Угол больше 90 градусов: Какой угол больше 90 градусов — MOREREMONTA

Содержание

Какой угол больше 90 градусов — MOREREMONTA

Давайте начнем с определения того, что такое угол. Во-первых, он является геометрической фигурой. Во-вторых, он образован двумя лучами, которые называются сторонами угла. В-третьих, последние выходят из одной точки, которую называют вершиной угла. Исходя из этих признаков, мы можем составить определение: угол — геометрическая фигура, которая состоит из двух лучей (сторон), выходящих из одной точки (вершины).

Их классифицируют по градусной величине, по расположению относительно друг друга и относительно окружности. Начнем с видов углов по их величине.

Существует несколько их разновидностей. Рассмотрим подробнее каждый вид.

Основных типов углов всего четыре — прямой, тупой, острый и развернутый угол.

Прямой

Он выглядит так:

Его градусная мера всегда составляет 90 о , иначе говоря, прямой угол — это угол 90 градусов. Только они есть у таких четырехугольников, как квадрат и прямоугольник.

Тупой

Он имеет такой вид:

Градусная мера тупого угла всегда больше 90 о , но меньше 180 о . Он может встречаться в таких четырехугольниках, как ромб, произвольный параллелограмм, во многоугольниках.

Острый

Он выглядит так:

Градусная мера острого угла всегда меньше 90 о . Он встречается во всех четырехугольниках, кроме квадрата и произвольного параллелограмма.

Развернутый

Развернутый угол имеет такой вид:

В многоугольниках он не встречается, но не менее важен, чем все остальные. Развернутый угол — это геометрическая фигура, градусная мера которой всегда равняется 180º. На нем можно построить смежные углы, проведя из его вершины один или несколько лучей в любых направлениях.

Есть еще несколько второстепенных видов углов. Их не изучают в школах, но знать хотя бы об их существовании необходимо. Второстепенных видов углов всего пять:

1. Нулевой

Он выглядит так:

Само название угла уже говорит о его величине. Его внутренняя область равняется 0 о , а стороны лежат друг на друге так, как показано на рисунке.

2. Косой

Косым может быть и прямой, и тупой, и острый, и развернутый угол. Главное его условие — он не должен равняться 0 о , 90 о , 180 о , 270 о .

3. Выпуклый

Выпуклыми являются нулевой, прямой, тупой, острый и развернутый углы. Как вы уже поняли, градусная мера выпуклого угла — от 0 о до 180 о .

4. Невыпуклый

Невыпуклыми являются углы с градусной мерой от 181 о до 359 о включительно.

5. Полный

Полным является угол с градусной мерой 360 о .

Это все типы углов по их величине. Теперь рассмотрим их виды по расположению на плоскости относительно друг друга.

1. Дополнительные

Это два острых угла, образовывающие один прямой, т.е. их сумма 90 о .

2. Смежные

Смежные углы образуются, если через развернутый, точнее, через его вершину, провести луч в любом направлении. Их сумма равна 180 о .

3. Вертикальные

Вертикальные углы образуются при пересечении двух прямых. Их градусные меры равны.

Теперь перейдем к видам углов, расположенным относительно окружности. Их всего два: центральный и вписанный.

1. Центральный

Центральным является угол с вершиной в центре окружности. Его градусная мера равна градусной мере меньшей дуги, стянутой сторонами.

2. Вписанный

Вписанным называется угол, вершина которого лежит на окружности, и стороны которого ее пересекают. Его градусная мера равна половине дуги, на которую он опирается.

Это все, что касается углов. Теперь вы знаете, что помимо наиболее известных — острого, тупого, прямого и развернутого — в геометрии существует много других их видов.

Нам известно, что при измерении отрезков, мы сравниваем измеряемый отрезок с отрезком, который принят за единицу измерения. Аналогично происходит измерение углов: чтобы измерить угол его сравнивают с углом, который принят за единицу измеренияс градусом.

Градус — это угол, который равен части развернутого угла,обозначается знаком

часть

градуса называется минутой , обозначается знаком

часть минуты называется секундой , обозначается знаком

Пример: (двадцать градусов пятнадцать минут сорок семь секунд)

Градусная мера угла — это положительное число, которое показывает, сколько раз градус и его части укладываются в данном угле.

Пример:

Градусная мера угла ABC равна . Говорят: «Угол ABC равен 120 градусам». Пишут: .

Транспортир — это измерительный инструмент

, который используется для измерения и построения углов. Состоит из линейки (прямолинейной шкалы) и полукруга (угломерной шкалы: внутренней и внешней), который разделен на градусы от 0 до .

Для того чтобы измерить угол, необходимо совместить вершину угла с центром транспортира, при этом одна из сторон угла должна пройти через нулевое деление шкалы, тогда вторая сторона угла укажет градусную меру угла.

Пример: Измерим угол ABC, для этого совместим точку

B с центром транспортира, и расположим транспортир так, чтобы сторона BC прошла через нулевое деление шкалы (обратите внимание отсчёт угла ведётся по той шкале, через нулевое деление которой пройдет одна из сторон угла: в нашем случае по внутренней шкале).

Вторая сторона при этом, как мы видим, проходит через деление шкалы 120, значит: .

Свойства:
  • Равные углы имеют равные градусные меры.
  • Меньший угол имеет
    меньшую градусную меру.
  • Развернутый угол равен.
  • Неразвернутый угол меньше.
  • Если лучделит угол на два угла, градусная мера всего угла равна сумме градусных мер этих углов.

Основные типы углов:
  1. Острый угол — угол, градусная мера которого меньше 90 ° .

  1. Прямой угол — угол, градусная мера которого равна 90 ° .

  1. Тупой угол — угол, градусная мера которого больше 90 °, но меньше
    180 ° .

  1. Развернутый угол — угол, градусная мера которого равна 180 °.

Поделись с друзьями в социальных сетях:

Прямо́й у́гол (др.-греч. ὀρθὴ γωνία ) — угол в π / 2 <displaystyle pi /2> радиан или 90°, половина развёрнутого угла. Угол, стороны которого перпендикулярны друг другу. При пересечении перпендикулярных прямых образуются прямые углы.

Величина прямого угла в разных единицах:

  • 90°
  • π / 2 <displaystyle pi /2>радиан
  • 100 град
  • 1/4 оборота или полного угла
  • 5400 угловых минут
  • 324000 угловых секунд

Некоторые геометрические фигуры, у которых один или несколько углов являются прямыми, имеют собственные названия:

  • Прямоугольный треугольник — треугольник, у которого один угол прямой.
  • Прямоугольник — параллелограмм, у которого все углы прямые.
  • Квадрат — равносторонний прямоугольник, ромб с прямыми углами.
  • Прямоугольная трапеция — трапеция, хотя бы один из углов которой — прямой.

Угол. Градусная мера угла.

Понятие угла является одним из наиболее важных определений в геометрии.  У́гол  — геометрическая фигура, образованная двумя лучами, сторонами угла, выходящими из одной точки, которая называется вершиной угла. Понятия равенства и суммы углов часто используется в  тригонометрии. Например, углы \(15,30,45\) градусов.

Наиболее распространенными единицами измерения угла являются градус и радиан. Один градус —  это «\(\frac{1}{360}\)» полного круга. \(90\) градусов — это четверть круга, \(180\) – половина круга, \(270\) — три четверти круга и \(360\) это целый круг. Прямой угол равен \(90\) градусов, острый угол больше \(0\) и меньше \(90\) градусов и тупой угол  больше \(90\) градусов и  меньше \(180\) градусов. Развернутый угол равен  \(180\) градусам.

Мы изучаем углы от \(0\)° до \(360\)°, но есть углы больше \(360\)° и отрицательные углы.

Градусы могут быть разделены на минуты и секунды. Каждый градус делится на \(60\) равных частей, которые называются минутами. Так семь с половиной градусов можно сказать \(7\) градусов и \(30\) минут и записать \(7\) ° \(30\)’. Каждая минута делится на \(60\) равных частей, каждая из которых равна одной секунде. Например, \(2\) градуса \(5\) минут \(30\) секунд записывается \(2\)° \(5\)’ \(30\)». Деление градуса на минуты и секунды  аналогично делению часа на минуты и секунды времени.

 

Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы «Альфа». Запишитесь на пробное занятие уже сейчас!

Запишитесь на бесплатное тестирование знаний!

Наши преподаватели

Оставить заявку

Репетитор по математике

Барнаульский государственный педагогический институт

Проведенных занятий:

Форма обучения:

Дистанционно (Скайп)

Придерживаюсь знаменитых слов Ломоносова В.М. » Математику за то учить надо, что она ум в порядок приводит»! Мои ученики – девятиклассники успешно сдают ОГЭ. А ребята младших классов повышают свои успехи в изучении интересной, но сложной науки «Математика». Направления моей педагогической деятельности: -Систематизация и совершенствование знаний при изучении математики для улучшения успеваемости по предмету, при подготовки к школе : развитие внимания, логического мышления, изучение основных понятий математики для поступления в школу. -Ликвидация пробелов изучения математики у учащихся и непонимания тем, помощь в выполнении домашних заданий. -Подготовка к ОГЭ и ВПР по математике.

Оставить заявку

Репетитор по математике

Санкт-Петербургский политехнический университет им. Петра Великого

Проведенных занятий:

Форма обучения:

Дистанционно (Скайп)

Репетитор 1-10 классов. . Нахожу общий язык с учеником. К каждому индивидуальный подход. С удовольствием помогу разобраться с математикой в приятной учебной атмосфере. Занимаюсь подготовкой учеников к ОГЭ, помогаю подтянуть программу средней школы , разобрать домашние задания, подготовиться к контрольным, устранить пробелы по уже изученным темам.

Оставить заявку

Репетитор по математике

Южный федеральный университет

Проведенных занятий:

Форма обучения:

Дистанционно (Скайп)

Репетитор 5-7 классов. Я люблю математику за то, что она развивает в нас упорство, смелость, находчивость и системность. Благодаря ей можно научиться видеть скрытые связи между, на первый взгляд, совершенно разными вещами, а также посмотреть на различные ситуации под самым неожиданным углом. Каждый ребёнок по-своему уникален, поэтому в обучении просто необходим индивидуальный подход. Моя цель — не только помочь ребёнку понять эту увлекательную науку, но и дать возможность понять себя, свои слабые и сильные стороны через изучение математики.

Функция

  • — Индивидуальные занятия
  • — В любое удобное для вас время
  • — Бесплатное вводное занятие

Похожие статьи

Как называеться угол больше 0°,но меньше 90°​

клетчатый прямоугольник размером 3×20 клеток разрезали на 22 прямоугольника так, что все клеточки остались целыми.Докажите,что как бы не резаи, среди … получившихся прямоугольников найдутся такие, из которых можно составить четырехклеточный «уголок»

достройте фигуру двумя способами. 1.достроив фигуру до прямоугольника. 2.разбив фигуру на прямоугольники.

А бассейн проведены три трубы.Если включить первую трубу, через час-вторую,а ещё через час-третью, то бассейн наполнится быстрее чем за 4 часа, причем … каждая труба наполнит ровно треть бассейна.Докажите, что если включить все три трубы одновременно, то бассейн наполнится быстрее чем за три часа

Петя и Вася одновременно и из одной точки стартовали по кольцевой дорожке в противоположных направлениях.Каждый бежит с постоянной скоростью.К моменту … , когда они повстречались в десятый раз(момент старта, встречей не считается),Вася пробежал ровно четыре круга. Чему равно равно отношение скорости Васи к скорости Пети?

а=9см b=5см______ P=? S=?​

Оля,Дима,Тема,Федя и Петя сверили свои часы.Оказалось, что часы Тёмы отстают от часов Димы на три минуты.Отстают на одну минуту часы Оли относительно … часов Димы,часы Феди-относительно часов Темы,а часы Пети-относительно часов Оли.Если же сложить показания всех пяти часов и сумму разделить на пять ,то получится точное время.Известно также, что какие-то из этих показывают точное времяюЧьи это часы?Прошу не удалять снова эту задачу, переписано точь в точь с листка

Ребят помогите пожалуйста!даю все свои баллы:( Очень нужно правда

Туристи пройшли шлях від туристичної бази до озера за 4 дні. В перший день 1/4 шляху, в другий 3/7 шляху що залишився і в третій і четвертий день вони … проходили по 12 км. Знайти довжину шляху від туристичної бази до озера​

Помогите пожалуйста. даю 10 балов​

Найдите угол между образующей конуса и его высотой если радиус его основания 3V3 см ,а образующая 6 сма)30°б)45°с)15°d)75°e)60°Если честно решение не … волнует,нужен только ответ​

19. Какой угол называется острым, какой – прямым, а какой – тупым?

Острый угол это угол градусная мера которого до 90 градусов.

Прямой угол это угол градусная мера которого 90 градусов

Тупой угол это угол градусная мера которого больше 90 градусов. Острый угол — это угол меньше 90°. Тупой угол — это угол больше 90°, но меньше 180°. Прямой угол — это угол = 90°.

20. Какие углы называются смежными? Чему равна их сумма?

Смежные углы — два угла с общей вершиной, одна из сторон которых — общая, а оставшиеся стороны лежат на одной прямой (не совпадая) . Сумма смежных углов равна 180°. Или

Два угла называются смежными, если у них одна сторона общая, а другие стороны являются дополнительными лучами. сумма смежных углов равна 180°. Каждый из этих углов дополняет другой до развернутого угла.

21. Какие углы называются вертикальными? Каким свойством они обладают?

Вертикальные углы — два угла, у которых стороны одного являются продолжениями сторон другого. Вертикальные углы равны. (Вертикальными называются углы, образованные пересекающимися прямыми и не являющиеся прилегающими друг к другу, то есть общей стороны у них нет, но вертикальные углы имеют вершину в одной точке. Вертикальные углы равны между собой).

22. Какие прямые называются перпендикулярными? Две пересекающиеся прямые называются перпендикулярными (или взаимно перпендикулярными), если они образуют четыре прямых угла. Или Перпендикулярные прямые это прямые пересекающиеся под углом 90 градусов. Или Две прямые, образующие при пересечении прямые углы, называют перпендикулярными.

23. Объясните, какой отрезок называется перпендикуляром, проведенным из данной точки к данной прямой. Что такое основание перпендикуляра? Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной к данной, который имеет одним из своих концов их точку пересечения. Этот конец отрезка называется основанием перпендикуляра. Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной к данной, который имеет одним из своих концов их точку пересечения. Конец отрезка, лежащий на данной прямой, называется основанием перпендикуляра.

24. Что такое теорема и доказательство теоремы? В математике утверждение, справедливость которого устанавливается путем рассуждений, называется теоремой, а само рассуждение – доказательством теоремы.

Теоре́ма — утверждение, для которого в рассматриваемой теории существует доказательство (иначе говоря, вывод) . В отличие от теорем, аксиомами называются утверждения, которые, в рамках конкретной теории, принимаются истинными без всяких доказательств или обоснований. Доказательство — это утверждение, объясняющее теорему. Теорема — такая гипотеза, которую требуется доказать; Гипотеза всегда требует доказательства. Доказательство — доводы, подтверждающие действенность, правильность теоремы.

Развернутый угол. Прямой, тупой, острый и развернутый угол

В этой статье будет рассматриваться одна из основных геометрических фигур — угол. После общего введения в это понятие мы уделим основное внимание отдельному виду такой фигуры. Развернутый угол — важное понятие геометрии, которое и будет основной темой этой статьи.

Введение в понятие геометрического угла

В геометрии существует ряд объектов, которые составляют основу всей науки. Угол как раз относиться к ним и определяется с помощью понятия луча, поэтому начнем именно с него.

Также перед тем, как приступать к определению самого угла, нужно вспомнить о нескольких не менее важных объектах в геометрии — это точка, прямая на плоскости и собственно сама плоскость. Прямой называют самую простую геометрическую фигуру, у которой нет ни начала, ни конца. Плоскостью — поверхность, которая имеет два измерения. Ну и луч (или же полупрямая) в геометрии — это часть прямой, у которой есть начало, но нет конца.

Используя данные понятия, можем составить утверждение, что углом является геометрическая фигура, которая полностью лежит в некоторой плоскости и состоит из двух несовпадающих лучей с общим началом. Такие лучи называются сторонами угла, а общее начало сторон — это его вершина.

Виды углов и геометрии

Мы знаем о том, что углы могут быть совсем разными. А потому немного ниже будет приведена небольшая классификация, которая поможет лучше разобраться в видах углов и их главных особенностях. Итак, существует несколько видов углов в геометрии:

  1. Прямой угол. Он характеризируется величиной в 90 градусов, а значит, его стороны всегда перпендикулярны между собой.
  2. Острый угол. К таким углам относятся все их представители, имеющие размер меньше 90 градусов.
  3. Тупой угол. Здесь же могут быть все углы с величиной от 90 до 180 градусов.
  4. Развернутый угол. Имеет размер строго 180 градусов и внешне его стороны составляют одну прямую.

Понятие развернутого угла

Теперь давайте рассмотрим развернутый угол более подробно. Это тот случай, когда обе стороны лежат на одной прямой, что можно четко увидеть на рисунке немного ниже. Значит, мы можем с уверенностью сказать, что у развернутого угла одна из его сторон по сути есть продолжением другой.

Стоит запомнить тот факт, что такой угол всегда можно разделить с помощью луча, который выходит из его вершины. В результате мы получим два угла, которые в геометрии называются смежными.

Также развернутый угол имеет несколько особенностей. Для того, чтобы рассказать о первой из них, нужно вспомнить понятие «биссектриса угла». Напомним, что это луч, который делит любой угол строго пополам. Что касается развернутого угла, то его биссектриса разделяет его таким образом, что образуется два прямых угла по 90 градусов. Это очень легко просчитать математически: 180˚ (градус развернутого угла) : 2 = 90˚.

Если же разделять развернутый угол совсем произвольным лучом, то в результате мы всегда получаем два угла, один из которых будет острым, а другой — тупым.

Свойства развернутых углов

Будет удобно рассматривать этот угол, собрав воедино все его главные свойства, что мы и сделали в данном списке:

  1. Стороны развернутого угла антипараллельны и составляют прямую.
  2. Величина развернутого угла всегда составляет 180˚.
  3. Два смежных угла вместе всегда составляют развернутый угол.
  4. Полный угол, который составляет 360˚, состоит из двух развернутых и равен их суме.
  5. Половина развернутого угла — это прямой угол.

Итак, зная все эти характеристики данного вида углов, мы можем использовать их для решения ряда геометрических задач.

Задачи с развернутыми углами

Для того, чтобы понять, усвоили ли вы понятие развернутого угла, попытайтесь ответить на несколько следующих вопросов.

  1. Чему равен развернутый угол, если его стороны составляют вертикальную прямую?
  2. Будут ли два угла смежными, если величина первого 72˚, а другого — 118˚?
  3. Если полный угол состоит из двух развернутых, то сколько в нем прямых углов?
  4. Развернутый угол разделили лучом на два таких угла, что их градусные меры относятся как 1:4. Вычислите полученные углы.

Решения и ответы:

  1. Как бы ни был расположен развернутый угол, он всегда по определению равен 180˚.
  2. Смежные углы имеют одну общую сторону. Поэтому, чтобы вычислить размер угла, который они составляю вместе, нужно просто прибавить значение их градусных мер. Значит, 72 +118 = 190. Но по определению развернутый угол составляет 180˚, а значит, два данных угла не могут быть смежными.
  3. Развернутый угол вмещает два прямых угла. А так как в полном имеется два развернутых, значит, прямых в нем будет 4.
  4. Если мы назовем искомые углы а и b, то пусть х — это коэффициент пропорциональности для них, а это значит, что а=х, и соответственно b=4х. Развернутый угол в градусах равен 180˚. И согласно своим свойствам, что градусная мера угла всегда равна сумме градусных мер тех углов, на которые он разбивается любым произвольным лучом, что проходит между его сторонами, можем сделать вывод, что х + 4х = 180˚, а значит, 5х = 180˚. Отсюда находим: х=а=36˚ и b = 4х = 144˚. Ответ: 36˚ и 144˚.

Если у вас получилось ответить на все эти вопросы без подсказок и не подглядывая в ответы, значит вы готовы переходить к следующему уроку по геометрии.

В этой статье мы всесторонне разберем одну из основных геометрических фигур – угол. Начнем со вспомогательных понятий и определений, которые нас приведут к определению угла. После этого приведем принятые способы обозначения углов. Далее подробно разберемся с процессом измерения углов. В заключении покажем как можно отметить углы на чертеже. Все теорию мы снабдили необходимыми чертежами и графическими иллюстрациями для лучшего запоминания материала.

Навигация по странице.

Определение угла.

Угол является одной из важнейших фигур в геометрии. Определение угла дается через определение луча. В свою очередь представление о луче невозможно получить без знания таких геометрических фигур как точка, прямая и плоскость. Поэтому, перед знакомством с определением угла, рекомендуем освежить в памяти теорию из разделов и .

Итак, будем отталкиваться от понятий точки, прямой на плоскости и плоскости.

Дадим сначала определение луча.

Пусть нам дана некоторая прямая на плоскости. Обозначим ее буквой a . Пусть O – некоторая точка прямой a . Точка O разделяет прямую a на две части. Каждая из этих частей вместе с точкой О называется лучом , а точка О называется началом луча . Еще можно услышать, что луч называют полупрямой .

Для краткости и удобства ввели следующие обозначения для лучей: луч обозначают либо малой латинской буквой (например, луч p или луч k ), либо двумя большими латинскими буквами, первая из которых соответствует началу луча, а вторая обозначает некоторую точку этого луча (например, луч ОА или луч СD ). Покажем изображение и обозначение лучей на чертеже.

Теперь мы можем дать первое определение угла.

Определение.

Угол – это плоская геометрическая фигура (то есть целиком лежащая в некоторой плоскости), которую составляют два несовпадающих луча с общим началом. Каждый из лучей называют стороной угла , общее начало сторон угла называют вершиной угла .

Возможен случай, когда стороны угла составляют прямую линию. Такой угол имеет свое название.

Определение.

Если обе стороны угла лежат на одной прямой, то такой угол называется развернутым .

Предлагаем Вашему вниманию графическую иллюстрацию развернутого угла.

Для обозначения угла используют значок угла «». Если стороны угла обозначены малыми латинскими буквами (например, одна сторона угла k , а другая h ), то для обозначения этого угла после значка угла записывают подряд буквы, соответствующие сторонам, причем порядок записи значения не имеет (то есть, или ). Если стороны угла обозначены двумя большими латинскими буквами (к примеру, одна сторона угла OA , а вторая сторона угла OB ), то угол обозначают следующим образом: после значка угла записывают три буквы, участвующие в обозначении сторон угла, причем буква, отвечающая вершине угла, располагается посередине (в нашем случае угол будет обозначен как или ). Если вершина угла не является вершиной еще какого-нибудь угла, то такой угол можно обозначать буквой, соответствующей вершине угла (например, ). Иногда можно видеть, что углы на чертежах отмечают цифрами (1 , 2 и т.д.), обозначают эти углы как и так далее. Для наглядности приведем рисунок, на котором изображены и обозначены углы.


Любой угол разделяет плоскость на две части. При этом если угол не развернутый, то одну часть плоскости называют внутренней областью угла , а другую – внешней областью угла . Следующее изображение разъясняет, какая часть плоскости отвечает внутренней области угла, а какая — внешней.


Любую из двух частей, на которые развернутый угол разделяет плоскость, можно считать внутренней областью развернутого угла.

Определение внутренней области угла приводит нас ко второму определению угла.

Определение.

Угол – это геометрическая фигура, которую составляют два несовпадающих луча с общим началом и соответствующая внутренняя область угла.

Следует отметить, что второе определение угла строже первого, так как содержит больше условий. Однако не следует отметать первое определение угла, также не следует рассматривать первое и второе определения угла по отдельности. Поясним этот момент. Когда речь идет об угле как о геометрической фигуре, то под углом понимается фигура, составленная двумя лучами с общим началом. Если же возникает необходимость провести какие-либо действия с этим углом (например, измерение угла), то под углом уже следует понимать два луча с общим началом и внутренней областью (иначе возникла бы двоякая ситуация из-за наличия как внутренней так и внешней области угла).

Дадим еще определения смежных и вертикальных углов.

Определение.

Смежные углы – это два угла, у которых одна сторона общая, а две другие образуют развернутый угол.

Из определения следует, что смежные углы дополняют друг друга до развернутого угла.

Определение.

Вертикальные углы – это два угла, у которых стороны одного угла являются продолжениями сторон другого.

На рисунке изображены вертикальные углы.

Очевидно, что две пересекающиеся прямые образуют четыре пары смежных углов и две пары вертикальных углов.

Сравнение углов.

В этом пункте статьи мы разберемся с определениями равных и неравных углов, а также в случае неравных углов разъясним, какой угол считается большим, а какой меньшим.

Напомним, что две геометрические фигуры называются равными, если их можно совместить наложением.

Пусть нам даны два угла. Приведем рассуждения, которые помогут нам получить ответ на вопрос: «Равны эти два угла или нет»?

Очевидно, что мы всегда можем совместить вершины двух углов, а также одну сторону первого угла с любой из сторон второго угла. Совместим сторону первого угла с той стороной второго угла, чтобы оставшиеся стороны углов оказались по одну сторону от прямой, на которой лежат совмещенные стороны углов. Тогда, если две другие стороны углов совместятся, то углы называются равными .


Если же две другие стороны углов не совместятся, то углы называются неравными , причем меньшим считается тот угол, который составляет часть другого (большим является тот угол, который полностью содержит другой угол).


Очевидно, что два развернутых угла равны. Также очевидно, что развернутый угол больше любого неразвернутого угла.

Измерение углов.

Измерение углов основывается на сравнении измеряемого угла с углом, взятым в качестве единицы измерения. Процесс измерения углов выглядит так: начиная от одной из сторон измеряемого угла, его внутреннюю область последовательно заполняют единичными углами, плотно укладывая их один к другому. При этом запоминают количество уложенных углов, которое и дает меру измеряемого угла.

Фактически, в качестве единицы измерения углов может быть принят любой угол. Однако существует множество общепринятых единиц измерения углов, относящихся к различным областям науки и техники, они получили специальные названия.

Одной из единиц измерения углов является градус .

Определение.

Один градус – это угол, равный одной сто восьмидесятой части развернутого угла.

Градус обозначают символом «», следовательно, один градус обозначается как .

Таким образом, в развернутом угле мы можем уложить 180 углов в один градус. Это будет выглядеть как половинка круглого пирога, разрезанная на 180 равных кусочков. Очень важно: «кусочки пирога» плотно укладываются один к другому (то есть, стороны углов совмещаются), причем сторона первого угла совмещается с одной стороной развернутого угла, а сторона последнего единичного угла совпадет с другой стороной развернутого угла.

При измерении углов выясняют, сколько раз градус (или другая единица измерения углов) укладывается в измеряемом угле до полного покрытия внутренней области измеряемого угла. Как мы уже убедились, в развернутом угле градус укладывается ровно 180 раз. Ниже приведены примеры углов, в которых угол в один градус укладывается ровно 30 раз (такой угол составляет шестую часть развернутого угла) и ровно 90 раз (половина развернутого угла).


Для измерения углов, меньших одного градуса (или другой единицы измерения углов) и в случаях, когда угол не удается измерить целым числом градусов (взятых единиц измерения), приходится использовать части градуса (части взятых единиц измерения). Определенные части градуса получили специальные названия. Наибольшее распространение получили, так называемые, минуты и секунды.

Определение.

Минута – это одна шестидесятая часть градуса.

Определение.

Секунда – это одна шестидесятая часть минуты.

Иными словами, в минуте содержится шестьдесят секунд, а в градусе – шестьдесят минут (3600 секунд). Для обозначения минут используют символ «», а для обозначения секунд – символ «» (не путайте со знаками производной и второй производной). Тогда при введенных определениях и обозначениях имеем , а угол, в котором укладываются 17 градусов 3 минуты и 59 секунд, можно обозначить как .

Определение.

Градусной мерой угла называется положительное число, которое показывает сколько раз градус и его части укладываются в данном угле.

Например, градусная мера развернутого угла равна ста восьмидесяти, а градусная мера угла равна .

Для измерения углов существуют специальные измерительные приборы, наиболее известным из них является транспортир.

Если известно и обозначение угла (к примеру, ) и его градусная мера (пусть 110 ), то используют краткую запись вида и говорят: «Угол АОВ равен ста десяти градусам».

Из определений угла и градусной меры угла следует, что в геометрии мера угла в градусах выражается действительным числом из интервала (0, 180] (в тригонометрии рассматривают углы с произвольной градусной мерой, их называют ). Угол в девяносто градусов имеет специальное название, его называют прямым углом . Угол меньший 90 градусов называется острым углом . Угол больший девяноста градусов называется тупым углом . Итак, мера острого угла в градусах выражается числом из интервала (0, 90) , мера тупого угла – числом из интервала (90, 180) , прямой угол равен девяноста градусам. Приведем иллюстрации острого угла, тупого угла и прямого угла.


Из принципа измерения углов следует, что градусные меры равных углов одинаковы, градусная мера большего угла больше градусной меры меньшего, а градусная мера угла, который составляют несколько углов, равна сумме градусных мер составляющих углов. На рисунке ниже показан угол АОВ , который составляют углы АОС , СОD и DОВ , при этом .

Таким образом, сумма смежных углов равна ста восьмидесяти градусам , так как они составляют развернутый угол.

Из этого утверждения следует, что . Действительно, если углы АОВ и СОD – вертикальные, то углы АОВ и ВОС — смежные и углы СОD и ВОС также смежные, поэтому, справедливы равенства и , откуда следует равенство .

Наряду с градусом удобна единица измерения углов, называемая радианом . Радианная мера широко используется в тригонометрии. Дадим определение радиана.

Определение.

Угол в один радиан – это центральный угол , которому соответствует длина дуги, равная длине радиуса соответствующей окружности.

Дадим графическую иллюстрацию угла в один радиан. На чертеже длина радиуса OA (как и радиуса OB ) равна длине дуги AB , поэтому, по определению угол AOB равен одному радиану.

Для обозначения радианов используют сокращение «рад». Например, запись 5 рад означает 5 радианов. Однако на письме обозначение «рад» часто опускают. К примеру, когда написано, что угол равен пи, то имеется в виду пи рад.

Стоит отдельно отметить, что величина угла, выраженная в радианах, не зависит от длины радиуса окружности. Это связано с тем, что фигуры, ограниченные данным углом и дугой окружности с центром в вершине данного угла, подобны между собой.

Измерение углов в радианах можно выполнять так же, как и измерение углов в градусах: выяснить, сколько раз угол в один радиан (и его части) укладываются в данном угле. А можно вычислить длину дуги соответствующего центрального угла, после чего разделить ее на длину радиуса.

Для нужд практики полезно знать, как соотносятся между собой градусная и радианная меры, так как довольно часть приходится осуществлять . В указанной статье установлена связь между градусной и радианной мерой угла, и приведены примеры перевода градусов в радианы и обратно.

Обозначение углов на чертеже.

На чертежах для удобства и наглядности углы можно отмечать дугами, которые принято проводить во внутренней области угла от одной стороны угла до другой. Равные углы отмечают одинаковым количеством дуг, неравные углы – различным количеством дуг. Прямые углы на чертеже обозначают символом вида «», который изображают во внутренней области прямого угла от одной стороны угла до другой.


Если на чертеже приходится отмечать много различных углов (обычно больше трех), то при обозначении углов кроме обычных дуг допустимо использование дуг какого-либо специального вида. К примеру, можно изобразить зубчатые дуги, или нечто подобное.


Следует отметить, что не стоит увлекаться с обозначением углов на чертежах и не загромождать рисунки. Рекомендуем обозначать только те углы, которые необходимы в процессе решения или доказательства.

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.

Угол – основная геометрическая фигура, которую разберем на протяжение всей темы. Определения, способы задания, обозначения и измерения угла. Разберем принципы выделения углов на чертежах. Вся теория проиллюстрирована и имеет большое количество наглядных чертежей.

Yandex.RTB R-A-339285-1 Определение 1

Угол – простая важная фигура в геометрии. Угол напрямую зависит от определения луча, который в свою очередь состоит из базовых понятий точки, прямой и плоскости. Для досконального изучения необходимо углубиться по темам прямая на плоскости – необходимые сведения и плоскость – необходимые сведения .

Понятие угла начинается с понятий о точке, плоскости и прямой, изображенной на этой плоскости.

Определение 2

Дана прямая a на плоскости. На ней обозначим некоторую точку O . Прямая разделена точкой на две части, каждая из которых имеет название луч , а точка O – начало луча .

Иначе говоря, луч или полупрямая – это часть прямой, состоящая из точек заданной прямой, расположенных на одной стороне относительно начальной точки, то есть точки O .

Обозначение луча допустимо в двух вариациях: одной строчной или двумя прописными буквами латинского алфавита. При обозначении двумя буквами луч имеет название, состоящее из двух букв. Рассмотрим подробнее на чертеже.

Перейдем к понятию определения угла.

Определение 3

Угол – это фигура, расположенная в заданной плоскости, образованная двумя несовпадающими лучами, имеющими общее начало. Сторона угла является лучом, вершина – общее начало сторон.

Имеет место случай, когда стороны угла могут выступать в роли прямой линии.

Определение 4

Когда обе стороны угла расположены на одной прямой или его стороны служат как дополнительные полупрямые одной прямой, то такой угол называют развернутым .

На рисунке ниже изображен развернутый угол.

Точка на прямой – это и есть вершина угла. Чаще всего имеет место ее обозначение точкой O .

Угол в математике обозначается знаком « ∠ ». Когда стороны угла обозначают малыми латинскими, то для правильного определения угла записываются подряд буквы соответственно сторонам. Если две стороны имеют обозначение k и h , то угол обозначается как ∠ k h или ∠ h k .

Когда идет обозначение большими буквами, то соответственно стороны угла имеют названия O A и O B . В таком случае угол имеет название из трех букв латинского алфавита, записанные подряд, в центре с вершиной — ∠ A O B и ∠ B O A . Существует обозначение в виде цифр, когда углы не имеют названий или буквенных обозначений. Ниже приведен рисунок, где разными способами обозначаются углы.

Угол делит плоскость на две части. В случае, если угол не развернутый, тогда одна часть плоскости имеет название внутренняя область угла , другая – внешняя область угла . Ниже приведено изображение, объясняющее, какие части плоскости внешние, а какие внутренние.

При разделении развернутым углом на плоскости любая из его частей считается внутренней областью развернутого угла.

Внутренняя область угла – элемент, служащий для второго определения угла.

Определение 5

Углом называют геометрическую фигуру, состоящая из двух несовпадающих лучей, имеющих общее начало и соответствующую внутреннюю область угла.

Данное определение является более строгим, чем предыдущее, так как имеет больше условий. Оба определения не желательно рассматривать отдельно, потому как угол – это геометрическая фигура, преобразованная при помощи двух лучей, выходящих из одной точки. Когда необходимо выполнять действия с углом, то под определением понимают наличие двух лучей с общим началом и внутренней областью.

Определение 6

Два угла называют смежными , если имеется общая сторона, а две другие являются дополнительными полупрямыми или образуют развернутый угол.

На рисунке видно, что смежные углы дополняют друг друга, так как являются продолжением один другого.

Определение 7

Два угла называют вертикальными , если стороны одного являются дополнительными полупрямыми другого или являются продолжениями сторон другого. На рисунке ниже показано изображение вертикальных углов.

При пересечении прямых получается 4 пары смежных и 2 пары вертикальных углов. Ниже показано на рисунке.

Статья показывает определения равных и неравных углов. Разберем какой угол считается большим, какой меньшим и другие свойства угла. Две фигуры считаются равными, если при наложении они полностью совпадают. Такое же свойство применимо для сравнения углов.

Даны два угла. Необходимо прийти к выводу, равные эти углы или нет.

Известно, что имеет место наложение вершин двух углов и стороны первого угла с любой другой стороной второго. То есть при полном совпадении при наложении углов стороны заданных углов совместятся полностью, углы равные .

Может быть так, что при наложении стороны могут не совместиться, то углы неравные, меньший из которых состоит из другого, а больший имеет в своем составе полный другой угол. Ниже изображены неравные углы, не совмещенные при наложении.

Развернутые углы являются равными.

Измерение углов начинается с измерения стороны измеряемого угла и его внутренней области, заполняя которую единичными углами, прикладывают друг к другу. Необходимо посчитать количество уложенных углов, они и предопределяют меру измеряемого угла.

Единица измерения угла может быть выражена любым измеряемым углом. Имеются общепринятые единицы измерения, которые применяют в науке и технике. Они специализируются на других названиях.

Чаще всего используют понятие градус .

Определение 8

Один градус называют углом, который имеет одну сто восьмидесятую часть развернутого угла.

Стандартное обозначение градуса идет при помощи « ° », тогда один градус – 1 ° . Следовательно, развернутый угол состоит из 180 таких углов, состоящих из одного градуса. Все имеющиеся углы плотно уложены друг к другу и стороны предыдущего совмещены с последующим.

Известно, что количество положенных градусов в угле, это и есть та самая мера угла. Развернутый угол имеет 180 уложенных углов в своем составе. Ниже на рисунке приводятся примеры, где уложение угла идет в 30 раз, то есть одна шестая развернутого, и 90 раз, то есть половина.

Для точности определения измерения углов используются минуты и секунды. Их применяют, когда величина угла не является целым обозначением градуса. Такие части градуса позволяют выполнять более точные расчеты.

Определение 9

Минутой называют одну шестидесятую часть градуса.

Определение 10

Секундой называют одну шестидесятую часть минуты.

Градус содержит 3600 секунд. Минуты обозначают « » », а секунды « «» ». Имеет место обозначение:

1 ° = 60 » = 3600 «» , 1 » = (1 60) ° , 1 » = 60 «» , 1 «» = (1 60) » = (1 3600) ° ,

а обозначение угла 17 градусов 3 минут и 59 секунд имеет вид 17 ° 3 » 59 «» .

Определение 11

Приведем пример обозначения градусной меры угла равного 17 ° 3 » 59 «» . Запись имеет еще один вид 17 + 3 60 + 59 3600 = 17 239 3600 .

Для точного измерения углов используют такой измерительный прибор, как транспортир. При обозначении угла ∠ A O B и его градусной мере в 110 градусов применяют более удобную запись ∠ A O B = 110 ° , которая читается «Угол А О В равен 110 градусам».

В геометрии используется мера угла из интервала (0 , 180 ] , а в тригонометрии произвольная градусная мера имеет название углов поворота. Значение углов всегда выражается действительным числом. Прямой угол – это угол, имеющий 90 градусов. Острый угол – угол, который меньше 90 градусов, а тупой – больше.

Острый угол измеряется в интервале (0 , 90) , а тупой – (90 , 180) . Ниже наглядно изображены три вида углов.

Любая градусная мера любого угла имеет одинаковое значение. Больший угол соответственно имеет большую градусную меру, чем меньший. Градусная мера одного угла – это сумма всех имеющихся градусных мер внутренних углов. Ниже приведен рисунок, где показан угол АОВ, состоящий из углов АОС, СОD и DОВ. Подробно это выглядит так: ∠ A O B = ∠ A O C + ∠ D O B = 45 ° + 30 ° + 60 ° = 135 ° .

Исходя из этого, можно сделать вывод, что сумма всех смежных углов равна 180 градусам, потому что они все и составляют развернутый угол.

Отсюда следует, что любые вертикальные углы равны . Если рассмотреть это на примере, мы получим, что угол А О В и С О D – вертикальные (на чертеже), тогда пары углов А О В и В О С, С О D и В О С считают смежными. В таком случает равенство ∠ A O B + ∠ B O C = 180 ° вместе с ∠ C O D + ∠ B O C = 180 ° считаются однозначно верными. Отсюда имеем, что ∠ A O B = ∠ C O D . Ниже приводится пример изображения и обозначения вертикальных улов.

Кроме градусов, минут и секунд используется еще одна единица измерения. Она называется радианом . Чаще всего ее можно встретить в тригонометрии при обозначении углов многоугольников. Что же называют радианом.

Определение 12

Углом в один радиан называют центральный угол, который имеет длину радиуса окружности равную длине дуги.

На рисунке радиан изображается в виде окружности, где имеется центр, обозначенный точкой, с двумя точками на окружности, соединенными и преобразованными в радиусы О А и О В. По определению данный треугольник A O B является равносторонним, значит длина дуги A B равна длинам радиусов О В и О А.

Обозначение угла принимается за «рад». То есть запись в 5 радиан сокращенно обозначается как 5 рад. Иногда можно встретить обозначение, имеющее название пи. Радианы не имеют зависимости от длины заданной окружности, так как фигуры имеют некое ограничение при помощи угла и его дугой с центром, находящимся в вершине заданного угла. Они считаются подобными.

Радианы имеют такой же смысл, как и градусы, только разница в их величине. Чтобы это определить, необходимо вычисленную длину дуги центрального угла поделить на длину ее радиуса.

На практике используют перевод градусов в радианы и радианы в градусы для более удобного решения задач. Указанная статья имеет информацию о связи градусной меры с радианной, где можно подробно изучить переводы из градусной в радианную и обратно.

Для наглядного и удобного изображения дуг, углов используют чертежи. Не всегда можно правильно изобразить и отметить тот или иной угол, дугу или название. Равные углы имеют обозначение в виде одинакового количества дуг, а неравные в виде разного. На чертеже изображено правильное обозначение острых, равных и неравных углов.

Когда необходимо отметить более 3 углов, используются специальные обозначения дуг, например, волнистые или зубчатые. Это не имеет столь важное значение. Ниже приведен рисунок, где показано их обозначение.

Обозначение углов должны быть простыми, чтобы не мешали другим значениям. При решении задачи рекомендовано выделять только необходимые для решения углы, чтобы не загромождать весь чертеж. Это не помешает решению и доказательству, а также придаст эстетичный вид рисунку.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Что такое угол?

Углом называют фигуру, образованную двумя лучами, выходящими из одной точки (рис. 160).
Лучи, образующие угол , называют сторонами угла, а точку, из которой они выходят, — вершиной угла.
На рисунке 160 сторонами угла являются лучи ОА и ОБ, а его вершиной — точка О. Этот угол обозначают так: АОВ.

При записи угла в середине пишут букву, обозначающую его вершину. Угол можно обозначить и одной буквой — названием его вершины.

Например, вместо «угол АОВ» пишут короче: «угол О».

Вместо слова «угол» пишут знак .

Например, AОВ, O.

На рисунке 161 точки С и D лежат внутри угла АОВ, точки X и У лежат вне этого угла, а точки М и Н — на сторонах угла.

Как и все геометрические фигуры, углы сравниваются с помощью наложения.

Если один угол можно наложить на другой так, что они совпадут, то эти углы равны.

Например, на рисунке 162 ABC = MNK.

Из вершины угла СОК (рис. 163) проведен луч ОР. Он разбивает угол СОК на два угла — СОР и РОК. Каждый из этих углов меньше угла СОК.

Пишут: COP

Прямой и развернутый угол

Два дополнительных друг другу луча образуют развернутый угол. Стороны этого угла вместе составляют прямую линию, на которой лежит вершина развернутого угла (рис. 164).

Часовая и минутная стрелки часов образуют в 6 ч развернутый угол (рис. 165).

Согнем два раза пополам лист бумаги, а потом развернем его (рис. 166).

Линии сгиба образуют 4 равных угла. Каждый из этих углов равен половине развернутого угла. Такие углы называют прямыми.

Прямым углом называют половину развернутого угла.

Чертежный треугольник



Для построения прямого угла пользуются чертежным треугольником (рис. 167). Чтобы построить прямой угол, одной из сторон которого является луч ОЛ, надо:

а) расположить чертежный треугольник так, чтобы вершина его прямого угла совпала с точкой О, а одна из сторон пошла по лучу ОА;

б) провести вдоль второй стороны треугольника луч ОВ.

В результате получим прямой угол АОВ.

Вопросы к теме

1.Что такое угол?
2.Какой угол называют развернутым?
3.Какие углы называют равными?
4.Какой угол называют прямым?
5.Как строят прямой угол с помощью чертежного треугольника?

Нам с вами уже известно, что любой угол делит плоскость на две части. Но, в случае, если у угла его обе стороны лежат на одной прямой, то такой угол называется развернутым. То есть, у развернутого угла одна его сторона является продолжением его другой стороны угла.

Теперь давайте посмотрим на рисунок, на котором как раз и изображен развернутый угол О.


Если мы возьмем и проведем из вершины развернутого угла луч, то он разделит данный развернутый угол еще на два угла, которые будут иметь одну общую сторону, а другие два угла будут составлять прямую. То есть, с одного развернутого угла мы получили два смежных.

Если мы возьмем развернутый угол и проведем биссектрису, то эта биссектриса разделит развернутый угол на два прямых угла.

А, в том случае, если мы из вершины развернутого угла проведем произвольный луч, который не является биссектрисой, то такой луч разделит развернутый угол на два угла, один из которых будет острым, а другой тупым.

Свойства развернутого угла

Развернутый угол обладает такими свойствами:

Во-первых, стороны развёрнутого угла являются антипараллельными и образуют прямую;
во-вторых, развернутый угол равен 180°;
в-третьих, два смежных угла образуют развернутый угол;
в-четвертых, развернутый угол составляет половину полного угла;
в-пятых, полный угол будет равен сумме двух развёрнутых углов;
в-шестых, половина развернутого угла составляет прямой угол.

Измерение углов

Чтобы измерить любой угол, для этих целей чаще всего используют транспортир, у которого единица измерения равна одному градусу. При измерении углов следует помнить, что любой угол имеет свою определенную градусную меру и естественно эта мера больше нуля. А развернутый угол, как нам уже известно, равен 180 градусам.

То есть, если мы с вами возьмем любую плоскость круга и разделим ее радиусами на 360 равных частей, то 1/360 часть данного круга будет являться угловым градусом. Как вы уже знаете, что градус обозначается определенным значком, который имеет такой вид: « ° ».

Теперь мы также знаем, что один градус 1° = 1/360 части круга. Если угол равен плоскости круга и составляет 360 градусов, то такой угол является полным.

А теперь мы возьмем, и плоскость круга поделим с помощью двух радиусов, лежащих на одной прямой линии, на две равные части. То в этом случае, плоскость полукруга составит половину полного угла, то есть 360: 2 = 180°. Мы с вами получили угол, который равен полуплоскости круга и имеет 180°. Это и есть развернутый угол.

Практическое задание

1613. Назовите углы, изображенные на рисунке 168. Запишите их обозначения.


1614. Начертите четыре луча: ОА, ОВ, ОС и OD. Запишите названия шести углов, сторонами которых являются эти лучи. На сколько частей эти лучи делят плоскость ?

1615. Укажите, какие точки на рисунке 169 лежат внутри угла КОМ, Какие точки лежат вне этого угла? Какие точки лежат на стороне OK, a какие — на стороне ОМ?

1616. Начертите угол MOD и проведите внутри него луч ОТ. Назовите и обозначьте углы, на которые этот луч делит угол MOD.

1617. Минутная стрелка за 10 мин повернулась на угол АОВ, за следующие 10 мин — на угол ВОС, а еще за 15 мин — на угол COD. Сравните углы АОВ и ВОС, ВОС и COD, АОС и АОВ, АОС и COD (рис. 170).

1618. Изобразите с помощью чертежного треугольника 4 прямых угла в разных положениях.

1619. С помощью чертежного треугольника найдите на рисунке 171 прямые углы. Запишите их обозначения.

1620. Укажите прямые углы в классной комнате.

а) 0,09 200; б) 208 0,4; в) 130 0,1 + 80 0,1.

1629. Сколько процентов от 400 составляет число 200; 100; 4; 40; 80; 400; 600?

1630. Найдите пропущенное число:

а) 2 5 3 б) 2 3 5
13 6 12 1
2 3? 42?

1631. Начертите квадрат, сторона которого равна длине 10 клеток тетради. Пусть этот квадрат изображает поле. Рожь занимает 12% поля, овес — 8%, пшеница — 64%, а остальная часть поля занята гречихой. Покажите на рисунке часть поля, занятую каждой культурой. Сколько процентов поля занимает гречиха?

1632. За учебный год Петя израсходовал 40% купленных в начале года тетрадей, и у него осталось 30 тетрадей. Сколько тетрадей было куплено для Пети в начале учебного года?

1633. Бронза является сплавом олова и меди. Сколько процентов сплава составляет медь в куске бронзы, состоящем из 6 кг олова и 34 кг меди?

1634. Построенный в древности Александрийский маяк, который называли одним из семи чудес света, выше башен Московского Кремля в 1,7 раза, но ниже здания Московского университета на 119 м. Найдите высоту каждого из этих сооружений, если башни Московского Кремля на 49 м ниже Александрийского маяка.

1635. Найдите с помощью микрокалькулятора:

а) 4,5% от 168; в) 28,3% от 569,8;
б) 147,6% от 2500; г) 0,09% от 456 800.

1636. Решите задачу:

1) Площадь огорода 6,4 а. В первый день вскопали 30% огорода, а во второй день — 35% огорода. Сколько аров осталось еще вскопать?

2) У Сережи было 4,8 ч свободного времени. 35% этого времени он потратил на чтение книги, а 40% на просмотр передач по телевизору. Сколько времени у него еще осталось?

1637. Выполните действия:

1) ((23,79: 7,8 — 6,8: 17) 3,04 — 2,04) 0,85;
2) (3,42: 0,57 9,5 — 6,6) : ((4,8 — 1,6) (3,1 + 0,05)).

1638. Начертите угол ВАС и отметьте по одной точке внутри угла, вне угла и на сторонах угла.

1639. Какие из отмеченных на рисунке 172 точек лежат внутри угла АМК.Какая точка лежит внутри угла АМВ> но вне угла АМК.Какие точки лежат на сторонах угла АМК?

1640. Найдите с помощью чертежного треугольника прямые углы на рисунке 173.

1641. Постройте квадрат со стороной 43 мм. Вычислите его периметр и площадь.

1642. Найдите значение выражения:

а) 14,791: а + 160,961: b, если а = 100, b = 10;
б) 361,62с + 1848: d, если с = 100, d =100.

1643. Рабочий должен был изготовить 450 деталей. В первый день он изготовил 60% деталей, а остальные — во второй. Сколько деталей изготовил рабочий во второй день?

1644. В библиотеке было 8000 книг. Через год число их увеличилось на 2000 книг. На сколько процентов увеличилось число книг в библиотеке?

1645. Грузовики в первый день проехали 24% намеченного пути, во второй день — 46% пути, а в третий — остальные 450 км. Сколько километров проехали эти грузовики?

1646. Найдите, сколько составляют:

а) 1% от тонны; в) 5% от 7 т;
б) 1% от литра; г) 6% от 80 км.

1647. Масса детеныша моржа в 9 раз меньше массы взрослого моржа. Какова масса взрослого моржа, если вместе с детенышем их масса равна 0,9 т?

1648. Во время маневров командир оставил 0,3 всех своих солдат охранять переправу, а остальных разделил на 2 отряда для обороны двух высот. В первом отряде было в 6 раз больше солдат, чем во втором. Сколько солдат было в первом отряде, если всего было 200 солдат?

Н.Я. ВИЛЕНКИН, B. И. ЖОХОВ, А. С. ЧЕСНОКОВ, C. И. ШВАРЦБУРД, Математика 5 класс, Учебник для общеобразовательных учреждений

Угловая мера

Угол в измеряют в градусной мере (градус, минута, секунда), в оборотах — отношение длины дуги s к длине окружности L , в радианах — отношение длины дуги s к радиусу r ; исторически применялась также градовая мера измерения углов, в настоящее время она почти нигде не используется.

1 оборот = 2π радианам = 360° = 400 градам .

В морской терминологии углы обозначаются румбами .

Типы углов

Смежные углы — острый (a) и тупой (b). Развёрнутый угол (c)

Кроме этого, рассматривается угол между гладкими кривыми в точке касания: по определению, его величина равна величине угла между касательными к кривым.

Wikimedia Foundation . 2010 .

Смотреть что такое «Развернутый угол» в других словарях:

    Угол, равный двум прямым. *РАЗВЕРТКА поверхности фигура, получающаяся в плоскости при таком совмещении точек данной поверхности с этой плоскостью, при котором длины линий остаются неизменными. Развертка кривой см. Эвольвента … Большой Энциклопедический словарь

    угол — ▲ разность направление (в пространстве) угол протяженность поворота от одного направления к другому; разность направлений; часть полного оборота (# наклона. образовывать #). наклон. наклонный. отклонение. уклониться (дорога уклонилась вправо).… …

    Угол — Углы: 1 общего вида; 2 смежные; 3 прилежащие; 4 вертикальные; 5 развернутый; 6 прямой, острый и тупой; 7 между кривыми; 8 между прямой и плоскостью; 9 между скрещивающимися прямыми (не лежащими в одной плоскостью) прямыми. УГОЛ, геометрическая… … Иллюстрированный энциклопедический словарь

    Геометрическая фигура, состоящая из двух различных лучей, выходящих из одной точки. Лучи наз. сторонами У., а их общее начало вершиной У. Пусть [ ВА),[ ВС) стороны угла, В его вершина, плоскость, определяемая сторонами У. Фигура делит плоскость… … Математическая энциклопедия

    Угол, равный двум прямым. * * * РАЗВЕРНУТЫЙ УГОЛ РАЗВЕРНУТЫЙ УГОЛ, угол, равный двум прямым … Энциклопедический словарь

    Раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… … Энциклопедия Кольера

    1) Замкнутая ломаная линия, именно: если различные точки, никакие последовательные три из к рых не лежат на одной прямой, то совокупность отрезков наз. многоугольником (см. рис. 1). М. могут быть пространственными или плоскими (ниже… … Математическая энциклопедия

    поперек — ▲ под углом максимум, косой угол поперечный. поперек под прямым углом. . прямой угол угол максимального отклонения; угол, равный своему смежному; четверть оборота. перпендикуляр. перпендикулярный находящийся под прямым углом. перпендикулярно.… … Идеографический словарь русского языка

    градус — а, м. 1) Единица измерения плоского угла, равная 1/90 прямого угла или соответственно 1/360 окружности. Угол в 90 градусов называется прямым углом. Развернутый угол составляет 180 градусов. 2) Единица измерения температурного интервала, имеющая… … Популярный словарь русского языка

    Теорема Шварца Кристоффеля важная теорема в теории функций комплексного переменного, носит название немецких математиков Карла Шварца и Элвина Кристоффеля. Очень важной с практической точки зрения является проблема о конформном… … Википедия

Что такое Угол? Определение, виды, как обозначают? Примеры

Определение угла

Угол — это простая геометрическая фигура. Определение угла напрямую связано с понятием луча.

Луч — прямая линия, у которой есть начало, но нет конца, и продолжается она только в одну сторону.

Если нам дана прямая a на плоскости, и на ней есть некоторая точку O — выходит, что прямая разделена точкой на две части, каждая из которых является лучом с началом в точке O.


Луч можно обозначить одной строчной буквой латинского алфавита или двумя прописными. Например, вот так:

Угол — часть плоскости между двумя линиями, исходящими из одной точки. Каждая сторона угла является лучом, а вершина — общим началом сторон.

В математике существует специальный символ для обозначения угла, вот он: .

Если стороны угла названы малыми латинскими буквами, то их записывают после символа. Например, так: ∠ab или ∠ba.

Если стороны угла названы большими буквами, то обозначение угла будет состоять из символа и трех букв, при этом вершина всегда записывается в центре. При сторонах угла OA и OB название угла запишем так: ∠AOB и ∠BOA.

Иногда можно встретить обозначение в виде цифр — так тоже можно.

Для наглядности — все способы обозначения углов:

Что такое вершина и стороны угла:

  • Стороны угла — лучи, из которых состоит угол.
  • Вершина угла — общее начало сторон угла.

Биссектриса — это луч, который исходит из вершины угла и делит его на два равных угла.

Так как угол делит плоскость на две части, одна будет внутренней областью угла, а другая — внешней областью угла. Вот так:

При разделении развернутым углом на плоскости любая из его частей считается внутренней областью развернутого угла.

Единица измерения углов — градусы. Символ для обозначения градуса угла: °.

Определение смежных и вертикальных углов

Смежные углы — это пара углов, у которых одна сторона общая, а две другие стороны лежат на одной прямой. Таким образом два смежных угла составляют развернутый угол. Общая сторона двух смежных углов называется наклонной к прямой, на которой лежат другие стороны, при условии, что смежные углы не равны.

Вертикальные углы — это пара углов, у которых есть общая вершина, при этом стороны одного угла составляют продолжение сторон другого угла.

При пересечении прямых получается четыре пары смежных и две пары вертикальных углов. Вот как это выглядит:


Виды углов

Есть разные типы углов и у каждого своё название:

  • острый
  • прямой
  • тупой
  • развернутый
  • выпуклый
  • полный

Различать виды углов в геометрии важно. Определять можно на глаз или с помощью линейки.

Острый угол — это угол, который меньше прямого угла, то есть < 90°.

Прямой угол — это угол, стороны которого перпендикулярны друг другу. Прямой угол всегда равен половине развернутого угла, то есть = 90°.

Если два смежных угла равны между собой, то каждый из них является прямым. Для удобства прямой угол обозначается уголком. Вот так:

На картинке изображены два прямых угла ∠AOC и ∠COB. Общая сторона OC перпендикулярна прямой AB, а точка O — основание перпендикуляра.

Развернутый угол — это открытый угол, который образован двумя лучами и равен сумме двух прямых углов. Развернутый угол равен 180°. Как выглядит развернутый угол показано на первой картинке.

Неразвернутый угол — это любой угол, который не является развернутым, то есть не равен 180°.

Тупой угол — это угол, который больше прямого угла, но меньше развернутого:
90° < тупой угол < 180°.

Выпуклый угол — это угол, который больше развернутого угла, но меньше полного:
180° < выпуклый угол < 360°.

Полный угол — это угол, обе стороны которого совпадают с одним лучом. Он равен сумме четырех прямых углов, то есть = 360°.

Прилежащие углы — это пара углов с общей вершиной и стороной, другие стороны при этом лежат по разные стороны от общей стороны.


На картинке мы видим два прилежащих угла ∠AOB и ∠BOC, общую вершину O и общую сторону OB.

Можно сформулировать определение по-другому: если из вершины любого угла провести луч, разделяющий угол на два, то образованные углы будут прилежащими.

Чтобы найти угол, который разделен лучом, нужно сложить полученные углы: ∠AOB = ∠AOC + ∠COB. Из этого можно выделить следующие верные разности:

  • ∠AOC = ∠AOB — ∠COB,
  • ∠COB = ∠AOB — ∠AOC.

Сравнение углов

Для сравнения углов можно использовать самый простой способ из программы 4 класса — метод наложения. Для этого нужно совместить две вершины и сторону одного угла со стороной другого. Если стороны заданных углов совпадут, значит углы равные. Если нет, то угол, который лежит внутри другого, будет меньшим. Здесь два наглядных примера с равными и неравными углами:

При этом развернутые углы всегда являются равными.

Совмещение углов ∠𝐴𝐵𝐶 и ∠𝑀𝑁𝐾 происходит следующим образом:

 
  1. Вершину 𝐵 одного угла совмещаем с вершиной 𝑁 другого угла.

  2. Сторону 𝐵𝐴 одного угла накладываем на сторону 𝑁𝑀 другого угла так, чтобы стороны 𝐵𝐶 и 𝑁𝐾 располагались в одном направлении.

Если совпадут и другие стороны, то углы равны: ∠𝐴𝐵𝐶 = ∠𝑀𝑁𝐾.

Если нет, то один угол — меньше другого: ∠𝐴𝐵𝐶<∠𝑀𝑁𝐾.

Сравнить углы можно также, измерив их величины. Для этого понадобится специальный инструмент для построения и измерения углов — транспортир. Вот, как он выглядит:

Как правильно измерять углы

Измерение углов похоже на измерение отрезков: нужно сравнить их с углом, принятым за единицу измерения. В геометрии обычно за единицу измерения принимают градус — угол, равный 1/180 части развернутого угла. Обозначается — 0.

Градусная мера угла — положительное число, которое показывает, сколько раз градус и его части укладываются в данном углу.

Есть еще две возможные меры угла: минуты и секунды. Они позволяют выполнять более точные расчеты, особенно, когда величина не является целым обозначением градуса.

Минута — 1/60 часть градуса. Обозначается — ´.

Секунда — 1/60 часть минуты. Обозначается — ´´.

Градус состоит из 3600 секунд, то есть: 1° = 60′ = 3600′.

Как происходит измерение угла: сначала измеряются стороны угла, а после его внутренняя область. Всегда нужно считать количество уложенных углов, так как они предопределяют меру измеряемого угла.

Когда луч делит угол на два или более углов, градусная мера всего угла равна сумме градусных мер этих углов.

На рисунке изображен угол АОВ, он состоит из углов АОС, СОD и DОВ. Можно записать так: ∠ A O B = ∠ A O C + ∠ D O B = 45° + 30° + 60° = 135 °.

Угол называется прямым, если он равен 90°, а острым, если он меньше 90°, тупым, если он больше 90°, но меньше 180°. Развернутый угол имеет 180°.

Равные углы имеют равную градусную меру.

Обозначение углов на чертеже

Чертеж помогает решать задачки по геометрии в разы быстрее. Чтобы наглядно изображать дуги, углы и прочие фигурки, придумали даже отдельное направление — геометрический чертеж.

Задачи с углами могут быть разными и не всегда есть возможность правильно изобразить и отметить угол. Вот, что важно запомнить при обозначении лучей и углов:

  • Равные углы обозначают одинаковым количеством дуг.
  • Неравные углы обозначают разным количеством дуг, чтобы они отличались между собой.
  • Для обозначения на чертеже более трех углов используем разные виды дуг: волнистые, зубчатые.

На чертеже отмечены острые, равные и неравные углы.

Обозначать углы можно разными цветами. Главное, чтобы было просто и броско. При этом необязательно отмечать все-все углы — достаточно только тех, которые нам нужны для решения задачки.

Как выглядят острые и тупые углы. Острый угол. Введение в понятие геометрического угла

26 июня 2013

Давайте начнем с определения того, что такое угол. Во-первых, он является геометрической фигурой. Во-вторых, он образован двумя лучами, которые называются сторонами угла. В-третьих, последние выходят из одной точки, которую называют вершиной угла. Исходя из этих признаков, мы можем составить определение: угол — геометрическая фигура, которая состоит из двух лучей (сторон), выходящих из одной точки (вершины).

Их классифицируют по градусной величине, по расположению относительно друг друга и относительно окружности. Начнем с видов углов по их величине.

Существует несколько их разновидностей. Рассмотрим подробнее каждый вид.

Основных типов углов всего четыре — прямой, тупой, острый и развернутый угол.

Прямой

Он выглядит так:

Его градусная мера всегда составляет 90 о, иначе говоря, прямой угол — это угол 90 градусов. Только они есть у таких четырехугольников, как квадрат и прямоугольник.

Тупой

Он имеет такой вид:

Градусная мера тупого угла всегда больше 90 о, но меньше 180 о. Он может встречаться в таких четырехугольниках, как ромб, произвольный параллелограмм, во многоугольниках.

Острый

Он выглядит так:

Градусная мера острого угла всегда меньше 90 о. Он встречается во всех четырехугольниках, кроме квадрата и произвольного параллелограмма.

Развернутый

Развернутый угол имеет такой вид:

В многоугольниках он не встречается, но не менее важен, чем все остальные. Развернутый угол — это геометрическая фигура, градусная мера которой всегда равняется 180º. На нем можно построить смежные углы, проведя из его вершины один или несколько лучей в любых направлениях.

Есть еще несколько второстепенных видов углов. Их не изучают в школах, но знать хотя бы об их существовании необходимо. Второстепенных видов углов всего пять:

1. Нулевой

Он выглядит так:

Само название угла уже говорит о его величине. Его внутренняя область равняется 0 о, а стороны лежат друг на друге так, как показано на рисунке.

2. Косой

Косым может быть и прямой, и тупой, и острый, и развернутый угол. Главное его условие — он не должен равняться 0 о, 90 о, 180 о, 270 о.

3. Выпуклый

Выпуклыми являются нулевой, прямой, тупой, острый и развернутый углы. Как вы уже поняли, градусная мера выпуклого угла — от 0 о до 180 о.

4. Невыпуклый

Невыпуклыми являются углы с градусной мерой от 181 о до 359 о включительно.

5. Полный

Полным является угол с градусной мерой 360 о.

Это все типы углов по их величине. Теперь рассмотрим их виды по расположению на плоскости относительно друг друга.

1. Дополнительные

Это два острых угла, образовывающие один прямой, т.е. их сумма 90 о.

2. Смежные

Смежные углы образуются, если через развернутый, точнее, через его вершину, провести луч в любом направлении. Их сумма равна 180 о.

3. Вертикальные

Вертикальные углы образуются при пересечении двух прямых. Их градусные меры равны.

Теперь перейдем к видам углов, расположенным относительно окружности. Их всего два: центральный и вписанный.

1. Центральный

Центральным является угол с вершиной в центре окружности. Его градусная мера равна градусной мере меньшей дуги, стянутой сторонами.

2. Вписанный

Вписанным называется угол, вершина которого лежит на окружности, и стороны которого ее пересекают. Его градусная мера равна половине дуги, на которую он опирается.

Это все, что касается углов. Теперь вы знаете, что помимо наиболее известных — острого, тупого, прямого и развернутого — в геометрии существует много других их видов.

Источник: fb.ru

Актуально

Разное
Разное

В этой статье мы всесторонне разберем одну из основных геометрических фигур – угол. Начнем со вспомогательных понятий и определений, которые нас приведут к определению угла. После этого приведем принятые способы обозначения углов. Далее подробно разберемся с процессом измерения углов. В заключении покажем как можно отметить углы на чертеже. Все теорию мы снабдили необходимыми чертежами и графическими иллюстрациями для лучшего запоминания материала.

Навигация по странице.

Определение угла.

Угол является одной из важнейших фигур в геометрии. Определение угла дается через определение луча. В свою очередь представление о луче невозможно получить без знания таких геометрических фигур как точка, прямая и плоскость. Поэтому, перед знакомством с определением угла, рекомендуем освежить в памяти теорию из разделов и .

Итак, будем отталкиваться от понятий точки, прямой на плоскости и плоскости.

Дадим сначала определение луча.

Пусть нам дана некоторая прямая на плоскости. Обозначим ее буквой a . Пусть O – некоторая точка прямой a . Точка O разделяет прямую a на две части. Каждая из этих частей вместе с точкой О называется лучом , а точка О называется началом луча . Еще можно услышать, что луч называют полупрямой .

Для краткости и удобства ввели следующие обозначения для лучей: луч обозначают либо малой латинской буквой (например, луч p или луч k ), либо двумя большими латинскими буквами, первая из которых соответствует началу луча, а вторая обозначает некоторую точку этого луча (например, луч ОА или луч СD ). Покажем изображение и обозначение лучей на чертеже.

Теперь мы можем дать первое определение угла.

Определение.

Угол – это плоская геометрическая фигура (то есть целиком лежащая в некоторой плоскости), которую составляют два несовпадающих луча с общим началом. Каждый из лучей называют стороной угла , общее начало сторон угла называют вершиной угла .

Возможен случай, когда стороны угла составляют прямую линию. Такой угол имеет свое название.

Определение.

Если обе стороны угла лежат на одной прямой, то такой угол называется развернутым .

Предлагаем Вашему вниманию графическую иллюстрацию развернутого угла.

Для обозначения угла используют значок угла «». Если стороны угла обозначены малыми латинскими буквами (например, одна сторона угла k , а другая h ), то для обозначения этого угла после значка угла записывают подряд буквы, соответствующие сторонам, причем порядок записи значения не имеет (то есть, или ). Если стороны угла обозначены двумя большими латинскими буквами (к примеру, одна сторона угла OA , а вторая сторона угла OB ), то угол обозначают следующим образом: после значка угла записывают три буквы, участвующие в обозначении сторон угла, причем буква, отвечающая вершине угла, располагается посередине (в нашем случае угол будет обозначен как или ). Если вершина угла не является вершиной еще какого-нибудь угла, то такой угол можно обозначать буквой, соответствующей вершине угла (например, ). Иногда можно видеть, что углы на чертежах отмечают цифрами (1 , 2 и т.д.), обозначают эти углы как и так далее. Для наглядности приведем рисунок, на котором изображены и обозначены углы.


Любой угол разделяет плоскость на две части. При этом если угол не развернутый, то одну часть плоскости называют внутренней областью угла , а другую – внешней областью угла . Следующее изображение разъясняет, какая часть плоскости отвечает внутренней области угла, а какая — внешней.


Любую из двух частей, на которые развернутый угол разделяет плоскость, можно считать внутренней областью развернутого угла.

Определение внутренней области угла приводит нас ко второму определению угла.

Определение.

Угол – это геометрическая фигура, которую составляют два несовпадающих луча с общим началом и соответствующая внутренняя область угла.

Следует отметить, что второе определение угла строже первого, так как содержит больше условий. Однако не следует отметать первое определение угла, также не следует рассматривать первое и второе определения угла по отдельности. Поясним этот момент. Когда речь идет об угле как о геометрической фигуре, то под углом понимается фигура, составленная двумя лучами с общим началом. Если же возникает необходимость провести какие-либо действия с этим углом (например, измерение угла), то под углом уже следует понимать два луча с общим началом и внутренней областью (иначе возникла бы двоякая ситуация из-за наличия как внутренней так и внешней области угла).

Дадим еще определения смежных и вертикальных углов.

Определение.

Смежные углы – это два угла, у которых одна сторона общая, а две другие образуют развернутый угол.

Из определения следует, что смежные углы дополняют друг друга до развернутого угла.

Определение.

Вертикальные углы – это два угла, у которых стороны одного угла являются продолжениями сторон другого.

На рисунке изображены вертикальные углы.

Очевидно, что две пересекающиеся прямые образуют четыре пары смежных углов и две пары вертикальных углов.

Сравнение углов.

В этом пункте статьи мы разберемся с определениями равных и неравных углов, а также в случае неравных углов разъясним, какой угол считается большим, а какой меньшим.

Напомним, что две геометрические фигуры называются равными, если их можно совместить наложением.

Пусть нам даны два угла. Приведем рассуждения, которые помогут нам получить ответ на вопрос: «Равны эти два угла или нет»?

Очевидно, что мы всегда можем совместить вершины двух углов, а также одну сторону первого угла с любой из сторон второго угла. Совместим сторону первого угла с той стороной второго угла, чтобы оставшиеся стороны углов оказались по одну сторону от прямой, на которой лежат совмещенные стороны углов. Тогда, если две другие стороны углов совместятся, то углы называются равными .


Если же две другие стороны углов не совместятся, то углы называются неравными , причем меньшим считается тот угол, который составляет часть другого (большим является тот угол, который полностью содержит другой угол).


Очевидно, что два развернутых угла равны. Также очевидно, что развернутый угол больше любого неразвернутого угла.

Измерение углов.

Измерение углов основывается на сравнении измеряемого угла с углом, взятым в качестве единицы измерения. Процесс измерения углов выглядит так: начиная от одной из сторон измеряемого угла, его внутреннюю область последовательно заполняют единичными углами, плотно укладывая их один к другому. При этом запоминают количество уложенных углов, которое и дает меру измеряемого угла.

Фактически, в качестве единицы измерения углов может быть принят любой угол. Однако существует множество общепринятых единиц измерения углов, относящихся к различным областям науки и техники, они получили специальные названия.

Одной из единиц измерения углов является градус .

Определение.

Один градус – это угол, равный одной сто восьмидесятой части развернутого угла.

Градус обозначают символом «», следовательно, один градус обозначается как .

Таким образом, в развернутом угле мы можем уложить 180 углов в один градус. Это будет выглядеть как половинка круглого пирога, разрезанная на 180 равных кусочков. Очень важно: «кусочки пирога» плотно укладываются один к другому (то есть, стороны углов совмещаются), причем сторона первого угла совмещается с одной стороной развернутого угла, а сторона последнего единичного угла совпадет с другой стороной развернутого угла.

При измерении углов выясняют, сколько раз градус (или другая единица измерения углов) укладывается в измеряемом угле до полного покрытия внутренней области измеряемого угла. Как мы уже убедились, в развернутом угле градус укладывается ровно 180 раз. Ниже приведены примеры углов, в которых угол в один градус укладывается ровно 30 раз (такой угол составляет шестую часть развернутого угла) и ровно 90 раз (половина развернутого угла).


Для измерения углов, меньших одного градуса (или другой единицы измерения углов) и в случаях, когда угол не удается измерить целым числом градусов (взятых единиц измерения), приходится использовать части градуса (части взятых единиц измерения). Определенные части градуса получили специальные названия. Наибольшее распространение получили, так называемые, минуты и секунды.

Определение.

Минута – это одна шестидесятая часть градуса.

Определение.

Секунда – это одна шестидесятая часть минуты.

Иными словами, в минуте содержится шестьдесят секунд, а в градусе – шестьдесят минут (3600 секунд). Для обозначения минут используют символ «», а для обозначения секунд – символ «» (не путайте со знаками производной и второй производной). Тогда при введенных определениях и обозначениях имеем , а угол, в котором укладываются 17 градусов 3 минуты и 59 секунд, можно обозначить как .

Определение.

Градусной мерой угла называется положительное число, которое показывает сколько раз градус и его части укладываются в данном угле.

Например, градусная мера развернутого угла равна ста восьмидесяти, а градусная мера угла равна .

Для измерения углов существуют специальные измерительные приборы, наиболее известным из них является транспортир.

Если известно и обозначение угла (к примеру, ) и его градусная мера (пусть 110 ), то используют краткую запись вида и говорят: «Угол АОВ равен ста десяти градусам».

Из определений угла и градусной меры угла следует, что в геометрии мера угла в градусах выражается действительным числом из интервала (0, 180] (в тригонометрии рассматривают углы с произвольной градусной мерой, их называют ). Угол в девяносто градусов имеет специальное название, его называют прямым углом . Угол меньший 90 градусов называется острым углом . Угол больший девяноста градусов называется тупым углом . Итак, мера острого угла в градусах выражается числом из интервала (0, 90) , мера тупого угла – числом из интервала (90, 180) , прямой угол равен девяноста градусам. Приведем иллюстрации острого угла, тупого угла и прямого угла.


Из принципа измерения углов следует, что градусные меры равных углов одинаковы, градусная мера большего угла больше градусной меры меньшего, а градусная мера угла, который составляют несколько углов, равна сумме градусных мер составляющих углов. На рисунке ниже показан угол АОВ , который составляют углы АОС , СОD и DОВ , при этом .

Таким образом, сумма смежных углов равна ста восьмидесяти градусам , так как они составляют развернутый угол.

Из этого утверждения следует, что . Действительно, если углы АОВ и СОD – вертикальные, то углы АОВ и ВОС — смежные и углы СОD и ВОС также смежные, поэтому, справедливы равенства и , откуда следует равенство .

Наряду с градусом удобна единица измерения углов, называемая радианом . Радианная мера широко используется в тригонометрии. Дадим определение радиана.

Определение.

Угол в один радиан – это центральный угол , которому соответствует длина дуги, равная длине радиуса соответствующей окружности.

Дадим графическую иллюстрацию угла в один радиан. На чертеже длина радиуса OA (как и радиуса OB ) равна длине дуги AB , поэтому, по определению угол AOB равен одному радиану.

Для обозначения радианов используют сокращение «рад». Например, запись 5 рад означает 5 радианов. Однако на письме обозначение «рад» часто опускают. К примеру, когда написано, что угол равен пи, то имеется в виду пи рад.

Стоит отдельно отметить, что величина угла, выраженная в радианах, не зависит от длины радиуса окружности. Это связано с тем, что фигуры, ограниченные данным углом и дугой окружности с центром в вершине данного угла, подобны между собой.

Измерение углов в радианах можно выполнять так же, как и измерение углов в градусах: выяснить, сколько раз угол в один радиан (и его части) укладываются в данном угле. А можно вычислить длину дуги соответствующего центрального угла, после чего разделить ее на длину радиуса.

Для нужд практики полезно знать, как соотносятся между собой градусная и радианная меры, так как довольно часть приходится осуществлять . В указанной статье установлена связь между градусной и радианной мерой угла, и приведены примеры перевода градусов в радианы и обратно.

Обозначение углов на чертеже.

На чертежах для удобства и наглядности углы можно отмечать дугами, которые принято проводить во внутренней области угла от одной стороны угла до другой. Равные углы отмечают одинаковым количеством дуг, неравные углы – различным количеством дуг. Прямые углы на чертеже обозначают символом вида «», который изображают во внутренней области прямого угла от одной стороны угла до другой.


Если на чертеже приходится отмечать много различных углов (обычно больше трех), то при обозначении углов кроме обычных дуг допустимо использование дуг какого-либо специального вида. К примеру, можно изобразить зубчатые дуги, или нечто подобное.


Следует отметить, что не стоит увлекаться с обозначением углов на чертежах и не загромождать рисунки. Рекомендуем обозначать только те углы, которые необходимы в процессе решения или доказательства.

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.

В этой статье будет рассматриваться одна из основных геометрических фигур — угол. После общего введения в это понятие мы уделим основное внимание отдельному виду такой фигуры. Развернутый угол — важное понятие геометрии, которое и будет основной темой этой статьи.

Введение в понятие геометрического угла

В геометрии существует ряд объектов, которые составляют основу всей науки. Угол как раз относиться к ним и определяется с помощью понятия луча, поэтому начнем именно с него.

Также перед тем, как приступать к определению самого угла, нужно вспомнить о нескольких не менее важных объектах в геометрии — это точка, прямая на плоскости и собственно сама плоскость. Прямой называют самую простую геометрическую фигуру, у которой нет ни начала, ни конца. Плоскостью — поверхность, которая имеет два измерения. Ну и луч (или же полупрямая) в геометрии — это часть прямой, у которой есть начало, но нет конца.

Используя данные понятия, можем составить утверждение, что углом является геометрическая фигура, которая полностью лежит в некоторой плоскости и состоит из двух несовпадающих лучей с общим началом. Такие лучи называются сторонами угла, а общее начало сторон — это его вершина.

Виды углов и геометрии

Мы знаем о том, что углы могут быть совсем разными. А потому немного ниже будет приведена небольшая классификация, которая поможет лучше разобраться в видах углов и их главных особенностях. Итак, существует несколько видов углов в геометрии:

  1. Прямой угол. Он характеризируется величиной в 90 градусов, а значит, его стороны всегда перпендикулярны между собой.
  2. Острый угол. К таким углам относятся все их представители, имеющие размер меньше 90 градусов.
  3. Тупой угол. Здесь же могут быть все углы с величиной от 90 до 180 градусов.
  4. Развернутый угол. Имеет размер строго 180 градусов и внешне его стороны составляют одну прямую.

Понятие развернутого угла

Теперь давайте рассмотрим развернутый угол более подробно. Это тот случай, когда обе стороны лежат на одной прямой, что можно четко увидеть на рисунке немного ниже. Значит, мы можем с уверенностью сказать, что у развернутого угла одна из его сторон по сути есть продолжением другой.

Стоит запомнить тот факт, что такой угол всегда можно разделить с помощью луча, который выходит из его вершины. В результате мы получим два угла, которые в геометрии называются смежными.

Также развернутый угол имеет несколько особенностей. Для того, чтобы рассказать о первой из них, нужно вспомнить понятие «биссектриса угла». Напомним, что это луч, который делит любой угол строго пополам. Что касается развернутого угла, то его биссектриса разделяет его таким образом, что образуется два прямых угла по 90 градусов. Это очень легко просчитать математически: 180˚ (градус развернутого угла) : 2 = 90˚.

Если же разделять развернутый угол совсем произвольным лучом, то в результате мы всегда получаем два угла, один из которых будет острым, а другой — тупым.

Свойства развернутых углов

Будет удобно рассматривать этот угол, собрав воедино все его главные свойства, что мы и сделали в данном списке:

  1. Стороны развернутого угла антипараллельны и составляют прямую.
  2. Величина развернутого угла всегда составляет 180˚.
  3. Два смежных угла вместе всегда составляют развернутый угол.
  4. Полный угол, который составляет 360˚, состоит из двух развернутых и равен их суме.
  5. Половина развернутого угла — это прямой угол.

Итак, зная все эти характеристики данного вида углов, мы можем использовать их для решения ряда геометрических задач.

Задачи с развернутыми углами

Для того, чтобы понять, усвоили ли вы понятие развернутого угла, попытайтесь ответить на несколько следующих вопросов.

  1. Чему равен развернутый угол, если его стороны составляют вертикальную прямую?
  2. Будут ли два угла смежными, если величина первого 72˚, а другого — 118˚?
  3. Если полный угол состоит из двух развернутых, то сколько в нем прямых углов?
  4. Развернутый угол разделили лучом на два таких угла, что их градусные меры относятся как 1:4. Вычислите полученные углы.

Решения и ответы:

  1. Как бы ни был расположен развернутый угол, он всегда по определению равен 180˚.
  2. Смежные углы имеют одну общую сторону. Поэтому, чтобы вычислить размер угла, который они составляю вместе, нужно просто прибавить значение их градусных мер. Значит, 72 +118 = 190. Но по определению развернутый угол составляет 180˚, а значит, два данных угла не могут быть смежными.
  3. Развернутый угол вмещает два прямых угла. А так как в полном имеется два развернутых, значит, прямых в нем будет 4.
  4. Если мы назовем искомые углы а и b, то пусть х — это коэффициент пропорциональности для них, а это значит, что а=х, и соответственно b=4х. Развернутый угол в градусах равен 180˚. И согласно своим свойствам, что градусная мера угла всегда равна сумме градусных мер тех углов, на которые он разбивается любым произвольным лучом, что проходит между его сторонами, можем сделать вывод, что х + 4х = 180˚, а значит, 5х = 180˚. Отсюда находим: х=а=36˚ и b = 4х = 144˚. Ответ: 36˚ и 144˚.

Если у вас получилось ответить на все эти вопросы без подсказок и не подглядывая в ответы, значит вы готовы переходить к следующему уроку по геометрии.

Каждый угол, в зависимости от его величины, имеет своё название:

Два угла называются смежными , если у них одна сторона общая, а две другие стороны составляют прямую линию:

Углы MOP и PON смежные, так как луч OP — общая сторона, а две другие стороны — OM и ON составляют прямую.

Общая сторона смежных углов называется наклонной к прямой , на которой лежат две другие стороны, только в том случае, когда смежные углы не равны между собой. Если смежные углы равны, то их общая сторона будет перпендикуляром .

Сумма смежных углов равна 180°.

Два угла называются вертикальными , если стороны одного угла дополняют до прямых линий стороны другого угла:

Углы 1 и 3, а также углы 2 и 4 — вертикальные.

Вертикальные углы равны.

Докажем, что вертикальные углы равны:

Сумма ∠1 и ∠2 составляет развёрнутый угол. И сумма ∠3 и ∠2 составляет развёрнутый угол. Значит, эти две суммы равны:

∠1 + ∠2 = ∠3 + ∠2.

В этом равенстве слева и справа есть по одинаковому слагаемому — ∠2. Равенство не нарушится, если это слагаемое в левой и в правой части опустить. Тогда мы получаем.

Острый угол это угол градусная мера которого до 90 градусов.

Прямой угол это угол градусная мера которого 90 градусов

Тупой угол это угол градусная мера которого больше 90 градусов. Острый угол — это угол меньше 90°. Тупой угол — это угол больше 90°, но меньше 180°. Прямой угол — это угол = 90°.

20. Какие углы называются смежными? Чему равна их сумма?

Смежные углы — два угла с общей вершиной, одна из сторон которых — общая, а оставшиеся стороны лежат на одной прямой (не совпадая) . Сумма смежных углов равна 180°. Или

Два угла называются смежными , если у них одна сторона общая, а другие стороны являются дополнительными лучами. сумма смежных углов равна 180°. Каждый из этих углов дополняет другой до развернутого угла.

21. Какие углы называются вертикальными? Каким свойством они обладают?

Вертикальные углы — два угла, у которых стороны одного являются продолжениями сторон другого. Вертикальные углы равны. (Вертикальными называются углы, образованные пересекающимися прямыми и не являющиеся прилегающими друг к другу, то есть общей стороны у них нет, но вертикальные углы имеют вершину в одной точке. Вертикальные углы равны между собой).

22. Какие прямые называются перпендикулярными? Две пересекающиеся прямые называются перпендикулярными (или взаимно перпендикулярными), если они образуют четыре прямых угла. Или Перпендикулярные прямые это прямые пересекающиеся под углом 90 градусов. Или Две прямые, образующие при пересечении прямые углы, называют перпендикулярными.

23. Объясните, какой отрезок называется перпендикуляром, проведенным из данной точки к данной прямой. Что такое основание перпендикуляра? называется отрезок прямой, перпендикулярной к данной, который имеет одним из своих концов их точку пересечения. Этот конец отрезка называется основанием перпендикуляра.Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной к данной, который имеет одним из своих концов их точку пересечения. Конец отрезка, лежащий на данной прямой, называется основанием перпендикуляра.

24. Что такое теорема и доказательство теоремы? В математике утверждение, справедливость которого устанавливается путем рассуждений, называется теоремой, а само рассуждение – доказательством теоремы.

Теоре́ма — утверждение, для которого в рассматриваемой теории существует доказательство (иначе говоря, вывод) . В отличие от теорем, аксиомами называются утверждения, которые, в рамках конкретной теории, принимаются истинными без всяких доказательств или обоснований. Доказательство — это утверждение, объясняющее теорему. Теорема — такая гипотеза, которую требуется доказать;Гипотеза всегда требует доказательства. Доказательство — доводы, подтверждающие действенность, правильность теоремы.

Типы углов — острый, прямой, тупой, прямой и зеркальный

Когда две прямые пересекаются, в точке их пересечения образуется угол. Изучение углов важно, поскольку они составляют основу геометрии. Два луча, образующие угол, называются сторонами угла. Также необязательно, чтобы угол образовывался путем пересечения двух прямых линий; он также может быть образован пересечением двух изогнутых линий.

Существуют различные типы углов в зависимости от их меры угла.Типы:

  1. Острый угол

  2. Прямой угол

  3. Тупой угол

  4. Прямой угол

  5. Угол отражения

Типы углов

1. Острый угол

угол, который составляет менее 90 °, называется острым углом. Измерение от 0 ° до 90 °. На рисунке ниже угол, образованный пересечением PQ и QR в точке Q, образует угол PQR, который составляет 45 °.Таким образом, PQR называется острым углом.

2. Прямой угол

Угол, который составляет точно 90 °, называется прямым углом. Обычно он образуется, когда две линии перпендикулярны друг другу. На рисунке ниже линия AB пересекает линию BC в точке B и образует угол ABC, который составляет 90 °.

3. Тупой угол

Угол, превышающий 90 °, называется тупым углом. Диапазон углов от 90 ° до 180 °. Тупой угол также можно определить, если у нас есть мера острого угла.

Измерение тупого угла = (180 — величина острого угла)

На рисунке выше отрезок линии DO пересекает отрезок линии OQ в точке O и образует угол DOQ размером 120 °. Таким образом, это тупой угол.

Кроме того, если мы продолжим линию OQ до OP, то мы сможем найти меру острого угла.

DOP = 180 ° — DOQ = 180 ° — 120 ° = 60 °

1. Прямой угол

Угол, который составляет точно 180 °, называется прямым углом. Это похоже на прямую линию, отсюда и название прямой угол.

Прямой угол — это не что иное, как смесь тупого угла и острого угла на прямой.

2. Угол отражения

Угол, который измеряется больше 180 ° и меньше 360 °, называется углом отражения. Угол рефлекса можно вычислить, если дана величина острого угла, поскольку он дополняет острый угол на другой стороне линии.

Используя угол рефлекса, мы можем найти меру острого угла.

Мера острого угла = 360 ° — Мера угла отражения

Дополнительный и дополнительный угол

1.Дополнительный угол

Если два угла в сумме составляют 90 °, они называются дополнительными углами. Углы не обязательно должны быть смежными, чтобы их можно было назвать дополнительными. Пока они в сумме составляют 90 °, они будут называться дополнительными углами.

На рисунке a и b углы расположены рядом друг с другом и в сумме составляют 90 ° и, таким образом, известны как дополнительные углы. На рисунках c и d углы не примыкают друг к другу, но в сумме они составляют 90 °, и поэтому они известны как дополнительные углы.

2. Дополнительные углы

Когда два угла в сумме составляют 180 °, они называются дополнительными углами. Существуют различные типы дополнительных углов.

  1. Вертикальные углы

Углы, которые имеют общую вершину, и стороны угла образованы одними и теми же линиями, называются вертикальными углами. Вертикальные углы равны между собой.

На приведенном выше рисунке 1 и 3, 2 и 4, 6 и 8 и 5 и 7 являются вертикальными углами.Кроме того, 3, 4,5, 6 известны как внутренние углы, а 1,2,7,8 — как внешние углы.

  1. Альтернативные внутренние углы

Это пара внутренних углов, находящихся на противоположной стороне поперечины. Самый простой способ определить чередующиеся внутренние углы — это обозначить букву «Z» на внутренней стороне.

На приведенном выше рисунке 3 и 5, 4 и 6 являются внутренними углами. Внутренние углы равны друг другу.

  1. Альтернативные внешние углы

Аналогичны альтернативным внутренним углам, только они присутствуют на внешней стороне.На приведенном выше рисунке 1 и 7, 2 и 8 представляют собой пару чередующихся внешних углов. Подобно альтернативным внутренним углам, даже альтернативные внешние углы равны друг другу.

  1. Соответствующие углы

Углы, находящиеся в аналогичном положении, называются соответствующими углами. На приведенном выше рисунке 1 и 5 — соответствующие углы, и они равны друг другу.

Острый, тупой, прямой и правый

Угол измеряет величину поворота

Названия углов

По мере увеличения угла меняется название:

Попробуйте сами:

в одной схеме

Эта диаграмма может помочь вам запомнить:

Также: Acute, Obtuse и Reflex расположены в алфавитном порядке.


Также: буква «А» имеет острый угол.

Будьте осторожны при измерении

Меньший угол — тупой угол ,
, но больший угол — угол отражения

Поэтому при именовании углов убедитесь, что что вы знаете , какой угол просил !

Положительные и отрицательные углы

При измерении от линии:

  • положительный угол идет против часовой стрелки (направление, противоположное движению часов)
  • отрицательный угол идет по часовой стрелке

Пример: −67 °


Части угла

Угловая точка угла называется вершиной

И две прямые стороны называются рычагами

Угол — это угол поворота на между каждым плечом.

Как маркировать углы

Есть два основных способа маркировать углы:

1. дайте углу имя, обычно строчную букву, например a или b , или иногда греческую букву, например α (альфа) или θ (тета)

2. или тремя буквами на фигуре, определяющими угол, при этом средняя буква указывает на то, где на самом деле находится угол (его вершина).

Пример угла « a » равен « BAC », а угол « θ » равен « BCD »

Дополнительные уголки

Два угла являются дополнительными, когда они
в сумме составляют 90 градусов
(прямой угол).

Эти два угла (40 ° и 50 °) составляют дополнительных угла , потому что в сумме они дают 90 °:

Обратите внимание, что вместе они составляют прямой угол.

Но углы не обязательно должны быть вместе.

Эти два дополняют друг друга, потому что 27 ° + 63 ° = 90 °

поиграй с этим …

(Перетащите точки)

Прямоугольный треугольник

В прямоугольном треугольнике два непрямых угла дополняют друг друга, потому что в треугольнике три угла складываются в 180 °, а 90 ° уже взят на прямой угол.

Когда два угла складываются в 90 °, мы говорим, что они «дополняют» друг друга.

Дополнительный
происходит от латинского completum , что означает «завершенный» …
, потому что прямой угол считается полным углом.
Орфография: будьте осторожны, это , а не «Дополнительный угол» (с буквой «i»)…
то угол вы получите бесплатно!

Дополнительный и дополнительный

Связанная идея — Дополнительные углы — в сумме они дают 180 °

Как вспомнить, что есть что? Ну по алфавиту это:

  • Дополнение к 90 °
  • Дополнение к 180 °

Вы тоже можете подумать:

  • « C » из C дополнительный для « C orner» (Прямой угол) и
  • « S » из S дополнительный для « S traight» (180 ° — прямая линия)

Или вы можете подумать:

  • когда вы правы вы получите комплимент (звучит как комплимент и )
  • «добавка» (например, витаминная добавка) — это нечто дополнительное, поэтому больше

Типы углов — объяснения и примеры

В природе существуют различных типов углов, , и каждый из них имеет большое значение в нашей повседневной жизни.

Например, , архитекторы и инженеры используют углы при проектировании машин, зданий, дорог и мостов.

В спорте спортсмены используют углы для улучшения своих результатов. Например, человек должен вращаться с диском под определенным углом, чтобы бросить его на короткое расстояние. В футболе вы должны использовать определенный угол, чтобы передать мяч следующему игроку.

Плотники и ремесленники также используют углы для изготовления таких предметов, как диваны, столы, стулья, ведра и т. Д. Художники используют углы для набросков портретов и картин.Модельеры также используют углы, чтобы подобрать лучшие наряды. По этим причинам необходимо изучить различные типы углов.

(Основное объяснение углов можно найти в предыдущей статье «Углы».)

Различные типы углов

Углы классифицируются на основе:

Классификация углов по их величине

Там семь типов углов, основанных на их градусном измерении.К ним относятся:

  • нулевые углы
  • острые углы
  • прямые углы
  • тупые углы
  • прямые углы
  • углы отражения
  • полный угол
— нулевой угол

нулевой угол (0 °) образуется, когда оба плеча угла находятся в одном и том же положении.

Иллюстрация:

∠ RPQ = 0 ° (нулевой угол)

— Острый угол

Острый угол — это угол, который больше 0 °, но меньше 90 °.Общие примеры острых углов: 15 °, 30 °, 45 °, 60 ° и т. Д.

∠ XYZ больше 0 °, но меньше 90 ° (острый угол)

— Угол 90 градусов

A Угол 90 градусов, также известный как прямой угол, — это угол, размер которого равен 90 °, и называется прямым углом. Прямые углы изображаются в виде небольшой квадратной рамки между плечами угла.

Иллюстрация:

∠ ABC = 90 ° (прямой угол)

В следующем разделе (о треугольниках) будет целая статья о прямоугольных треугольниках.

— Тупой угол

Тупой угол — это тип угла, градусы которого больше 90 °, но меньше 180 °. Примеры тупых углов: 100 °, 120 °, 140 °, 160 °, 170 ° и т. Д.

∠ PQR — тупой угол, потому что он меньше 180 ° и больше 90 °.

— Прямой угол

Как следует из названия, прямой угол — это угол, размер которого равен 180 ° (прямая линия)

Иллюстрация:

∠ XYZ = 180 ° (прямой угол)

— Reflex Угол

Углы отражения — это углы, градусы которых больше 180 °, но меньше 360 °.Общие примеры углов рефлекса: 200 °, 220 °, 250 °, 300 °, 350 ° и т. Д.

Иллюстрация:

∠ PQR больше 180 °, но меньше 360 °

— Полный угол

Полный угол равен 360 °. 1 оборот равен 360 °.

Иллюстрация:

Классификация углов на основе вращения

Углы можно разделить на две категории в зависимости от направления вращения:

  • Положительные углы
  • Отрицательные углы

Положительные углы

Положительные углы — это типы углов, измерения которых проводятся против часовой стрелки от основания.

Отрицательные углы

Отрицательные углы измеряются по часовой стрелке от основания.

Другие типы углов

Помимо рассмотренных выше углов, существуют другие типы углов, известные как парные углы. Их называют парными углами, потому что они появляются парами, чтобы показать определенное свойство. Это:

  • Соседние углы имеют одинаковую вершину и плечо.
  • Дополнительные углы: парные углы, которые в сумме составляют 90 °.
  • Дополнительные углы: парные углы, сумма углов которых равна 180 °.
  • Вертикально противоположные углы. Вертикально противоположные углы равны.
  • Альтернативные внутренние углы: Альтернативные внутренние углы — это парные углы, образующиеся, когда линия пересекает две параллельные линии. Чередующиеся внутренние углы всегда равны друг другу.
  • Альтернативные внешние углы : Альтернативные внешние углы — это просто вертикальные углы альтернативных внутренних углов. Альтернативные внешние углы эквивалентны.
  • Соответствующие углы : Соответствующие углы — это парные углы, образующиеся, когда прямая пересекает пару параллельных прямых. Соответствующие углы также равны друг другу.

Мы видели краткий обзор различных типов углов. Далее мы увидим подробные статьи о наиболее распространенных типах углов (Дополнительные углы, Дополнительные углы и т. Д.).

Предыдущий урок | Главная страница | Следующий урок

Геометрия: угол

Угол — это объединение двух лучей, имеющих общую конечную точку.Два луча представляют собой сторон угла, а общая конечная точка называется вершиной . Углы пригодятся в строительстве зданий и мостов. В телекоммуникациях для хорошего распределения сигнала важны углы. На рисунке 1 показан угол.


Запоминаемые термины

Преобразовать — менять.
Степень — угловая мера, эквивалентная 1/360 полного оборота.
Радиан — угловая мера, эквивалентная 1 / полного оборота.
Вращение — круговое движение объекта вокруг центра.
Союз — состояние присоединения.

Присвоение имени углу

Обозначение угла — `\ angle`. Ставится перед этикеткой уголка.

Угол может быть назван тремя разными способами:

1. Использование метки вершины — заглавной буквы.

2. Использование строчной буквы или цифры внутри угла.

3. Использование трех заглавных букв, в которых средняя буква — вершина, а две другие — метки точек двух лучей, образующих угол.


Пример 1:
4
Пояснение:

Используя вершину, угол может быть назван как `\ angle`B.

Используя число внутри угла, его также можно назвать `\ angle`1.

Угол из трех заглавных букв может называться `\ angle`ABC или` \ angle`CBA.

Следовательно, угол можно назвать 4 способами.

Пример 2:
`\ angle`E,` \ angle`FEG или `\ angle`GEF
Пояснение:

Rays и имеют общую конечную точку E.E также является вершиной, поэтому угол можно назвать `\ angle`E.

Используя три заглавные буквы, в которых средняя буква — вершина, а две другие — точки двух лучей, угол также можно назвать `\ angle`FEG или` \ angle`GEF.

Пример 3:
Пояснение:

Средняя буква имени — вершина угла.Следовательно, K — вершина угла, а две другие буквы — точки двух сторон угла.

Пример 4:
3
Пояснение:

Углы:

`\ angle`MON или` \ angle`NOM

`\ angle`NOP или` \ angle`PON

`\ angle`MOP или` \ angle`POM


Измерение угла


Размер угла определяет, насколько широко открывается угол.circ` или 2`pi` радиан.

градусы также могут быть преобразованы в радианы и наоборот. Чтобы преобразовать градусы в радианы, умножьте градус на / 180. Умножьте радиан на 180 /, чтобы преобразовать радианы в градусы.


Пример 5:
Пример 6:
Она вегетарианка
Пояснение:
Пример 7:
Угол B
Пояснение:

Преобразование радианов в градусы;

/4 * 180 / = 135

Угол B больше в градусах.


Классификация углов

Углы классифицируются в соответствии с их размерами. Они подразделяются на острые, правые, тупые, прямые и рефлекторные углы. На рисунке 2 показаны классификации углов.

Острый угол — это угол, размер которого больше 0 градусов, но меньше 90 градусов.

Прямой угол — это угол, размер которого составляет точно 90 градусов.

Тупой угол — это угол, размер которого больше 90 градусов, но меньше 180 градусов.

Прямой угол — это угол, размер которого составляет точно 180 градусов.

Угол отражения — это угол, размер которого больше 180 градусов, но меньше 360 градусов.


Пример 8:
Тупой угол
Пояснение:

«100 ^ circ» находится под тупым углом, так как он больше «90 ^ circ», но меньше «180 ^ circ». circ».

Преобразование градусов в радианы;

90 * / 180 = / 2


Уголки

Уголки

Математика

Уголки

В этом введении мы быстро рассмотрим ракурсы.

Уголками легко пользоваться, если вы изучите их основы.Чтобы измерить угол, мы смотрим, как далеко проходит линия. ехал с определенного места.

У некоторых углов есть особые названия! Вот они:

Когда линия вернется в свою начальную точку, то есть на 360 градусов.

Теперь, вспоминая правила, которые мы только что прошли, можете ли вы назвать тип углов, которые имеют следующие размеры?

Число градусов Уголок Причина
30 Острый <(менее) 90 градусов
60
120
170
90
270
45

Ответ

Как поживаете?

Число градусов Уголок Причина
30 Острый <(менее) 90 градусов
60 Острый <(меньше) 90 градусов
120 тупой> (больше) 90 градусов
170 тупой> (больше) 90 градусов
90 Прямой угол = 90 градусов
270 Рефлекс> (больше) 180 градусов
45 Острый <(менее) 90 градусов

Ну, на сегодня все.Надеюсь, это быстрое занятие освежит вашу память.
В следующий раз, когда мы посмотрим на углы, мы рассмотрим углы в треугольниках и других формах.
Удачи!

Вернуться к началу

Курс 1 Глава 13 Словарь Геометрия: углы и многоугольники

A B
острый угол Угол с размером больше нуля градусов, но меньше 90 градусов.
угол два луча с общей конечной точкой.
bisect Чтобы разделить что-либо на две совпадающие части.
дополнительный Два угла, сумма которых составляет 90 градусов.
конгруэнтно Имея ту же меру.
совпадающие фигуры Фигуры одинаковой формы и размера.
соответствующие части Части совпадающих фигур, которые совпадают.
градусов Самая распространенная единица измерения углов.
Равносторонний треугольник Треугольник, все три стороны которого совпадают, и все три угла совпадают (все углы равны 60 градусам).
семиугольник Многоугольник, имеющий семь сторон.
шестиугольник Многоугольник, имеющий шесть сторон.
равнобедренный треугольник Треугольник, в котором по крайней мере две стороны совпадают.
линия симметрии Линия, разделяющая фигуру на половины, которые являются отражениями друг друга.
симметрия линии Фигуры имеют это, когда две половинки фигуры совпадают.
тупой угол Угол, который измеряется больше 90 градусов, но меньше 180 градусов.
восьмиугольник Многоугольник, имеющий восемь сторон.
параллелограмм Четырехугольник, у которого обе пары противоположных сторон равны и параллельны.
пятиугольник Многоугольник с пятью сторонами.
перпендикулярно Два отрезка линии, которые пересекаются, образуя прямые углы.
многоугольник Простая замкнутая фигура на плоскости, образованная тремя или более отрезками прямых.
четырехугольник Многоугольник с четырьмя сторонами.
прямоугольник Четырехугольник, противоположные стороны которого совпадают и параллельны, а все углы являются прямыми углами.
правильный многоугольник Многоугольник, все стороны которого совпадают, а все углы совпадают.
ромб Параллелограмм, все стороны которого совпадают.
Прямой угол Угол, который составляет точно 90 градусов.
вращательная симметрия Фигурка имеет это, если ее можно повернуть или повернуть менее чем на 360 градусов относительно фиксированной точки, чтобы фигура выглядела точно так же, как до поворота.
разносторонний треугольник Треугольник, стороны которого не совпадают.
сторона Луч, являющийся частью угла.
похожие фигурки Фигурки одинаковой формы, но разных размеров.
квадрат Параллелограмм, все стороны равны, все углы прямые, а противоположные стороны параллельны.
прямой угол Угол, который измеряется точно в 180 градусов.
дополнительный Два угла, сумма которых составляет 180 градусов.
треугольник Многоугольник с тремя сторонами.
вершина Общая конечная точка двух лучей, образующих угол.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *