Схема электрическая общая: Схемы электрические общие | Лаборатория Электронных Средств Обучения (ЛЭСО) СибГУТИ

Содержание

Схемы электрические общие | Лаборатория Электронных Средств Обучения (ЛЭСО) СибГУТИ

6.8.1 Схема электрическая общая (код Э6) – схема, определяющая составные части комплекса и соединения их между собой на месте экс-плуатации.

6.8.2 На схеме электрической общей изображают устройства и элементы, входящие в комплекс, а также провода, жгуты и кабели, соединяющие эти устройства и элементы.

6.8.3 Устройства и элементы изображают на схеме в виде прямоугольников. Допускается элементы изображать в виде УГО или упрощенных внешних очертаний, а устройства – в виде упрощенных внешних очертаний.

Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии.

Если расположение элементов и устройств на месте эксплуатации неиз-вестно, то допускается на схеме их расположение не отражать. В данном случае графические обозначения элементов и устройств располагают так, чтобы обеспечивалась наглядность электрических соединений между ними и простота построения схемы.

6.8.4 На графических обозначениях элементов и устройств входные, выходные и вводные элементы необходимо показывать по правилам приведенным в 6.6.9, 6.6.16 данного пособия.

Расположение УГО входных, выходных и вводных элементов внутри изображений элементов и устройств должно примерно соответствовать их действительному положению в изделии. Для обеспечения наглядности показа соединений допускается располагать УГО этих элементов не в соответствии с их действительным размещением в изделии, при условии приведения на поле схемы соответствующих пояснений.

6.8.5 На схеме должны быть указаны:
— для каждого устройства или элемента, изображенного в виде прямо-угольника или упрощенного внешнего очертания, – их наименование и тип и (или) обозначение документа, на основании которого они применены;
— для каждого элемента, изображенного в виде УГО, – его тип и (или) обозначение документа.

При большом количестве устройств и элементов эти сведения записы-вают в перечень элементов, при этом около графических обозначений устройств и элементов проставляют буквенно-цифровые позиционные обозначения.

6.8.6 Устройства и элементы, сгруппированные в посты (кабины, контейнеры, помещения и т.п.), рекомендуется записывать в перечень элементов по постам (кабинам, контейнерам, помещениям и т.п.).

6.8.7 На схеме следует указывать обозначения входных, выходных и вводных элементов, нанесенных (замаркированных) на изделие. Если обозначения данных элементов в конструкции изделия не указаны, то допускается этим элементам условно присваивать обозначения на схеме, повторяя их в соответствующей конструкторской документации. При этом на поле схемы должны быть помещены необходимые пояснения.

6.8.8 На схеме допускается указывать обозначения документов соединителей на полках линий-выносок и число контактов соединителей, используя для этого УГО в соответствии с рисунком 6.41

Рисунок 6.41 – Обозначение соединителей на Э6

6.8.9 Провода, жгуты и кабели должны быть показаны на схеме отдель-ными линиями и обозначены отдельно порядковыми номерами в пределах изделия.

Допускается сквозная нумерация проводов, жгутов и кабелей в пределах изделия, если провода, входящие в жгуты, пронумерованы в пределах каждого жгута.

Если на схеме электрической принципиальной цепям присвоены обозначения в соответствии с ГОСТ 2.709-89, то всем одножильным проводам, жилам кабелей и проводам жгутов должны быть присвоены те же обозначения.

6.8.10 Если в состав изделия входит несколько комплексов, то одножильные провода, кабели и жгуты должны быть пронумерованы в пределах каждого комплекса. В данном случае принадлежность одножильного провода, кабеля, жгута к определенному комплексу определяют при помощи буквенного (буквенно-цифрового) обозначения, проставляемого перед номером каждого одножильного провода, кабеля и отделяемого знаком дефис.

При необходимости допускается на схеме определять принадлежность провода, жгута или кабеля к определенным помещениям или функциональным цепям при помощи буквенного (буквенно-цифрового) обозначения по правилам, приведенным в 6.6.18 данного пособия.

6.8.11 Номера одножильных проводов на схеме проставляют около концов изображений в соответствии с рисунком 6.42; номера одножильных коротких проводов, которые отчетливо видны на схеме, помещают около середины изображений в соответствии с рисунком 6.43.

Рисунок 6.42 – Пример обозначения одножильного провода   Рисунок 6.43 – Пример обозначения одножильного короткого провода

Номера кабелей проставляют в окружностях, помещаемых в разрывах изображений кабелей в соответствии с рисунком 6.44.

Рисунок 6.44 – Пример обозначения кабеля

В случае обозначения кабелей в соответствии с требованиями 6.8.10 данного пособия, обозначения в окружность не вписывают.

Номера жгутов проставляют на полках линий выносок в соответствии с рисунком 6.45.

Рисунок 6.45 – Пример обозначения жгу

6.8.12 На схеме около изображения одножильных проводов, жгутов и кабелей указывают следующие данные:
— для одножильных проводов – марку, сечение и, при необходимости, расцветку;
— для кабелей записываемых в спецификацию как материал, – марку, ко-личество и сечение жил;
— для проводов, кабелей и жгутов, изготавливаемых по чертежам, – обозначение основного конструкторского документа.

В том случае если при разработке схемы данные о проводах и кабелях, устанавливаемых при монтаже, не могут быть определены, то на схеме приводят соответствующие пояснения с указанием исходных данных, необходимых для выбора конкретных проводов и кабелей.

При большом количестве соединений указанные сведения записывают в перечень проводов, жгутов и кабелей, который помещают на первом листе схемы, как правило, над основной надписью или выполняют в виде после-дующих листов схемы. Перечень выполняют в соответствии с рисунком 6.46.

Рисунок 6.46 – Перечень проводов, жгутов, кабеля

В графах перечня указывают следующие данные:
— в графе «Обозначение провода, жгута, кабеля» – обозначение провода, жгута, кабеля по схеме;
— в графе «Обозначение» – обозначение основного конструкторского документа провода, жгута, кабеля, изготовленных по чертежу;
— в графе «Данные провода, жгута, кабеля»: для кабеля – марку, сечение и количество жил в соответствии с документом, определяющим применение данного кабеля; для провода – марку, сечение, расцветку, если она необходима;

— в графе «Кол.» – количество одинаковых проводов, жгутов, кабелей;
— в графе «Примечание» – кабели, поставляемые с комплексом или прокладываемые при его монтаже и другие необходимые данные.

6.8.13 Схему электрическую общую рекомендуется выполнять на одном листе. Если схема из-за сложности изделия не может быть выполнена на одном листе, то на первом листе приводят изделие в целом, изображая посты (кабины, контейнеры, помещения и т.п.) условными очертаниями и показывая связи между ними.

Внутри условных очертаний изображают только те устройства и элементы, к которым приводят провода и кабели, соединяющие посты (кабины, контейнеры, помещения и т.п.).

На последующих листах приводят полностью схемы групп или отдельных постов (кабин, контейнеров, помещений и т.п.).

Если в состав изделия входит несколько комплексов, то схему каждого комплекса выполняют на отдельном листе.

6.8.14 Пример выполнения схемы электрической общей приведен в приложении М.

Схема Электрическая Общая — tokzamer.ru

С — Отображение исполнительных механизмов ИМ.


Таблицы записывают в спецификацию после схем, к которым они выпущены. На каждом клеплении наконечников проводов падение напряжения не должно превышать 0,1 В.

В — Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
Монтажные схемы и маркировка электрических цепей

Рассмотрим, например, путь тока в первичной цепи системы зажигания автомобиля ГАЗ от аккумуляторной батареи и от генератора.

Рекомендуется толщина линий 0. Для их обозначения приняты символы, приведенные на рисунке ниже.


Новые интегральные компоненты для импульсных силовых преобразователей: рис.

Данные об устройствах и элементах записывают в перечень элементов, о жгутах, кабелях и проводах — в таблицу перечня проводов, жгутов и кабелей. Исправная лампа будет гореть.

Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Как подключить магнитный пускатель. Схема подключения.

Виды электрических схем

Допускается помещать таблицы с характеристиками цепей при наличии на схеме УГО входных и выходных элементов — соединителей, плат и т. Рекомендуемые ссылки. При этом на схеме нужно привести пояснения [1, п. Этот разъем для наглядности схемы даже был разбит на три части XP2.


Графические обозначения Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами.

Пример принципиальной схемы фрезерного станка Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то — полной. Если одинаковые элементы или устройства находятся не во всех цепях, изображенных однолинейно, то справа от позиционного обозначения или под ним в квадратных скобках указывают обозначения цепей, в которых находятся эти элементы или устройства см.

На чертеже обязательно обозначают функциональные узлы, их связь.

Рекомендуемые ссылки. Ее применяют для того, чтобы не загромождать чертеж, обозначить важные цепи, особенности.

Действуют лишь общие требования к оформлению конструкторской документации.

Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями.
Урок №1. Напряжение и ток. В чем разница?

Содержание

Для электронных документов перечень элементов оформляют отдельным документом. Если обозначения данных элементов в конструкции изделия не указаны, то допускается этим элементам условно присваивать обозначения на схеме, повторяя их в соответствующей конструкторской документации.

Перемычки можно установить и вместо неисправного реле. Лучше для начала разделить схему на части, если много элементов и схема сложная.

От сети идут два провода, фаза и ноль. В этом случае надо выключить потребители, нажать на кнопку включения предохранителя, а затем поочередно включать потребители.

Номера жгутов проставляют на полках линий выносок в соответствии с рисунком 6. В зарубежных странах приняты стандарты IEC , DIN и ANSI и другие национальные стандарты, но на практике у производителей очень часто используется корпоративные стандарты, однако этот чертёж не учитывает габаритных размеров и расположения деталей объекта. Такие схемы выполняются для отключенного положения изделия. После окончания сборки обязательно должна образоваться замкнутая цепь.


Он обеспечивает полное раскрытие работы электрооборудования. Контрольная лампа горит с полным накалом в случае замыкания на корпус электрической цепи в фаре. Так как проводники, соединяющие источники и потребители электрической энергии, обладают очень малым сопротивлением, то при замыкании их на корпус автомобиля по ним пойдет ток большой силы, вследствие чего предохранитель разомкнет цепь.


При исправной лампе в фаре, она, как и контрольная, будет гореть с неполным накалом. Все потребители тока подключаются к одному из перечисленных приборов. Такие схемы выполняются для отключенного положения изделия. В случае нарушения контакта в соединении проводов на выводах, окисления или неплотного прилегания контактов в переключателях света лампы не горят или значительно снижают силу света. Функциональная Э2 Функциональные схемы показывают отдельные процессы, происходящие в цепях устройств установок , и используются при изучении их общего принципа действия.

Для электронных документов перечень элементов оформляют отдельным документом. В зарубежных странах приняты стандарты IEC , DIN и ANSI и другие национальные стандарты, но на практике у производителей очень часто используется корпоративные стандарты, однако этот чертёж не учитывает габаритных размеров и расположения деталей объекта.

Перемычки можно установить и вместо неисправного реле. Для обеспечения хорошего электрического контакта и упрощения монтажа схем в настоящее время широко используется штепсельное соединение проводов с клеммами приборов. Эта схема руководит электромонтажными работами, дает понимание всех подключений.
как научиться читать схемы

1 Область применения

Для домашнего применения она вряд ли имеет смысл.

Для этого проводником соединяют плюсовый вывод аккумуляторной батареи с соответствующей клеммой соединительной панели, к которой подключены проводники от проверяемых ламп.

На автомобилях применяют однопроводную систему электрооборудования, при которой второй провод заменяют металлические части самого автомобиля масса автомобиля.

В случае нарушения контакта в соединении проводов на выводах, окисления или неплотного прилегания контактов в переключателях света лампы не горят или значительно снижают силу света. При наличии замыкания на корпус лампа будет светиться тускло или ярко в зависимости от степени замыкания , а стрелка вольтметра будет показывать напряжение на выводах аккумуляторной батареи. Для примера разберем подключение в домашних условиях люстры, состоящей из 3-х плафонов, с применением двойного выключателя. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор.

См. также: Смета на электромонтажные работы

Основными неисправностями в бортовой сети являются: — обрыв в цепи источников и потребителей электрической энергии; — чрезмерное снижение напряжения в цепи источников и потребителей электрической энергии; — короткое замыкание проводов и изолированных деталей и узлов приборов на корпус массу автомобиля. На последующих листах приводят полностью схемы групп или отдельных постов кабин, контейнеров, помещений и т. Контакты предохранителя однократного действия в этих случаях размыкаются. Допускается указывать адрес в общем виде, если будет обеспечена однозначность присоединения, например «Прибор А».

Эта схема руководит электромонтажными работами, дает понимание всех подключений. Общие Общие схемы показывают составные части комплексов и соединения их между собой на месте эксплуатации. На блоке имеется 11 штекерных колодок Ш1—Ш11 для подсоединения пучков проводов. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Зарубежные детали можно представить широким ассортиментом.

По схеме монтажного блока рис. Кроме того, рекомендуется указывать параметры входных и выходных цепей [2, п.
Как читать электрические схемы

Найти электрическую схему —

Одним из обязательных умений радиолюбителя, как впрочем и любого человека, непосредственно связанного с ремонтом или обслуживанием электрической и электронной техники, является умение читать принципиальные электрические схемы. Что же такое принципиальная схема?

Это схема, в которой каждая деталь обозначается графически, и после изучения которой, нам становится ясно, каким образом они все соединяются между собой. Принципиальные схемы являются важнейшими из схем, так как они позволяют понять, как функционирует устройство в целом. Вы не найдете на принципиальных схемах изображения самого устройства, с клеммами или выводами, к которым паяются или зажимаются под винтовое соединение провода, для этого служат монтажные схемы. На рисунке ниже изображена монтажная схема подключения электросчетчика:

Как нам известно, из школьного курса физики, соединение на схеме, в месте пересечения проводов обозначается жирной точкой.

Такое же пересечение проводов без точки означает, что соединения в данном месте нет. Есть ряд правил, по которым составляются принципиальные схемы, например входные части в устройстве, принято располагать в левой части схемы, а выходные в правой части. Это можно видеть на примере простейшего усилителя на одном транзисторе, части входных цепей у нас выделены красным, а выходных зеленым:

Таким обозначением, как на рисунке ниже обозначается, любой источник питания постоянного тока. Это может быть как батарейки, так и сетевой блок питания. Длинной чертой обозначается при этом положительный полюс источника питания или плюс, а короткой отрицательный полюс или минус.

Такое обозначение на схемах обозначает батарею из нескольких соединенных последовательно гальванических элементов (батареек).

На следующем рисунке мы можем видеть обозначение, которое может, в зависимости от того, в какой схеме используется, означать как кнопку с фиксацией или без фиксации, однополосный тумблер, или клавишный выключатель, так и контакт какого либо устройства, например реле.

Контакты реле могут быть, как свободно замкнутыми, так и свободно разомкнутыми. Поясню, что свободно разомкнутые контакты, это контакты которые находятся в разомкнутом состоянии при отсутствии напряжения на катушке реле. На рисунке ниже приведены примеры свободно разомкнутого и свободно замкнутого контактов:

Следующее обозначение обозначает спаренные контакты, которые механически соединены между собой и включаются или отключаются одновременно. Это могут быть, как контакты реле, так и контакты переключателя или рубильника:

Как всем известно, у диода два вывода, катод и анод, обозначение диода можно видеть на рисунке ниже. Вершина треугольника, направленная к черточке, показывает своим направлением прямое включение диода, когда он проводит ток, от анода к катоду, от плюса к минусу.

В биполярных транзисторах, которые, как всем известно, имеют три вывода базу, эмиттер, коллектор, выводом со стрелкой обозначают эмиттер, основание транзистора является базой, а оставшийся вывод, обозначающийся просто черточкой будет коллектором.

Причем с помощью стрелки обозначающей эмиттер и указывающей внутрь, либо наружу транзистора, обозначают структуру транзистора. Эта стрелка символизирует собой (также, как и в диоде) p-n переход, и направлена также от плюса к минусу или от положительного электрода к отрицательному.

Транзистор у нас представляет собой, условно говоря, два диода соединенных между собой либо катодами, либо анодами. Соответственно, если базовый электрод у нас отрицательный, то это будет транзистор p-n-p структуры, а если положительный, то n-p-n структуры.

В тиристорах есть три электрода, это уже знакомые нам по диоду и имеющие такое же обозначение катод и анод, плюс управляющий электрод. Его обозначение можно увидеть на рисунке ниже:

Конденсаторы у нас обозначаются на схемах двумя параллельными полосками, которые подразумевают собой 2 обкладки конденсатора.

У полярного электролитического конденсатора в обозначении добавлен знак плюс, указывающий на положительный электрод конденсатора, который нужно подключать строго в соответствии со схемой.

Переменные и подстроечные конденсаторы обозначаются как и обычные конденсаторы, но имеют в своем обозначении косую черту, в знак того, что они могут изменять свою емкость. Если эта черта заканчивается стрелкой, то это конденсатор переменой емкости рассчитанный при работе на многократное изменение положения обкладок или говоря другими словами на частое изменение емкости. Если же косая черта заканчивается поперечной черточкой, то это подстроечный конденсатор, такой конденсатор обычно регулируют только один раз, при сборке устройства.

На рисунке выше мы можем видеть изображение на схемах постоянных резисторов. Они имеют постоянное сопротивление, и два вывода. Переменные имеют три вывода и позволяют регулировать сопротивление, между центральным и крайними выводами, от нуля до номинального сопротивления резистора.

Светодиоды обозначаются как диод (иногда в круге, иногда без него) с двумя стрелками, направленными от диода. Иногда диод обводят кружочком.

На рисунке ниже изображено обозначение трансформатора, в данном случае трансформатор взят с несколькими вторичными обмотками:

Дроссель (катушка с сердечником), как он изображается на схемах, на рисунке ниже под цифрой два, изображение катушки под цифрой один:

И катушка с подстраиваемым сердечником изображена на рисунке три. Изображение разъемов, применяемое в электротехнике можно видеть на рисунке ниже, в данном случае изображена колодка разъемов, или говоря другими словами, несколько штук спаренных между собой.

На следующей принципиальной схеме изображено реле:

Показана катушка реле (слева) и две группы контактов, которые могут работать как на замыкание, так и на размыкание. Далее изображен диодный мост так, как он обозначается на схемах, причем в ходу оба изображения одного и того же моста.

Здесь изображено обозначение на схемах динамической головки, или говоря по другому — обычного динамика:

А тут мы можем видеть общее обозначение микрофона:

Уверен, теперь вы без труда сможете самостоятельно расшифровать принципиальную электрическую схему любого устройства — телевизора, холодильника, ресивера и так далее. А чтоб закрепить пройденный материал, попробуйте расшифровать схему кота 🙂

Конечно это лишь небольшая, хоть и основная часть условных обозначений элементов на схемах, но этого для начала вам вполне хватит. Урок подготовил — AKV.

Как читать электрические схемы

Каждая электрическая схема состоит из множества элементов, которые, в свою очередь, также включают в свою конструкцию различные детали. Наиболее ярким примером служат бытовые приборы. Даже обычный утюг состоит из нагревательного элемента, температурного регулятора, контрольной лампочки, предохранителя, провода и штепсельной вилки. Другие электроприборы имеют еще более сложную конструкцию, дополненную различными реле, автоматическими выключателями, электродвигателями, трансформаторами и многими другими деталями. Между ними создается электрическое соединение, обеспечивающее полное взаимодействие всех элементов и выполнение каждым устройством своего предназначения.

В связи с этим очень часто возникает вопрос, как научится читать электрические схемы, где все составляющие отображаются в виде условных графических обозначений. Данная проблема имеет большое значение для тех, кто регулярно сталкивается с электромонтажом. Правильное чтение схем дает возможность понять, каким образом элементы взаимодействуют между собой и как протекают все рабочие процессы.

Виды электрических схем

Для того чтобы правильно пользоваться электрическими схемами, нужно заранее ознакомиться с основными понятиями и определениями, затрагивающими эту область.

Любая схема выполняется в виде графического изображения или чертежа, на котором вместе с оборудованием отображаются все связующие звенья электрической цепи. Существуют различные виды электрических схем, различающиеся по своему целевому назначению. В их перечень входят первичные и вторичные цепи, системы сигнализации, защиты, управления и прочие. Кроме того, существуют и широко используются принципиальные и монтажные электрические схемы, однолинейные, полнолинейные и развернутые. Каждая из них имеет свои специфические особенности.

К первичным относятся цепи, по которым подаются основные технологические напряжения непосредственно от источников к потребителям или приемникам электроэнергии. Первичные цепи вырабатывают, преобразовывают, передают и распределяют электрическую энергию. Они состоят из главной схемы и цепей, обеспечивающих собственные нужды. Цепи главной схемы вырабатывают, преобразуют и распределяют основной поток электроэнергии. Цепи для собственных нужд обеспечивают работу основного электрического оборудования. Через них напряжение поступает на электродвигатели установок, в систему освещения и на другие участки.

Вторичными считаются те цепи, в которых подаваемое напряжение не превышает 1 киловатта. Они обеспечивают выполнение функций автоматики, управления, защиты, диспетчерской службы. Через вторичные цепи осуществляется контроль, измерения и учет электроэнергии. Знание этих свойств поможет научиться читать электрические схемы.

Полнолинейные схемы используются в трехфазных цепях. Они отображают электрооборудование, подключенное ко всем трем фазам. На однолинейных схемах показывается оборудование, размещенное лишь на одной средней фазе. Данное отличие обязательно указывается на схеме.

На принципиальных схемах не указываются второстепенные элементы, которые не выполняют основных функций. За счет этого изображение становится проще, позволяя лучше понять принцип действия всего оборудования. Монтажные схемы, наоборот, выполняются более подробно, поскольку они применяются для практической установки всех элементов электрической сети. К ним относятся однолинейные схемы, отображаемые непосредственно на строительном плане объекта, а также схемы кабельных трасс вместе с трансформаторными подстанциями и распределительными пунктами, нанесенными на упрощенный генеральный план.

В процессе монтажа и наладки широкое распространение получили развернутые схемы с вторичными цепями. На них выделяются дополнительные функциональные подгруппы цепей, связанных с включением и выключением, индивидуальной защитой какого-либо участка и другие.

Обозначения в электрических схемах

В каждой электрической цепи имеются устройства, элементы и детали, которые все вместе образуют путь для электрического тока. Они отличаются наличием электромагнитных процессов, связанных с электродвижущей силой, током и напряжением, и описанных в физических законах.

В электрических цепях все составные части можно условно разделить на несколько групп:

  1. В первую группу входят устройства, вырабатывающие электроэнергию или источники питания.
  2. Вторая группа элементов преобразует электричество в другие виды энергии. Они выполняют функцию приемников или потребителей.
  3. Составляющие третьей группы обеспечивают передачу электричества от одних элементов к другим, то есть, от источника питания – к электроприемникам. Сюда же входят трансформаторы, стабилизаторы и другие устройства, обеспечивающие необходимое качество и уровень напряжения.

Каждому устройству, элементу или детали соответствует условное обозначение, применяющееся в графических изображениях электрических цепей, называемых электрическими схемами. Кроме основных обозначений, в них отображаются линии электропередачи, соединяющие все эти элементы. Участки цепи, вдоль которых протекают одни и те же токи, называются ветвями. Места их соединений представляют собой узлы, обозначаемые на электрических схемах в виде точек. Существуют замкнутые пути движения тока, охватывающие сразу несколько ветвей и называемые контурами электрических цепей. Самая простая схема электрической цепи является одноконтурной, а сложные цепи состоят из нескольких контуров.

Большинство цепей состоят из различных электротехнических устройств, отличающихся различными режимами работы, в зависимости от значения тока и напряжения. В режиме холостого хода ток в цепи вообще отсутствует. Иногда такие ситуации возникают при разрыве соединений. В номинальном режиме все элементы работают с тем током, напряжением и мощностью, которые указаны в паспорте устройства.

Все составные части и условные обозначения элементов электрической цепи отображаются графически. На рисунках видно, что каждому элементу или прибору соответствует свой условный значок. Например, электрические машины могут изображаться упрощенным или развернутым способом. В зависимости от этого строятся и условные графические схемы. Для показа выводов обмоток используются однолинейные и многолинейные изображения. Количество линий зависит от количества выводов, которые будут разными у различных типов машин. В некоторых случаях для удобства чтения схем могут использоваться смешанные изображения, когда обмотка статора показывается в развернутом виде, а обмотка ротора – в упрощенном. Таким же образом выполняются и другие условные обозначения электрических схем.

Изображения трансформаторов также осуществляются упрощенным и развернутым, однолинейным и многолинейным способами. От этого зависит способ отображения самих устройств, их выводов, соединений обмоток и других составных элементов. Например, в трансформаторах тока для изображения первичной обмотки применяется утолщенная линия, выделенная точками. Для вторичной обмотки может использоваться окружность при упрощенном способе или две полуокружности при развернутом способе изображения.

Графические изображения других элементов:

  • Контакты. Применяются в коммутационных устройствах и контактных соединениях, преимущественно в выключателях, контакторах и реле. Они разделяются на замыкающие, размыкающие и переключающие, каждому из которых соответствует свой графический рисунок. В случае необходимости допускается изображение контактов в зеркально-перевернутом виде. Основание подвижной части отмечается специальной незаштрихованной точкой.
  • Выключатели. Могут быть однополюсными и многополюсными. Основание подвижного контакта отмечается точкой. У автоматических выключателей на изображении указывается тип расцепителя. Выключатели различаются по типу воздействия, они могут быть кнопочными или путевыми, с размыкающими и замыкающими контактами.
  • Плавкие предохранители, резисторы, конденсаторы. Каждому из них соответствуют определенные значки. Плавкие предохранители изображаются в виде прямоугольника с отводами. У постоянных резисторов значок может быть с отводами или без отводов. Подвижный контакт переменного резистора обозначается в виде стрелки. На рисунках конденсаторов отображается постоянная и переменная емкость. Существуют отдельные изображения для полярных и неполярных электролитических конденсаторов.
  • Полупроводниковые приборы. Простейшими из них являются диоды с р-п-переходом и односторонней проводимостью. Поэтому они изображаются в виде треугольника и пересекающей его линии электрической связи. Треугольник является анодом, а черточка – катодом. Для других видов полупроводников существуют собственные обозначения, определяемые стандартом. Знание этих графических рисунков существенно облегчает чтение электрических схем для чайников.
  • Источники света. Имеются практически на всех электрических схемах. В зависимости от назначения, они отображаются как осветительные и сигнальные лампы с помощью соответствующих значков. При изображении сигнальных ламп возможна заштриховка определенного сектора, соответствующего невысокой мощности и небольшому световому потоку. В системах сигнализации вместе с лампочками применяются акустические устройства – электросирены, электрозвонки, электрогудки и другие аналогичные приборы.

Как правильно читать электрические схемы

Принципиальная схема представляет собой графическое изображение всех элементов, частей и компонентов, между которыми выполнено электронное соединение с помощью токоведущих проводников. Она является основой разработок любых электронных устройств и электрических цепей. Поэтому каждый начинающий электрик должен в первую очередь овладеть способностями чтения разнообразных принципиальных схем.

Именно правильное чтение электрических схем для новичков, позволяет хорошо усвоить, каким образом необходимо выполнять соединение всех деталей, чтобы получился ожидаемый конечный результат. То есть устройство или цепь должны в полном объеме выполнять назначенные им функции. Для правильного чтения принципиальной схемы необходимо, прежде всего, ознакомиться с условными обозначениями всех ее составных частей. Каждая деталь отмечена собственным условно-графическим обозначением – УГО. Обычно такие условные знаки отображают общую конструкцию, характерные особенности и назначение того или иного элемента. Наиболее ярким примером служат конденсаторы, резисторы, динамики и другие простейшие детали.

Гораздо сложнее работать с полупроводниковыми электронными компонентами, представленными транзисторами, симисторами, микросхемами и т.д. Сложная конструкция таких элементов предполагает и более сложное отображение их на электрических схемах.

Например, в каждом биполярном транзисторе имеется минимум три вывода – база, коллектор и эмиттер. Поэтому для их условного изображения требуются особые графические условные знаки. Это помогает различить между собой детали с индивидуальными базовыми свойствами и характеристиками. Каждое условное обозначение несет в себе определенную зашифрованную информацию. Например, у биполярных транзисторов может быть совершенно разная структура – п-р-п или р-п-р, поэтому изображения на схемах также будут заметно отличаться. Рекомендуется перед тем как читать принципиальные электрические схемы, внимательно ознакомиться со всеми элементами.

Условные изображения очень часто дополняются уточняющей информацией. При внимательном рассмотрении, можно увидеть возле каждого значка латинские буквенные символы. Таким образом обозначается та или иная деталь. Это важно знать, особенно, когда мы только учимся читать электрические схемы. Возле буквенных обозначений расположены еще и цифры. Они указывают на соответствующую нумерацию или технические характеристики элементов.

Оценка статьи:

Загрузка… Сохранить себе в: Найти электрическую схему Ссылка на основную публикацию wpDiscuzAdblock
detector

Как читать электрические схемы. Соединительные провода и линии электрической связи

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы рассмотрели три основных вида электрических схем применяемых в радио- и электротехнике, и в продолжение темы как читать электрические схемы приступим к изучению условных графических обозначений элементов, с помощью которых строятся электрические схемы. Начнем с самого простого — соединительных проводов и линии электрической связи.

Если взглянуть на принципиальную схему, то в глаза бросается обилие параллельных и пересекающихся прямых линий. Все эти линии обозначают соединительные провода или линии электрической связи, которыми соединяются между собой детали любого электрического устройства. Места соединения, символизирующие электрическое соединение в виде пайки, скрутки, сварки и т.п., изображают зачерненной точкой, а если линии пересекаются без соединения, то в месте их пересечения точка не ставится.

Иногда еще можно встретить старые принципиальные схемы, где при пересечении линий электрической связи отсутствие соединения обозначали специальным обводом, от применения которого в настоящее время отказались, так как он усложнял чертежную работу. Обводы применяли из-за опасения, что в месте пересечения человеческий глаз по ошибке может увидеть точку и тем самым создать ошибочное представление о соединении.

Для удобства чтения линии связи и соединения между деталями на схемах принято изображать горизонтальными и вертикальными линиями. Ответвления соединительных проводов и линий изображают под углом 90°, однако в некоторых случаях допускается изображение ответвлений под углами, кратными 45°.

Длина и расположение соединительных линий на схеме ни как не отображают натуральную длину провода или его расположение в реальном устройстве. Может получиться так, что самая длинная соединительная линия, изображенная на схеме, в реальном устройстве будет представлять короткий проводник или его полное отсутствие, потому что детали между собой соединены выводами.

А может оказаться и так, что самая короткая линия на схеме будет являться изображением самого длинного проводника в реальном устройстве. Тут главное понимать, что на схемах соединительная линия показывает только то, что определенный вывод одной детали электрически соединен с другим определенным выводом другой детали.

Иногда на принципиальных схемах с целью сокращения количества соединительных линий, имеющих общее функциональное назначение, применяют однолинейное изображение, представляющее собой одну общую соединительную линию, в которую сливаются, а в нужном месте разветвляются одиночные линии. При этом каждой одиночной линии на входе и выходе присваивается одинаковый номер, по которому ее определяют в схеме. Допускается как обычное, так и утолщенное изображение общей линии.

В качестве примера рассмотрим часть схемы узла индикации.
На схеме видно, что вывод 2 микроконтроллера DD2 PIC16F84 заходит в общую линию под номером 4 (красная стрелка) и, выходя из общей линии, соединяется с выводом 22 индикатора HG1 CA58-11SR. Или вывод 6 микроконтроллера DD2 заходит в общую линию под номером 1 (темная стрелка) и, выходя из общей линии, соединяется с выводом 7 дешифратора DD1 К514ИД2.

При сборке сложных электрических устройств, состоящих из самостоятельных блоков, в общую схему устройства блоки включают при помощи соединительных проводов, которые в процессе монтажа увязывают в жгуты, что делает монтаж красивым и аккуратным.

На принципиальных и монтажных схемах жгут изображают линией нормальной толщины, ну а то, что это именно жгут, указывают ответвления одиночных линий.

Чтобы легче было искать, в каком направлении находится второй конец одиночной линии, линию изображают с коротким изломом под углом 45°. ГОСТ также допускает и более упрощенный вариант, хотя и менее удобный, это когда разветвление проводов жгута осуществляется без излома.

В электрических устройствах, например, аудиотехнике или измерительной аппаратуре, между отдельными элементами или узлами часто используют соединения экранированным проводником. Это связано с тем, что при определенных условиях обычный проводник может возбуждать электромагнитное поле в окружающем пространстве или, наоборот, в нем может наводиться э.д.с под влиянием внешнего магнитного поля, например, фон переменного тока.

Для устранения такого эффекта провод заключают в заземляющую металлическую оболочку, исключающую распространение магнитного поля, как по проводу, так и от него. Такую оболочку называют экраном, а сам способ защиты – экранированием.

Как правило, экран выполняют из тонких медных проволок сплетенных таким образом, что они образуют своеобразную «рубашку» или оплетку поверх изоляции провода. Экранирование осуществляется соединением одного конца оплетки с общим полюсом питания или с корпусом устройства.

Экранированный проводник обозначается штриховой линией и на принципиальных схемах его изображают либо штриховой окружностью, либо обычной соединительной линией, по обе стороны которой расположены две параллельные штриховые линии, условно изображающие продольное сечение экранирующей оболочки.

Когда хотят показать, что линия экранирована на всем протяжении от одного элемента схемы до другого, то экранирование обозначают штриховой окружностью. Когда же необходимо показать только часть экранированного участка, экранирование показывается не по всей линии связи, а на ее отдельных участках.

Штриховые линии, изображающие экран, рассматриваются как условное изображение элементов, и поэтому к ним допускается присоединение других соединительных линий, показывающих подключение, например, соединение экрана с корпусом электрического устройства.

В электрических устройствах, работающих на сверхвысоких частотах, для передачи энергии электромагнитных волн применяют коаксиальный кабель, обладающий достаточно высокой помехозащищенностью.

Коаксиальный кабель имеет круглое сечение и представляет собой центральный и внешний проводники, которые закрыты внешней защитной оболочкой, защищающей кабель от механических повреждений.

Центральный проводник выполняется целиком из меди или из стали с медным покрытием, и располагается точно по оси внешнего проводника, чем и объясняется название «коаксиальный».
Внешний проводник представляет собой гибкую токопроводящую оплетку (экран) из медной проволоки или алюминиевой фольги с оплеткой из омедненного алюминия.

Благодаря экранирующему действию внешнего проводника электромагнитное поле в коаксиальном кабеле сосредоточено в пространстве между двумя проводниками, что обеспечивает абсолютную защиту от влияния внешних электромагнитных волн и исключает потери электромагнитного поля. Получается, что кабель практически не излучает радиоволн.

Широкое применение коаксиальный кабель получил в системах эфирного, кабельного и спутникового телевидения, в системах видеонаблюдения, в компьютерных сетях, в системах связи и т.п.

На принципиальных схемах коаксиальный кабель изображают сплошным кружком с касательным к нему отрезком линии. Сплошной кружок подчеркивает, что внешняя оболочка является непроницаемой для электромагнитных волн.

К коаксиальному кабелю также как и к экранирующему проводнику допускается электрическое присоединение других линий, показывающих подключение, например, с заземлением или с общим проводом.

Если линия электрической связи выполнена кабелем лишь частично, то знак видоизменяют: касательную линию к кружку направляют только в одну сторону. В примере на рисунке ниже показано, что с правой стороны знака коаксиальная линия отсутствует.

Ну вот, в принципе и все, что хотел сказать про соединительные провода и линии электрической связи.
Удачи!

Литература:

1. ГОСТ 2.721-74 Обозначения условные графические в схемах. Обозначения общего применения.

2. Згут М.А. Условные обозначения и радиосхемы.

3. Клюев А.С. Техника чтения схем автоматического управления и технологического контроля.

схема электрическая общая (Э6)

На схеме изображают устройства и элементы, входящие в комплекс, а также соединяющие их провода, жгуты и кабели. Устройства и элементы изображают в виде прямоугольников.

Допускается изображать элементы в виде УГО или упрощенных внешних очертаний, а устройства – в виде упрощенных внешних очертаний. Расположение графических обозначений на схеме должно примерно соответствовать действительному расположению устройств и элементов в изделии.

Если действительное размещение устройств и их элементов неизвестно, то графические обозначения устройств и элементов располагают с учетом простоты и наглядности изображения электрических соединений между ними.

Около изображения каждого устройства и элемента показывают его наименование, тип или обозначение документа, на основании которого они приведены.

В случае большого количества устройств и элементов их соединения записывают в перечень элементов с присвоением позиционных обозначений, которые проставляют рядом с графическими обозначениями.

Устройства и элементы, сгруппированные в посты или помещения, рекомендуется записывать по постам или помещениям.

Входные, выходные и вводные элементы изображают на схеме в виде УГО, установленных в стандартах ЕСКД с учетом их действительного расположения внутри устройств.

Допускается не учитывать действительное размещение элементов в изделии, если оно снижает наглядность изображения электрических соединений в сложных схемах, а заменять его соответствующим пояснением на поле схемы.

Проходные изоляторы, гермовводы, сальники изображают в виде УГО, как и на схемах соединений (см. рис. 4.9).

Разрешается взамен УГО входных и выходных элементов помещать таблицы с указанием подключения контактов (см. рис. 4.5), как и в схемах соединений.

На схеме указывают обозначения входных, выходных и вводных элементов, нанесенные на изделие. Если в конструкции изде­лия обозначения элементов не указаны, то им условно присваивают обозначения на схеме, повторяя их в соответствующей конструкторской документации. При этом на поле схемы помещают необходимые пояснения.

Допускается размещать обозначения документов соединителей с простановкой количества контактов на полках линий-выносок.

Провода жгуты и кабели показывают отдельными линиями и обозначают порядковыми номерами в пределах изделия. Разрешается сквозная нумерация в пределах жгута, кабеля, если провода, входящие в жгуты, пронумерованы в пределах каждого жгута, кабеля. Номера проводов проставляют около концов их изображений. Короткие соединители допускается нумеровать около середины изображения.

Номера кабелей проставляют в окружностях, помещенных в разрывах их изображений, а номера жгутов – на полках линий-выносок.

Если на схеме принципиальной электрическим цепям присвоены обозначения в соответствии с ГОСТ 2.709-89, то одножильным проводам, жилам кабелей и проводам жгутов присваивают те же обозначения, что и в схемах соединений.

На схеме изделия, в состав которого входит несколько комплексов, одножильные провода, кабели и жгуты нумеруют в пределах каждого комплекса. В этом случае буквенно-цифровое обозначение, устанавливающее принадлежность их к определенному комплексу (функциональной цепи), проставляют перед номером через знак дефис. Обозначение кабеля при этом в окружности не вписывают.

Около изображений одножильных проводов и кабелей указывают марку, сечение, количество жил кабеля, иногда расцветку, а для проводов, кабелей и жгутов, изготовленных по чертежам, – обозначение основного конструкторского документа.

При большом количестве соединений эти сведения рекомендуется записывать в перечень. Форма таблицы перечня проводов, жгутов и кабелей приведена на рис. 4.11.

 

 

Рис. 4.11. Форма таблицы перечня жгутов и кабелей

 

Перечень помещают на первом листе схемы или выполняют в виде последующих листов. На первом листе схемы перечень рекомендуется располагать над основной надписью на расстоянии от нее не менее 12 мм.

В графах перечня указывают следующие данные:

· в графе «Обозначение провода, жгута, кабеля» – буквенно-циф­ро­вое обозначение провода, кабеля, жгута, указанного на схеме;

· в графе «Обозначение» – обозначение основного конструкторского документа для провода, кабеля, жгута, которые будут изготовлены по чертежам;

· в графе «Данные провода, жгута, кабеля» – обозначение марки, сечения, количество жил кабеля и расцветки при необходимости;

· в графе «Примечание» – кабели, поставляемые с комплексом или прокладываемые при его монтаже.

Допускается не вносить в перечень кабели, прокладываемые при монтаже изделия.

Общую схему рекомендуется выполнять на одном листе. Если схема сложная, и её невозможно разместить на одном листе, то на первом листе вычерчивают изделие в целом, изображая посты и помещения контурами очертаний со связями между ними. Внутри очертаний постов и помещений изображают только те устройства и элементы, к которым подводят провода и кабели, соединяющие посты или помещения.

На последующих листах вычерчивают схемы отдельных постов или помещений. Если в состав изделия входит несколько комплексов, то общую схему каждого комплекса выполняют на отдельном листе.

 

Схема расположения (Э7)

Схема расположения определяет относительное расположение составных частей изделия, а при необходимости, также жгутов, проводов, кабелей (рис. 4.12). На схеме изображают составные части изделия и при необходимости связи между ними, а также конструкцию, помещение или местность, на которой эти части расположены. Составные части изделия изображают в виде упрощенных внешних очертаний и/или УГО, которые располагают в соответствии с действительным размещением частей изделия в конструкции или на местности.

 

 

Рис. 4.12. 3D-модель расположения компонентов

Провода, жгуты и кабели изображают в виде отдельных линий или упрощенных внешних очертаний.

Около изображений устройств и элементов помещают их наименование и типы и/или обозначение документа, на основании которого они применены.

При большом количестве составных частей изделия эти сведения помещают в перечень элементов с присвоением позиционных обозначений в соответствии с принципиальной схемой. Схемы расположения могут быть выполнены на разрезах конструкций, разрезах или планах зданий и на их наглядных изображениях. В автоматизированном выполнении схемы расположения трехмерная модель изделия и его составных частей является предпочтительной.

 

Вопросы для самопроверки

1. Укажите буквенно-цифровой код схемы электрической структурной.

2. Укажите буквенно-цифровой код схемы электрической функциональной.

3. Укажите буквенно-цифровой код схемы электрической соединений.

4. Укажите буквенно-цифровой код схемы электрической подключения.

5. Укажите буквенно-цифровой код схемы электрической общей.

6. Укажите буквенно-цифровой код схемы расположения.

7. Для какой схемы предпочтительно использование 3D модели?

8. Какую схему рекомендуется выполнять на одном листе?

9. Какая схема может выполняться в виде самостоятельного документа на форматах А4?

10. Что входит в состав схемы электрической структурной?

11. В чем отличие схемы электрической структурной от схемы электрической функциональной?

12. В чем отличие схемы электрической подключения от схемы электрической соединений?

13. Укажите буквенно-цифровой код схемы электрической принципиальной.

 

Как научиться читать электрические (принципиальные) схемы начинающему

Рубрика: Статьи обо всем Опубликовано 28.01.2020   ·   Комментарии: 0   ·   На чтение: 10 мин   ·   Просмотры:

Post Views: 3 558

Принципиальные схемы — это основа радиолюбительства и электроники. Схемы помогают собирать устройства и разбираться в работе радиодеталей. Без них была бы полная неразбериха, если бы детали рисовали на схемах так, как они выглядят на самом деле.

Особенности чтения схем

В принципиальных схемах проводники (или дорожки) обозначаются линиями.


Так обозначаются проводники, которые пересекаются, но они не имеют общего соединения и электрически друг с другом не связаны.

А вот так они выглядят, если между ними есть соединение. Черная точка — это узел в схеме. Узел — это соединение нескольких проводников или деталей вместе. Они электрически друг с другом связаны.

Общая точка

Часто у начинающих радиолюбителей возникает вопрос — что это за символ на схеме?

Это общая точка (GND, земля). Раньше ее называли общим проводом. Так обозначается единый провод питания. Обычно это минус питания. Раньше на схемах могли сделать общим проводом и плюс питания. В данном случае схема без общей точки выглядела бы вот так:
Общая точка с однополярным питанием визуально лучше и компактнее выглядит, чем если просто сделать единую линию между ними.

Еще общей точкой ее называют потому, что относительно нее можно измерять любые остальные точки на схемах. Например, ставите щуп мультиметра на общую точку, а вторым щупом можете проверить любую часть цепи на схеме.

Почему она может называться землей (GND)? Раньше в качестве общего провода могло использоваться шасси корпуса прибора. Из-за этого возникла путаница между заземлением и землей. Оно интерпретируется в контексте схемы. Та схема, что была разобрана выше — общая точка (земля) это просто минус питания. Другое дело это двуполярные источники тока и заземление.

Двуполярное питание и общая точка

В двуполярном питании общая точка — это средний контакт между плюсом и минусом.

Заземление

Примером заземления может послужить фильтр в компьютерных блоках питания.

С конденсаторного фильтра помехи идут на корпус блока питания. Это и есть заземление. А с блока питания они должны уходить в розетку, если у вас есть заземление, иначе сам корпус блока питания может быть под напряжением. Токи там не большие, они не опасны для жизни. Это делается с целью уменьшения импульсных помех в блоке питания и безопасности.

Иногда в блоках питания вместо корпуса помехи с конденсатора идут на общую точку. Это все зависит от конструкции и схемотехники. В этом случае помех будет больше, чем с заземлением.

А вообще, на схемах есть разные заземления. Например, в цифровой технике разделяют аналоговую землю и цифровую. чтобы не нарушать режимы работы схемы. Импульсные помехи могут повлиять на аналоговую часть схемы.

Номиналы радиодеталей

Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.

К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.

Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.

Например, на этой схеме есть два резистора.
По умолчанию сопротивление без приставки пишется только числом. У R2 сопротивление равно 220 Ом. А у R3 после числа есть буква. Сопротивление этого резистора читается как 2,2 кОм (2 200 Ом).

Рассмотрим на схеме два конденсатора.

В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.

Нанофарады обозначаются как nF.

Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.

Что такое даташит и для чего он нужен

Даташит (Datasheet) — это техническая спецификация, в которой указывается полная информация о радиодетали. Вся техническая информация, основная схема включения, параметры и типы корпусов указываются именно в этом документе.

Даташиты бывают на разных языках, в основном на английском. Есть и переведенные варианты.

Документация на микросхему NE555. Нарисован корпус и внешний вид детали.

Здесь подробно описывается микросхема, ее параметры и условия работы.

Такая документация есть на любую деталь. Это очень удобно и информативно, особенно при поиске аналогов. А помощью интернета поиск аналога деталей или схемы стал еще проще.

Еще даташит позволяет опознать неизвестную деталь или микросхему. Достаточно написать ее название в поисковике, добавить слово даташит, и в результатах поиска будет вся документация.

Как научиться читать принципиальные схемы

На самом деле есть только несколько способов. Это теория и практика. Если вы выучите обозначение радиодеталей, это еще не значит, что вы выучили схемотехнику. Это все равно, что выучить азбуку, но без грамматики и практики вы не выучите язык.

Теория — это схемотехника, книги, описание принципа работы схемы. Практика — это сборка устройств, ремонт и пайка.

Например простая схема усилителя на одном транзисторе.

Вход X1 плюс (левый или правый канал), X2 минус. Звуковой сигнал поступает на электролитический конденсатор C1. Он защищает транзистор VT1 от замыкания, поскольку транзистор VT1 постоянно открыт при помощи делителя напряжения на R1 и R2. Делитель напряжения устанавливает рабочую точку на базе транзистора VT1, и транзистор не искажает входной сигнал. Резистор R3 и конденсатор C2, которые подключены к эмиттеру транзистора VT1, выполняют функцию термостабилизации рабочей точки при повышении температуры транзистора. Электролитический конденсатор C3 накапливает и фильтрует питающее напряжение. Динамическая головка BF1 служит выходом звукового сигнала.

Можно ли это понять, только выучив обозначения радиодеталей без схемотехники и теории? Навряд-ли.

Еще сложнее дело обстоит с цифровой техникой.

Что это за микроконтроллер, какие он функции выполняет, какая прошивка и какие фьюзы в нем установлены? А вторая микросхема, какой это усилитель? Без даташитов и описания к схеме не получится понять ее работу.
Изучайте схемотехнику, теорию и практику. Просто выучив название деталей не получится разобраться в схемотехнике. Обозначение радиодеталей выучиться само по себе по мере практики и накопления знаний. Еще все зависит от выбранной отрасли. У связистов одна схемотехника, у ремонтников мобильной техники другая. А те, кто занимается звуком, не очень поймут электриков. Как и наоборот. Чтобы понять другую отрасль, ее схемотехнику и принципы работы нужно в нее погрузиться.

Принципиальные схемы это своего рода язык, у которого есть разные диалекты.

Поэтому, не следует строить иллюзии. Изучайте схемотехнику и собирайте схемы.

Принципиальные схемы помогают собирать устройства, и при изучении теории, понимать работу устройства. Без знаний и опыта, схема это просто схема.

Обозначения радиодеталей на принципиальных схемах

УГО — это условно графическое изображения радиодетали на схеме. Некоторые УГО различаются друг от друга.

Например, в США обозначение резисторов отличается от СНГ и Европы.

Из-за этого меняется восприятие схемы.

Однако внешне и по обозначениям они похожи. Или например, транзисторы. Где-то они чертятся с кругами, а где-то без. Могут различаться размеры и угол стрелок. В таблице представлены УГО отечественных радиодеталей.

Биполярный p-n-p транзистор

Однопереходный транзистор с n базой

Однопереходный транзистор с p базой

Обмотка реле

Заземление

Диод

Диодный мост

Диод Шотки

Двуханодный стабилитрон

Двунаправленный стабилитрон

Обращенный диод

Стабилитрон

Туннельный диод

Варикап

Катушка индуктивности

Катушка индуктивности с подстраиваемым сердечником

Катушка индуктивности с сердечником

Обмотка

Регулируемый сердечник

Опорный конденсатор

Переменный конденсатор

Подстроечный конденсатор

Двухпозиционный переключатель

Герконовый переключатель

Размыкающий переключатель

Замыкающий переключатель

Полевой транзистор с каналом n типа

Полевой транзистор с каналом p типа

Быстродействующий плавкий предохранитель

Инерционно-плавкий предохранитель

Плавкий предохранитель

Пробивной предохранитель

Термическая катушка

Тугоплавкий предохранитель

Выключатель-предохранитель

Разрядник

Разрядник двухэлектродный

Разрядник электрохимический

Разрядник ионный

Разрядник роговой

Разрядник шаровой

Разрядник симметричный

Разрядник трехэлектродный

Разрядник трубчатый

Разрядник угольный

Разрядник вакуумный

Разрядник вентильный

Гнездо телефонное

Разъем

Разъем

Подстроечный резистор

Резистор 0,125 Вт

Резистор 0,25 Вт

Резистор 0,5 Вт

Резистор 1 Вт

Резистор 2 Вт

Резистор 5 Вт

Динистор проводящий в обратном направлении

Динистор запираемый в обратном направлении

Диодный симметричный тиристор

Тетродный тиристор

Тиристор с управлением по катоду

Тиристор с управлением по аноду

Тиристор с управлением по катоду

Тиристор триодный симметричный

Запираемый тиристор с управлением по аноду

Запираемый тиристор с управлением по катоду

Диодная оптопара

Фотодиод

Фототиристор

Фототранзистор

Резистивная оптопара

Светодиод

Тиристорная оптопара

Это далеко не все детали. И зубрить их особого смысла нет. Такие таблицы пригодятся в виде справочника. Можно опознать что за деталь представлена на схеме во время ее изучения или сборки устройства.

Какими буквами обозначаются радиодетали на схемах

Буквенное обозначение на схеме Радиодеталь
R Резисторы (переменный, подстроечный и постоянный)
VD Диоды (стабилитрон, мост, варикап и т.д.)
C Конденсаторы (неполярный, электролитический, переменный и т.д.)
L Катушки и дроссели
SA Переключатели
FU Предохранители
FV Разрядники
X Разъемы
K Реле
VS Тиристоры (тетродные, динисторы, фототиристоры и т.п.)
VT Транзисторы (биполярные, полевые)
HL Светодиоды
U Оптопары

Post Views: 3 558

Типы и виды электрических схем, классификация, назначение

Собой электрическая схема представляет обычный документ, в котором правила ГОСТ обозначаются в связи между собой составными частями устройств, работающие за счет протекания электроэнергии. Если говорить простыми словами, то схема – это чертеж, на котором электрик обозначает места установки розеток, проводов и выключателей. В этой статье мы поговорим с вами, какие бывают типы и виды электрических схем, покажем краткое описание и рассмотрим основные характеристики каждого вида по отдельности.

Типы и виды электрических схем: общая класификация

Можно выделить типы и виды электрических схем, вот именно о них мы и попробуем поговорить в этой статье. Итак, согласно ГОСТу бывают следующие виды схем:

  1. Пневматические (П).
  2. Гидравлические (Г).
  3. Электрические (Э).
  4. Газовые (Г).
  5. Вакуумные (В).
  6. Деления (Д).
  7. Комбинированные (К).
  8. Оптические (О).
  9. Кинематические (К).
  10. Энергетические (Р).

Вот такие существуют виды, теперь выделить основные типы электрических схем:

  1. Структурные (1).
  2. Функциональные (2).
  3. Принципиальные (полные) (3).
  4. Соединений (монтажные) (4).
  5. Подключения (5).
  6. Общие (6).
  7. Расположение (7).
  8. Объединенные (8).

Исходя из основных обозначений, вы сможете понять, чем отличается тип от вида. Чтобы вам было понятней, попытаемся рассмотреть на живом примере, есть схема Э3, вот так она выглядит. Узнайте о том, как сделать токопроводящий клей своими руками – эта статья будет полезной для вас. 

Как видите, особых проблем на этом этапе возникнуть не должно, все предельно ясно и понятно. Далее мы с вами рассмотрим типы и виды электрических схем их назначение, и разберем каждый вид по отдельности. Хочется сразу заметить, все знать совсем не обязательно, ведь в жизни каждого человека используются несколько.

Назначение электрических схем

Структурная схема

Ее можно назвать самой простой и понятной для восприятия. С помощью нее можно узнать, какие электроустановка работает и из каких основных компонентов она состоит. Вот так она выглядит на фото, как вы понимаете, работать с ней всегда просто и удобно. Да и во время ремонта она всегда будет выступать лучшим помощником для вас, ведь в любой момент можно все прочитать, даже если эта схема была составлена несколько десятков лет назад.

Функциональная

Такая схема по своему назначению практически ничем не отличается от представленной выше. Есть только одно существенное различие – в этой схеме более подробно описываются все составляющие любой цепи. Посмотрите, как выглядит схема функциональная на чертеже.

Принципиальная 

Чаще всего принципиальная электрическая схема применяется в сложных распределительных сетях. Только она способна дать самое полное объяснение тому, как работает то, или иное электрооборудование. Она делится на два вида:

  • Однолинейная.
  • Полная.

Однолинейная дает понятие о том, как работают первичные или так называемые силовые сети, чертеж у нее довольно простой.

Полная принципиальная схема делится еще на два вида: развернутая и элементарная. В зависимости от сложности электромонтажных работ и делают определенные пояснения. Чтобы вы поняли всю сложность такой схемы, просто посмотрите на ее пример.

Монтажная схема

Ее можно обозначить, как самую популярную, только она может рассказать о том, как нужно делать проводку в доме и где находятся провода. На таком типе схемы обозначают точное расположение элементов цепи, основные способы их соединения и цветовую маркировку. Следующим образом она выглядит.

Предназначение у такой схемы одно – помочь человеку сделать ремонт в своем доме и указать место, где будут или уже проходят все провода.

Объеденная

Данная схема включает в себя сразу несколько типов (документов). Она используется только в крайних ситуациях, когда по-другому невозможно обозначить все важные особенности цепи. Как правило, она используется только на больших предприятиях профессиональными электриками. Так что, сильно в ее суть можете не вникать.

Вот мы с вами и рассмотрели основные типы и виды электрических схем, которые существуют на данный момент. Как вы понимаете, при составлении каждой схемы нужно читать дополнительную информацию, напомним, это только классификация, каждая из них наделена еще своими основными особенностями.

Похожая статья по теме: Защита кабелей и проводов от грызунов, кошек и собак.

Основные электрические схемы и их работа для инженеров-электриков

Фундаментальные знания и навыки работы с основными электрическими схемами всегда служат прочной основой для получения технически обоснованного опыта. Студенты также могут хорошо ознакомиться с этими базовыми схемами, особенно на практике. Таким образом, базовая схема помогает учащемуся понять основные компоненты и характеристики схемы во время ее работы.

В этой статье представлены основные понятия о двух типах электрических цепей: цепях переменного и постоянного тока.В зависимости от типа источника электричество бывает переменного тока (AC) и постоянного тока (DC).


Базовые цепи постоянного тока

В цепях постоянного тока электричество течет в постоянном направлении с фиксированной полярностью, которая не меняется со временем. В цепи постоянного тока используются компоненты постоянного тока, такие как резисторы и их комбинации; переходные компоненты, такие как катушки индуктивности и конденсаторы; показывающие измерители, такие как вольтметры и амперметры с подвижной катушкой; источники питания аккумуляторных батарей и т. д.

Для анализа этих схем используются различные инструменты, такие как закон Ома, законы напряжения и тока, такие как KCL, KVL, и сетевые теоремы, такие как Thevinens, Nortons, анализ сетки и т. Д. Ниже приведены некоторые из основных цепей постоянного тока, которые выражают рабочий характер цепи постоянного тока.

Последовательные и параллельные цепи

Базовые цепи постоянного тока

Резистивные нагрузки представляют собой осветительные нагрузки, которые подключены в различных конфигурациях для анализа цепей постоянного тока, показанных на рисунке.Способ подключения нагрузок, безусловно, меняет характеристики схемы.

В простой цепи постоянного тока резистивная нагрузка в виде лампы подключается между положительной и отрицательной клеммами батареи. Батарея обеспечивает необходимую мощность для лампы и позволяет пользователю включить или выключить выключатель в соответствии с требованиями.

Последовательные и параллельные сопротивления

Нагрузки или сопротивления, подключенные последовательно с источником постоянного тока, в качестве электрического символа для осветительной нагрузки, цепь разделяет общий ток, но напряжение на отдельных нагрузках меняется и складывается для получения общего напряжения.Таким образом, на конце резистора происходит снижение напряжения по сравнению с первым элементом, подключенным последовательно. И, если какая-либо нагрузка выйдет из цепи, вся цепь будет разомкнута.

В параллельной конфигурации напряжение является общим для каждой нагрузки, но ток варьируется в зависимости от номинальной нагрузки. В разомкнутой цепи проблем нет, даже если одна нагрузка отключена от цепи. Многие соединения нагрузки относятся к этому типу, например, домашняя проводка.

Формулы цепи постоянного тока

Таким образом, из приведенных выше схем и цифр можно легко найти общее потребление нагрузки, напряжение, ток и распределение мощности в цепи постоянного тока.

Базовые схемы переменного тока

В отличие от постоянного тока, переменное напряжение или ток периодически меняют свое направление, увеличиваясь от нуля до максимума и уменьшаясь обратно до нуля, затем продолжая отрицательно до максимума, а затем снова до нуля. Частота этого цикла составляет около 50 циклов в секунду в Индии. Для приложений большой мощности переменный ток является более преобладающим и эффективным источником, чем постоянный ток. Мощность — это не просто произведение напряжения и тока, как в случае постоянного тока, но она зависит от компонентов схемы.Давайте посмотрим, как работает цепь переменного тока с основными компонентами.

Схема переменного тока с резистором

Схема переменного тока с резистором

В схеме этого типа падение напряжения на резисторе точно совпадает по фазе с током, как показано на рисунке. Это означает, что когда мгновенное значение напряжения равно нулю, текущее значение в этот момент также равно нулю. А также, когда напряжение положительное во время положительной полуволны входного сигнала, ток также положительный, поэтому мощность положительна, даже когда они находятся в отрицательной полуволне входного сигнала.Это означает, что мощность переменного тока в резисторе всегда рассеивается в виде тепла, забирая его от источника, независимо от того, является ли ток положительным или отрицательным.

Схема переменного тока с индукторами

Катушки индуктивности противодействуют изменению тока через них, в отличие от резисторов, которые препятствуют протеканию тока. Это означает, что когда ток увеличивается, индуцированное напряжение пытается противодействовать этому изменению тока, понижая напряжение. Падение напряжения на катушке индуктивности пропорционально скорости изменения тока.

Схема переменного тока с индукторами

Следовательно, когда ток достигает максимального пика (нет скорости изменения формы), мгновенное напряжение в этот момент равно нулю, и обратное происходит, когда ток достигает пика на нуле (максимальное изменение его наклона) , как показано на рисунке. Таким образом, в цепи переменного тока катушки индуктивности нет рассеиваемой полезной мощности.

Таким образом, мгновенная мощность индуктора в этой цепи полностью отличается от цепи постоянного тока, где она находится в той же фазе. Но в этой схеме они разнесены на 90 градусов, поэтому мощность иногда бывает отрицательной, как показано на рисунке.Отрицательная мощность означает, что мощность возвращается в цепь, поскольку она поглощает ее в оставшейся части цикла. Это сопротивление изменению тока называется реактивным сопротивлением и зависит от частоты рабочей цепи.

Цепь переменного тока с конденсаторами

Конденсатор противодействует изменению напряжения, которое отличается от индуктора, который противодействует изменению тока. При подаче или потреблении тока возникает этот тип противодействия, и этот ток пропорционален скорости изменения напряжения на конденсаторе.

Цепь переменного тока с конденсаторами

Здесь ток через конденсатор является результатом изменения напряжения в цепи. Следовательно, мгновенный ток равен нулю, когда напряжение достигает своего пикового значения (без изменения наклона напряжения), и он максимален, когда напряжение равно нулю, поэтому мощность также чередуется в положительных и отрицательных циклах. Это означает, что он не рассеивает энергию, а просто поглощает и высвобождает ее.

Поведение цепи переменного тока также может быть проанализировано путем объединения вышеупомянутых цепей, таких как цепи RL, RC и RLC, последовательно, а также в параллельных комбинациях.А также уравнения и формулы вышеуказанных схем исключены в этой статье, чтобы уменьшить сложность, но общая идея состоит в том, чтобы дать базовое понятие об электрических схемах.

Мы надеемся, что вы, возможно, поняли эти основные электрические схемы, и хотели бы получить дополнительный практический опыт работы с различными электрическими и электронными схемами. Для любых ваших требований прокомментируйте в разделе комментариев ниже. Мы всегда готовы помочь вам сориентироваться в этой конкретной области по вашему выбору.

Авторские фото

Введение в базовую электронику, электронные компоненты и проекты

Изучить основы электроники и создавать собственные проекты намного проще, чем вы думаете. В этом руководстве мы дадим вам краткий обзор общих электронных компонентов и объясним их функции. Затем вы узнаете о схематических диаграммах и о том, как они используются для проектирования и построения схем. И, наконец, вы примените эту информацию, создав свою первую базовую схему.

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ КНИГА (PDF) — Makerspace Info Bundle

Перед тем, как начать, убедитесь, что ваш электронный рабочий стол правильно настроен. Рабочее место не должно быть необычным, и вы даже можете собрать свой собственный электронный верстак.

Электронные компоненты могут быть небольшими, и рекомендуется держать все в порядке. Самый популярный вариант — использовать прозрачные пластиковые ящики для хранения деталей. Кроме того, вы можете использовать пластиковые ящики для хранения, которые свешиваются на стойку или помещаются на полку.

Теперь, когда у вас есть хорошее рабочее место, пора снабдить его необходимыми инструментами и оборудованием. Это неполный список, но он выделяет наиболее распространенные элементы, используемые в электронике.

Макет

Макетные платы — важный инструмент для создания прототипов и временных схем. Эти платы содержат отверстия для вставки проводов и компонентов. Поскольку они временны, они позволяют создавать схемы без пайки. Отверстия в макете соединены рядами по горизонтали и вертикали, как показано ниже.

Цифровой мультиметр

Мультиметр — это устройство, которое используется для измерения электрического тока (амперы), напряжения (вольты) и сопротивления (Ом). Он отлично подходит для поиска и устранения неисправностей в цепях и может измерять как переменное, так и постоянное напряжение. Прочтите этот пост, чтобы узнать больше о том, как использовать мультиметр.

Держатели для батарей

Батарейный отсек — пластиковый корпус, вмещающий батарейки от 9В до АА. Некоторые держатели закрыты и могут иметь встроенный выключатель.

Тестовые провода (зажимы типа «крокодил»)

Измерительные провода отлично подходят для соединения компонентов вместе для проверки цепи без пайки.

Кусачки

Кусачки необходимы для снятия изоляции с многожильных и одножильных медных проводов.

Набор прецизионных отверток

Прецизионные отвертки также называются ювелирными отвертками и обычно поставляются в комплекте. Преимущество этих отверток перед обычными — точные наконечники каждой отвертки.Это очень удобно при работе с электроникой, содержащей крошечные винты.

Третья рука помощи

При работе с электроникой кажется, что рук никогда не хватает, чтобы все удержать. Вот здесь-то и пригодится рука помощи (третья рука). Отлично подходит для удержания печатных плат или проводов при пайке или лужении.

Тепловая пушка

Тепловая пушка используется для усадки пластиковых трубок, известных как термоусадка, для защиты оголенных проводов. Термоусадочная лента, которую называют изолентой электроники, пригодится в самых разных сферах применения.

Перемычка

Эти провода используются с макетными платами и макетными платами и обычно представляют собой одножильный провод 22-28 AWG. Провода перемычки могут иметь концы «папа» или «мама» в зависимости от того, как их нужно использовать.

Паяльник

Когда пришло время создать постоянную цепь, вам нужно спаять части вместе. Для этого вам понадобится паяльник. Конечно, паяльник бесполезен, если к нему нет припоя.Вы можете выбрать свинцовый или бессвинцовый припой нескольких диаметров.

Теперь пора поговорить о различных компонентах, которые воплощают в жизнь ваши электронные проекты. Ниже приводится краткое описание наиболее распространенных компонентов и функций, которые они выполняют.

Переключатель

Переключатели

могут быть разных форм, например, кнопочные, кулисные, мгновенные и другие. Их основная функция — прерывание электрического тока путем включения или выключения цепи.

Резистор

Резисторы используются для сопротивления прохождению тока или для управления напряжением в цепи.Величина сопротивления резистора измеряется в Ом. У большинства резисторов есть цветные полосы снаружи, и этот код сообщит вам значение сопротивления. Вы можете использовать мультиметр или калькулятор цветового кода резистора Digikey, чтобы определить номинал резистора.

Переменный резистор (потенциометр)

Переменный резистор также известен как потенциометр. Эти компоненты можно найти в таких устройствах, как диммер или регулятор громкости для радио.Когда вы поворачиваете вал потенциометра, сопротивление в цепи изменяется.

Светозависимый резистор (LDR)

Светозависимый резистор также является переменным резистором, но управляется светом, а не поворотом ручки. Сопротивление в цепи изменяется в зависимости от интенсивности света. Они часто встречаются во внешнем освещении, которое автоматически включается в сумерках и выключается на рассвете.

Конденсатор

Конденсаторы накапливают электричество, а затем разряжают его обратно в цепь при падении напряжения.Конденсатор подобен перезаряжаемой батарее, его можно заряжать, а затем разряжать. Значение измеряется в диапазоне Ф (фарад), нанофарада (нФ) или пикофарада (пФ).

Диод

Диод пропускает электричество в одном направлении и блокирует обратное. Основная роль диода — направлять электричество по нежелательному пути внутри цепи.

Светоизлучающий диод (LED)

Светодиод похож на стандартный диод тем, что электрический ток течет только в одном направлении.Основное отличие заключается в том, что светодиод излучает свет, когда через него проходит электричество. Внутри светодиода находятся анод и катод. Ток всегда течет от анода (+) к катоду (-) и никогда в обратном направлении. Более длинная ветвь светодиода — это положительная (анодная) сторона.

Транзистор

Транзистор — это крошечные переключатели, которые включают или выключают ток при срабатывании электрического сигнала. Помимо того, что он является переключателем, он также может использоваться для усиления электронных сигналов.Транзистор похож на реле, за исключением того, что у него нет движущихся частей.

Реле

Реле — это переключатель с электрическим приводом, который открывается или закрывается при подаче питания. Внутри реле находится электромагнит, который управляет механическим переключателем.

Интегральная схема (ИС)

Интегральная схема — это схема, размер которой уменьшен, чтобы поместиться внутри крошечного чипа. Эта схема содержит электронные компоненты, такие как резисторы и конденсаторы, но в гораздо меньшем масштабе.Интегральные схемы бывают разных вариаций, таких как таймеры 555, регуляторы напряжения, микроконтроллеры и многое другое. Каждый вывод на ИС уникален с точки зрения своей функции.

Перед тем, как разрабатывать электронный проект, вам необходимо знать, что такое схема и как ее правильно создать.

Электронная схема — это круговой путь проводников, по которому может течь электрический ток. Замкнутый контур похож на круг, потому что он начинается и заканчивается в одной и той же точке, образуя полный цикл.Кроме того, замкнутая цепь позволяет электричеству беспрерывно течь от (+) питания к (-) заземлению.

Напротив, если есть какой-либо перерыв в подаче электроэнергии, это называется обрывом цепи. Как показано ниже, переключатель в цепи может вызывать ее размыкание или замыкание в зависимости от своего положения.

Все схемы должны иметь три основных элемента. Эти элементы представляют собой источник напряжения, токопроводящую дорожку и нагрузку.

Источник напряжения, например аккумулятор, необходим для протекания тока через цепь.Кроме того, должен быть токопроводящий путь, по которому будет проходить электричество. Наконец, для правильной схемы нужна нагрузка, потребляющая энергию. Нагрузкой в ​​приведенной выше схеме является лампочка.

При работе со схемами вы часто встретите нечто, называемое схематической диаграммой. На этих схемах используются символы, показывающие, какие электронные компоненты используются и где они размещаются в цепи. Эти символы представляют собой графические изображения реальных электронных компонентов.

Ниже приведен пример схемы, на которой изображена цепь светодиода, управляемая переключателем. Он содержит символы для светодиода, резистора, батареи и переключателя. Следуя схематической диаграмме, вы можете узнать, какие компоненты использовать и где их разместить. Эти схемы чрезвычайно полезны для новичков при первом изучении схем.

Принципиальная схема светодиодной цепи

Существует много типов электронных символов, и они незначительно различаются в зависимости от страны.Ниже приведены несколько наиболее часто используемых электронных символов в США.

Резисторы

обычно используются в проектах электроники, и важно знать, какой размер использовать. Чтобы узнать номинал резистора, вам нужно знать напряжение и силу тока для вашего светодиода и батареи.

Для нормальной работы стандартного светодиода обычно требуется напряжение около 2 В и ток 20 мА или 0,02 А. Далее вам нужно узнать, какое напряжение у вашего аккумулятора. В этом примере мы будем использовать батарею на 9 В.Чтобы определить размер резистора, нам нужно использовать формулу, известную как закон Ома, как показано ниже.

Закон Ома — сопротивление (R) = напряжение (В) / ток (I)

  • Сопротивление измеряется в Ом (Ом)
  • Напряжение измеряется в вольтах (В)
  • Ток измеряется в амперах (A)

Используя закон Ома, вам нужно вычесть напряжение светодиода из напряжения батареи. Это даст вам напряжение 7, которое нужно разделить на.02 ампера от светодиода. Эта формула показывает, что вам понадобится резистор 350 Ом.

Отметим, что стандартные резисторы не имеют сопротивления 350 Ом, но доступны в 330 Ом, что вполне подойдет.

Теперь пришло время объединить все, что вы узнали, и создать базовую схему. Этот проект — отличный стартовый проект для начинающих. Мы будем использовать тестовые провода, чтобы создать временную схему без пайки.

Необходимые детали:

Принципиальная схема

Этапы проекта

  1. Прикрепите зажим аккумулятора к верхней части аккумулятора 9 В.
  2. Красный провод от зажима аккумулятора подсоединяется к одному зажиму типа «крокодил» на красном щупе.
  3. Другой конец красного щупа подсоединяется к длинной ножке (+) светодиода.
  4. Подсоедините один зажим «крокодил» черного тестового провода к короткой ножке (-) светодиода.
  5. Другой конец черного измерительного провода закреплен на одной ножке резистора 330 Ом.
  6. Закрепите одну сторону другого черного измерительного провода на другой ножке резистора 330 Ом.
  7. Противоположный конец черного щупа подсоединяется к черному проводу аккумуляторной батареи.

ВАЖНО — Никогда не подключайте светодиод напрямую к батарее 9 В без резистора в цепи. Это сделать с повреждением / разрушением светодиода. Однако вы можете подключить светодиод к батарее 3 В или меньше без резистора.

Еще один способ создать и протестировать схему — это построить ее на макетной плате. Эти платы необходимы для тестирования и создания прототипов схем, поскольку пайка не требуется. Компоненты и провода вставляются в отверстия, образуя временную цепь.Поскольку это не навсегда, вы можете экспериментировать и вносить изменения, пока не будет достигнут желаемый результат.

Под отверстиями каждого ряда находятся металлические зажимы, которые соединяют отверстия друг с другом. Средние ряды идут вертикально, как показано, в то время как внешние столбцы соединяются горизонтально. Эти внешние колонны называются силовыми шинами и используются для приема и подачи питания на плату.

На макетные платы необходимо подавать питание, и это можно сделать несколькими способами.Один из самых простых способов — вставить провода от держателя батареи в шины питания. Это будет подавать напряжение только на ту шину, к которой он подключен.

Для питания обеих шин потребуется перемычка, соединяющая (+) и (-) с рейкой на противоположной стороне.

Теперь мы научимся создавать схему на макетной плате. Эта схема точно такая же, как и раньше, но мы не будем использовать измерительные провода.

Необходимые детали:

Принципиальная схема

Этапы проекта

  1. Прикрепите зажим аккумулятора к верхней части аккумулятора 9 В.
  2. Вставьте красный провод от зажима аккумулятора в F9 макета.
  3. Вставьте черный провод зажима аккумулятора в разъем J21 на макетной плате.
  4. Согните ножки резистора 330 Ом и поместите одну ножку в F21.
  5. Вставьте другую ногу резистора в F15.
  6. Вставьте короткую ножку светодиода в J15, а длинную — в J9.

Красные стрелки на изображении ниже помогают показать, как в этой цепи течет электричество.Все компоненты соединены друг с другом по кругу, как при использовании тестовых проводов.

ВАЖНО — Никогда не подключайте светодиод напрямую к батарее 9 В без резистора в цепи. Это сделать с повреждением / разрушением светодиода.

Если вы хотите сделать свою схему постоянной, вам нужно спаять ее вместе. Подробное руководство по пайке электроники можно найти в нашей публикации «Как паять» с полным пошаговым руководством.

В Интернете есть множество отличных мест, где можно найти электронные компоненты, детали и инструменты.Ниже приведен список наших любимых мест для покупок электроники.

Основные электрические термины и определения


Переменный ток (AC) — Электрический ток, который меняет свое направление много раз в секунду через равные промежутки времени.

Амперметр — Прибор для измерения расхода электрического тока в амперах. Амперметры всегда подключаются последовательно к проверяемой цепи.

Пропускная способность — Максимальное количество электрического тока, которое может выдержать проводник или устройство, прежде чем они будут подвержены немедленному или прогрессирующему износу.

Ампер-час (Ач) — Единица измерения емкости аккумулятора. Он получается путем умножения силы тока (в амперах) на время (в часах), в течение которого протекает ток. Например, батарея, которая обеспечивает 5 ампер в течение 20 часов, считается, что она обеспечивает 100 ампер-часов.

Ампер (А) — Единица измерения силы электрического тока, протекающего в цепи. Один ампер равен одному кулону в секунду.

Полная мощность — Измерено в вольт-амперах (ВА).Полная мощность — это произведение среднеквадратичного напряжения и среднеквадратичного тока.

Якорь — Подвижная часть генератора или двигателя. Он состоит из проводников, которые вращаются в магнитном поле, создавая напряжение или силу за счет электромагнитной индукции. Поворотные точки в регуляторах генератора также называют якорями.

Емкость — способность тела накапливать электрический заряд. Измеряется в фарадах как отношение электрического заряда объекта (Q, измеряется в кулонах) к напряжению на объекте (V, измеряется в вольтах).

Конденсатор — Устройство, используемое для хранения электрического заряда, состоящее из одной или нескольких пар проводников, разделенных изолятором. Обычно используется для фильтрации скачков напряжения.

Схема — Замкнутый путь, по которому текут электроны от источника напряжения или тока. Цепи могут быть включены последовательно, параллельно или в любой их комбинации.

Автоматический выключатель — автоматическое устройство для остановки протекания тока в электрической цепи.Для восстановления работы автоматический выключатель должен быть перезапущен (замкнут) после устранения причины перегрузки или отказа. Автоматические выключатели используются вместе с защитными реле для защиты цепей от неисправностей.

Проводник — Любой материал, по которому может свободно течь электрический ток. Проводящие материалы, такие как металлы, имеют относительно низкое сопротивление. Медная и алюминиевая проволока — самые распространенные проводники.

Вернуться к началу

Корона — Коронный разряд — это электрический разряд, вызванный ионизацией жидкости, такой как воздух, окружающей проводник, который электрически заряжен.Самопроизвольные коронные разряды возникают естественным образом в высоковольтных системах, если не принять меры по ограничению напряженности электрического поля.

Ток (I) — Поток электрического заряда через проводник. Электрический ток можно сравнить с потоком воды в трубе. Измеряется в амперах.

Цикл — изменение переменной электрической синусоидальной волны от нуля до положительного пика, от нуля до отрицательного пика и обратно до нуля. См. Частота.

Потребление — Среднее значение мощности или соответствующего количества за указанный период времени.

Диэлектрическая постоянная — Величина, измеряющая способность вещества накапливать электрическую энергию в электрическом поле.

Электрическая прочность — Максимальное электрическое поле, которое чистый материал может выдержать в идеальных условиях без разрушения (т. Е. Без нарушения его изоляционных свойств).

Диод — полупроводниковый прибор с двумя выводами, обычно позволяющий току течь только в одном направлении.Диоды позволяют току течь, когда анод положительный по отношению к катоду.

Постоянный ток (DC) — Электрический ток, который течет только в одном направлении.

Электролит — Любое вещество, которое в растворе диссоциирует на ионы и, таким образом, становится способным проводить электрический ток. Водный раствор серной кислоты в аккумуляторной батарее является электролитом.

Электродвижущая сила — (ЭДС) Разность потенциалов, которая имеет тенденцию вызывать электрический ток.Измеряется в вольтах.

Электрон — крошечная частица, которая вращается вокруг ядра атома. Имеет отрицательный заряд электричества.

Вернуться к началу

Электронная теория — Теория, объясняющая природу электричества и обмен «свободными» электронами между атомами проводника. Это также используется как одна теория для объяснения направления тока в цепи.

Фарад — Единица измерения емкости. Один фарад равен одному кулону на вольт.

Феррорезонанс — (нелинейный резонанс) тип резонанса в электрических цепях, который возникает, когда цепь, содержащая нелинейную индуктивность, питается от источника, имеющего последовательную емкость, и цепь подвергается возмущению, например размыканию переключателя. . Это может вызвать перенапряжения и сверхтоки в системе электроснабжения и может представлять опасность для передающего и распределительного оборудования, а также для эксплуатационного персонала.

Частота — количество циклов в секунду.Измеряется в герцах. Если ток завершается один цикл в секунду, то частота составляет 1 Гц; 60 циклов в секунду равны 60 Гц.

Предохранитель — Устройство прерывания цепи, состоящее из полоски проволоки, которая плавит и разрывает электрическую цепь, если ток превышает безопасный уровень. Для восстановления работоспособности предохранитель необходимо заменить на аналогичный предохранитель того же размера и номинала после устранения причины неисправности.

Генератор — Устройство, преобразующее механическую энергию в электрическую.

Земля — Контрольная точка в электрической цепи, от которой измеряется напряжение, общий обратный путь для электрического тока или прямое физическое соединение с землей.

Прерыватели цепи при замыкании на землю (GFCI) — Устройство, предназначенное для защиты персонала, которое функционирует для обесточивания цепи или ее части в течение установленного периода времени, когда ток на землю превышает некоторое заданное значение, которое меньше необходимые для срабатывания устройства защиты от сверхтоков цепи питания.

Генри — единица измерения индуктивности. Если скорость изменения тока в цепи составляет один ампер в секунду, а результирующая электродвижущая сила составляет один вольт, то индуктивность цепи равна одному генри.

Герц — Единица измерения частоты. Замена более раннего срока цикла в секунду (cps).

Импеданс — Мера сопротивления, которое цепь представляет току при приложении напряжения. Импеданс расширяет понятие сопротивления до цепей переменного тока и имеет как величину, так и фазу, в отличие от сопротивления, которое имеет только величину.

Вернуться к началу

Индуктивность — Свойство проводника, благодаря которому изменение тока, протекающего по нему, индуцирует (создает) напряжение (электродвижущую силу) как в самом проводнике (самоиндукция), так и в любых соседних проводниках. (взаимная индуктивность). Измеряется в генри (H).

Индуктор — Катушка с проволокой, намотанная на железный сердечник. Индуктивность прямо пропорциональна количеству витков в катушке.

Изолятор — Любой материал, по которому электрический ток не течет свободно.Изоляционные материалы, такие как стекло, резина, воздух и многие пластмассы, обладают относительно высоким сопротивлением. Изоляторы защищают оборудование и жизнь от поражения электрическим током.

Инвертор — Аппарат, преобразующий постоянный ток в переменный.

Киловатт-час (кВтч) — произведение мощности в кВт и времени в часах. Равно 1000 ватт-часов. Например, если лампочка мощностью 100 Вт используется в течение 4 часов, будет использовано 0,4 кВт · ч энергии (100 Вт x 1 кВт / 1000 Вт x 4 часа).Электроэнергия продается в киловатт-часах.

Счетчик киловатт-часов — Устройство, используемое для измерения потребления электроэнергии.

Киловатт (кВт) — равно 1000 Вт.

Нагрузка — Все, что потребляет электрическую энергию, например, лампы, трансформаторы, нагреватели и электродвигатели.

Отклонение нагрузки — Состояние, при котором происходит внезапная потеря нагрузки в системе, которая вызывает превышение частоты генерирующего оборудования.Тест сброса нагрузки подтверждает, что система может выдержать внезапную потерю нагрузки и вернуться к нормальным рабочим условиям с помощью регулятора. Банки нагрузки обычно используются для этих испытаний как часть процесса ввода в эксплуатацию электроэнергетических систем.

Взаимная индукция — Возникает, когда изменение тока в одной катушке индуцирует напряжение во второй катушке.

Ом — (Ом) Единица измерения сопротивления. Один Ом эквивалентен сопротивлению в цепи, передающей ток в один ампер, когда на нее действует разность потенциалов в один вольт.

В начало

Закон Ома — Математическое уравнение, объясняющее взаимосвязь между током, напряжением и сопротивлением (V = IR).

Омметр — Прибор для измерения сопротивления электрической цепи в Ом.

Обрыв цепи — Обрыв или обрыв цепи возникает при разрыве цепи, например обрывом провода или разомкнутым переключателем, прерывающим прохождение тока через цепь. Это аналог закрытого клапана в водяной системе.

Параллельная цепь — Схема, в которой есть несколько путей для прохождения электричества. Каждая нагрузка, подключенная по отдельному пути, получает полное напряжение цепи, а общий ток цепи равен сумме токов отдельных ветвей.

Пьезоэлектричество — Электрическая поляризация в веществе (особенно в некоторых кристаллах) в результате приложения механического напряжения (давления).

Полярность — собирательный термин, применяемый к положительному (+) и отрицательному (-) концам магнита или электрического механизма, такого как катушка или батарея.

Мощность — Скорость, с которой электрическая энергия передается по электрической цепи. Измеряется в ваттах.

Коэффициент мощности — Отношение фактической электрической мощности, рассеиваемой цепью переменного тока, к произведению среднеквадратичного значения. значения тока и напряжения. Разница между ними вызвана реактивным сопротивлением в цепи и представляет собой мощность, которая не выполняет полезной работы.

Защитное реле — Релейное устройство, предназначенное для отключения автоматического выключателя при обнаружении неисправности.

Реактивная мощность — Часть электроэнергии, которая создает и поддерживает электрические и магнитные поля оборудования переменного тока. Существует в цепи переменного тока, когда ток и напряжение не совпадают по фазе. Измеряется в ВАРС.

Выпрямитель — электрическое устройство, которое преобразует переменный ток в постоянный, позволяя току течь через него только в одном направлении.

Вернуться к началу

Реле — Электрический катушечный переключатель, который использует небольшой ток для управления гораздо большим током.

Сопротивление — сопротивление, которое магнитная цепь оказывает силовым линиям в магнитном поле.

Сопротивление — Противодействие прохождению электрического тока. Электрическое сопротивление можно сравнить с трением воды, протекающей по трубе. Измеряется в омах.

Резистор — Устройство, обычно сделанное из проволоки или углерода, которое оказывает сопротивление току.

Ротор — Вращающаяся часть электрической машины, например, генератора, двигателя или генератора переменного тока.

Самоиндукция — Напряжение, возникающее в катушке при изменении тока.

Полупроводник — твердое вещество, которое имеет проводимость между диэлектриком и большинством металлов, либо из-за добавления примеси, либо из-за температурных эффектов. Устройства, сделанные из полупроводников, особенно кремния, являются важными компонентами большинства электронных схем.

Последовательно-параллельная цепь — Схема, в которой некоторые компоненты схемы соединены последовательно, а другие — параллельно.

Последовательная цепь — Схема, в которой есть только один путь для прохождения электричества. Весь ток в цепи должен проходить через все нагрузки.

Сервис — Проводники и оборудование, используемые для доставки энергии от системы электроснабжения к обслуживаемой системе.

Короткое замыкание — Когда одна часть электрической цепи входит в контакт с другой частью той же цепи, отклоняя поток тока от желаемого пути.

Вернуться к началу

Твердотельная схема — Электронные (интегральные) схемы, в которых используются полупроводниковые устройства, такие как транзисторы, диоды и выпрямители с кремниевым управлением.

Транзистор — полупроводниковый прибор с тремя выводами, способный к усилению в дополнение к выпрямлению.

Истинная мощность — Измеряется в ваттах. Сила проявляется в материальной форме, такой как электромагнитное излучение, акустические волны или механические явления.В цепи постоянного тока (DC) или в цепи переменного тока (AC), полное сопротивление которой является чистым сопротивлением, напряжение и ток синфазны.

VARS — Единица измерения реактивной мощности. Вар может рассматриваться либо как мнимая часть полной мощности, либо как мощность, поступающая в реактивную нагрузку, где напряжение и ток указаны в вольтах и ​​амперах.

Переменный резистор — резистор, который можно настраивать в различных диапазонах значений.

Вольт-ампер (ВА) — Единица измерения полной мощности. Это произведение среднеквадратичного напряжения и среднеквадратичного тока.

Вольт (В) — Единица измерения напряжения. Один вольт равен разности потенциалов, которая будет управлять током в один ампер против сопротивления в один ом.

Напряжение — Электродвижущая сила или «давление», которое заставляет электроны течь, и может быть сравнена с давлением воды, которое заставляет воду течь в трубе.Измеряется в вольтах.

Вольтметр — Прибор для измерения силы электрического тока в вольтах. Это разница потенциалов (напряжения) между разными точками электрической цепи. Вольтметры с высоким внутренним сопротивлением подключаются (параллельно) к точкам измерения напряжения.

Ватт-час (Втч) — Единица электрической энергии, эквивалентная потребляемой мощности в один ватт в течение одного часа.

Ватт (Вт) — Единица электрической мощности.Один ватт эквивалентен одному джоулю в секунду, что соответствует мощности в электрической цепи, в которой разность потенциалов составляет один вольт, а сила тока — один ампер.

Вернуться к началу

Ваттметр — Ваттметр — это прибор для измерения электрической мощности (или скорости подачи электрической энергии) в ваттах любой данной цепи.

Форма волны — Графическое представление электрических циклов, которое показывает величину изменения амплитуды за некоторый период времени.


Ссылки: Википедия, EPQ № 138 — Основные электрические термины и определения, NFPA-70, IEEE

Электротехника, часть 1 | EC&M

Правила Национального электротехнического кодекса написаны для людей, у которых уже есть знания об электричестве. Чтобы разобраться в Кодексе, вы должны сначала понять основные электрические концепции, такие как напряжение, сила тока, сопротивление, закон Ома, мощность, теорию цепей и другие.

Эта серия статей по теории электричества предназначена для повышения квалификации специалистов-электриков.В этих статьях мы рассмотрим все основные электрические концепции.

Очевидным основанием для всех электрических установок является доскональное знание законов, регулирующих работу электричества. Общие законы немногочисленны и просты, но применяются неограниченным числом способов.

ТРИ ОСНОВНЫЕ СИЛЫ

Три основных силы в электричестве — это напряжение, ток и полное сопротивление (сопротивление). Это фундаментальные силы, которые повсюду контролируют каждую электрическую цепь.

Напряжение — это сила, проталкивающая ток через электрические цепи. Научное название напряжения — электродвижущая сила , и оно представлено в формулах с заглавной буквы «E» (иногда также обозначается как V). Измеряется в вольтах . Научное определение вольт — это электродвижущая сила, необходимая для того, чтобы заставить один ампер тока протекать через сопротивление в один ом.

Напряжение сопоставимо с давлением воды.Чем выше давление, тем быстрее вода будет проходить через систему. В случае электричества, чем выше напряжение (электрическое давление), тем больше тока будет проходить через систему.

Ток (измеряется в амперах) — это скорость протекания электрического тока. Научное описание для тока — это сила тока , и оно представлено в формулах с заглавной буквой «I.» Научное определение ампера — это поток 6,25 × 10 23 электронов (называемый одним кулонов ) в секунду.

«I» сравнивается со скоростью потока в водяной системе, которая обычно измеряется в галлонах в минуту. Проще говоря, электричество — это поток электронов через проводник. Следовательно, в цепи, через которую протекает ток 12 А, будет в три раза больше электронов, протекающих через нее, чем в цепи с током 4 А.

Импеданс — это полное сопротивление потоку электричества. Импеданс измеряется в омах и обозначается буквой «Z».«Научное определение ома — это величина сопротивления, которая ограничивает 1 В потенциала током в один ампер. Ом обозначается заглавной греческой буквой омега (Ω).

Важно различать импеданс и сопротивление. Сопротивление — это более часто используемый термин в электротехнической промышленности. К сожалению, это также менее точный термин. Импеданс лучше описывает поток электричества. Сопротивление — это прекрасный термин для схемы без реактивного сопротивления, в которой напряжение и ток остаются синфазными.Однако на практике почти все схемы имеют некоторое реактивное сопротивление; а импеданс — почти всегда лучший термин. Как и импеданс, сопротивление также измеряется в омах и обозначается буквой «R.»

ИМПЕДАНС

Импеданс, термин, обозначающий полное сопротивление в цепи переменного тока, очень похож на сопротивление и измеряется в омах. Цепь переменного тока имеет нормальное сопротивление, но может также содержать некоторые другие типы сопротивления, называемые реактивным сопротивлением , которые встречаются только в цепях переменного тока (переменного тока).Это реактивное сопротивление происходит в основном из-за использования магнитных катушек, называемого индуктивным реактивным сопротивлением; и конденсаторы, называемые емкостным реактивным сопротивлением. Общая формула импеданса выглядит следующим образом:

Z = √ (R 2 + [X L -X C ] 2 )

Эта формула применима ко всем цепям, особенно к тем, в которых присутствует сопротивление , , емкость и индуктивность.

Общая формула для полного сопротивления при наличии только сопротивления и индуктивности:

Z = √ (R 2 + X L 2 )

Общая формула для полного сопротивления при наличии только сопротивления и емкости:

Z = √ (R 2 + X C 2 )

РЕАКТИВНОСТЬ

Реактивное сопротивление — это часть общего сопротивления, которая присутствует только в цепях переменного тока.Как и другое сопротивление, оно измеряется в омах. Реактивное сопротивление обозначается буквой «X». Два типа реактивного сопротивления — это индуктивное реактивное сопротивление и емкостное реактивное сопротивление. Индуктивное реактивное сопротивление обозначено X L ; емкостное сопротивление по X C .

Индуктивное реактивное сопротивление — это сопротивление току, протекающему в цепи переменного тока, из-за влияния катушек индуктивности в цепи. Катушки индуктивности представляют собой катушки с проволокой, особенно те, которые намотаны на железный сердечник. Трансформаторы, двигатели и люминесцентные балласты являются наиболее распространенными типами индукторов.Эффект индуктивности заключается в противодействии изменению тока в цепи. Индуктивность заставляет ток отставать от напряжения в цепи. Когда в цепи начинает расти напряжение, ток не начинает расти сразу, а отстает от напряжения. Величина задержки зависит от величины индуктивности в цепи. В чисто индуктивной цепи это будет 90 град. отставание.

Косинус угла между синусоидальными волнами напряжения и тока равен коэффициенту мощности .Формула для индуктивного реактивного сопротивления выглядит следующим образом:

X L = 2π FL

В этой формуле «F» представляет частоту (измеренную в Герцах), а «L» представляет собой индуктивность, измеренную в Генри . Чем выше частота, тем больше индуктивное сопротивление. Индуктивное реактивное сопротивление представляет собой гораздо большую проблему на высоких частотах, чем на уровне 60 Гц.

Во многих отношениях емкостное реактивное сопротивление противоположно индуктивному. Катушки индуктивности сопротивляются изменению тока, а конденсаторы — изменению напряжения.Единицей измерения емкости является фарад. Технически, одна фарада — это величина емкости, которая позволит вам хранить кулонов (6,25 × 10 23 ) электронов под давлением 1 В. Поскольку хранение одного кулона под давлением 1 В представляет собой огромную емкость, обычно используемые конденсаторы рассчитаны на микрофарад (миллионные доли фарада) или пикофарад (миллиардные доли фарада). На Рисунке 1 (стр. 34) показаны текущие опережения и запаздывания.

Емкость имеет тенденцию создавать напряжение на токопроводе в цепи, в то время как индуктивность имеет тенденцию к запаздыванию по току. Вот почему конденсаторы используются для коррекции коэффициента мощности в промышленных цепях, которые в основном являются индуктивными.

Эта игра слов поможет вам вспомнить текущее лидерство и отставание: ELI the ICE man. «E» (символ напряжения) стоит перед I (символом тока). Центральная буква L (обозначает индуктивность). В индуктивной цепи E выводит I. Итак, значение части «ICE» — I выводит E в емкостной цепи.

Конденсаторы состоят из двух проводящих поверхностей (обычно это металлическая пластина или металлическая фольга), которые лишь немного отделены друг от друга. Они не имеют электрического соединения. Таким образом, конденсаторы могут накапливать электроны, но не могут позволить им переходить от одной пластины к другой.

В цепи постоянного тока конденсатор дает почти такой же эффект, как и разомкнутая цепь. В течение первой доли секунды конденсатор будет накапливать электроны, позволяя протекать небольшому току. Но после того, как конденсатор заполнен, ток не может течь, потому что цепь не замкнута.Однако, если тот же конденсатор используется в цепи переменного тока, он будет накапливать электроны для части первого чередования, а затем выпускать свои электроны и сохранять другие, когда ток меняет направление. Из-за этого конденсатор, даже если он прерывает цепь, может хранить достаточно электронов, чтобы поддерживать ток в цепи. В чисто емкостной схеме I опережает E на 90 град. Формула для емкостного реактивного сопротивления выглядит следующим образом.

X C = 1 / 2πFC

F — частота, а C — емкость, измеренная в фарадах.

TFKUVA1 — General Electric — Автоматический выключатель с расцепителем напряжения

THKLC, THKLC, TFJ, , TLB2, TLB4 VA TFKU General Electric TFKU , TFK, THFK, THLC2, THLC4, TLB2, TLB4 909 909 General Electric TFC, TFJ, TFK, THFK, THLC2, THLC4, TLB2, TLB4
Деталь Производитель Тип рамы Управляющее напряжение
TFKUVA1 General Electric 120
TFKUVA10 General Electric TFC, TFJ, TFK, THFK, THLC2, THLC4, TLB2, TLB4 125
250
TFKUVA14 General Electric TFC, TFJ, TFK, THFK, THLC2, THLC15, TLB2, TLB4 General Electric TFC, TFJ, TFK, THFK, THLC2, THLC4, TLB2, TLB4 60
TFKUVA2 General Electric TFC, TFJ, TFK, THFK, THL C2, THLC4, TLB2, TLB4 240
TFKUVA3 General Electric TFC, TFJ, TFK, THFK, THLC2, THLC4, TLB2, TLB4 380
480
TFKUVA6 General Electric TFC, TFJ, TFK, THFK, THLC2, THLC4, 600B2,
TFKUVA7 General Electric TFC, TFJ, TFK, THFK, THLC2, THLC4, TLB2, TLB4 12

электрическая схема | Infoplease

электрическая цепь, непрерывный путь, по которому электрический ток существует или предназначен или может течь.Простая схема может состоять из электрического элемента (источника питания), двух проводов (один конец каждого присоединяется к каждому выводу элемента) и небольшой лампы (нагрузки), к которой ведут свободные концы проводов. из ячейки прилагаются. Когда соединения выполнены правильно, ток течет, цепь называется замкнутой, и лампа загорается. Ток течет от ячейки по одному проводу к лампе, через лампу и по другому проводу обратно в ячейку.Когда провода отключены, цепь называется разомкнутой, или разомкнутой. На практике цепи размыкаются такими устройствами, как переключатели, предохранители и автоматические выключатели (см. Предохранитель, электрический; автоматический выключатель; короткое замыкание). Две общие классификации схем — последовательные и параллельные. Элементы последовательной цепи соединены встык; один и тот же ток течет по его частям одну за другой. Элементы параллельной схемы соединены таким образом, что каждый компонент имеет одинаковое напряжение на своих выводах; текущий поток делится между частями.Когда два элемента схемы соединены последовательно, их эффективное сопротивление (полное сопротивление, если в цепь подается переменный ток) равно сумме отдельных сопротивлений; ток одинаков во всех компонентах цепи. Когда элементы схемы соединены параллельно, общее сопротивление меньше, чем у элемента, имеющего наименьшее сопротивление, а общий ток равен сумме токов в отдельных ветвях. Схема с батарейным питанием — это пример цепи постоянного тока; напряжения и токи постоянны по величине и не меняются со временем.В цепях переменного тока напряжение и ток периодически меняют направление со временем. Стандартная электрическая розетка подает переменный ток. В цепях освещения и электрооборудования используются цепи переменного тока. Многие другие устройства, включая компьютеры, стереосистемы и телевизоры, должны сначала преобразовать переменный ток в постоянный. Это делается с помощью специальной внутренней схемы, обычно называемой источником питания. Цифровая схема — это особый вид электронных схем, используемых в компьютерах и многих других устройствах.Магнитные цепи аналогичны электрическим цепям, в которых магнитные материалы считаются проводниками магнитного потока. Магнитные цепи могут быть частью электрической цепи; трансформатор является примером. Эквивалентные схемы используются в анализе схем в качестве инструмента моделирования; простая схема, состоящая из резистора и катушки индуктивности, может использоваться для электрического представления громкоговорителя. Электрические схемы можно использовать и в других областях исследований. Например, при исследовании теплового потока для обозначения теплоизоляции используется резистор.Рабочие электрические цепи могут использоваться для решения общих задач (как в аналоговом компьютере).

Колумбийская электронная энциклопедия, 6-е изд. Авторское право 2012 г., Columbia University Press. Все права защищены.

См. Другие статьи в энциклопедии по: Электротехника

Напряжение, ток, сопротивление и закон Ома

Добавлено в избранное Любимый 114

Основы электроэнергетики

Приступая к изучению мира электричества и электроники, важно начать с понимания основ напряжения, тока и сопротивления.Это три основных строительных блока, необходимых для управления электричеством и его использования. Сначала эти концепции могут быть трудными для понимания, потому что мы не можем их «видеть». Невооруженным глазом нельзя увидеть энергию, текущую по проводу, или напряжение батареи, стоящей на столе. Даже молния в небе, хотя и видимая, на самом деле не является обменом энергии, происходящим от облаков к Земле, а является реакцией в воздухе на энергию, проходящую через него. Чтобы обнаружить эту передачу энергии, мы должны использовать измерительные инструменты, такие как мультиметры, анализаторы спектра и осциллографы, чтобы визуализировать, что происходит с зарядом в системе.Однако не бойтесь, это руководство даст вам общее представление о напряжении, токе и сопротивлении, а также о том, как они соотносятся друг с другом.

Георг Ом

Рассмотрено в этом учебном пособии

  • Как электрический заряд соотносится с напряжением, током и сопротивлением.
  • Что такое напряжение, сила тока и сопротивление.
  • Что такое закон Ома и как его использовать для понимания электричества.
  • Простой эксперимент для демонстрации этих концепций.

Рекомендуемая литература

и nbsp

и nbsp

Электрический заряд

Электричество — это движение электронов. Электроны создают заряд, который мы можем использовать для работы. Ваша лампочка, стереосистема, телефон и т. Д. — все используют движение электронов для выполнения работы. Все они работают, используя один и тот же основной источник энергии: движение электронов.

Три основных принципа этого урока можно объяснить с помощью электронов или, более конкретно, заряда, который они создают:

  • Напряжение — это разница в заряде между двумя точками.
  • Текущий — это скорость прохождения заряда.
  • Сопротивление — это способность материала сопротивляться прохождению заряда (тока).

Итак, когда мы говорим об этих величинах, мы на самом деле описываем движение заряда и, следовательно, поведение электронов. Цепь — это замкнутый контур, который позволяет заряду перемещаться из одного места в другое. Компоненты схемы позволяют нам контролировать этот заряд и использовать его для работы.

Георг Ом был баварским ученым, изучавшим электричество.Ом начинается с описания единицы сопротивления, которая определяется током и напряжением. Итак, начнем с напряжения и продолжим.

Напряжение

Мы определяем напряжение как количество потенциальной энергии между двумя точками цепи. Одна точка заряжена больше, чем другая. Эта разница в заряде между двумя точками называется напряжением. Он измеряется в вольтах, что технически представляет собой разность потенциальной энергии между двумя точками, которая будет передавать один джоуль энергии на каждый кулон заряда, проходящего через нее (не паникуйте, если это не имеет смысла, все будет объяснено).Единица «вольт» названа в честь итальянского физика Алессандро Вольта, который изобрел то, что считается первой химической батареей. Напряжение представлено в уравнениях и схемах буквой «V».

При описании напряжения, силы тока и сопротивления часто используется аналогия с резервуаром для воды. По этой аналогии заряд представлен количеством воды , напряжение представлено давлением воды , а ток представлен потоком воды . Итак, для этой аналогии запомните:

  • Вода = Заряд
  • Давление = Напряжение
  • Расход = Текущий

Рассмотрим резервуар для воды на определенной высоте над землей.Внизу этого бака есть шланг.

Давление на конце шланга может представлять напряжение. Вода в баке представляет собой заряд. Чем больше воды в баке, тем выше заряд, тем больше давление измеряется на конце шланга.

Мы можем рассматривать этот резервуар как батарею, место, где мы накапливаем определенное количество энергии, а затем высвобождаем ее. Если мы опорожняем наш бак на определенное количество, давление, создаваемое на конце шланга, падает. Мы можем думать об этом как об уменьшении напряжения, например, когда фонарик становится тусклее из-за разряда батарей.Также уменьшается количество воды, протекающей через шланг. Меньшее давление означает, что течет меньше воды, что приводит нас к течению.

Текущий

Мы можем представить себе количество воды, протекающей по шлангу из бака, как ток. Чем выше давление, тем выше расход, и наоборот. С водой мы бы измерили объем воды, протекающей через шланг за определенный период времени.18 электронов (1 кулон) в секунду проходят через точку в цепи. Ампер в уравнениях обозначается буквой «I».

Предположим теперь, что у нас есть два резервуара, каждый со шлангом, идущим снизу. В каждом резервуаре одинаковое количество воды, но шланг одного резервуара уже, чем шланг другого.

Мы измеряем одинаковое давление на конце любого шланга, но когда вода начинает течь, расход воды в баке с более узким шлангом будет меньше, чем расход воды в баке с более узким шлангом. более широкий шланг.С точки зрения электричества, ток через более узкий шланг меньше, чем ток через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (заряд) в резервуаре с помощью более узкого шланга.

Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через резервуар. Это аналогично увеличению напряжения, которое вызывает увеличение тока.

Теперь мы начинаем видеть взаимосвязь между напряжением и током.Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга — это сопротивление. Это означает, что нам нужно добавить еще один термин в нашу модель:

.
  • Вода = заряд (измеряется в кулонах)
  • Давление = напряжение (измеряется в вольтах)
  • Расход = ток (измеряется в амперах или, для краткости, «амперах»)
  • Ширина шланга = сопротивление

Сопротивление

Снова рассмотрим наши два резервуара для воды, один с узкой трубой, а другой с широкой.

Само собой разумеется, что мы не можем протолкнуть через узкую трубу столько объема, сколько более широкую, при том же давлении. Это сопротивление. Узкая труба «сопротивляется» потоку воды через нее, даже если вода находится под тем же давлением, что и резервуар с более широкой трубой.

С точки зрения электричества это представлено двумя цепями с одинаковым напряжением и разным сопротивлением. Цепь с более высоким сопротивлением позволит протекать меньшему количеству заряда, то есть в цепи с более высоким сопротивлением будет меньше тока, протекающего через нее.18 электронов. Это значение обычно обозначается на схемах греческой буквой «& ohm;», которая называется омега и произносится как «ом».

Закон Ома

Объединив элементы напряжения, тока и сопротивления, Ом разработал формулу:

Где

  • V = Напряжение в вольтах
  • I = ток в амперах
  • R = Сопротивление в Ом

Это называется законом Ома.Скажем, например, что у нас есть цепь с потенциалом 1 вольт, током 1 ампер и сопротивлением 1 Ом. Используя закон Ома, мы можем сказать:

Допустим, это наш резервуар с широким шлангом. Количество воды в баке определяется как 1 В, а «узость» (сопротивление потоку) шланга определяется как 1 Ом. Используя закон Ома, это дает нам ток (ток) в 1 ампер.

Используя эту аналогию, давайте теперь посмотрим на резервуар с узким шлангом. Поскольку шланг более узкий, его сопротивление потоку выше.Определим это сопротивление как 2 Ом. Количество воды в резервуаре такое же, как и в другом резервуаре, поэтому, используя закон Ома, наше уравнение для резервуара с узким шлангом составляет

.

а какой ток? Поскольку сопротивление больше, а напряжение такое же, это дает нам значение тока 0,5 А:

Значит, в баке с большим сопротивлением ток меньше. Теперь мы видим, что, зная два значения закона Ома, мы можем решить третье.Продемонстрируем это на эксперименте.

Эксперимент по закону Ома

Для этого эксперимента мы хотим использовать батарею на 9 В для питания светодиода. Светодиоды хрупкие и могут пропускать только определенное количество тока, прежде чем они перегорят. В документации к светодиоду всегда будет «текущий рейтинг». Это максимальное количество тока, которое может пройти через конкретный светодиод, прежде чем он перегорит.

Необходимые материалы

Для проведения экспериментов, перечисленных в конце руководства, вам потребуется:

ПРИМЕЧАНИЕ. Светодиоды — это так называемые «неомические» устройства.Это означает, что уравнение для тока, протекающего через сам светодиод, не так просто, как V = IR. Светодиод вызывает в цепи то, что называется «падением напряжения», тем самым изменяя величину протекающего через нее тока. Однако в этом эксперименте мы просто пытаемся защитить светодиод от перегрузки по току, поэтому мы пренебрегаем токовыми характеристиками светодиода и выбираем номинал резистора, используя закон Ома, чтобы быть уверенным, что ток через светодиод безопасно ниже 20 мА.

В этом примере у нас есть батарея на 9 В и красный светодиод с номинальным током 20 мА, или 0.020 ампер. В целях безопасности мы предпочли бы не управлять максимальным током светодиода, а его рекомендуемым током, который указан в его техническом описании как 18 мА или 0,018 ампер. Если просто подключить светодиод напрямую к батарее, значения закона Ома будут выглядеть так:

следовательно:

, а поскольку сопротивления еще нет:

Деление на ноль дает бесконечный ток! Что ж, на практике не бесконечно, но столько тока, сколько может доставить аккумулятор. Поскольку мы НЕ хотим, чтобы через светодиод проходил такой большой ток, нам понадобится резистор.Наша схема должна выглядеть так:

Мы можем использовать закон Ома точно так же, чтобы определить значение резистора, которое даст нам желаемое значение тока:

следовательно:

вставляем наши значения:

решение для сопротивления:

Итак, нам нужно сопротивление резистора около 500 Ом, чтобы ток через светодиод не превышал максимально допустимый.

500 Ом не является обычным значением для стандартных резисторов, поэтому в этом устройстве вместо него используется резистор 560 Ом.Вот как выглядит наше устройство вместе.

Успех! Мы выбрали номинал резистора, достаточно высокий, чтобы ток через светодиод не превышал его максимальный номинал, но достаточно низкий, чтобы ток был достаточным, чтобы светодиод оставался красивым и ярким.

Этот пример светодиодного / токоограничивающего резистора — частое явление в хобби-электронике. Вам часто придется использовать закон Ома, чтобы изменить величину тока, протекающего по цепи. Другой пример такой реализации — светодиодные платы LilyPad.

При такой настройке вместо того, чтобы выбирать резистор для светодиода, резистор уже встроен в светодиод, поэтому ограничение тока выполняется без необходимости добавлять резистор вручную.

Ограничение тока до или после светодиода?

Чтобы немного усложнить задачу, вы можете разместить токоограничивающий резистор по обе стороны от светодиода, и он будет работать точно так же!

Многие люди, впервые изучающие электронику, борются с идеей, что резистор, ограничивающий ток, может находиться по обе стороны от светодиода, и схема по-прежнему будет работать как обычно.

Представьте себе реку в непрерывной петле, бесконечную, круглую, текущую реку. Если бы мы построили в нем плотину, вся река перестала бы течь, а не только с одной стороны. Теперь представьте, что мы помещаем водяное колесо в реку, которое замедляет течение реки. Неважно, где в круге находится водяное колесо, оно все равно замедлит поток на всей реке .

Это чрезмерное упрощение, поскольку токоограничивающий резистор не может быть размещен где-либо в цепи ; он может быть размещен на с любой стороны светодиода для выполнения своей функции.

Чтобы получить более научный ответ, мы обратимся к закону напряжения Кирхгофа. Именно из-за этого закона резистор, ограничивающий ток, может располагаться по обе стороны светодиода и при этом иметь тот же эффект. Для получения дополнительной информации и некоторых практических задач с использованием KVL посетите этот веб-сайт.

Ресурсы и дальнейшее развитие

Теперь вы должны понять концепции напряжения, тока, сопротивления и их взаимосвязь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *