x4 200x80x4 200x80x5 200x80x6 200x100x3 200x100x6 200x180x6 205x38x2.5 206x75x6 210x57x4 250x35x3 250x60x3 250x60x4 250x60x5 250x60x6 250x125x6 270x100x7 280x60x3.9 280x140x5 300x80x6 300x100x8 310x100x6 380x65x6 400x95x8 410x65x6

ГОСТ: Профиль прямоугольный ГОСТ 30245-2003Профиль квадратный ГОСТ 30245-2003

Номер: 15х10х1 15х10х1.5 20х10х1 20х10х1.5 20х15х1 20х15х1.5 25х10х1 25х10х1.5 25х15х1 25х15х1.5 30х10х1 30х10х1.5 30х15х1 30х15х1.5 30х15х2 40х20х2 40х20х2.5 40х20х3 40х25х2 40х25х2.5 40х25х3 40х30х2 50х25х2 50х25х2.5 50х25х3 50х25х3.5 50х25х4 50х30х2 50х30х2.5 50х30х3 50х30х3.5 50х30х4 50х30х5 50х40х2 50х40х2.5 50х40х3 50х40х3.5 50х40х4 50х40х4.5 50х40х5 60х30х2 60х30х2.5 60х30х3 60х30х3.5 60х30х4 60х30х4.5 60х30х5 60х30х5.5 60х30х6 60х40х2 60х40х2.5 60х40х3 60х40х3.5 60х40х4 60х40х4.5 60х40х5 60х40х5.5 60х40х6 70х50х2 70х50х2.5 70х50х3 70х50х3.5 70х50х4 70х50х4.5 70х50х5 70х50х5.5 70х50х6 80х40х2 80х40х2.5 80х40х3 80х40х3.5 80х40х4 80х40х4.5 80х40х5 80х40х5.5 80х40х6 80х60х2 80х60х2.5 80х60х3 80х60х3.5 80х60х4 80х60х4.5 80х60х5 80х60х5.5 80х60х6 80х60х6.5 80х60х7 80х70х3 80х70х3.5 80х70х4 80х70х4.5 80х70х5 80х70х5.5 80х70х6 80х70х6.5 80х70х7 90х50х3 90х50х3.5 90х50х4 90х50х4.5 90х50х5 90х50х5.5 90х50х6 90х50х6.5 90х50х7 90х60х3 90х60х3.5 90х60х4 90х60х4.5 90х60х5 90х60х5.5 90х60х6 90х60х7 100х40х3 100х40х3.5 100х40х4 100х40х4.5 100х40х5 100х40х5.5 100х40х6 100х40х6.5 100х40х7 100х50х3 100х50х3.5 100х50х4 100х50х4.5 100х50х5 100х50х5.5 100х50х6 100х50х6.5 100х50х7 100х60х3 100х60х3.5 100х60х4 100х60х4.5 100х60х5 100х60х5.5 100х60х6 100х60х6.5 100х60х7 120х40х3 120х40х3.5 120х40х4 120х40х4.5 120х40х5 120х40х5.5 120х40х6 120х40х6.5 120х40х7 120х60х3 120х60х3.5 120х60х4 120х60х4.5 120х60х5 120х60х5.5 120х60х6 120х60х6.5 120х60х7 120х80х3 120х80х3.5 120х80х4 120х80х4.5 120х80х5 120х80х5.5 120х80х6 120х80х6.5 120х80х7 140х60х3 140х60х3.5 140х60х4 140х60х4.5 140х60х5 140х60х5.5 140х60х6 140х60х6.5 140х60х7 140х100х4 140х100х4.5 140х100х5 140х100х5.5 140х100х6 140х100х6.5 140х100х7 140х120х4 140х120х4.5 140х120х5 140х120х5.5 140х120х6 140х120х6.5 140х120х7 140х120х7.5 140х120х8 150х100х4 150х100х4.5 150х100х5 150х100х5.5 150х100х6 150х100х6.5 150х100х7 160х40х3 160х40х3.5 160х40х4 160х40х4.5 160х40х5 160х40х5.5 160х40х6 160х40х6.5 160х40х7 160х80х4 160х80х4.5 160х80х5 160х80х5.5 160х80х6 160х80х6.5 160х80х7 160х100х4 160х100х4.5 160х100х5 160х100х5.5 160х100х6 160х100х6.5 160х100х7 160х100х7.5 160х100х8 160х120х4 160х120х4.5 160х120х5 160х120х5.5 160х120х6 160х120х6.5 160х120х7 160х120х7.5 160х120х8 160х140х5 160х140х5.5 160х140х6 160х140х6.5 160х140х7 160х140х7.5 160х140х8 180х60х4 180х60х4.5 180х60х5 180х60х5.5 180х60х6 180х60х6.5 180х60х7 180х60х7.5 180х60х8 180х80х4 180х80х4.5 180х80х5 180х80х5.5 180х80х6 180х80х6.5 180х80х7 180х80х7.5 180х80х8 180х100х4 180х100х4.5 180х100х5 180х100х5.5 180х100х6 180х100х6.5 180х100х7 180х100х7.5 180х100х8 180х140х4 180х140х4.5 180х140х5 180х140х5.5 180х140х6 180х140х6.5 180х140х7 180х140х7.5 180х140х8 200х40х4 200х40х4.5 200х40х5 200х40х5.5 200х40х6 200х40х6.5 200х40х7 200х80х4 200х80х4.5 200х80х5 200х80х5.5 200х80х6 200х80х6.5 200х80х7 200х80х7.5 200х80х8 200х100х4 200х100х4.5 200х100х5 200х100х5.5 200х100х6 200х100х6.5 200х100х7 200х100х7.5 200х100х8 200х120х4 200х120х4.5 200х120х5 200х120х5.5 200х120х6 200х120х6.5 200х120х7 200х120х7.5 200х120х8 200х160х5 200х160х5.5 200х160х6 200х160х6.5 200х160х7 200х160х7.5 200х160х8 200х160х8.5 200х160х9 200х160х9.5 200х160х10 220х100х4 220х100х4.5 220х100х5 220х100х5.5 220х100х6 220х100х6.5 220х100х7 220х100х7.5 220х100х8 220х140х5 220х140х5.5 220х140х6 220х140х6.5 220х140х7 220х140х7.5 220х140х8 240х120х5 240х120х5.5 240х120х6 240х120х6.5 240х120х7 240х120х7.5 240х120х8 240х160х6 240х160х6.5 240х160х7 240х160х7.5 240х160х8 240х160х8.5 240х160х9 240х160х9.5 240х160х10 240х160х10.5 240х160х11 240х160х11.5 240х160х12 250х150х6 250х150х6.5 250х150х7 250х150х7.5 250х150х8 260х130х6 260х130х6.5 260х130х7 260х130х7.5 260х130х8 260х130х8.5 260х130х9 260х130х9.5 260х130х10 260х130х10.5 260х130х11 260х130х11.5 260х130х12 300х100х6 300х100х6.5 300х100х7 300х100х7.5 300х100х8 300х100х8.5 300х100х9 300х100х9.5 300х100х10 300х200х6 300х200х6.5 300х200х7 300х200х7.5 300х200х8 300х200х8.5 300х200х9 300х200х9.5 300х200х10 300х200х10.5 300х200х11 300х200х11.5 300х200х12 320х180х6 320х180х6.5 320х180х7 320х180х7.5 320х180х8 320х180х8.5 320х180х9 320х180х9.5 320х180х10 320х180х10.5 320х180х11 320х180х11.5 320х180х12 350х250х6 350х250х6.5 350х250х7 350х250х7.5 350х250х8 350х250х8.5 350х250х9 350х250х9.5 350х250х10 350х250х10.5 350х250х11 350х250х11.5 350х250х12 350х300х6 350х300х6.5 350х300х7 350х300х7.5 350х300х8 350х300х8.5 350х300х9 350х300х9.5 350х300х10 350х300х10.5 350х300х11 350х300х11.5 350х300х12 380х220х6 380х220х6.5 380х220х7 380х220х7.5 380х220х8 400х200х10 400х200х10.5 400х200х11 400х200х11.5 400х200х12

Номер: 15х1 15х1.5 15х2 20х1 20х1.5 20х2 25х1.5 25х2 25х2.2 25х2.5 25х2.8 25х3 30х2 30х2.5 30х3 30х4 40х2 40х2.5 40х3 40х3.5 40х4 50х2 50х2.5 50х3 50х3.5 50х4 50х4.5 50х5 50х5.5 50х6 60х2 60х2.5 60х3 60х3.5 60х4 60х4.5 60х5 60х5.5 60х6 70х2 70х2.5 70х3 70х3.5 70х4 70х4.5 70х5 70х5.5 70х6 70х6.5 70х7 80х3 80х3.5 80х4 80х4.5 80х5 80х5.5 80х6 80х6.5 80х7 80х7.5 80х8 90х3 90х3.5 90х4 90х4.5 90х5 90х5.5 90х6 90х6.5 90х7 90х7.5 90х8 100х3 100х3.5 100х4 100х4.5 100х5 100х5.5 100х6 100х6.5 100х7 100х7.5 100х8 120х3 120х3.5 120х4 120х4.5 120х5 120х5.5 120х6 120х6.5 120х7 120х7.5 120х8 140х4 140х4.5 140х5 140х5.5 140х6 140х6.5 140х7 140х7.5 140х8 150х4 150х4.5 150х5 150х5.5 150х6 150х6.5 150х7 150х7.5 150х8 160х4 160х4.5 160х5 160х5.5 160х6 160х6.5 160х7 160х7.5 160х8 180х5 180х5.5 180х6 180х6.5 180х7 180х7.5 180х8 180х8.5 180х9 180х9.5 180х10 200х5 200х6 200х6.5 200х7 200х7.5 200х8 200х8.5 200х9 200х9.5 200х10 200х10.5 200х11 200х11.5 200х12 250х6 250х6.5 250х7 250х7.5 250х8 250х8.5 250х9 250х9.5 250х10 250х10.5 250х11 250х11.5 250х12 300х6 300х6.5 300х7 300х7.5 300х8 300х8.5 300х9 300х9.5 300х10 300х10.5 300х11 300х11.5 300х12

ГОСТ: Уголок равнополочный по ГОСТ 8509-93Уголок неравнополочный по ГОСТ 8510-86*

Номер уголка L20x3 L20x4 L25x3 L25x4 L25x5 L28x3 L30x3 L30x4 L30x5 L32x3 L32x4 L35x3 L35x4 L35x5 L40x3 L40x4 L40x5 L40x6 L45x3 L45x4 L45x5 L45x6 L50x3 L50x4 L50x5 L50x6 L50x7 L50x8 L56x4 L56x5 L60x4 L60x5 L60x6 L60x8 L60x0 L63x4 L63x5 L63x6 L65x6 L65x8 L70x4 L70x5 L70x6 L70x7 L70x8 L70x0 L75x5 L75x6 L75x7 L75x8 L75x9 L80x5 L80x6 L80x7 L80x8 L80x10 L80x12 L90x6 L90x7 L90x8 L90x9 L90x10 L90x12 L100x6.5 L100x7 L100x8 L100x10 L100x12 L100x14 L100x15 L100x16 L110x7 L110x8 L120x8 L120x10 L120x12 L120x15 L125x8 L125x9 L125x10 L125x12 L125x14 L125x16 L140x9 L140x10 L140x12 L150x10 L150x12 L150x15 L150x18 L160x10 L160x11 L160x12 L160x14 L160x16 L160x18 L160x20 L180x11 L180x12 L180x15 L180x18 L180x20 L200x12 L200x13 L200x14 L200x16 L200x18 L200x20 L200x24 L200x25 L200x30 L220x14 L220x16 L250x16 L250x18 L250x20 L250x22 L250x25 L250x28 L250x30 L250x35

Номер уголка L25x16x3 L30x20x3 L30x20x4 L32x20x3 L32x20x4 L40x25x3 L40x25x4 L40x25x5 L40x30x4 L40x30x5 L45x28x3 L45x28x4 L50x32x3 L50x32x4 L56x36x4 L56x36x5 L63x40x4 L63x40x5 L63x40x6 L63x40x8 L65x50x5 L65x50x6 L65x50x7 L65x50x8 L70x45x5 L75x60x5 L75x60x6 L75x60x7 L75x60x8 L80x50x5 L80x50x6 L80x60x6 L80x60x7 L80x60x8 L90x56x5 L90x56x6 L90x56x8 L100x63x6 L100x63x7 L100x63x8 L100x63x10 L100x65x7 L100x65x8 L100x65x10 L110x70x6 L110x70x8 L125x80x7 L125x80x8 L125x80x10 L125x80x12 L140x90x8 L140x90x10 L160x100x9 L160x100x10 L160x100x12 L160x100x14 L180x110x10 L180x110x12 L200x125x11 L200x125x12 L200x125x14 L200x125x16

Материал балки: ЖелезобетонДерево

Материал балки: Сталь

Шаг балок L1: мм

Характеристика перегородок

Длина перег. на расч. уч-ке: мм

Толщина перегородки: мм

Высота перегородки: мм

Материал перегородки: ЖелезобетонКирпич силикатныйКирпич глиняный полнотелыйКирпич глиняный пустотелыйГазосиликат Р=300 кг/м3Газосиликат Р=500 кг/м3Газосиликат Р=700 кг/м3Дерево

Количество слоев: колонна + балка + 1 слойколонна + балка + 2 слояколонна + балка + 3 слояколонна + балка + 4 слояколонна + балка + 5 слоевколонна + балка + 6 слоев

Временные нагрузки

Снеговой район: Не учитыватьI — 50 кг/м2II — 100 кг/м2III — 150 кг/м2IV — 200 кг/м2V — 250 кг/м2VI — 300 кг/м2VII — 350 кг/м2VIII — 400 кг/м2

Полезная нагрузка: Не учитыватьЖилые помещения, террасыСлужебные, бытовые помещения (гардеробные, душевые, умывальные, уборные)Кабинеты, лаборатории, технические этажиЧитальные залыОбеденные залы (в кафе, ресторанах, столовых)Залы собраний, спортзалы, зрительные залыТорговые и выставочные залыКнигохранилища, архивыСцены зрелищных предприятийТрибуны с закрепленными сиденьямиТрибуны для стоящих зрителейЧердачные помещенияПокрытия на участках с возможным скоплением людейПокрытия на участках для отдыхаПокрытия на прочих участкахБалконы/лоджии с учетом полосовой равномерной нагрузки на участке шириной 0,8 м вдоль ограждения балкона/лоджииБалконы/лоджии с учетом сплошной равномерной нагрузки на площадки балкона/лоджииУчастки обслуживания и ремонта оборудования в производственных помещенияхВестибюли, фойе, коридоры, лестницы примыкающие к жилым, служ., быт. помещениям, кабинетам, лабораториямВестибюли, фойе, коридоры, лестницы примыкающие к залам, книгохранилищам, архивам, сценам Вестибюли, фойе, коридоры, лестницы примыкающие к трибунамПерроны вокзаловПомещения для мелкого скотаПомещения для крупного скота

Как собрать нагрузку от перегородок

Содержание:

1. Пример 1.

2. Как собрать нагрузку от перегородок для расчета монолитной плиты.

3. Как собрать нагрузку от перегородок для расчета колонн и фундаментов

4. Пример 2. Собрать нормативную (характеристическую) нагрузку от перегородок на колонну и на стену.

5. Как собрать нагрузку от перегородок для расчета (или проверки) сборной плиты

6. Пример 3. Перегородка проходит поперек сборной плиты.

7. Пример 4. Перегородка проходит вдоль сборной плиты.

8. Пример 5. Перегородки находятся над частью сборной плиты.

 

В ДБН В.1.2-2:2006 «Нагрузки и воздействия» о сборе нагрузок от перегородок сказано скупо:

Давайте разберемся, как рациональней собирать нагрузку от перегородок для различных ситуаций.

Что такое характеристическая нагрузка? Это нормативная нагрузка еще безо всяких коэффициентов, т.е. фактический вес перегородок. Этот фактический  вес, по сути, распределен по очень узкой площади (т.к. толщина перегородки обычно не превышает 150 мм), и наиболее правдоподобным будет принимать нагрузку от перегородки как линейную. Что это значит?

Пример 1. Есть кирпичная перегородка высотой 2,5 м, толщиной 0,12 м, длиной 3 м, ее объемный вес равен 1,8 т/м3. Нужно собрать нагрузку от перегородки на плиту.

Она оштукатурена с двух сторон, каждый слой штукатурки имеет толщину 0,02 м, объемный вес штукатурки 1,6 т/м3. Нужно найти нормативную (характеристическую) нагрузку от перегородки для расчета плиты перекрытия.

Найдем вес 1 м 2 перегородки:

(1,8∙0,12 + 1,6∙2∙0,02)∙1 = 0,28 т/м2 (здесь 1 – это площадь перегородки).

Зная высоту перегородки, определим, сколько будет весить погонный метр перегородки:

0,28∙2,5 = 0,7 т/м.

Таким образом, мы получили погонную линейную нагрузку 0,7 т/м, которая будет действовать на плиту перекрытия под всей перегородкой (каждый метр перегородки весит 0,7 т/м). Суммарный же вес перегородки будет равен 0,7∙3 = 2,1 т, но такое значение для расчета нужно далеко не всегда.

Теперь рассмотрим, в каких ситуациях нагрузку от перегородок следует оставлять в виде линейной нагрузки, а когда – переводить в равномерно распределенные по площади нагрузки, как это рекомендуется в п. 6.6 ДБН «Нагрузки и воздействия».

Сразу оговорюсь, если вы считаете перекрытие в программном комплексе, позволяющем с легкостью задавать перегородки или линейную нагрузку от них, следует воспользоваться этой возможностью и делать наиболее приближенный к жизни расчет – такой, где все нагрузки от перегородок в виде линейно-распределенных расположены каждая на своем месте.

Если же вы считаете вручную или же по каким-то причинам хотите упростить программный счет (вдруг, компьютер не тянет такое обилие перегородок), следует проанализировать, как это делать и делать ли.

Как собрать нагрузку от перегородок для расчета монолитной плиты

Рассмотрим варианты с монолитным перекрытием. Допустим, есть у нас фрагмент монолитного перекрытия, на который необходимо собрать нагрузку от перегородок, превратив ее в равномерно распределенную.

Что для этого нужно? Во-первых, как в примере 1, нужно определить нагрузку от 1 погонного метра перегородки, а также суммарную длину перегородок.

Допустим, погонная нагрузка у нас 0,3 т/м (перегородки газобетонные), а суммарная длина всех перегородок 76 м. Площадь участка перекрытия 143 м2.

Первое, что мы можем сделать, это размазать нагрузку от всех перегородок по имеющейся площади перекрытия (найдя вес всех перегородок и разделив его на площадь плиты):

0,3∙76/143 = 0,16 т/м2.

Казалось бы, можно так и оставить, и приложить нагрузку на все перекрытие и сделать расчет. Но давайте присмотримся, у нас есть разные по интенсивности загруженности участки перекрытия. Где-то перегородок вообще нет, а где-то (в районе вентканалов) их особенно много. Справедливо ли по всему перекрытию оставлять одинаковую нагрузку? Нет. Давайте разобьем плиту на участки с примерно одинаковой загруженностью перегородками.

На желтом участке перегородок нет вообще, справедливо будет, если нагрузка на этой площади будет равна 0 т/м2.

На зеленом участке общая длина перегородок составляет 15,3 м. Площадь участка 12 м2 (заметьте, площадь лучше брать не строго по перегородкам, а отступая от них где-то на толщину перекрытия, т.к. нагрузка на плиту передается не строго вертикально, а расширяется под углом 45 градусов). Тогда нагрузка на этом участке будет равна:

0,3∙15,3/12 = 0,38 т/м2.

На розовом участке общая длина перегородок составляет 38,5 м, а площадь участка равна 58 м2. Нагрузка на этом участке равна:

0,3∙38,5/58 = 0,2 т/м2.

На каждом синем участке общая длина перегородок составляет 11,1 м, а площадь каждого синего участка равна 5 м2. Нагрузка на синих участках равна:

0,3∙11,1/5 = 0,67 т/м2.

В итоге, мы имеем следующую картину по нагрузке (смотрим на рисунок ниже):

Видите, как значительно различаются нагрузки на этих участках? Естественно, если сделать расчет при первом (одинаковом для всей плиты) и втором (уточненном) варианте загружения, то армирование будет разным.

Делаем вывод: всегда нужно тщательно анализировать, какую часть плиты загружать равномерной нагрузкой от перегородок, чтобы результат расчета был правдоподобным.

Если вы собираете нагрузку от перегородок на перекрытие, опирающееся на стены по четырем сторонам, то следует руководствоваться следующим принципом:

 

Как собрать нагрузку от перегородок для расчета колонн и фундаментов

Теперь рассмотрим на том же примере, как следует собирать нагрузку от перегородок для расчета колонн и стен или фундаментов под ними. Конечно, если вы делаете расчет перекрытия, то в результате такого расчета вы получите реакции на опорах, которые и будут нагрузками на колонны и стены. Но если перекрытие по каким-то причинам не считаете, а требуется просто собрать нагрузку от перегородок, то как быть?

Здесь начинать нужно не с анализа загруженности частей плиты. Первый шаг в таком случае – это разделить плиту на грузовые площади для каждой колонны и стены.

На рисунке показано, как это сделать. Расстояние между колоннами делится пополам и проводятся горизонтальные линии. Точно так же ровно посередине между колоннами и между колоннами и нижней стеной проводятся горизонтали. В итоге в районе колонн плита поделена на квадраты. Все перегородки, попадающие в квадрат конкретной колонны, нагружают именно эту колонну. А на стену приходится нагрузка с полосы, ширина которой равна половине пролета. Остается только на каждом участке, где есть перегородки, посчитать суммарную длину этих перегородок и весь их вес передать на колонну.

Пример 2. Собрать нормативную (характеристическую) нагрузку от перегородок на розовую колонну и на стену с рисунка выше.

Вес одного погонного метра перегородки 0,35 кг. Суммарная длина перегородок в квадрате розовой колонны 5,4 м (из этих 5,4 м, одна перегородка длиной 1,4 м находится ровно на границе между двумя колоннами, а 4 м – в квадрате сбора нагрузки). Суммарная длина перегородок на полосе сбора нагрузки для стены – 18 м, длина стены 15,4 м.

Соберем нагрузку на колонну:

0,35∙4 + 0,35∙1,4/2 = 1,65 т.

Здесь мы взяли всю нагрузку от четырех метров стен и половину нагрузки от стены длиной 1,4 м (вторая половина пойдет на другую колонну).

На колонну также придется изгибающий момент от веса перегородок (если перекрытие опирается жестко), но без расчета плиты момент определить сложно.

Соберем нагрузку на стену. Нагрузка собирается на 1 погонный метр стены. Так как перегородки расположены довольно равномерно, находится общий вес всех перегородок и делится на длину стены:

0,35∙18/15,4 = 0,41 т/м.

Как собрать нагрузку от перегородок для расчета (или проверки) сборной плиты

Так как сборные плиты имеют четкую конфигурацию и схему опирания (обычно по двум сторонам), то подход для сбора нагрузок от перегородок должен быть особенным. Рассмотрим варианты сбора нагрузок на примерах.

Пример 3. Перегородка проходит поперек плиты.

Толщина перегородки 0,12 м, высота 3 м, объемный вес 1,8 т/м3; два слоя штукатурки по 0,02 м толщиной каждый, объемным весом 1,6 т/м3. Ширина плиты 1,2 м.

Так как плита считается как балка на двух опорах, то нагрузку от перегородки следует брать сосредоточенную – в виде вертикальной силы, приложенной к «балке» в месте опирания перегородки. Величина сосредоточенной силы равна весу всей перегородки:

0,12∙3∙1,2∙1,8 + 2∙0,02∙3∙1,2∙1,6 = 1,0 т.

Пример 4. Перегородка проходит вдоль сборной плиты.

В таком случае, не зависимо от того, где находится перегородка – посередине или на краю плиты, нагрузка от нее берется равномерно распределенной вдоль плиты. Эта нагрузка собирается на 1 погонный метр плиты.

Толщина перегородки 0,1 м, высота 2,5 м, объемный вес 0,25 т/м3.

Определим равномерно распределенную нагрузку 1 п.м плиты:

0,1∙2,5∙1∙0,25 = 0,06 т/м.

Пример 5. Перегородки находятся над частью плиты.

Когда плиту пересекает несколько перегородок, у нас есть два варианта:

1) выделить нагрузку от продольных перегородок в равномерно распределенную, а нагрузку от поперечных перегородок – в сосредоточенную;

2) всю нагрузку  сделать равномерно распределенной, «размазав» ее по участку плиты с перегородками.

Толщина перегородки 0,1 м, высота 2,5 м, объемный вес 0,25 т/м3. Ширина плиты 1,5 м, длина продольной перегородки 3 м, длина двух самых коротких перегородок 0,7 м.

Определим нагрузку на плиту по варианту 1.

Равномерно распределенная нагрузка равна:

0,1∙2,5∙1∙0,25 = 0,06 т/м.

Сосредоточенная нагрузка от крайней правой перегородки равна:

0,1∙2,5∙1,5∙0,25 = 0,1 т.

Сосредоточенная нагрузка от каждой из двух коротких перегородок равна:

0,1∙2,5∙0,7∙0,25 = 0,044 т.

Определим нагрузку на плиту по варианту 2.

Найдем общий вес всех перегородок:

0,1∙2,5∙0,25∙(3 + 1,5 + 0,7∙2) = 0,37 т.

Найдем длину перегородки, на которой действует нагрузка:

3 + 0,1 = 3,1 м.

Найдем величину равномерно распределенной нагрузки на участке 3,1 м:

0,37/3,1 = 0,12  т/м.

class=»eliadunit»> Добавить комментарий

Занятие 2-2. ВНЕШНИЕ СИЛЫ

Таблица 2.18 Сбор нагрузок на плиту

Н а г р у з к а Норма- тивная кН/м2 γ f Расчет- ная, кН/м2
А. Постоянная
Паркетный пол (δ = 0.02 м, γ = 6 кН/м3) 0.12 1.2 0.14
Цементная стяжка (δ = 0.02 м, γ = 20 кН/м3) 0.40 1.3 0.52
Шлакобетон (δ=0.08 м, γ = 12.2 кН/м3) 0.98 1.3 1.27
Железобетонная плита (δ = 0.12 м, γ = 25 кН/м3) 3.00 1.1 3.30
Итого 4.50   5.26
Б. Временная
Длительно действующая 2.0 1.2 2.40
Кратковременная 4.0 1.2 4.80
Итого 6.0   7.20
В. Суммарная
Постоянная и длительно действующая 6.50   7.66
Кратковременная 4.00   4.80
Всего 10.50   12.46

Поскольку монолитная железобетонная плита перекрытия опирается по контуру на стены, а в середине пролета поддерживается колоннами, то грузовая площадь, приходящаяся на колонну (рис.2.32), равна А=6.0·6.0 — 0.4·0.4 = 35.84 м2. Тогда нагрузка с этой площади, передающаяся на колонну, будет равна нагрузке на 1 м2 площади плиты, умноженной на величину грузовой площади, приходящейся на колонну, и плюс нагрузка от собственного веса ребер плиты.

Подсчитаем нагрузку от собственного веса ребер плиты, приходящуюся на погонный метр ребра:

нормативная — qнребра = (0.5-0.12) ·0.225 = 1.9 кН/м,
расчетная — qрребра = qн ребра ·1.1 = 1.9·1.1 = 2.09 кН/м.

Следовательно, нагрузка от перекрытия, передающаяся на колонну, будет равна:

постоянная
нормативная — P нпост= 4.5·35.84+2·1.9·(6.0-0.4)=182.56 кН,
расчетная — P рпост = 5.268·35.84+2·2.09·5.6=212.22 кН;

временная
длительная — P длит временная = 2.4·35.84 =86.02 кН,
кратковременная — P кратко временная = 4.8·35.84 =172.03 кН;

нагрузка рабочего состояния
нормативная — P н = 10.5·35.84+2·1.9·5.6=397.6 кН,
расчетная — P р = 12.468·35.84+2·2.09·5.6=497.33 кН.

П р и м е р 2.27. Определить нагрузку, действующую на продольные и поперечные балки (ребра) монолитного ребристого перекрытия. План и разрезы здания представлены на рисунке 2.33.

Размеры здания в плане 18×22.5 м, железобетонные колонны сечением 40×40 см, сетка колонн 4.5×6 м. Стены кирпичные, несущие. Ось стены проходит на расстоянии 20 см от внутренней грани. Полезная временная нормативная нагрузка на перекрытие 6 кПа, в том числе кратковременная 4 кПа. Толщина плиты, размеры ребер перекрытия, конструкция пола такие же, как в примере 2.26.

Р е ш е н и е. Сбор нагрузок на плиту перекрытия выполнен в примере 2.26 (табл. 2.18.), поэтому воспользуемся этими данными. Грузовые площади, приходящиеся на продольные и поперечные балки монолитного перекрытия от плиты, опертой по контуру, показаны на рисунке 2.33. На эти балки кроме нагрузки от плиты будет действовать еще нагрузка от собственного веса самих балок (ребер перекрытия).

Пролеты балок
l продольных = 4.5 — 0.2 — 0.2 = 4.1 м,
l поперечных = 6.0 — 0.2 — 0.2 = 5.6 м.

Рис. 2.33. Ребристое перекрытие (размеры даны в м) а — план, б — нагрузка на поперечную балку, в — разрез по А-А (вдоль поперечной балки), г — нагрузка на продольную балку, д — разрез по В-В (вдоль продольной балки),

Максимальная интенсивность (q1) нагрузки, распределенной по треугольнику, действующему на продольную балку, определится произведением величины интенсивности нагрузки, приходящейся на плиты перекрытия (q плиты), на шаг балок в продольном направлении (4.5 м). Максимальная интенсивность (q2) трапецеидальной нагрузки, действующей на поперечную балку, по величине равна q1.

Нагрузка от собственного веса одного метра балок подсчитана в примере 2.26. и составляет:

нормативная — qн собств. вес = 1.9 кН/м,
расчетная — qн собств. вес = 2.09 кН/м.

Таким образом, значения q1 будут равны от постоянной нагрузки

нормативное значение — q1н пост = 4.5·4.5 = 20.25 кН/м,
расчетное значение — q1 р пост = 5.268·4.5 = 23.71 кН/м,

от временной нагрузки

длительно действующей — q1 p длит = 2.4·4.5 = 10.8 кН/м,
кратковременной — q1 р пост = 4.8·4.5 = 21.6 кН/м

Рис. 2.34. Покрытие над актовым залом а — разрез, б — план кровли, обрешетки под кровлю и прогонов подвесного потолка, в — щит обрешетки кровли, г — опирание второстепенных прогонов подвесного потолка на главные, д - нагрузка на ферму, е — нагрузка на прогон обрешетки кровли, ж — нагрузка на второстепенные прогоны подвесного потолка, з — узлы соединения главных прогонов подвесного потолка, и — нагрузка на него. 1- ферма, 2 — кровельные листы, 3 — щит обрешетки, 4 — главные прогоны подвесного потолка, 5 — второстепенные прогоны, 6 — верхний пояс фермы, 7 — прогон обрешетки, 8 -стойка, 9 — раскосы щита, 10-опорная бабышка, 11 -грузовая площадь на узел фермы

от полной нагрузки

нормативное значение — q1 н = 10.5·4.5 = 47.25 кН/м,
расчетное значение — q1 р = 12.468·4.5 = 56.11 кН/м.

П р и м е р 2.28. Собрать нагрузку на несущие элементы покрытия по треугольным металлодеревянным брусчатым фермам с подвесным потолком над актовым залом административного здания пролетом L фермы = 15 м.

Районом строительства является Свердловская область. Нормативная снеговая нагрузка в этом районе s0 = 1.0 кН/м2. Кровля выполнена из волнистых асбоцементных листов обыкновенного профиля. Утеплитель подвесного перекрытия — из двух слоев минераловатных плит толщиной 5 см (γ = 1.5 кН/м3). Материал конструкции — сосновые брусья 2-го сорта, влажностью до 20%. Высота фермы в коньке 3 м. Угол наклона верхнего пояса α = 21.80 (cos α = 0.927, sin α = 0.37). Шаг ферм 3 м. Пространственная жесткость покрытия обеспечивается жесткими кровельными щитами и вертикальными связями, которые скрепляют фермы попарно (рис.2.34). Щит состоит из четырех прогонов сечением 5×10 см, соединяющихся гвоздями с элементами решетки (стойками и раскосами). Длина щита определяется шагом несущих конструкций L прогона = 3 м. Расстояние между прогонами 50 см.

Р е ш е н и е. Подсчет нагрузки на один квадратный метр горизонтальной проекции покрытия сведен в таблицу 2.19. Подвесной потолок состоит (рис. 2.34) из главных прогонов пролетом 3 м, подвешенных к узлам нижнего пояса фермы на расстоянии 3.75 м друг от друга, и вспомогательных прогонов, пролетом 3.75 м, расположенных через 1 м и щитов, опирающихся на черепные бруски, прибитые к вспомогательным прогонам.

Подсчет нагрузки на квадратный метр подвесного потолка сведен в таблицу 2.20.

Нормативная и расчетная нагрузки, приходящиеся на один метр прогона обрешетки, соответственно равна (кН/м)

qнпрогона = qнпокрытия ·0.5 = 1.235·0.5 = 0.62,

qpпрогона = qpпокрытия ·0.5 = 1.875·0.5 = 0.94,

Составляющие нагрузки (проекции вертикальной нагрузки на оси перпендикулярную и параллельную плоскости ската) равны (кН/м):

qнпрогона, y= qнпрогона · cos α = 0.62·0.927 = 0.57,
qpпрогона, y= qpпрогона · cos α = 0.94·0.927 = 0.87,
qнпрогона,x= qнпрогона ·sin α = 0.62·0.37 = 0.23,
qpпрогона,x= qpпрогона · sin α = 0.94·0.37 = 0.35,

Таблица 2.19. Сбор нагрузок на покрытие

Н а г р у з к а Норма- тивная, кН/м2 γf Расчет- ная, кН/м2
А. Постоянная
Волнистые асбоцементные листы (qн /cosα = 0.15 / 0.927) 0.16 1.2 0.192
Прогоны (обрешетины) сечением 10х10 см (γ = 5 кН/м3) 0.05 1.1 0.055
Решетка щита (50% от веса прогонов) 0.025 1.1 0.028
Итого 0.235   0.275
В. Временная
Снеговая 1.0 1.6 1.6
Всего 1.235   1.875
П р и м е ч а н и е . Коэффициент надежности по нагрузке для снега принят равным 1.6, поскольку qпост / qврем .

Расчет плиты перекрытия по формулам

Расчет железобетонной монолитной плиты перекрытия

Железобетонные монолитные плиты перекрытия, несмотря на то, что имеется достаточно большое количество готовых плит, по-прежнему востребованы. Особенно если это собственный частный дом с неповторимой планировкой, в котором абсолютно все комнаты имеют разные размеры либо процесс строительства ведется без использования подъемных кранов.

Монолитные плиты достаточно востребованы, особенно в строительстве загородных домов с индивидуальным дизайном.

В подобном случае устройство монолитной железобетонной плиты перекрытия дает возможность значительно сократить затраты денежных средств на приобретение всех необходимых материалов, их доставку либо монтаж. Однако в данном случае большее количество времени может уйти на выполнение подготовительных работ, в числе которых будет и устройство опалубки. Стоит знать, что людей, которые затевают бетонирование перекрытия, отпугивает вовсе не это.

Заказать арматуру, бетон и сделать опалубку на сегодняшний день несложно. Проблема заключается в том, что не каждый человек может определить, какая именно арматура и бетон понадобятся для того, чтобы выполнить подобные работы.

Данный материал не является руководством к действию, а несет чисто информационный характер и содержит исключительно пример расчета. Все тонкости расчетов конструкций из железобетона строго нормированы в СНиП 52-01-2003 “Железобетонные и бетонные конструкции. Основные положения”, а также в своде правил СП 52-1001-2003 “Железобетонные и бетонные конструкции без предварительного напряжения арматуры”.

Монолитная плита перекрытия представляет собой армированную по всей площади опалубку, которая заливается бетоном.

Касательно всех вопросов, которые могут возникать в процессе расчета железобетонных конструкций, следует обращаться именно к данным документам. В данном материале будет содержаться пример расчета монолитного железобетонного перекрытия согласно тем рекомендациям, которые содержатся в данных правилах и нормах.

Пример расчета железобетонной плиты и любой строительной конструкции в целом будет состоять из нескольких этапов. Их суть – подбор геометрических параметров нормального (поперечного) сечения, класса арматуры и класса бетона, чтобы плита, которая проектируется, не разрушилась под воздействием максимально возможной нагрузки.

Пример расчета будет производиться для сечения, которое перпендикулярно оси х. На местное сжатие, на действие поперечных сил, продавливание, на кручение (предельные состояния 1 группы), на раскрытие трещин и расчет по деформациям (предельные состояния 2 группы) производиться не будут. Заранее стоит предположить, что для обыкновенной плоской плиты перекрытия в жилом частном доме подобных расчетов не требуется. Как правило, так оно и есть на самом деле.

Следует ограничиться лишь расчетом нормального (поперечного) сечения на действия изгибающего момента. Те люди, которым не нужно давать пояснения касательно определения геометрических параметров, выбора расчетных схем, сбор нагрузок и расчетных предпосылок, могут сразу перейти к разделу, в котором содержится пример расчета.

Вернуться к оглавлению

Первый этап: определение расчетной длины плиты

Плита перекрытия может быть абсолютно любой длины, а вот длину пролета балки уже необходимо высчитывать отдельно.

Реальная длина может быть абсолютно любой, а вот расчетная длина, выражаясь другими словами, пролет балки (в данном случае плиты перекрытия) – совсем другое дело. Пролетом является расстояние между несущими стенами в свету. Это длина и ширина помещения от стенки до стенки, следовательно, определить пролет железобетонного монолитного перекрытия довольно просто. Следует измерить рулеткой либо другими подручными средствами данное расстояние. Реальная длина во всех случаях будет большей.

Железобетонная монолитная плита перекрытия может опираться на несущие стенки, которые выкладываются из кирпича, камня, шлакоблоков, керамзитобетона, пено- либо газобетона. В подобном случае это не очень важно, однако в случае, если несущие стенки выкладываются из материалов, которые имеют недостаточную прочность (газобетон, пенобетон, шлакоблок, керамзитобетон), также необходимо будет выполнить сбор некоторых дополнительных нагрузок.

Данный пример содержит расчет для однопролетной плиты перекрытия, которая опирается на 2 несущих стенки. Расчет плиты из железобетона, которая опирается по контуру, то есть на 4 несущих стенки, или для многопролетных плит рассматриваться в данном материале не будет.

Чтобы то, что было сказано выше, усваивалось лучше, следует принять значение расчетной длины плиты l = 4 м.

Вернуться к оглавлению

Определение геометрических параметров железобетонного монолитного перекрытия

Расчет нагрузок на плиту перекрытия считается отдельно для каждого конкретного случая строительства.

Данные параметры пока не известны, однако есть смысл их задать для того, чтобы была возможность произвести расчет.

Высота плиты задается как h = 10 см, условная ширина – b = 100 см. Условность в подобном случае означает то, что плита бетонного перекрытия будет рассматриваться как балка, которая имеет высоту 10 см и ширину 100 см. Следовательно, результаты, которые будут получены, могут применяться для всех оставшихся сантиметров ширины плиты. То есть, если планируется изготавливать плиту перекрытия, которая имеет расчетную длину 4 м и ширину 6 м, для каждого из данных 6 м необходимо применять параметры, определенные для расчетного 1 м.

Класс бетона будет принят B20, а класс арматуры – A400.

Далее происходит определение опор. В зависимости от ширины опирания плит перекрытия на стенки, от материала и веса несущих стенок плита перекрытия может рассматриваться как шарнирно опертая бесконсольная балка. Это является наиболее распространенным случаем.

Далее происходит сбор нагрузки на плиту. Они могут быть самыми разнообразными. Если смотреть с точки зрения строительной механики, все, что будет неподвижно лежать на балке, приклеено, прибито либо подвешено на плиту перекрытия – это статистическая и достаточно часто постоянная нагрузка. Все что ползает, ходит, ездит, бегает и падает на балку – динамические нагрузки. Подобные нагрузки чаще всего являются временными. Однако в рассматриваемом примере никакой разницы между постоянными и временными нагрузками делаться не будет.

Вернуться к оглавлению

Существующие виды нагрузок, сбор которых следует выполнить

Сбор нагрузок сосредоточен на том, что нагрузка может быть равномерно распределенной, сосредоточенной, неравномерно распределенной и другой. Однако нет смысла так сильно углубляться во все существующие варианты сочетания нагрузки, сбор которой производится. В данном примере будет равномерно распределенная нагрузка, потому как подобный случай загрузки для плит перекрытия в жилых частных домах является наиболее распространенным.

Сосредоточенная нагрузка должна измеряться в кг-силах (КГС) или в Ньютонах. Распределенная же нагрузка – в кгс/м.

Нагрузки на плиту перекрытия могут быть самыми разными, сосредоточенными, равномерно распределенными, неравномерно распределенными и т. д.

Чаще всего плиты перекрытия в частных домах рассчитываются на определенную нагрузку: q1 = 400 кг на 1 кв.м. При высоте плиты, которая равняется 10 см, вес плиты добавит к данной нагрузки еще порядка 250 кг на 1 кв.м. Керамическая плитка и стяжка – еще до 100 кг на 1 кв.м.

Подобная распределенная нагрузка будет учитывать практически все сочетания нагрузок на перекрытия в жилом доме, которые возможны.2) / 8 = 1800 кг/м.

Необходимо знать, что расчет железобетонной арматуры по предельным усилиям согласно СП 52-101-2003 и СНиП 52-01-2003 основывается на следующих расчетных предпосылках:

Схема пустотелой армированной плиты перекрытия

  1. Сопротивление бетона растяжению следует принять равным 0. Подобное допущение производится на том основании, что сопротивление бетона растяжению гораздо меньше сопротивления растяжению арматуры (ориентировочно в 100 раз), следовательно, в растянутой зоне конструкции из железобетона могут образовываться трещины из-за разрыва бетона. Таким образом на растяжение в нормальном сечении работает только арматура.
  2. Сопротивление бетона сжатию следует принять равномерно распределенным по зоне сжатия. Оно принимается не более расчетного сопротивления Rb.
  3. Растягивающие максимальные напряжения арматуры следует принимать не более, чем расчетное сопротивление Rs.

Чтобы не допускать эффект образования пластического шарнира и обрушения конструкции, которое возможно при этом, соотношение E высоты сжатой зоны бетона у к расстоянию от центра тяжести арматуры к верху балки h0, E = y/h0, должно быть не более, чем предельное значение ER. Предельное значение должно определяться по следующей формуле:

ER = 0.8 / (1 + Rs / 700).

Это эмпирическая формула, которая основывается на опыте проектирования конструкций из железобетона. Rs – расчетное сопротивление арматуры в МПа. Однако стоит знать, что на данном этапе с легкостью можно обойтись и таблицей граничных значений относительной высоты сжатой зоны бетона.

Вернуться к оглавлению

Некоторые нюансы

Есть примечание к значениям в таблице, пример которой содержится в материале. Если сбор нагрузок для расчета выполняется не профессиональными проектировщиками, рекомендуется занижать значения сжатой зоны ER приблизительно в 1,5 раза.

Дальнейший расчет будет производиться с учетом a = 2 см, где a – расстояние от низа балки до центра поперечного сечения арматуры.

При E меньше/равно ER и отсутствии арматуры в сжатой зоне бетонную прочность следует проверять согласно следующей формуле:

B < Rb*b*y (h0 – 0.5y).

Физический смысл данной формулы несложен. Любой момент может быть представлен в виде действующей силы с некоторым плечом, следовательно, для бетона понадобится соблюдать вышеприведенное условие.

Проверка прочности прямоугольных сечений с одиночной арматурой с учетом E меньше/равно ER производится согласно формуле: M < RsAs (h0 – 0.5y).

Суть данной формулы следующая: по расчетам арматура должна выдержать нагрузку такую же, как и бетон, потому как на арматуру будет действовать такая же сила с таким же плечом, как и на бетон.

Плиты перекрытия с разными несущими способностями, от 400 кг/м2 до 2300 кг/м2.

Примечание по этому поводу. Подобная расчетная схема, которая предполагает плечо действия силы (h0 – 0.5y), дает возможность довольно легко и просто определить основные параметры поперечного сечения согласно формулам, которые будут приведены ниже. Однако стоит понимать, что подобная расчетная схема вовсе не единственная.

Расчет может быть произведен относительно центра тяжести сечения, которое было приведено. В отличие от металлических и деревянных балок, рассчитывать железобетон по предельным растягивающим либо сжимающим напряжениям, которые возникают в нормальном (поперечном) сечении балки из железобетона несколько сложно.

Железобетон является композитным и очень неоднородным материалом. Однако и это еще не все. Многочисленные экспериментальные данные сообщают о том, что предел прочности, текучести, модуль упругости и другие различные механические характеристики имеют несколько значительный разброс. К примеру, при определении бетонного предела прочности на сжатие одинаковые результаты не будут получаться даже тогда, когда образцы изготавливаются из смеси бетона одного замеса.

Связано это с тем, что прочность бетона будет зависеть от большого количества различных факторов: качества (степени загрязненности в том числе) и крупности заполнителя, способа уплотнения смеси, активности цемента, различных технологических факторов и так далее.2 * 1170000) = 0.24038.

Арматуры имеет два размера, условный и реальный размеры.

В связи с тем, что момент был определен в кг/м и размер поперечного сечения удобно подставлять в метрах тоже, значение расчетного сопротивления будет приведено кг/м кв. для того, чтобы соблюдалась размерность.

Подобное значение меньше предельного для такого класса арматуры согласно таблице (0.24038 < 0.39). Соответственно, арматура в сжатой зоне по расчетам не нужна. Следовательно, по формуле площадь сечения арматуры, которая требуется:

As = 117 * 100 * 8 (1 – корень кв. (1 – 2 * 0.24038)) / 3600 = 7.265 кв.см.

В подобном случае использовались размеры поперечного сечения в сантиметрах. Значение расчетных сопротивлений при этом было в кг/см кв. для того, чтобы упростить вычисления.

Для армирования 1 п.м имеющейся плиты перекрытия следует использовать 5 стержней, которые имеют диаметр 14 мм с шагом 200 мм. Площадь сечения арматуры будет 7.69 кв.см. Подбор арматуры достаточно удобно производится согласно следующей таблице.

Вернуться к оглавлению

Количество стержней для армирования монолитной железобетонной плиты перекрытия

Для того чтобы армировать плиту, есть возможность использовать 7 стержней, которые имеют диаметр 12 мм с шагом 140 мм. Есть и другой вариант – 10 стержней, которые имеют диаметр 10 мм и шаг 100 мм.

Прочность бетона проверяется согласно следующей формуле:

y = 3600 * 7.69 / (117 * 100) = 2.366 см.

E = 2.366 / 8 = 0.29575. Данное значение меньше, чем граничное 0.531 согласно формулам и таблице, помимо того, оно меньше рекомендуемого 0.531/1.5 = 0.354, то есть удовлетворяет всем имеющимся требованиям.

117 * 100 * 2.366 (8 – 0.5 * 2.366) = 188709 кг на см > M = 180000 кг на см, согласно формуле. 36

3600 * 7.69 (8 – 0.5 * 2.366) = 188721 кг на см > M = 180000 кг на см, согласно формуле.

Устройство пола поверх монолитной армированной плиты перекрытия

Все необходимые требования таким образом соблюдаются.2 / 23.

Для частных случаев можно получить некоторые определенные значения:

  1. Плита в плане 6х6 м – Mx = My = 1.9тм.
  2. Плита в плане 5х5 м – Mx = My = 1.3тм.
  3. Плита в плане 4х4 м – Mx = My = 0.8тм.

При проверке прочности считается, что в сечении имеется сжатый бетон сверху, а также растянутая арматура снизу. Они способны образовать силовую пару, которая воспринимает моментное усилие, приходящее на нее.

Как собрать нагрузку на плиту перекрытия

Нас спрашивают: 
Подскажите пожалуйста как правильно собрать нагрузку от перегородки на плиту перекрытия. Как перераспределяется нагрузка от перегородки на плиту (в старом источнике нашел про перераспределение нагрузки на 2 соседние плиты по 25% и на саму плиту 50% от веса перегородки)?

Мы отвечаем: 
Абсолютно непонятно, с какого перепугу перегородка занимающая три плиты будет именно таким образом на них давить. ) Нет, такое распределение, разумеется, вполне возможно, но далеко не очевидно. Однозначно, нагрузка на плиту от перегородки равна весу перегородки пропорционально приходящегося на эту плиту. Не больше и не меньше.

В реальности это выглядит так: скажем, перегородка в три метра длиной, стоит на трех плитах шириной в метр (двух, десяти не принципиально), вес перегородки 1200 кг, соответственно на каждую плиту приходится 400 кг. Если плиты четыре и три из них по метру, а одна в три, то и нагрузка будет распределятся как 1200/6 м = 200 кг 200 кг х 3 = 600 кг. Т. е. три метровых плиты будут держать по сто кг, а трехметровая все шестьсот кг.

Вот и все. Другой вопрос, что плита рассчитывается на предельную нагрузку как балка. Т.е. вес перегородки (продолжим пример) будет сосредоточенным и равным 400 кг. При этом, вертикальные реакции (усилия) в местах опор равны 200 кг на каждой (400кг/2 опоры). В данном случае балка предполагается статически определимой, т.е. имеет шарнирные опоры, с одной стороны подвижный с другой неподвижный шарнир. А вот изгибающие усилия, зависят от места приложения нагрузки. В шарнирах это ноль, а в точке приложения максимум, но при этом величина изгибающего момента зависит от пролета плиты. Если нагрузка приложена в трех метрах от опоры, то это уже 400х3=1200 кг. Впрочем, это очевидно — чем длиннее плита, тем меньшую нагрузку (при равном сечении) она может выдержать.

Подводя итог рассуждениям: в каждом конкретном случае, нужно рассматривать не некую абстрактную перегородку, а систему распределения нагрузок. И только уже исходя из этого можно рассчитать их величины.

Если взять пример, когда перегородка опирается краями на несущие стены, а основной плоскостью на плиты? В подобном случае, она представляет собой диск работающий в сечении ее же плоскости, а значит не деформируемый, а значит плиты на которых она помещена вообще не требуют расчета на нагрузку от перегородки.


Задать вопрос или прокомментировать

Сбор нагрузок на стену первого этажа

Начинаем публикацию статей по расчету кирпичных стен. Прежде, чем приступить к расчетам, необходимо собрать нагрузки. На стены здания в пределах каждого этажа действуют нагрузки от вышележащих этажей, нагрузки от плит перекрытия рассматриваемого этажа и собственный вес отдельных участков стен.

Для начала давайте определимся, какие же нагрузки бывают?

Нагрузки бывают:

нормативные — их значения приведены в СНиП «Нагрузки и воздействия».

расчетные — значения расчетных нагрузок определяются путем умножения нормативных на коэффициент надежности по нагрузке (γƒ)

Также они классифицируются на:

постоянные

временные, которые в свою очередь бывают:

a. длительными

b. кратковременными

c. особыми

К постоянным относится собственный вес конструкций, который находится путем умножения объема на плотность.

К кратковременным относятся нагрузки от людей, снега, ветра (полные значения) и пр.

К длительным — перегородки, оборудование и пр., а также пониженные кратковременные от людей и снега.

В СНиПе указаны дополнительно особые нагрузки, но в данном примере они нас не интересуют.

Давайте для наглядности представим, что нам необходимо произвести сбор нагрузок на стену первого этажа двухэтажного коттеджа. Высота этажа 3м, длина 6м. Перекрытия железобетонные толщиной 220мм. Для упрощения расчетов принимаем плоскую рулонную кровлю.

  

 

Для начала произведем подсчет нагрузок на 1 м2 перекрытия и покрытия и внесем данные в таблицу. Предположим, что пол второго этажа состоит из стяжки, поверх которой уложен ламинат. Покрытие второго этажа состоит из пароизоляции, утеплителя, цементно-песчаной стяжки и трехслойного гидроизоляционного ковра.

НаименованиеНормативная нагрузка, тγƒРасчетная нагрузка, т
Покрытие
Собственный вес плиты покрытия 0,22м*1м*1м*2,5 т/м3
0,551,10,61
Пароизоляция из 1 слоя рубероида0,0031,30,004
Утеплитель из керамзита плотностью 400 кг/м3, толщина 100мм0,041,30,052
Цементно-песчаная стяжка толщиной 30мм, плотностью 1800 кг/м30,0541,30,07
Гидроизоляционный ковер из 3 слоев рубероида0,011,30,013
Итого постоянная0,749
Временная для прочих покрытий  (таблица 3, п.9, в)0,051,30,065
Временная снеговая (в районе III -180 кг/м2). Внимание! В СНиП Нагрузки и воздействия дана уже расчетная нагрузка. Нормативная нагрузка определяется путем умножения расчетного значения на 0,7. (μ=1)0,1261,40,18
Итого временная0,245
Полная нагрузка на 1м2 покрытия0,994
Перекрытие первого этажа

Собственный вес плиты перекрытия 0,22м*1м*1м*2,5 т/м3

0,551,10,61
Цементно-песчаная стяжка толщиной 30мм, плотностью 1800 кг/м30,0541,30,07
Ламинат толщиной 10мм + подложка 3мм0,0081,20,01
Итого постоянная0,69
Временная для помещений жилых зданий0,151,30,2
Итого временная0,2
Полная нагрузка на 1м2 перекрытия0,89

Теперь нам нужно определить грузовую площадь. Чтобы лучше понять, что такое грузовая площадь, посмотрим на картинку ниже.

 

Если нагрузка собирается для 1 погонного метра стены, то грузовая площадь будет равна произведению 1-го метра на половину расстояния между наружной и внутренней несущей стеной.

Розовым цветом отмечена грузовая площадь для средней стены, а  зеленым цветом — для наружных стен.

Таким образом, для рассматриваемого нами участка кладки грузовая площадь будет равна 1м*2м=2м2

Перемножив грузовую площадь на  значения из таблицы, получим нагрузку от перекрытия и покрытия для 1 погонного метра кирпичной кладки.

 

От покрытия:

— постоянная — 0,749*2=1,498 т

— временная — 0,245*2=0,49 т

Полная P2= 0,994*2=1,988 тонны

 

От перекрытия:

— постоянная —  0,69*2=1,4 т

— временная — 0,2*2=0,4 т

Полная P1= 0,89*2=1,8 тонн

 

Осталось посчитать вес кладки второго этажа (G2) и вес парапета (Gп). Высота 2го этажа — 3 м, парапета — 0,7 м. Толщина — 0,25 м, плотность кладки — 1,8 т/м3.

Вес 1 погонного метра равен:

G2=1*0,25*3*1,8=1,35 т

Gп=1*0,25*0,7*1,8=0,315 т

Полная нагрузка, которая действует на 1 пог.м кладки первого этажа составит:

 

N=Gп+P2+G2+P1=0,315+1,988+1,35+1,8=5,5 т

 

Для дальнейших расчетов нам также понадобится значение длительной продольной силы. Она равна сумме постоянной нагрузки от перекрытий и покрытий, веса вышележащих стен и длительной временной от перекрытий и покрытий. В нашем примере длительную временную мы не рассматривали.

Ng=0,315+1,498+1,35+1,4=4,563 т

Теперь, когда все нагрузки собраны, можно приступать к Расчету стены на прочность.

← Предыдущая Следующая →

Статья была для Вас полезной?

Оставьте свой отзыв в комментарии

 


Вопросы и ответы: Добавление нагрузок на опоры подвала

A. Кристофер ДеБлуа отвечает: Определение того, обладает ли плита или основание достаточной способностью выдерживать точечную нагрузку, представляет собой двухэтапный процесс. Сначала определите расчетную нагрузку, которую несет колонна. На основе площади притока от каркаса на крыше, чердаке и этажах соберите нагрузки с каждого уровня и сложите их по всему зданию. Типичные нагрузки на колонны в жилом строительстве (не считая гигантских особняков с футбольными полями вместо больших комнат) могут составлять от нескольких тысяч фунтов до 10 тонн.В первом случае стальная колонна даже не нужна, и нагрузка могла быть поддержана непосредственно на плите. Даже 4-дюймовая плита на уровне грунта может выдержать до 5000 фунтов без опоры, если вы поместите приличную опорную плиту на колонну (например, 1 / 2x9x9 дюймов). Однако в случае 10 тонн подойдет только хорошая опора, рассчитанная на необходимую нагрузку. При модернизации запланируйте вырезание всего бетона и установку новой опоры, чтобы быть уверенным, что у вас есть достаточная мощность.

Серая область между ними — это то место, откуда берутся все эти седые волосы.Если стандартное основание составляет 2×2 фута, то несущая способность основания должна составлять не менее 10 000 фунтов (2 фута x 2 фута x 2,500 фунтов на квадратный фут), и, возможно, даже больше, если несущая способность почвы превышает допустимую. 2500 фунтов на квадратный дюйм. Вы, вероятно, можете поддержать немного больше, учитывая, что 2500 фунтов на квадратный фут — довольно консервативная емкость почвы (если вы не строите на иле), и что временные нагрузки для полов дома, спальни и чердаки (40 фунтов на квадратный фут) часто консервативны. Также убедитесь, что вы учитываете снеговую нагрузку на крышу в вашем районе.Я бы не рекомендовал растягивать эти предположения более чем на 20% без дополнительной проверки. Если нагрузка на колонну превышает 12 000 фунтов, или если вы не совсем уверены, что есть опора 2×2, установите новую подходящего размера.

Кристофер ДеБлуа, П.Е., инженер-строитель в компании Palmer Engineering Co. в Шамбле, Джорджия.

Когда пол — это не просто пол: почему безопасность стоек зависит от правильных параметров плиты на уровне поверхности

Не все бетонные полы созданы одинаково, и не каждый пол был спроектирован таким образом, чтобы выдерживать воздействие равномерно распределенных или сосредоточенных точечных нагрузок, которые прикладываются к плите при установке стеллажа для хранения на полу.Бетонные плиты на уровне грунта — это плиты, которые опираются непосредственно на землю или слой (и) камня или инженерного заполнителя. Чтобы полы, на которых должны быть установлены стеллажи для хранения, могли безопасно выдерживать возложенные на них нагрузки, RMI «Соображения по планированию и использованию промышленных стальных стеллажей для хранения», раздел 2.7, рекомендует проектировщику пола учитывать следующее:

  • Распределение напряжений по толщине плиты. Эта информация помогает определить, будет ли плита подвергаться растягивающим напряжениям в точке крепления стойки к полу.
  • Толщина плиты. Это измерение (в дюймах или миллиметрах) будет влиять на размер и толщину базовой пластины, а также длину анкерных болтов, которые крепят стойку к полу.
  • Прочность бетона. Определяется в фунтах на квадратный дюйм (фунтов на квадратный дюйм) или мегапаскалях (МПа), это измерение прочности на сжатие влияет на размер и толщину базовой пластины и диаметра якоря.
  • Давление на грунт. измеряется в фунтах на квадратный фут (ФСФ) или kilonewton на квадратный метр (кН / м2), эта цифра влияет на размер и толщину плиты и опорной плиты.
  • Модуль реакции земляного полотна. Вычисленное в фунтах на кубический дюйм (pci) или килоньютон на кубический метр (кН / м3), это измерение влияет на размер и толщину как плиты, так и плиты основания стойки.
  • Армирование в плите. Что касается количества арматурных стержней, встроенных в плиту в каждом направлении, это влияет на подъемную способность пола.
  • Ожидаемое перемещение стыка плит перекрытия, при наличии.
  • Тип стыка плит перекрытия. Различные бетонные полы имеют разные типы стыков, включая шпоночные, шпоночные или замковые. Тип используемых дюбелей (или другого механизма передачи усилия) также влияет на подъемную способность пола.
  • Расстояние от опорной плиты из сустава. Близости опорной плиты колонка стойки к полу суставу может уменьшить емкость стойки и / или плиты.
  • Расстояние анкера от стыка. Размещение анкерного болта слишком близко к стыку плиты может повлиять на несущую способность анкера.

Иногда складские этажи (и здания) строятся без знания конечного применения или нагрузки на пол. В подобных ситуациях для зданий с группой хранения S, как определено в Разделе 311 Международного строительного кодекса (IBC), RMI рекомендует, чтобы пол был рассчитан на минимальную сосредоточенную нагрузку 5000 фунтов (2300 кг) для зданий с чистым потолком. высота 15 футов. Добавьте дополнительно 2500 фунтов (1100 кг) на каждые дополнительные 5 футов (1.5 метров), высотой потолка более 15 футов (4,6 метра) или его части. Эти грузы следует размещать на сетке размером 4 на 8 футов (1,2 метра на 2,4 метра) по всей площади пола.

Если проектировщик пола учтет эти рекомендации, покупатель стеллажной системы может быть уверен, что были использованы разумные расчетные нагрузки и полученная плита перекрытия должна быть способна безопасно поддерживать стеллаж и продукты, хранящиеся в нем.

Ищете другие передовые методы для планирования нового проекта стеллажей для промышленных стеллажей? Загрузить Рекомендации RMI по планированию и использованию промышленных стальных стеллажей для хранения.

% PDF-1.5 % 77 0 obj> эндобдж xref 77 182 0000000016 00000 н. 0000004463 00000 н. 0000004598 00000 н. 0000004016 00000 н. 0000004764 00000 н. 0000004889 00000 н. 0000004919 00000 н. 0000005118 00000 п. 0000005149 00000 п. 0000005993 00000 п. 0000006338 00000 н. 0000006684 00000 п. 0000006808 00000 п. 0000006940 00000 п. 0000007474 00000 н. 0000008208 00000 н. 0000008243 00000 н. 0000008437 00000 н. 0000008635 00000 н. 0000008748 00000 н. 0000009515 00000 н. 0000009938 00000 н. 0000010138 00000 п. 0000010862 00000 п. 0000011313 00000 п. 0000011731 00000 п. 0000012171 00000 п. 0000012522 00000 п. 0000012861 00000 п. 0000013392 00000 п. 0000016062 00000 п. 0000044784 00000 п. 0000083387 00000 п. 0000100368 00000 н. 0000100393 00000 н. 0000100464 00000 н. 0000100573 00000 н. 0000100666 00000 н. 0000100768 00000 н. 0000100808 00000 н. 0000100859 00000 н. 0000100994 00000 н. 0000101034 00000 п. 0000101088 00000 н. 0000101175 00000 п. 0000101312 00000 н. 0000101468 00000 н. 0000101508 00000 н. 0000101573 00000 п. 0000101681 00000 н. 0000101818 00000 н. 0000101951 00000 н. 0000101991 00000 н. 0000102041 00000 н. 0000102142 00000 п. 0000102245 00000 н. 0000102285 00000 н. 0000102334 00000 п. 0000102451 00000 н. 0000102491 00000 н. 0000102540 00000 н. 0000102644 00000 п. 0000102684 00000 п. 0000102733 00000 н. 0000102773 00000 н. 0000102822 00000 н. 0000102862 00000 н. 0000102911 00000 н. 0000103024 00000 н. 0000103064 00000 н. 0000103115 00000 п. 0000103254 00000 н. 0000103294 00000 н. 0000103344 00000 п. 0000103456 00000 н. 0000103496 00000 н. 0000103546 00000 н. 0000103658 00000 п. 0000103698 00000 н. 0000103748 00000 н. 0000103870 00000 п. 0000103910 00000 н. 0000103960 00000 н. 0000104090 00000 н. 0000104130 00000 н. 0000104181 00000 п. 0000104313 00000 п. 0000104353 00000 п. 0000104404 00000 н. 0000104504 00000 н. 0000104544 00000 н. 0000104594 00000 п. 0000104698 00000 н. 0000104738 00000 п. 0000104789 00000 н. 0000104882 00000 н. 0000104922 00000 н. 0000104972 00000 н. 0000105078 00000 н. 0000105118 00000 п. 0000105167 00000 н. 0000105283 00000 п. 0000105323 00000 п. 0000105372 00000 п. 0000105475 00000 п. 0000105515 00000 н. 0000105564 00000 н. 0000105694 00000 п. 0000105734 00000 п. 0000105783 00000 н. 0000105892 00000 н. 0000105932 00000 н. 0000105981 00000 п. 0000106112 00000 н. 0000106152 00000 п. 0000106201 00000 н. 0000106301 00000 п. 0000106341 00000 п. 0000106390 00000 н. 0000106430 00000 н. 0000106480 00000 н. 0000106520 00000 н. 0000106569 00000 н. 0000106681 00000 п. 0000106721 00000 н. 0000106770 00000 н. 0000106908 00000 н. 0000106948 00000 н. 0000106997 00000 н. 0000107120 00000 н. 0000107160 00000 н. 0000107209 00000 н. 0000107321 00000 п. 0000107361 00000 п. 0000107411 00000 п. 0000107533 00000 п. 0000107573 00000 п. 0000107622 00000 н. 0000107779 00000 п. 0000107819 00000 п. 0000107868 00000 н. 0000108001 00000 н. 0000108041 00000 н. 0000108091 00000 н. 0000108191 00000 п. 0000108231 00000 п. 0000108281 00000 н. 0000108386 00000 п. 0000108426 00000 н. 0000108475 00000 п. 0000108578 00000 н. 0000108618 00000 п. 0000108668 00000 н. 0000108776 00000 п. 0000108816 00000 н. 0000108864 00000 н. 0000108983 00000 п. 0000109023 00000 н. 0000109071 00000 н. 0000109203 00000 н. 0000109243 00000 н. 0000109292 00000 п. 0000109446 00000 н. 0000109486 00000 н. 0000109534 00000 п. 0000109663 00000 н. 0000109703 00000 п. 0000109753 00000 н. 0000109879 00000 п. 0000109919 00000 н. 0000109969 00000 н. 0000110080 00000 н. 0000110120 00000 н. 0000110171 00000 п. 0000110304 00000 п. 0000110344 00000 п. 0000110394 00000 п. 0000110434 00000 п. 0000110482 00000 н. 0000110522 00000 н. 0000110570 00000 н. 0000110610 00000 п. трейлер ] >> startxref 0 %% EOF 80 0 obj> поток Xg2 JFF ܓ ȭyKD (jq o; ̄zPDRJk &: ΀ \ ޥ ך aX.»nD

Рекомендации по двухсторонней системе бетонных полов

Для инженеров-строителей и архитекторов Башир Бава, ведущий инженер-конструктор BSBG, предоставляет незаменимое руководство по двухсторонней системе бетонных полов.

Система перекрытий является основной частью конструкции здания, и выбор соответствующей системы жизненно важен для создания экономичного здания в целом. Этот краткий обзор будет служить руководством для архитекторов и инженеров-строителей на этапе разработки концепции проекта по выбору подходящей системы полов.


Обзор двухсторонних систем перекрытий

Двусторонние плиты — это плиты, поддерживаемые с четырех сторон. В двухсторонних плитах нагрузка будет переноситься в обоих направлениях, поэтому основная арматура обеспечивается в обоих направлениях для двухсторонних плит. Плиты считаются двухсторонними перекрытиями, если длина пролета между большей и меньшей длиной меньше двух. Изгиб этих плит принимает форму тарелки при равномерной нагрузке. Различные формы и типы двусторонних систем перекрытий представлены в таблице ниже:

Двусторонние системы перекрытий


1.Плоская пластина (обычный RC или PT)

Плоская плита — это двусторонняя система, обычно поддерживаемая непосредственно на колоннах или несущих стенах. Главная особенность плоского пола — равномерная толщина с плоским перекрытием, для которого требуется лишь простая опалубка, и его легко построить. Пол обеспечивает большую гибкость при размещении горизонтальных коммуникаций над подвесным потолком или в переборке. Плоская плита с арматурой предварительного напряжения (PT) позволяет получить более длинные пролеты и более тонкие плиты.

Использование:

  • Офисные здания — малоэтажные и многоэтажные
  • Жилые дома — малоэтажные и многоэтажные
  • Парковка
  • Отели

Экономический диапазон:

  • 5-8 м (обычный RC)
  • 6-10 м (после натяжения)

Преимущества:

  • Как правило, имеет наименьшее время цикла от пола до пола по сравнению с вариантами литья на месте из-за наиболее упрощенной детализации опалубки и армирования.
  • Без балок — упрощение обслуживания полов.
  • Минимальная структурная глубина и уменьшенная высота от пола до пола.

Недостатки:

  • Длительное отклонение может быть определяющим фактором.
  • Может не подходить для тяжелых грузов.
  • Высокая концентрация арматуры вокруг колонн для обеспечения достаточной прочности плиты при продавливании.

2. Плоская плита с откидными панелями (обычная ЖБИ или ПТ)

Капельные панели, образованные утолщением нижней части плиты вокруг колонн, увеличивают сопротивление сдвигу и жесткость плиты, позволяя использовать более тонкие плиты.Плоская плита с предварительно напряженными арматурами (PT) дает более длинные пролеты и более тонкие плиты.

Использование:

  • Офисные здания — малоэтажные и многоэтажные
  • Жилые дома — малоэтажные и многоэтажные
  • Парковка
  • Отели

Экономический диапазон:

  • 6-9 м (обычный RC)
  • 7-11 м (с последующим натяжением)

Преимущества:

  • Более эффективная структурная система, чем плоская плита, обычно с более низкой концентрацией напряжений в местах расположения колонн.
  • Плиты обычно тоньше по сравнению с плоскими плитами.
  • Отсутствие балок позволяет снизить высоту этажа.
  • Гибкость расположения перегородок и горизонтального распределения услуг.

Недостатки:

  • Опалубка сложнее, чем система плоских перекрытий, что может увеличить время цикла перекрытия.
  • Откидные панели требуют более высокого уровня согласованности с услугами в потолочном пространстве, чем плоские плиты, и могут быть архитектурно неприемлемыми для помещений, где не предусмотрен подвесной потолок.

3. Плоская плита с балками в двух направлениях (обычный ж / б)

Двусторонняя плита с балками — это разновидность экономичной системы перекрытий, которую часто используют, поскольку она стоит меньше, чем плоские плиты или плоские плиты. Другими словами, когда нагрузки или пролеты, или и то, и другое становятся довольно большими, толщина плиты и размеры колонн, требуемые для плоских плит или плоских плит, достигают такой величины, что более экономично использовать двусторонние плиты с балками, несмотря на более высокую форму. затраты на работу.

Использование:

  • Офисные здания — малоэтажные и многоэтажные
  • Жилые дома — малоэтажные и многоэтажные
  • Парковка
  • Склады
  • Супермаркеты

Экономический диапазон:

Преимущества:

  • Экономичен для длинных пролетов и высоких нагрузок.

Недостатки:

  • Наличие балок может потребовать большей высоты этажа.
  • Требуется регулярный макет столбцов.
  • Медленный цикл пола.
  • Гибкость расположения перегородок и горизонтального распределения услуг.

4. Плоская плита с краевыми балками / лентами (обычные RC или PT)

Использование краевых балок в плоских плитах позволяет решить многие проблемы, связанные со сдвигом колонн по периметру и прогибом кромок.Плоская плита с предварительно напряженными арматурами (PT) дает более длинные пролеты и более тонкие плиты.

Использование:

  • Офисные здания — малоэтажные и многоэтажные
  • Жилые дома — малоэтажные и многоэтажные
  • Парковка
  • Отели

Экономический диапазон:

  • 5-9 м (обычный RC)
  • 7-11 м (после натяжения)

Преимущества:

  • Аналогично варианту с плоскими перекрытиями, преимуществом которого является немного уменьшенная толщина перекрытия, ведущая к облегчению конструкции перекрытия за счет введения балок или полос жесткости по периметру.

Недостатки:

  • Аналогично варианту плоских перекрытий, но с дополнительной сложностью опалубки по периметру здания и потенциально неблагоприятным воздействием на дизайн / архитектуру фасада.

5. Вафельные плиты (обычные железобетонные изделия)

Создание пустот в нижней части плоской плиты снижает дедвейт. Эти плиты экономичны при пролетах до 14 м в квадратных панелях. Толщина определяется прогибом, сдвигом при продавливании колонн и сдвигом в ребрах.

Использование:

  • Автостоянки
  • Офисные здания
  • Кровля

Экономический диапазон:

Преимущества:

  • Профиль перекрытия перекрытия можно выразить архитектурно.
  • Возможны более длинные пролеты.
  • Легкий по своей природе.

Недостатки:

  • Более высокие затраты на опалубку, чем для других систем перекрытий.
  • Чуть большая толщина пола.
  • Более медленный цикл перехода от этажа к этажу.
  • Требуется квадратная или прямоугольная колонна / сетка.

Экспериментальное поведение бетонных перекрытий при больших смещениях

RESUMO As vigas de concreto armado soft deformações térmicas em situação de incêndio. Os comprimentos dos vãos se alongam resultando no deslocamento horizontal de seus respectivos apoios e elas passam a fletir de forma acentuada, o que gera a rotação nos mesmos.Se essas deformações forem impedidas pelas próprias condições de apoio da peça ou devido a elementos estruturais circundantes, por exemplo, esforços adicionais passarão a atuar nas vigas, modificando seu desempenho frente aoo. Estudos apontam que os efeitos desses esforços podem ser benéficos à resistência ao fogo (RF) das vigas aquecidas, contudo, nas poucas pesquisas voltadas à análise Experiment dessa questão, as restrições foram form admitas ie is apenas, est restrições axiais ou rotacionais.O efeito concunto, mais submitativo ao que ocorre na realidade, e рассмотрение различий níveis de rigidezes imstos às deformações, foram avaliados em investigações numéricas sem dados Experimentais apriados para a validadoso dos result. Na presente Tese de Doutorado, avaliou-se Experimentmente o desempenho de vigas de concreto mediante a realização de ensaios de flexão em elementos em escala real e sob differentes condições de apoio: sem restrições às deformações de apoio: sem restrições às deformações, compenrições às deformações, compenrições às deformações, compenrições rotacionais.Relativamente aos elementos restringidos, foram analisados ​​dois níveis de rigidezes axial, 0,02 e 0,04EA / l, e rotacional, 1 e 2EI / l. Também houve Ensaios de referência em vigas simplesmente apoiadas à temperatura ambiente для проверки доос carregamentos и modos de ruptura. Os dados Experimentais obtidos para differentes esquemas estáticos de vigas motivaram a conceptpção de modelos numéricos que fossem Representativos do comportamento dos mesmos. Com o auxílio do programa de computador DIANA, que tem base no método dos elementos finitos, foram criados modelos para as vigas ensaiadas à temperatura ambiente e ao fogo.Eles foram idealizados com a consideração de diversas propriedades características do comportamento não linear dos materiais econduziram a boas correlações quando os seus resultados foram compareos aos obtidos em labratório. Принципиальный вывод из численно-экспериментального исследования RF das vigas de concreto armado semper aumentam quando admitido qualquer tipo de restrição (somente axial or axial mais rotacional). Além disso, ao se fixar um valor para a restrição rotacional, as vigas com nível de restrição axial mais elevado apresentaram RF maiores do que aquelas com nível mais brando.O mesmo severificou ao fixar a restrição axial e varacional. Vigas nos quais o efeito concunto das restrições foi admitidoconduziram a maiores RF do que aquelas apenas com restrição axial. Para a maior parte dos casos estudados, os aumentos das RF se mostraram importantativos quando confrontados às vigas sem restrições. Assim, confirmou-se que os métodos simpleificados normatizados que não consideram os efeitos proofientes das mesmas no Dimensamento para a situação de incêndio das vigas de concreto armado estão a Favor da segurança.Os resultados numérico-Experimentais aqui apresentados podem auxiliar na Concepção de ferramentas alternativas для рассмотрения dos efeitos das restrições em projeto. Палаврас-чаве: Concreto armado. Вигас. Incêndio. Анализа экспериментальная. Análise numérica. Restrição осевой. Restrição rotacional. ДИАНА. / Экспериментальный и численный анализ железобетонных балок с осевыми и вращательными ограничениями при пожаре / РЕФЕРАТ Железобетонные балки подвергаются термическим деформациям при воздействии огня.Длина пролетов увеличивается, что вызывает горизонтальное смещение их опор, и они начинают резко изгибаться, что приводит к их вращению. Если этим деформациям препятствуют условия опоры элемента или окружающие элементы конструкции, например, на балки будут действовать дополнительные усилия, чтобы изменить их характеристики при столкновении с действием огня. Исследования показали, что последствия таких усилий могут быть полезны для огнестойкости балок; однако в немногих исследованиях, посвященных экспериментальному анализу этого вопроса, ограничения допускались только изолированно, т.е.е. балки подвергались либо осевым, либо вращательным ограничениям. Их совместный эффект, более представительный для того, что происходит в действительности, и учет различных уровней жесткости, накладываемых на деформации, были оценены в численных исследованиях, однако без подходящих экспериментальных данных для подтверждения результатов. В этой докторской диссертации характеристики бетонных балок оценивались экспериментально путем проведения испытаний на изгиб натурных элементов при различных условиях опоры: без ограничений, только с осевыми ограничениями и с осевыми и вращательными ограничениями.Что касается удерживаемых элементов, были проанализированы два уровня осевой и вращательной жесткости: 0,02 и 0,04EA / л; 1 и 2ЭДж / л. Были также проведены эталонные испытания балок с простой опорой при температуре окружающей среды для проверки несущей способности и режимов разрушения. Экспериментальные данные, полученные для различных статических схем балок, по-прежнему мотивировали концепцию численных моделей, которые будут репрезентативными для их поведения. С помощью программного обеспечения DIANA, основанного на методах конечных элементов и смещения, были созданы модели балок, представляющие балки, испытанные при температуре окружающей среды и в условиях пожара.Эти модели были реализованы с учетом нескольких свойств, которые характеризуют нелинейное поведение материалов, и привели к хорошей корреляции при сравнении их результатов с результатами, полученными в лаборатории. Главный вывод этого экспериментального и численного исследования заключался в том, что огнестойкость ж / б балок всегда увеличивается при введении любого типа ограничения (осевого или осевого плюс вращательное). Кроме того, за счет фиксации вращательной жесткости балки с более высоким уровнем осевой жесткости продемонстрировали более высокую огнестойкость, чем балки с более низким уровнем.То же самое наблюдалось при фиксировании осевой жесткости и изменении жесткости на вращение. Балки, в которых допускалось комбинированное действие ограничений, приводили к более высоким сопротивлениям, чем балки с только осевым ограничением. Для большинства изученных ситуаций увеличение сопротивлений оказалось значительным при сопоставлении с сопротивлениями для неограниченных балок. Таким образом, было подтверждено, что стандартные упрощенные методы, позволяющие не учитывать эти эффекты при пожарном проектировании ЖБ балок, приводят к консервативным результатам.Представленные здесь численные и экспериментальные результаты могут помочь в концепции альтернативных инструментов, которые позволяют применять эффекты сдерживания к дизайну. Ключевые слова: железобетон. Балки. Огонь. Экспериментальный анализ. Числовой анализ. Осевое ограничение. Сдерживание вращения. ДИАНА.

подвесные системы бетонных плит

Услуги легко размещаются через балку, которая доставляется на объект уже готовой к установке. Speedfloor также может быть спроектирован таким образом, чтобы обеспечить огнестойкость без необходимости какой-либо обработки балок или потолков из гипсокартона.Easy slab — это высокоэффективная система перекрытия из изолированных бетонных подвесных плит, которая является экологически чистой, простой в установке и экономичной. Насколько тяжелая система? Скатная кровельная плита: Скатная кровля представляет собой наклонную плиту, обычно сооружаемую на курортах для придания естественного вида. Инновационная система имеет преимущества, так как это адаптируемая система, стойки остаются на месте при снятии опалубки, и можно сэкономить трудозатраты на подпорку. Сборные подвесные плиты перекрытия гаража устанавливаются на место, а затем заделываются шпоночные соединения.Подвесные бетонные перекрытия и стальные балки Speedfloor соответствуют строительным стандартам Австралии и Новой Зеландии и использовались во многих строительных проектах вокруг Новой Зеландии… Конструкции перекрытий для конкретных проектов создаются с использованием оптимизированной комбинации предварительно напряженных балок перекрытий в сочетании с нашими вариантами заполнения . Система композитных полов Speedfloor очень легкая и хорошо подходит для наклонных участков и проблемных почв, а также позволяет уменьшить размер фундамента.Постоянная металлическая опалубка и растягивающая арматура для подвесных бетонных плит. Поставляется на стройплощадку отрезанными по длине для быстрой установки. Закрытые ребра обеспечивают класс огнестойкости до 4 часов. ZAM®… В системе подвесного пола проникновение влаги…… Система подвесного пола. Подвесная бетонная плита — это цементная плита, не контактирующая с землей. Система … Теперь ту же технологию можно использовать для изолированных бетонных полов, как подвесных, так и монолитных (FPSF), а также скатных крыш или изолированных плоских крыш с системой зеленой кровли … Система Sure Slab System от Modulecon представляет собой полностью подвешенный бетон. раствор плиты от земли, предназначенный для реактивных грунтовых условий.Хотя это также хороший вариант, наличие подвесной бетонной плиты… Системы бетонных перекрытий представляют собой конструкции из железобетонных плит, предназначенные для удовлетворения различных нагрузок и условий пролета в здании. Мы поставляем подвесную плиту по принципу «единого окна». Важным преимуществом является возможность увеличения стоимости недвижимости с бетонным полом. Бетонные перекрытия бывают разных форм и могут использоваться для обеспечения… Наиболее распространенное применение подвесных плит… Нагрузка передается непосредственно от плиты к колонне в плоской плите.От спортивной площадки до дополнительного хранилища игрушек — подвесная гаражная плита имеет смысл. Система… Плюс экономия на опорных материалах и рабочей силе. Системы ребристых перекрытий У нас есть широкий ассортимент сборных предварительно напряженных систем перекрытий, которые обеспечивают быстрое, экономичное и простое решение для любых требований к подвесным плитам. Системы подвесной опалубки перекрытий Cassaform предлагает полный спектр систем опалубки перекрытий для вашей следующей бетонной плиты. Этот тип конструкции бетонной плиты требует конструкции, отличной от той, которую мы обычно видим на земле.Speedfloor также является отличной системой в сейсмических зонах. Разработан с использованием уникального стального профиля, позволяющего выдерживать строительные нагрузки на расстояние до 8 метров без временной подпорки. Опираясь на прекрасную идею … Speedfloor, уникальная система подвесных бетонных полов, — это инновация в строительной отрасли! Благодаря диапазону высоты до 220 мм пространство под плитой можно использовать для более крупных предметов… Easyslab — это система ребристых плит… Условия использования. Некоторые типы бетонных плит могут больше подходить для конкретного участка и климатической зоны, чем другие.Строительство подвесных полов, стальные полы, подрядчики по укладке полов, установка полов, Перт. Floortech Flooring Systems — компания из Западной Австралии, которая специализируется на сборке подвесных полов высшего качества. Они отличаются тем, что в них используются железобетонные панели, отлитые на месте или сделанные за пределами строительной площадки и доставленные на строительную площадку… От традиционных рам опалубки Super Shore до наших новых алюминиевых поддонов… Стальные элементы из композитных материалов не должны быть настолько глубокими, что позволяли бы для более свободного пространства в комнате внизу.Speedfloor очень прост в установке и представляет собой легкую и экономичную систему… Модульная система настила из бетонных плит с тонкой конструкцией пола, которая позволяет уменьшить высоту этажа. Полы Floortech предлагают инновационную, а также превосходную альтернативу традиционному подвесному бетону… Процесс установки подвесной гаражной плиты. Подумайте обо всех возможностях, которые может добавить подвесная гаражная плита. SPEEDFLOOR, уникальная система подвесных бетонных полов, — это инновация в строительной отрасли! Стальные элементы изготавливаются в соответствии с вашими проектами, в комплекте с отверстиями или шпильками с резьбой для крепления дерева к стали.Преимущество подвесной железобетонной плиты заключается в том, что можно получить высокую прочность, но при этом сохранить низкий вес. Стены, построенные из ICF (изолированные бетонные опалубки), приобрели большую популярность за последние пару лет именно по этим причинам. 5.2 Подвесные цокольные этажи В этой главе дается руководство по соблюдению технических требований к подвесным цокольным этажам, включая те, которые построены из монолитного бетона. Системы бетонных полов предназначены для перекрытия в любом одном направлении (в одну сторону)… Балка изготавливается из предварительно изготовленных материалов. оцинкованная высокопрочная сталь… От спортивной площадки до дополнительного хранилища для игрушек… После заливки фундамента проводятся полевые измерения, чтобы убедиться в правильности посадки.Действие предварительного напряжения с помощью прямого или задрапированного кабеля в… Строительная система Speedfloor представляет собой легкий подвесной бетонный пол, в котором стальные балки холодной штамповки используются как неотъемлемая часть окончательного бетонного и стального композитного пола. Традиционно системы бетонных полов армируются с помощью стержней, ткани или высокопрочной пряжи, которая подвергается нагрузке. Бетонные плиты… Copyright 2015-2021 © — Все права защищены — Steel Concepts, LLC. Подвесные железобетонные плиты используются во многих сферах строительства.Обычно это подвесные бетонные перекрытия или деревянные перекрытия. Благодаря изобретательности и сотрудничеству различных запатентованных зданий… Используя композитную сталь и бетонную конструкцию, плита перекрытия может быть тоньше, чем обычные системы подвесных плит для жилых помещений. Подвесные бетонные плиты: опалубочные системы. Speedfloor — это система подвесного бетонного пола, использующая стальную балку холодной штамповки в качестве неотъемлемой части окончательного бетонного и стального композитного пола. Балка изготавливается в Австралии из предварительно оцинкованной … Система обеспечивает полное композитное действие с плитой … с подвесным гаражом Плита, вы можете получить дополнительное пространство, которое вам нужно, и повысить стоимость вашего дома за небольшую часть стоимости.Подвесная бетонная плита. Под плитами можно легко проложить кабели или водопроводные трубы, не загромождая верхнюю поверхность. По согласованию с вашим архитектором, инженером и подрядчиком лицензированный профессиональный инженер создает композитный дизайн для вашего дома. Существенная консоль в 3500 мм в подвесной плите требовала плиты толщиной 250 мм из бетона 32 МПа. Конструкция бетонного каркаса состоит из ряда бетонных колонн, стен и балок, поддерживающих подвесную бетонную плиту.Подвесная гаражная плита С помощью подвесной гаражной плиты вы можете получить дополнительное пространство, которое вам нужно, и повысить стоимость вашего дома за небольшую часть стоимости. Конечно, этот быстро нацарапанный рисунок точен, но он не переполнен деталями. … рекомендует обратиться к надежному подрядчику по гидроизоляции, чтобы обеспечить надлежащую гидроизоляцию вашей новой системы подвесного бетонного пола для сборных железобетонных полов … Это реальное преимущество для тех, кто заливает бетон, поскольку обеспечивает прочную рабочую поверхность.SPEEDFLOOR — это легкая и экономичная система, которая устанавливается настолько быстро и легко, что идеально подходит для… С точки зрения логистики, необходимо переместить ряд компонентов опалубки на каждый этаж перед подвесными бетонными плитами… Альтернатива бетонной плите… подвешенный »между двумя уровнями дома — это деревянный каркас для устройства пола верхнего уровня. Подвесные плиты Подвесные плиты — еще одна вариация на тему плит. В системе подвесного бетонного пола Speedfloor используется стальная балка холодной штамповки как неотъемлемая часть бетонно-стального композитного пола.Для нашей наиболее распространенной конструкции с 70-миллиметровым бетонным покрытием статическая нагрузка составляет 2,3 кПа (включая постоянную статическую нагрузку 0,5 кПа), что составляет менее половины от обычной плиты традиционной формы… В традиционной системе перекрытия-балки нагрузка передается от плиты… Speedfloor — это простой и недорогой способ добавления новых этажей в существующие здания и антресоли в существующих зданиях. Сталь детализирована, изготовлена ​​и окрашена. Установить арматуру и залить бетонный топпер (подрядчиком).Плита предназначена для выдерживания нагрузок при строительстве. Они используются как на первом, так и на верхнем этажах. Вся эта система может быть установлена ​​менее чем за 10 долларов за квадратный фут. Это приводит к экономии затрат на бетон на 25-50%. Основное различие между плоской плитой и традиционной системой перекрытия с балками заключается в том, что одна система опирается непосредственно на колонну, а другая система имеет балку для поддержки.

Как вызвать Гиратину Пиксельмона, Интернет-встречи Intergroup, Мастерская Necron Battleforce Games, Может ли тест волосяного фолликула обнаружить одноразовое использование Reddit, Фермы на продажу в округе Вашингтон, 2003 Saleen Extreme на продажу, Кристин Кейн 20/20 Видео,

Виды нагрузок на конструкции

Типы нагрузок, действующих на конструкции зданий и других сооружений, можно в широком смысле классифицировать как вертикальные нагрузки, горизонтальные нагрузки и продольные нагрузки.Вертикальные нагрузки состоят из статической нагрузки, временной нагрузки и ударной нагрузки.

Горизонтальные нагрузки складываются из ветровой нагрузки и землетрясения. Продольные нагрузки, т.е. тяговые и тормозные силы, учитываются в частном случае конструкции мостов, портальных балок и т. Д.

Виды нагрузок на конструкции и сооружения

При строительстве здания учитываются два основных фактора: безопасность и экономичность. Если нагрузки регулируются и увеличиваются, это влияет на экономию.Если рассматривается экономия и принимаются меньшие нагрузки, то безопасность оказывается под угрозой.

Таким образом, оценка различных действующих нагрузок должна быть рассчитана точно. Индийский стандартный код IS: 875–1987 и Американский стандартный код ASCE 7: Минимальные расчетные нагрузки для зданий и других конструкций определяет различные расчетные нагрузки для зданий и сооружений.

Типы нагрузок, действующих на конструкцию:

  1. Собственные нагрузки
  2. Факторы нагрузки
  3. Ветровые нагрузки
  4. Снежные нагрузки
  5. Землетрясения
  6. Специальные грузы

1. Постоянная нагрузка (DL)

Первая рассматриваемая вертикальная нагрузка — это статическая нагрузка. Статические нагрузки — это постоянные или стационарные нагрузки, которые передаются на конструкцию в течение всего срока службы. Собственная нагрузка в первую очередь обусловлена ​​собственным весом элементов конструкции, постоянных перегородок, стационарного стационарного оборудования и веса различных материалов. Он в основном состоит из веса крыш, балок, стен, колонн и т. Д., Которые в остальном являются постоянными частями здания.

Расчет собственных нагрузок каждой конструкции рассчитывается по объему каждой секции и умножается на удельный вес.Удельный вес некоторых распространенных материалов представлен в таблице ниже.

Sl. Нет Материал Вес
1

Кирпичная кладка

18,8 кН / м 3

2

Каменная кладка

20,4-26,5 кН / м 3

3

Обычный цементный бетон

24 кН / м 3

4

Армированный цементный бетон

24 кН / м 3

5

Древесина

5-8 кН / м 3

Считывание: Удельный вес / плотность различных строительных материалов

2.Фактические или динамические нагрузки (IL или LL)

Вторая вертикальная нагрузка, учитываемая при проектировании конструкции, — это действующие нагрузки или временные нагрузки. Динамические нагрузки — это подвижные или движущиеся нагрузки без какого-либо ускорения или удара. Предполагается, что эти нагрузки возникают в результате предполагаемого использования или размещения в здании, включая вес передвижных перегородок или мебели и т. Д.

Живые нагрузки постоянно меняются. Эти нагрузки должны быть приняты проектировщиком надлежащим образом.Это одна из основных нагрузок в дизайне. Минимальные допустимые значения временных нагрузок приведены в стандарте IS 875 (часть 2) –1987. Это зависит от предполагаемого использования здания.

Код дает значения временных нагрузок для следующей классификации занятости:

  • Жилые дома — жилые дома, гостиницы, общежития, котельные и технологические помещения, гаражи
  • Учебные корпуса
  • Общественные здания
  • Сборочные корпуса
  • Деловые и офисные здания
  • Торговые здания
  • Производственные здания и
  • Кладовые.

Код дает равномерно распределенную нагрузку, а также сосредоточенные нагрузки. Плиты перекрытия должны быть спроектированы так, чтобы выдерживать либо равномерно распределенные нагрузки, либо сосредоточенные нагрузки, в зависимости от того, какая из них создает большие напряжения в рассматриваемой детали. Поскольку маловероятно, что в любой конкретный момент времени все этажи не будут одновременно нести максимальную нагрузку, кодекс допускает некоторое снижение прилагаемых нагрузок при проектировании колонн, несущих стен, опор опор и фундаментов.

В таблице ниже представлены некоторые из важных значений, которые являются минимальными значениями и, где необходимо, могут быть приняты больше этих значений.

Однако в многоэтажных зданиях вероятность одновременного действия полных нагрузок на все этажи очень редка. Таким образом, кодекс предусматривает снижение нагрузок при проектировании колонн, несущих стен, их опор и фундаментов, как показано в таблице ниже.

Количество этажей (включая крышу), которые должен нести рассматриваемый элемент Снижение общей распределенной нагрузки в%
1 0
2 10
3 20
4 30
5-10 40
Более 10 50

3.Ветровые нагрузки

Ветровая нагрузка — это в основном горизонтальная нагрузка, вызванная движением воздуха относительно земли. При проектировании конструкций необходимо учитывать ветровую нагрузку, особенно когда вереск здания в два раза превышает размеры, перпендикулярные открытой ветровой поверхности.

Для малоэтажного здания, скажем, от четырех до пяти этажей, ветровая нагрузка не критична, потому что момент сопротивления, обеспечиваемый непрерывностью системы перекрытий с соединением колонн и стен между колоннами, достаточен для того, чтобы компенсировать действие этих сил.Кроме того, в методе предельных состояний коэффициент расчетной нагрузки снижается до 1,2 (DL + LL + WL), когда учитывается ветер, по сравнению с коэффициентом 1,5 (DL + LL), когда ветер не учитывается.

При проектировании здания следует учитывать горизонтальные силы, создаваемые ветрами. Расчет ветровых нагрузок зависит от двух факторов, а именно скорости ветра и размера здания. Полные подробности расчета ветровой нагрузки на конструкции приведены ниже (в стандарте IS-875 (Часть 3) -1987).

С помощью цветового кода на карте Индии показано базовое ветровое давление «V b ». Дизайнер может подобрать стоимость V b в зависимости от местоположения здания.

Для получения расчетной скорости ветра V z необходимо использовать следующее выражение:

V z = k 1. k 2 .k 3. V b

Где k 1 = коэффициент риска

k 2 = коэффициент, основанный на местности, высоте и размере конструкции.

k 3 = Фактор топографии

Расчетное ветровое давление дано по

p z = 0,6 V 2 z

, где p z в Н / м 2 на высоте Z и V z в м / с. Считается, что до высоты 30 м давление ветра действует равномерно. На высоте более 30 м усиливается ветровое давление.

4. Снеговые нагрузки (SL)

Снеговые нагрузки относятся к вертикальным нагрузкам в здании.Но эти виды нагрузок учитываются только в местах выпадения снега. IS 875 (часть 4) — 1987 касается снеговых нагрузок на крыши здания.

Минимальная снеговая нагрузка на крышу или любую другую область над землей, которая подвержена накоплению снега, определяется выражением

Где S = расчетная снеговая нагрузка на плоскую площадь крыши.

= коэффициент формы, и

S 0 = Снеговая нагрузка на грунт.

5. Землетрясения (EL)

Силы землетрясения складываются как по вертикали, так и по горизонтали в здание.Общая вибрация, вызванная землетрясением, может быть разделена на три взаимно перпендикулярных направления, обычно принимаемых как вертикальное и два горизонтальных направления.

Движение в вертикальном направлении не вызывает значительных сил в надстройке. Но при проектировании необходимо учитывать горизонтальное перемещение здания во время землетрясения.

Реакция конструкции на вибрацию грунта является функцией характера грунта основания, размера и способа строительства, а также продолжительности и интенсивности движения грунта.В стандарте IS 1893–2014 приведены подробные сведения о таких расчетах для конструкций, стоящих на почве, которые не будут значительно оседать или заметно скользить из-за землетрясения.

Купил диплом в магазине Кострома. Конечно, очень важным моментом является анонимность, ведь ни в коем случае нельзя доверять интернет-магазинам, где м http://gzdiploma.com/ диплом в магазине Кострома. В целом, это прибыльный бизнес, и большая часть доходов превышает доходы от продажи документов. Наш интернет-магазин изго

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *