Виды электрические схемы: ВИДЫ ЭЛЕКТРИЧЕСКИХ СХЕМ ПРИМЕНЯЕМЫХ В РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ

Содержание

Виды электрических схем распределительных сетей

 

Вступление

Электрические схемы являются базовым документом для проектирования и монтажа электрических схем любого назначения и применения. В этой статье смотрим виды электрических схем распределительных сетей.

О распределительных сетях

Напомню, распределительными сетями называют электрическую сеть от вводного устройства до распределительного электрического щитка. Расположена распределительная сеть между питающей сетью и групповыми сетями потребителей.

Виды электрических схем

Стоит также напомнить, что схема это чертёж, выполненный в условных обозначениях или взаимосвязанных блоков. Схемы, относящиеся к электрическим сетям, называют электрическими.

По типам электрические схемы делят на принципиальные и монтажные. Первые делаются в условных обозначениях и показывают связь между элементами электрической цепи. Вторые, показывают реальное расположение элементов цепи с указанием приёмов и способов монтажа.

По видам электрические схемы могут быть:

  • Схемы первичной и вторичных цепей;
  • Полно линейные и однолинейные;
  • Краткие и развернутые.

Напомню, вид это группа схем с общими признаками. Виды и типы электрических схем пересекаются. Например, схема первичной цепи может быть трехлинейной или однолинейной, принципиальной или развернутой монтажной.

Схемы первичных цепей

Это электрические схемы выработки, преобразования, передачи и распределения электрической энергии. Данные схемы являются основными схемами, показывающими основной поток прохода электрической энергии от источников до потребителей.

Вторичных цепей

Это схемы электрических цепей напряжением до 1000 В. Данные схемы вторичных цепей (ПУЭ Глава 3.4) это схемы управления, сигнализации, контроля, автоматики и релейной защиты электрических установок напряжением до 1 кВ.

Однолинейные

В данных схемах показывается электрооборудование только одной фазы.

Полно линейная схема

Это схема всех трех фаз цепи. Втрое название – трёхфазная схема цепи.

Краткие и развёрнутые схемы

Развернутые схемы отображают функциональные группы электроцепей, например, отдельная схема включения/отключения электрического выключателя.

В дополнение к перечисленным схемам, можно добавить схему кабельных трасс.

Вывод

На практике электромонтажа электрических цепей в домах и квартирах имеют значения однолинейные электрические схемы и краткие схемы силовых цепей и освещения. Развернутые схемы могут быть важны для сборки электрических щитков и монтаже слаботочных цепей.

©elesant.ru

Еще статьи

 

Схемы электрические. Типы схем

Привет Хабр!
Чаще в статьях приводят вместо электрических схем красочные картинки, из-за этого возникают споры в комментариях.
В связи с этим, решил написать небольшую статью-ликбез по типам электрических схем, классифицируемых в Единой системе конструкторской документации (ЕСКД).

На протяжении всей статьи буду опираться на ЕСКД.
Рассмотрим ГОСТ 2.701-2008 Единая система конструкторской документации (ЕСКД). Схемы. Виды и типы. Общие требования к выполнению.
Данный ГОСТ вводит понятия:

  • вид схемы — классификационная группировка схем, выделяемая по признакам принципа действия, состава изделия и связей между его составными частями;
  • тип схемы — классификационная группировка, выделяемая по признаку их основного назначения.

Сразу договоримся, что вид схем у нас будет единственный — схема электрическая (Э)
.
Разберемся какие типы схем описаны в данном ГОСТе.

Далее рассмотрим каждый тип схем более подробно применительно для электрических схем.
Основной документ: ГОСТ 2.702-2011 Единая система конструкторской документации (ЕСКД). Правила выполнения электрических схем.
Так, что же такое и с чем «едят» эти схемы электрические?
Нам даст ответ ГОСТ 2. 702-2011: Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи.

Схемы электрические в зависимости от основного назначения подразделяют на следующие типы:


Схема электрическая структурная (Э1)

На структурной схеме изображают все основные функциональные части изделия (элементы, устройства и функциональные группы) и основные взаимосвязи между ними. Графическое построение схемы должно обеспечивать наилучшее представление о последовательности взаимодействия функциональных частей в изделии. На линиях взаимосвязей рекомендуется стрелками обозначать направление хода процессов, происходящих в изделии.
Пример схемы электрической структурной:

Схема электрическая функциональная (Э2)

На функциональной схеме изображают функциональные части изделия (элементы, устройства и функциональные группы), участвующие в процессе, иллюстрируемом схемой, и связи между этими частями.
Графическое построение схемы должно давать наиболее наглядное представление о последовательности процессов, иллюстрируемых схемой.
Пример схемы электрической функциональной:

Схема электрическая принципиальная (полная) (Э3)

На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии установленных электрических процессов, все электрические взаимосвязи между ними, а также электрические элементы (соединители, зажимы и т.д.), которыми заканчиваются входные и выходные цепи. На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям. Схемы выполняют для изделий, находящихся в отключенном положении.
Пример схемы электрической принципиальной:

Схема электрическая соединений (монтажная) (Э4)

На схеме соединений следует изображать все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т. д.), а также соединения между этими устройствами и элементами. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии. Расположение изображений входных и выходных элементов или выводов внутри графических обозначений и устройств или элементов должно примерно соответствовать их действительному размещению в устройстве или элементе.
Пример схемы электрической соединений:


Схема электрическая подключения (Э5)

На схеме подключения должны быть изображены изделие, его входные и выходные элементы (соединители, зажимы и т.д.) и подводимые к ним концы проводов и кабелей (многожильных проводов, электрических шнуров) внешнего монтажа, около которых помещают данные о подключении изделия (характеристики внешних цепей и (или) адреса). Размещение изображений входных и выходных элементов внутри графического обозначения изделия должно примерно соответствовать их действительному размещению в изделии.
На схеме следует указывать позиционные обозначения входных и выходных элементов, присвоенные им на принципиальной схеме изделия.
Пример схемы электрической подключений:

Схема электрическая общая (Э6)

На общей схеме изображают устройства и элементы, входящие в комплекс, а также провода, жгуты и кабели (многожильные провода, электрические шнуры), соединяющие эти устройства и элементы. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии.
Пример схемы электрической общей:

Схема электрическая расположения (Э7)

На схеме расположения изображают составные части изделия, а при необходимости связи между ними — конструкцию, помещение или местность, на которых эти составные части будут расположены.
Пример схемы электрической расположения:

Схема электрическая объединенная (Э0)

На данном виде схем изображают различные типы, которые объединяются между собой на одном чертеже.
Пример схемы электрической объединенной:
PS

Это моя первая статья на Хабре не судите строго.

Виды и типы схем

В современном высокотехнологичном оборудовании не малую роль играют слаженное взаимодействие между агрегатами, узлами и отдельными механизмами, которые отвечают за эффективное функциональное исполнение определённых задач. Это могут быть электрические, пневматические, гидравлические, механические и прочие устройства.

Чтобы разобраться в последовательности действия разного рода исполнительных сегментов помимо чертежей составляются специальные схемы, которые позволяют значительно ускорить процесс ознакомления с принципом и последовательностью действий элементов того или иного модуля.

Схемой называется конструкторский документ, отображающий части изделия с их взаимным расположением и условно изображёнными связующими элементами.

В зависимости от характера элементов и связей входящих в состав общего изделия, схемы разделяются на виды, которые обозначаются соответствующими буквами:

  • Э – электрические
  • Г – гидравлические
  • П – пневматические
  • X – газовые (кроме пневматических)
  • К – кинематические
  • В – вакуумные
  • Л – оптические
  • Р – энергетические
  • Е – деления
  • С – комбинированные

 

 

 

В зависимости от назначения схемы подразделяются на типы, которым присваивается числовое значение:

  • 0 – объединенные схемы
  • 1 – структурные схемы
  • 2 – функциональные схемы
  • 3 – принципиальные (полные)
  • 4 – схемы соединений (монтажные)
  • 5 – схемы подключения
  • 6 – общие схемы

Например:

  • ЭЗ – схема электрическая принципиальная
  • Г4 – схема гидравлическая соединений
  • E1 – схема деления структурная
  • СЗ – схема электрогидравлическая принципиальная
  • Э0 – схема электрическая соединений и подключения
  • Г0 – схема гидравлическая структурная, принципиальная и соединений

Масштабы при вычерчивании схем не соблюдаются. Расположение частей изделия на схеме может не учитываться. Элементы, из которых состоит изделие, на схемах отображаются в виде условных графических обозначений в соответствии со стандартами ЕСКД. Связи между элементами схемы, такие как трубопроводы, провода, кабели, валы и тому подобное, указываются линиями.

На схемах допускается выделять отдельные устройства штрихпунктирными линиями с указанием их наименований.

На схеме одного вида допускается отображать составные элементы схем другого вида, непосредственно влияющего на работу схемы. Такие элементы и их связи отображаются штрихпунктирными линиями.

Схеме присваивают обозначение отображаемого изделия.

Выполняются схемы на стандартных листах.

 

 

 

Типы электрических схем — презентация на Slide-Share.ru 🎓

1

Первый слайд презентации: Типы электрических схем

Изображение слайда

2

Слайд 2

При разработке силовых, осветительных сетей и автоматических систем управления применяют различные виды и типы электрооборудования, проводок, приборов и средств автоматизации, соединяемые с объектом управления и между собой по определённым схемам. В зависимости от используемого оборудования. приборов и средств автоматизации (электрических, пневматических, гидравлических и т.п.) разрабатываются различные схемы их соединений.. В соответствии с ГОСТ 2.701-76 схемы разделяются на следующие виды и типы: Виды схем: Электрические – Э; Гидравлические – Г; Пневматические – П; Кинематические – К; Комбинированные – С. Типы схем: Структурные – 1; Функциональные – 2; Принципиальные – 3; Соединений – 4; Подключений – 5; Общие – 6; Расположения – 7.

Изображение слайда

3

Слайд 3

Электрической   схемой называют упрощённое наглядное изображение связей между отдельными элементами электрической цепи, выполненное с помощью условных графических обозначений и позволяющие понять принцип действия электрической установки. Структурные  – отражают укрупнённую структуру системы управления и взаимосвязи между пунктами контроля и управления объектов. Основные элементы изображаются в виде прямоугольников, связи между элементами показывают стрелками, направленными от воздействующего элемента на воздействующий. Функциональная  схема – отражает функционально-блочную структуру отдельных узлов автоматического контроля, сигнализации, управления и регулирования технологического процесса и определяющие оснащение объекта управления приборами и средствами автоматизации. Принципиальные  схемы – отражают с достаточной полнотой состав элементов, вспомогательной аппаратуры и связей между ними, входящих в отдельный узел автоматизации и дающих детальное представление о принципе его работы. На основание принципиальных схем разрабатывают схемы внешних и внутренних соединений. Схемы соединений  – показывает сведения о внутренних соединениях изделия. Схема подключения  – содержит сведения о соединениях между отдельными элементами электроустановок и рабочих механизмов. Схемы общие  – содержат общие и специальные сведения по проекту.

Изображение слайда

4

Слайд 4

Схема расположения  – поясняет расположение аппаратов в пространстве, содержит сведения о путях и способах прокладки электропроводки. Из 7 типов электрических схем основными являются  принципиальные схемы, отражающие с достаточной полнотой и наглядностью взаимные связи между отдельными элементами, входящими в состав установки и дающие исчерпывающие сведения о принципе ее работы. Принципиальные схемы служат основанием для разработки схем соединений и подключений, составления спецификации и заявок на оборудование, приборы и аппараты на стадии подготовки к монтажу. На стадии монтажа, наладки и эксплуатации установки принципиальная схема является основным руководящим техническим документом. Принципиальные электрические схемы управления электропроводами: а) совмещенные; б) разнесенные.

Изображение слайда

Изображение для работы со слайдом

5

Слайд 5: Электрическая схема соединений

Изображение слайда

Изображение для работы со слайдом

6

Последний слайд презентации: Типы электрических схем

Изображение слайда

Как рисуются электрические схемы и их описание.

Как читать электрические схемы автомобиля? Как правильно читать принципиальные электрические схемы? Виды электрических схем

Электрические схемы представляют собой графическое представление составных частей, взаимных соединений, связей электрических устройств, установок. Схемы помогают увидеть и понять, как работает электрическая установка или устройство. В случае ремонта, наличие схемы в разы облегчает поиск и устранение неисправности. Монтажные схемы не дают представления о работе устройства, они предназначены для его сборки. Умение читать различные электрические схемы важно как для новичков, так и для специалистов со стажем оно необходимо при сборке, монтаже и обслуживании, поиске неисправностей.

Виды и типы электрических схем, кодировка

В соответствии с ГОСТ 2.701-2008 «Единая система конструкторской документации (ЕСКД). Схемы. Виды и типы. Общие требования к выполнению» электрическим схемам присваивается кодовое обозначение вида буквой «Э».

В таблице приведены типы схем, регламентированные ГОСТом.

Тип схемы Определение Код типа схемы
СтруктурнаяДокумент, определяющий основные функциональные части изделия, их назначение и взаимосвязи1
ФункциональнаяДокумент, разъясняющий процессы, протекающие в отдельных функциональных цепях изделия (установки) или изделия (установки) в целом2
Принципиальная (полная)Документ, определяющий полный состав элементов и взаимосвязи между ними и, как правило, дающий полное (детальное) представления о принципах работы изделия (установки)3
Схема соединений (монтажная)Документ, показывающий соединения составных частей изделия (установки) и определяющий провода, жгуты, кабели или трубопроводы, которыми осуществляются эти соединения, а также места их присоединений и ввода (разъемы, платы, зажимы и т. п.)4
ПодключенияДокумент, показывающий внешние подключения изделия5
ОбщаяДокумент, определяющий составные части комплекса и соединения их между собой на месте эксплуатации6
РасположенияДокумент, определяющий относительное расположение составных частей изделия (установки), а при необходимости, также жгутов (проводов, кабелей), трубопроводов, световодов и т.п.7
ОбъединеннаяДокумент, содержащий элементы различных типов схем одного вида0

Код чертежа состоит из буквы, в нашем случае это буква «Э» и цифровой части, определяющей тип, согласно таблице 1. К примеру, Э1 – схема электрическая структурная, Э5 – схема, показывающая внешние подключения изделия.

Стандарты схем по ГОСТу

Начинать нужно с изучения условных графических обозначений (УГО). Обозначения на чертежах имеют стандартный вид и регламентируются ГОСТами, например, ГОСТ 21. 210-2014, ГОСТ 2.755-87, ГОСТ 2.721, ГОСТ 2.756-76 и рядом других. Стандарты изображений распространяются на все элементы, включая связи между ними, способы монтажа, прокладки и т.д.

В ряде случаев ГОСТ разрешает отклонения от стандартов. Например, при составлении структурных комбинированных схем, нередко применяют нестандартные, или приближённые к реальному изображения объектов, фотографии, сопровождая их описаниями с краткими пояснениями, как на схеме телефонного аппарата.

Но в целом, стандарты стараются соблюдать, чтобы не вносить разночтения и путаницу в документацию, особенно когда речь идёт о серьёзных проектах для промышленных предприятий.

Большие изображения разделяют на части, указывая ссылки на другие листы или обозначая связи. Начальное положение контактов реле, кнопок, катушек показано при отсутствии напряжения, это стандарт.

Рассмотрим сказанное выше на примере принципиальной релейной схемы управления конвейером.

Здесь имеются две функциональные части: силовая, состоящая из цепей питания двигателя и релейная, которая предназначена для управления силовой частью.

Силовая часть состоит из:

  • Линии трёхфазного питания 380В 50Гц, с указанием ссылки на комплект чертежей «ЭМ», откуда это питание подаётся.
  • Автоматического выключателя 2-QF.
  • Контактора 2-КМ.
  • Теплового реле 2-КК.
  • Электродвигателя 2W.

Фазы обозначены латинскими буквами A, B, C. Поскольку используется трёхфазное питание, контакты автоматического выключателя и контактора соединены механически для одновременного включения/отключения всех трёх фаз.

Релейная часть содержит в себе:

  • Автоматический выключатель питания 2-SF.
  • Кнопки SB.
  • Переключатель 2-SA.
  • Реле времени 2-КТ.
  • Реле 2-K1…2-K6.
  • Источник питания 24В 2-GB.
  • Сигнальные лампы 2-HL1… 2-HL4.

Соединительные линии обозначают электрические соединения между элементами. Пересекающиеся линии не соединены между собой. Как вариант отсутствие соединения обозначают символом дуги. На наличие соединения указывает точка в месте пересечения или примыкания.

Контакты реле, выключателей и других коммутационных устройств имеют два состояния:

  • Нормально открытое, когда без включения реле контакт разомкнут.
  • Нормально закрытое, когда без включения реле контакт замкнут.

Соответственно, когда на катушку реле или контактора будет подано напряжение, реле притянется и состояние контактов изменится на противоположное. Тоже самое произойдёт с кнопкой и автоматическим выключателем, при его включении, изменяется состояние контакта.

Чтение схем

Зависит от их построения и целей использования. Протекание тока в электрических цепях начинается и заканчивается в источнике питания. Если это источник постоянного тока, то от плюса к минусу, если переменного, то от фазного провода к нулевому или между фазами. Начинать читать можно как от источника питания так и от нагрузки. Силовая схема от источника читается так:

  1. При включении автомата 2-QF, сетевое напряжение подключается к разомкнутым контактам контактора 2-КМ.
  2. При отсутствии перегрева, контакт теплового реле 2-KK замкнут.
  3. После отрабатывания релейной части, включается катушка контактора 2-КМ.
  4. Контактор 2-КМ притягивается и своими контактами через тепловое реле подаёт питание на электродвигатель 2-W.

В обратном порядке схемы часто читают при поиске неисправностей. Например, у нас не включается двигатель.

  1. Проверяем наличие напряжения на двигателе 2-W. Напряжения нет.
  2. Проверяем тепловое реле 2-КК. Тепловое реле в норме, его контакты замкнуты.
  3. Проверяем, включен ли контактор 2-КМ. Контактор отключен.

С того места можно начинать поиск причин отключения контактора. Это может быть либо отключение автомата 2-QF, либо отключение катушки 2-КМ, которая включается релейной схемой. Таким образом, чтение электрических чертежей напоминает чтение книг, по пути протекания тока от элемента к элементу.

Релейная часть выглядит несколько сложнее, но если рассматривать её по частям и так же, двигаясь последовательно, шаг за шагом, то нетрудно понять логику её работы. Сложные схемы всегда состоят из нескольких отдельных функциональных узлов. Разобравшись с отдельными фрагментами и связями между ними, складывается полная картина работы всей схемы.

К примеру, в данной схеме есть узел опробования световой сигнализации. Он состоит из кнопки 2-SB4 и диодов, подключенных к сигнальным лампам HL. Кнопка подключена к «+» источника питания 24В 2-GB нормально разомкнутым контактом. Все лампы постоянно подключены к «-» источника питания. При нажатии кнопки, цепь замыкается через контакт 2-SB4, диоды, лампы. В результате чего все 4 лампы загораются. Таким образом визуально определяется их исправность. При отпускании кнопки цепь разрывается, лампы гаснут.

Аналогичным образом работает узел опробования звуковой сигнализации 2-HA1, 2-НА2 кнопкой 2-SB5. Несмотря на то, что эти узлы находятся на одном чертеже и связаны с другими частями, они являются отдельно функционирующими законченными цепями.

Основная схема управления собирает цепочки реле схода ленты, аварийного останова, готовности и после выдержки времени, определяемом реле времени 2-КТ, реле 2-К7 своим контактом включает силовой контактор 2-КМ, который запускает двигатель 2-W.

Знание графических обозначений, как алфавит для чтения книг, является основным условием чтения схем. Но одного только алфавита для чтения недостаточно, нужно уметь связывать буквы в слова, а слова в смысл. Понимание работы принципиальной схемы невозможно без понимания принципа работы устройств, из которых она собрана. Так, если человек не представляет, как работает электромагнитное реле или таймер, он не сможет понять, что произойдёт при подаче напряжения в ту или иную часть схемы. Таким образом, схемотехника неразрывно связана с изучением материальной части электрического оборудования.

Монтажные схемы

Выше была рассмотрена принципиальная схема. В частном случае, таком как монтаж, необязательно представлять, как она работает. С этой целью выпускаются специальные монтажные чертежи, на которых указано, какой провод какие выводы соединяет.

Провода с клеммами должны быть пронумерованы. При монтаже достаточно лишь внимательно следить, что с чем соединяется, чтобы правильно собрать устройство, установку.

Квалифицированный специалист должен уметь разбираться во всех типах чертежей. Несмотря на стандартизацию, существует огромное количество отличий и разнообразия правил построения электросхем, выпускаемых различными производителями, проектно-конструкторскими отделами. Очень важно знать принципы действия электрооборудования, устройств, из которых состоит схема. Умение читать и понимать схемы – процесс многогранный, требует терпения, времени.

При изучении электроники возникает вопрос, как читать электрические схемы. Естественным желанием начинающего электронщика или радиолюбителя является спаять какое-то интересное электронное устройство. Однако на начальном пути достаточных теоретических знаний и практических навыков как всегда не хватает. Поэтому устройство собирают вслепую. И часто бывает, что спаянное устройство, на которое было затрачено много времени, сил и терпения, — не работает, что вызывает только разочарование и отбивает желание у начинающего радиолюбителя заниматься электроникой, так и не ощутив все прелести данной науки. Хотя, как оказывается, схема не заработала из-за допущения сущего пустяковой ошибки. На исправление такой ошибки у более опытного радиолюбителя ушло бы меньше минуты.

В данной статье приведены полезные рекомендации, которые позволят свести к минимуму количество ошибок. Помогут начинающему радиолюбителю собирать различные электронные устройства, которые заработают с первого раза.

Любая радиоэлектронная аппаратура состоит из отдельных радиодеталей, спаянных (соединенных) между собой определенным образом. Все радиодетали, их соединения и дополнительные обозначения отображаются на специальном чертеже. Такой чертеж называется электрической схемой. Каждая радиодеталь имеет свое обозначение, которое правильно называется условное графическое обозначение, сокращенно – УГО . К УГО мы вернемся дальше в этой статье.


Принципиально можно выделить два этапа совершенствования чтения электрических схем. Первый этап характерен для монтажников радиоэлектронной аппаратуры. Они просто собирают (паяют) устройства не углубляясь в назначение и принцип работы основных его узлов. По сути дела – это скучная работа, хотя, хорошо паять, нужно еще поучиться. Лично мне гораздо интересней паять то, что я полностью понимаю, как оно работает. Появляются множества вариантов для маневров. Понимаешь какой номинал, например или критичный в данной случае, а каким можно пренебречь и заменить другим. Какой транзистор можно заменить аналогом, а где следует использовать транзистор только указанной серии. Поэтому лично мне ближе второй этап.

Второй этап присущ разработчикам радиоэлектронной аппаратуры. Такой этап является самый интересный и творческий, поскольку совершенствоваться в разработке электронных схем можно бесконечно.

По этому направлению написаны целые тома книг, наиболее известной из которых является «Искусство схемотехники». Именно к этому этапу мы будем стремиться подойти. Однако здесь уже потребуются и глубокие теоретические знания, но все оно того стоит.

Обозначение источников питания

Любое радиоэлектронное устройство способно выполнять свои функции только при наличии электроэнергии. Принципиально выделяют два типа источников электроэнергии: постоянного и переменного тока. В данной статье рассматриваются исключительно источниках . К ним относятся батарейки или гальванические элементы, аккумуляторные батареи, различного рода блоки питания и т.п.

В мире насчитывается тысячи тысяч разных аккумуляторов, гальванических элементов и т.п., которые отличаются как внешним видом, так и конструкцией. Однако всех их объединяет общее функциональное назначение – снабжать постоянным током электронную аппаратуру. Поэтому на чертежах электрических схем источники они обозначаются единообразно, но все же с некоторыми небольшими отличиями.

Электрические схемы принято рисовать слева на право, то есть так, как и писать текст. Однако такого правила далеко не всегда придерживаются, особенно радиолюбители. Но, тем не менее, такое правило следует взять на вооружение и применять в дальнейшем.


Гальванический элемент или одна батарейка, неважно «пальчиковая», «мизинчиковая» или таблеточного типа, обозначается следующим образом: две параллельные черточки разной длины. Черточка большей длины обозначает положительный полюс – плюс «+», а короткая – минус «-».

Также для большей наглядности могут проставляться знаки полярности батарейки. Гальванический элемент или батарейка имеет стандартное буквенное обозначение G .

Однако радиолюбители не всегда придерживаются такой шифровки и часто вместо G пишут букву E , которая обозначает, что данный гальванический элемент является источником электродвижущей силы (ЭДС). Также рядом может указываться величина ЭДС, например 1,5 В.

Иногда вместо изображения источника питания показывают только его клеммы.

Группа гальванических элементов, которые могут повторно перезаряжаться, аккумуляторной батареей . На чертежах электрических схем они обозначается аналогично. Только между параллельными черточками находится пунктирная линия и применяется буквенное обозначение GB . Вторая буква как раз и обозначает «батарея».

Обозначение проводов и их соединений на схемах

Электрические провода выполняют функцию объединения всех электронных элементов в единую цепь. Они выполняют роль «трубопровода» — снабжают электронные компонент электронами. Провода характеризуются множеством параметров: сечением, материалом, изоляцией и т.п. Мы же будем иметь дело с монтажными гибкими проводами.

На печатных платах проводами служат токопроводящие дорожки. Вне зависимости от вида проводника (проволока или дорожка) на чертежах электрических схем они обозначаются единым образом – прямой линией.

Например, для того, что бы засветить лампу накаливания необходимо напряжение от аккумуляторной батареи подвести с помощью соединительных проводов к лампочке. Тогда цепь будет замкнута и в ней начнет протекать ток, который вызовет нагрев нити лампы накаливания до свечения.

Проводник принять обозначать прямой линией: горизонтальной или вертикальной. Согласно стандарту, провода или токоведущие дорожки могут изображаться под углом 90 или 135 градусов.

В разветвленных цепях проводники часто пересекаются. Если при этом не образуется электрическая связь, то точка в месте пересечения не ставится.

Обозначение общего провода

В сложных электрических цепях с целью улучшения читаемости схемы часто проводники, соединенные с отрицательной клеммой источника питания, не изображают. А вместо них применяют знаки, обозначающие отрицательных провод, который еще называют общи й или масса или шасси или земля .

Рядом со знаком заземления часто, особенно в англоязычных схемах, делается надпись GND, сокращенно от GRAUND – земля .

Однако следует знать, что общий провод не обязательно должен быть отрицательным, он также может быть и положительным. Особенно часто за положительный общий провод принимался в старых советских схемах, в которых преимущественно использовались транзисторы p n p структуры.

Поэтому, когда говорят, что потенциал в какой-то точке схемы равен какому-то напряжению, то это означает, что напряжение между указанной точкой и «минусом» блока питания равен соответствующему значению.

Например, если напряжение в точке 1 равно 8 В, а в точке 2 оно имеет величину 4 В, то нужно положительный щуп вольтметра установить в соответствующую точку, а отрицательный – к общему проводу или отрицательной клемме.

Таким подходом довольно часто пользуются, поскольку это очень удобно с практической точки зрения, так как достаточно указать только одну точку.

Особенно часто это применяется при настройке или регулировке радиоэлектронной аппаратуре. Поэтому учиться читать электрические схемы гораздо проще, пользуясь потенциалами в конкретных точках.

Условное графическое обозначение радиодеталей

Основу любого электронного устройства составляют радиодетали. К ним относятся , светодиоды, транзисторы, различные микросхемы и т. д. Чтобы научиться читать электрические схемы нужно хорошо знать условные графические обозначения всех радиодеталей.

Для примера рассмотрим следующий чертеж. Он состоит из батареи гальванических элементов GB 1 , резистора R 1 и светодиода VD 1 . Условное графическое обозначение (УГО) резистора имеет вид прямоугольника с двумя выводами. На чертежах он обозначается буквой R , после которой ставится его порядковый номер, например R 1 , R 2 , R 5 и т. д.

Поскольку важным параметром резистора помимо сопротивления является , то ее значение также указывается в обозначении.

УГО светодиода имеет вид треугольника с риской у его вершины; и двумя стрелочками, острия которых направлены от треугольника. Один вывод светодиода называется анодом, а второй – катодом.

Светодиод, как и «обычный» диод, пропускает ток только в одном направлении – от анода к катоду. Данный полупроводниковый прибор обозначается VD , а его тип указывается в спецификации или в описании к схеме. Характеристики конкретного типа светодиода приводятся в справочниках или «даташитах».

Как читать электрические схемы реально

Давайте вернемся к простейшей схеме, состоящей из батареи гальванических элементов GB 1 , резистора R 1 и светодиода VD 1 .

Как мы видим – цепь замкнута. Поэтому в ней протекает электрический ток I , который имеет одинаковое значение, поскольку все элементы соединены последовательно. Направление электрического тока I от положительной клеммы GB 1 через резистор R 1 , светодиод VD 1 к отрицательной клемме.

Назначение всех элементов вполне понятно. Конечной целью является свечение светодиода. Однако, чтобы он не перегрелся и не вышел из строя резистор ограничивает величину тока.

Величина напряжения, согласно второму закона Кирхгофа, на всех элементах может отличаться и зависит от сопротивления резистора R 1 и светодиод VD 1 .

Если измерить вольтметром напряжение на R 1 и VD 1 , а затем полученные значения сложить, то их сумма будет равна напряжению на GB 1 : V 1 = V 2 + V 3 .

Соберем по данному чертежу реальное устройство.

Добавляем радиодетали

Рассмотрим следующую схему, состоящую из четырех параллельных ветвей. Первая представляет собой лишь аккумуляторную батарею GB 1, напряжением 4,5 В. Во второй ветви последовательно соединены нормально замкнутые контакты K 1.1 электромагнитного реле K 1 , резистора R 1 и светодиода VD 1 . Далее по чертежу находится кнопка SB 1 .

Третья параллельная ветвь состоит из электромагнитного реле K 1 , шунтированного в обратном направлении диодом VD 2 .

В четвертой ветви имеются нормально разомкнутые контакты K 1.2 и бузер BA 1 .

Здесь присутствуют элементы, ранее нами не рассмотрены в данной статье: SB 1 – это кнопка без фиксации положения. Пока она нажата ее, контакты замкнуты. Но как только мы перестанем нажимать и уберем палец с кнопки, контакты разомкнутся. Такие кнопки еще называют тактовыми.

Следующий элемент– это электромагнитное реле K 1 . Принцип работы его заключается в следующем. Когда на катушку подано напряжение, замыкаются его разомкнутые контакты и размыкаются замкнутые контакты.

Все контакты, которые соответствуют реле K 1 , обозначаются K 1.1 , K 1.2 и т. д. Первая цифра означает принадлежность их соответствующему реле.

Бузер

Следующий элемент, ранее не знакомый нам, — это бузер. Бузер в какой-то степени можно сравнить с маленьким динамиком. При подаче переменного напряжения на его выводы раздается звук соответствующей частоты. Однако в нашей схеме отсутствует переменное напряжение. Поэтому мы будем применять активный бузер, который имеет встроенный генератор переменного тока.

Пассивный бузер – для переменного тока.

Активный бузер – для постоянного тока.

Активный бузер имеет полярность, поэтому следует ее придерживаться.

Теперь мы уже можем рассмотреть, как читать электрическую схему в целом.

В исходном состоянии контакты K 1.1 находятся в замкнутом положении. Поэтому ток протекает по цепи от GB 1 через K 1.1 , R 1 , VD 1 и возвращается снова к GB 1 .

При нажатии кнопки SB 1 ее контакты замыкаются, и создается путь для протекания тока через катушку K 1 . Когда реле получило питание ее нормально замкнутые контакты K 1.1 размыкаются, а нормально замкнутые контакты K 1.2 замыкаются. В результате гаснет светодиод VD 1 и раздается звук бузера BA 1 .

Теперь вернемся к параметрам электромагнитного реле K 1 . В спецификации или на чертеже обязательно указывается серия применяемого реле, например HLS ‑4078‑ DC 5 V . Такое реле рассчитано на номинальное рабочее напряжение 5 В. Однако GB 1 = 4,5 В, но реле имеет некоторый допустимы диапазон срабатывания, поэтому оно будет хорошо работать и при напряжении 4,5 В.

Для выбора бузера часто достаточно знать лишь его напряжение, однако иногда нужно знать и ток. Также следует не забывать и о его типе – пассивный или активный.

Диод VD 2 серии 1 N 4148 предназначен для защиты элементов, которые производят размыкание цепи, от перенапряжения. В данном случае можно обойтись и без него, поскольку цепь размыкает кнопка SB 1 . Но если ее размыкает транзистор или тиристор, то VD 2 нужно обязательно устанавливать.

Учимся читать схемы с транзисторами

На данном чертеже мы видим VT 1 и двигатель M 1 . Для определенности будем применять транзистор типа 2 N 2222 , который работает в .

Чтобы транзистор открылся, нужно на его базу подать положительный потенциал относительно эмиттера – для n p n типа; для p n p типа нужно подавать отрицательный потенциал относительно эмиттера.

Кнопка SA 1 с фиксацией, то есть он сохраняет свое положение после нажатия. Двигатель M 1 постоянного тока.

В исходном состоянии цепь разомкнута контактами SA 1 . При нажатии кнопки SA1 создается несколько путей протеканию тока. Первый путь – «+» GB 1 – контакты SA 1 – резистор R 1 – переход база-эмиттер транзистора VT 1 – «-» GB 1 . Под действием протекающего тока через переход база-эмиттер транзистор открывается и образуется второй путь току – «+»GB 1 SA 1 – катушка реле K 1 – коллектор-эмиттер VT 1 – «-» GB 1 .

Получив питание, реле K 1 замыкает свои разомкнутые контакты K 1.1 в цепи двигателя M 1 . Таким образом, создается третий путь: «+» GB 1 SA 1 K 1.1 M 1 – «-» GB 1 .

Теперь давайте все подытожим. Для того чтобы научиться читать электрические схемы, на первых порах достаточно лишь четко понимать законы Кирхгофа, Ома, электромагнитной индукции; способы соединения резисторов, конденсаторов; также следует знать назначение всех элементом. Также поначалу следует собирать те устройства, на которые имеются максимально подробные описания назначения отдельных компонентов и узлов.

«Как читать электрические схемы ?». Пожалуй, это самый часто задаваемый вопрос в рунете. Если для того, чтобы научиться читать и писать, мы изучали азбуку, то здесь почти то же самое. Чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться. До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш ГОСТ-вариант обозначения радиоэлементов.

Электрические чертежи лестниц по-прежнему являются одним из распространенных и надежных инструментов, используемых для устранения неполадок оборудования при его сбое. Как и в любом хорошем инструменте устранения неполадок, вы должны быть знакомы с его основными функциями, чтобы максимально использовать диаграмму в этой области. Другими словами, обладание базовым пониманием того, как выложено чертеж, а также значение чисел и символов, найденных на схеме, сделают вас намного более опытными специалистами по обслуживанию.

Как правило, две отдельные части лестничного рисунка: компонент питания и компонент управления. Силовая часть состоит из таких элементов, как двигатель, контакты стартера двигателя и перегрузки, разъединители и защитные устройства . Контрольная часть включает в себя элементы, которые делают компоненты питания выполняющими свою работу. Для этого обсуждения мы сосредоточимся на контрольной части чертежа. Давайте взглянем на наиболее распространенные компоненты.

Ладно, ближе к делу. Давайте рассмотрим простенькую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Например, в воздушной компрессорной системе будет символ для реле давления. Если человек, выполняющий поиск и устранение неисправностей и ремонт, не распознает этот символ, будет сложно найти коммутатор, чтобы определить, правильно ли он работает. Во многих случаях устройства ввода считаются либо нормально открытыми, либо нормально закрытыми. Нормально открытый или закрытый статус относится к полному состоянию устройства. Если устройство нормально закрыто, проверка сопротивления даст показания. Нормально открытое и нормально закрытое состояние устройств не помечено на чертеже лестницы.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.

Скорее, вы должны распознать символ. Полезный намек на то, чтобы определить, открыты ли контакты или закрыты, — это думать о них с точки зрения силы тяжести. Если на устройстве действует гравитация, его нормальное состояние показано на чертеже. Исключение из этой концепции содержится в устройствах, содержащих пружины. Например, при рисовании нормально разомкнутой кнопки, кажется, что кнопка должна падать и закрываться. Однако есть пружина в кнопке, которая удерживает контакты в открытом положении.

Итак, вроде бы определились с задачей этой схемы. Прямые линии — это проводочки, по которым будет бежать электрический ток. Их задача — соединять радиоэлементы.

Точка, где соединяются три и более проводочков, называется узлом . Можно сказать, в этом месте проводочки спаиваются:

Управляющее напряжение и безопасность. Управляющее напряжение для системы может поступать от управляющего трансформатора, который подается от силовой части чертежа или другого источника. По соображениям безопасности важно определить источник управляющего напряжения до работы в системе, потому что выключатель питания не может отключить управляющее напряжение, поэтому электрически безопасное состояние не будет установлено.

Рисунок называется лестничным рисунком, потому что он похож на лестницу в том виде, в каком он построен и представлен на бумаге. Две вертикальные линии, которые служат границей для системы управления и доставляют управляющее напряжение на устройства, называются рельсами. Рельсы могут иметь в них сверхтоковые устройства и могут иметь контакты от управляющих устройств. Эти контрольные линии могут быть более толстыми, чем другие, чтобы лучше их идентифицировать.

Если пристально вглядеться в схему, то можно заметить пересечение двух проводочков

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте проводочки не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Как настоящая лестница, рельсы являются опорами для ступеньки. Если рисунок лестницы проходит через несколько страниц, управляющее напряжение переносится с одной страницы на другую вдоль рельсов. Существует несколько способов, которые могут быть представлены на чертеже. Следует отметить номер страницы, на которой продолжаются рельсы.

В этом устройстве схемы последовательность событий может быть описана как таковая. Когда кнопка нажата, цепь завершается, и ток будет течь, чтобы активировать катушку. Ступени. Ступени лестницы состоят из проводов и устройств ввода, которые либо позволяют подавать ток, либо прерывать ток на выходные устройства. Эти линии могут быть тонкими линиями по сравнению с линиями рельсов. От размещения входных и выходных устройств вы можете определить последовательность событий, которые либо активируют, либо обесточивают выходы.

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Ключом к хорошему устранению неполадок является определение этой последовательности событий. Устройства ввода, как правило, размещаются на левой стороне ступени, а выходные устройства расположены справа. Размещение устройств ввода. Входные устройства размещаются на ступеньках таким образом, который указывает текущий поток через цепочку, когда есть полный путь к выходам. Есть несколько способов, которыми эти устройства ввода могут быть размещены на ступеньках, хотя, как указано ранее, они обычно располагаются с левой стороны.

Это означает, что они размещены от конца до конца на чертеже. Чтобы ток протекал через них, они должны находиться в закрытом положении. Понимание этого потока является отличным помощником в устранении неполадок. Ключевой вопрос, который вы всегда задаете себе, — это: «Что нужно, чтобы активировать выход?».

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R — это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер «2». В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 КилоОм. Ну как-то вот так…

Здесь приведен простой пример для анализа. Следуя пути для текущего, вы можете увидеть логику размещения устройств ввода. Эта логика определяет процесс принятия решений устройствами ввода и путь для тока при его движении выходы. Логические операторы. Существует несколько логических операторов, которые можно использовать при размещении устройств ввода в ступеньках. На рисунке 3 представлены все три.

Кнопка пуска запускает путь и активирует катушку. . Размещение выходных устройств. Как отмечалось ранее, выходные устройства размещаются на правой стороне чертежа лестницы. В отличие от устройств ввода, важно, чтобы выходные устройства были размещены параллельно. Если они помещаются последовательно, электрическая теория утверждает, что напряжение будет падать по сопротивлению каждого выхода. Если это произойдет, они не будут работать должным образом.

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды — это группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :

А — это различные устройства (например, усилители)

В — преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .

Выходы включают такие элементы, как огни, катушки, соленоиды и нагревательные элементы. В дополнение к общепринятым символам, показанным на фиг. 1, буквы и цифры также помогают идентифицировать устройства вывода. Обычно у катушек есть контакты, связанные с ними. Эти контакты изменят состояние, когда катушка активирована. Меняющиеся контакты либо завершат, либо откроют путь для текущего.

Как отмечено на фиг. 4, когда кнопка нажата, путь завершается, и ток будет течь, чтобы активировать катушку. Когда катушка активирована, контакты, связанные с катушкой, изменят состояние. Красный свет будет гореть, и зеленый свет погаснет. Расположение контактов. В чертеже лестницы контакты, связанные с катушкой, могут быть расположены с использованием системы перекрестных ссылок. Ступеньки обычно пронумерованы на левой стороне рельса. Номер на правой стороне рельса ссылается на контакты, связанные с катушкой.

С — конденсаторы

D — схемы интегральные и различные модули

E — разные элементы, которые не попадают ни в одну группу

F — разрядники, предохранители, защитные устройства

H — устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

U — преобразователи электрических величин в электрические, устройства связи

V — полупроводниковые приборы

W — линии и элементы сверхвысокой частоты, антенны

X — контактные соединения

Y — механические устройства с электромагнитным приводом

Z — оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:

BD — детектор ионизирующих излучений

BE — сельсин-приемник

BL — фотоэлемент

BQ — пьезоэлемент

BR — датчик частоты вращения

BS — звукосниматель

BV — датчик скорости

BA — громкоговоритель

BB — магнитострикционный элемент

BK — тепловой датчик

BM — микрофон

BP — датчик давления

BC — сельсин датчик

DA — схема интегральная аналоговая

DD — схема интегральная цифровая, логический элемент

DS — устройство хранения информации

DT — устройство задержки

EL — лампа осветительная

EK — нагревательный элемент

FA — элемент защиты по току мгновенного действия

FP — элемент защиты по току инерционнго действия

FU — плавкий предохранитель

FV — элемент защиты по напряжению

GB — батарея

HG — символьный индикатор

HL — прибор световой сигнализации

HA — прибор звуковой сигнализации

KV — реле напряжения

KA — реле токовое

KK — реле электротепловое

KM — магнитный пускатель

KT — реле времени

PC — счетчик импульсов

PF — частотомер

PI — счетчик активной энергии

PR — омметр

PS — регистрирующий прибор

PV — вольтметр

PW — ваттметр

PA — амперметр

PK — счетчик реактивной энергии

PT — часы

QF

QS — разъединитель

RK — терморезистор

RP — потенциометр

RS — шунт измерительный

RU — варистор

SA — выключатель или переключатель

SB — выключатель кнопочный

SF — выключатель автоматический

SK — выключатели, срабатывающие от температуры

SL — выключатели, срабатывающие от уровня

SP — выключатели, срабатывающие от давления

SQ — выключатели, срабатывающие от положения

SR — выключатели, срабатывающие от частоты вращения

TV — трансформатор напряжения

TA — трансформатор тока

UB — модулятор

UI — дискриминатор

UR — демодулятор

UZ — преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD — диод, стабилитрон

VL — прибор электровакуумный

VS — тиристор

VT — транзистор

WA — антенна

WT — фазовращатель

WU — аттенюатор

XA — токосъемник, скользящий контакт

XP — штырь

XS — гнездо

XT — разборное соединение

XW — высокочастотный соединитель

YA — электромагнит

YB — тормоз с электромагнитным приводом

YC — муфта с электромагнитным приводом

YH — электромагнитная плита

ZQ — кварцевый фильтр

Ну а теперь самое интересное: графическое обозначение радиоэлементов.

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы постоянные

а ) общее обозначение

б ) мощностью рассеяния 0,125 Вт

в ) мощностью рассеяния 0,25 Вт

г ) мощностью рассеяния 0,5 Вт

д ) мощностью рассеяния 1 Вт

е ) мощностью рассеяния 2 Вт

ж ) мощностью рассеяния 5 Вт

з ) мощностью рассеяния 10 Вт

и ) мощностью рассеяния 50 Вт

Резисторы переменные

Терморезисторы

Тензорезисторы

Варистор

Шунт

Конденсаторы

a ) общее обозначение конденсатора

б ) вариконд

в ) полярный конденсатор

г ) подстроечный конденсатор

д ) переменный конденсатор

Акустика

a ) головной телефон

б ) громкоговоритель (динамик)

в ) общее обозначение микрофона

г ) электретный микрофон

Диоды

а ) диодный мост

б ) общее обозначение диода

в ) стабилитрон

г ) двусторонний стабилитрон

д ) двунаправленный диод

е ) диод Шоттки

ж ) туннельный диод

з ) обращенный диод

и ) варикап

к ) светодиод

л ) фотодиод

м ) излучающий диод в оптроне

н ) принимающий излучение диод в оптроне

Измерители электрических величин

а ) амперметр

б ) вольтметр

в ) вольтамперметр

г ) омметр

д ) частотомер

е ) ваттметр

ж ) фарадометр

з ) осциллограф

Катушки индуктивности

а ) катушка индуктивности без сердечника

б ) катушка индуктивности с сердечником

в ) подстроечная катушка индуктивности

Трансформаторы

а ) общее обозначение трансформатора

б ) трансформатор с выводом из обмотки

в ) трансформатор тока

г ) трансформатор с двумя вторичными обмотками (может быть и больше)

д ) трехфазный трансформатор

Устройства коммутации

а ) замыкающий

б ) размыкающий

в ) размыкающий с возвратом (кнопка)

г ) замыкающий с возвратом (кнопка)

д ) переключающий

е ) геркон

Электромагнитное реле с различными группами коммутационных контактов (коммутационные контакты могут быть разнесены в схеме от катушки реле)

Предохранители

а ) общее обозначение

б ) выделена сторона, которая остается под напряжением при перегорании предохранителя

в ) инерционный

г ) быстродействующий

д ) термическая катушка

е ) выключатель-разъединитель с плавким предохранителем

Тиристоры

Биполярный транзистор

Однопереходный транзистор

Полевой транзистор с управляющим P-N переходом

Как научиться читать принципиальные схемы

Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы ?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов , соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.

Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО . Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика. Вот так динамик обозначается на схеме.

Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора.

Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.

Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n . Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните…

Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.

На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт» .

Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT , BA , C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.

Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.

Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.

Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.

Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.

Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты . На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1 ; постоянные резисторы R1 , R2 , R3 , R4 ; выключатель питания SA1 , электролитические конденсаторы С1 , С2 ; конденсатор постоянной ёмкости С3 ; высокоомный динамик BA1 ; биполярные транзисторы VT1 , VT2 структуры n-p-n . Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.


Что мы можем узнать, взглянув на эту схему?

Любая электроника работает от электрического тока , следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.

Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.

Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор, то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.

На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 — R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.

Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой * . Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.

Напомним, что для замера тока, амперметр включается в разрыв цепи.

Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2* . При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 — 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением , которое равно сопротивлению переменного резистора, полученного в результате наладки.

Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5* ), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.

Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.

Этим обозначением показывают так называемый общий провод . В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому «-» выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.

Зачем «общий провод» или «корпус» указывается на схеме?

Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток , потребляемый всеми элементами схемы.

Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.

Стоит понимать, что общий провод это не то же самое, что и «земля». «Земля » — это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.

В отдельных случаях общий провод устройства подключают к заземлению.

Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.

Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.

Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения , которые не указаны на принципиальной схеме.

В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите «Далее «…

Основными техническими документами для электромонтера и электромонтажника являются чертежи и электрические схемы. Чертеж включает размеры, форму, материал и состав электроустановки. По нему не всегда можно понять функциональную связь между элементами. В ней помогает разобраться электрическая схема, которую необходимо иметь при пользовании чертежами электроустановок.

Чтобы читать , необходимо хорошо знать и помнить: наиболее распространенные условные обозначения обмоток, контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой преимущественно приходится сталкиваться в силу профессии, схемы наиболее распространенных узлов электроустановок, например двигателей, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.

Расчленение схем на простые цепи

Любая электроустановка удовлетворяет определенным условиям действия. Поэтому при чтении схем, во-первых, нужно выявить эти условия, во-вторых — определить, отвечают ли полученные условия задачам, которые должны электроустановкой решаться, в-третьих, следует проверить, не получились ли попутно «лишние» условия, и оценить их последствия.

Для решения этих вопросов пользуются несколькими приемами.

Первый из них состоит в том, что схема электроустановки мысленно расчленяется на простые цепи, которые сначала рассматривают отдельно, а затем в сочетаниях.

Простая цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (двигатель, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), обратный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, например в цепях трансформаторов тока, контактов нет.

При чтении схемы нужно сначала мысленно расчленить ее на простые цепи, чтобы проверить возможности каждого элемента, а затем рассмотреть их совместное действие.

Реальность схемных решений

Наладчики хорошо знают, что не всегда могут быть осуществлены на деле схемные решения, хотя они не содержат явных ошибок. Иными словами, проектные электрические схемы не всегда реальны.

Поэтому одна из задач чтения электрических схем состоит в том, чтобы проверить, могут ли быть выполнены заданные условия.

Нереальность схемных решений обычно имеет в основном следующие причины:

    не хватает энергии для срабатывания аппарата,

    В схему проникает «лишняя» энергия, вызывающая непредвиденное срабатывание пли препятствующая своевременному отпусканию ,

    не хватает времени для совершения заданных действий,

    аппаратом задана уставка, которая не может быть достигнута,

    совместно применены аппараты, резко отличающиеся по свойствам,

    не учтены коммутационная способность, уровень изоляции аппаратов и проводки, не погашены коммутационные перенапряжения,

    не учтены условия, в которых электроустановка будет эксплуатироваться,

    при проектировании электроустановки за основу принимается ее рабочее состояние, но не решается вопрос о том, как ее привести в это состояние и в каком состоянии она окажется, например, в результате кратковременного перерыва питания.

Порядок чтения электрических схем и чертежей

Прежде всего, необходимо ознакомиться с наличными чертежами (или составить оглавление, если его нет) и систематизировать чертежи (если этого не сделано в проекте) по назначению.

Чертежи чередуют в таком порядке, чтобы чтение каждого последующего являлось естественным продолжением чтения предыдущего. Затем уясняют принятую систему обозначений и маркировки.

Если она не отражена па чертежах, то ее выясняют и записывают.

На выбранном чертеже читают все надписи, начиная со штампа, затем примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации обязательно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.

Если на чертеже имеются ссылки на другие чертежи, то нужно найти эти чертежи и разобраться в содержании ссылок. Например, в одну схему входит контакт, принадлежащий аппарату, изображенному на другой схеме. Значит, нужно уяснить, что это за аппарат, для чего служит, в каких условиях работает и т. п.

При чтении чертежей, отражающих электропитание, электрическую защиту, управление, сигнализацию и т. п.:

1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько или применено несколько напряжений, то уясняют, чем это вызвано,

2) расчленяют схему па простые цени и, рассматривая их сочетание, устанавливают условия действия. Рассматривать всегда начинают с того аппарата, который нас в данном случае интересует. Например, если не работает двигатель, то нужно найти па схеме его цепь и посмотреть, контакты каких аппаратов в нее входят. Затем находят цепи аппаратов, управляющих этими контактами, и т. д.,

3) строят диаграммы взаимодействия, выясняя с их помощью: последовательность работы во времени, согласованность времени действия аппаратов в пределах данного устройства, согласованность времени действия совместно действующих устройств (например, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого поочередно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают возможные последствия, возможность выхода устройства в рабочее положение из любого состояния, в котором оно могло оказаться, например после ревизии,

4) оценивают последствия вероятных неисправностей: незамыкание контактов поочередно по одному, нарушения изоляции относительно земли поочередно для каждого участка,

5) нарушения изоляции между проводами воздушных линий, выходящих за пределы помещений и т. п.,

5) проверяют схему па отсутствие ложных цепей,

6) оценивают надежность электропитания и режим работы оборудования,

7) проверяют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами ( , СНиП и т. п.).

Учимся читать принципиальные электрические схемы

О том, как читать принципиальные схемы я уже рассказывал в первой части . Теперь хотелось бы раскрыть данную тему более полно, чтобы даже у новичка в электронике не возникало вопросов. Итак, поехали. Начнём с электрических соединений.

Не секрет, что в схеме какая-либо радиодеталь, например микросхема может соединяться огромным количеством проводников с другими элементами схемы. Для того чтобы высвободить место на принципиальной схеме и убрать «повторяющиеся соединительные линии» их объединяют в своеобразный «виртуальный» жгут — обозначают групповую линию связи. На схемах групповая линия связи обозначается следующим образом.

Вот взгляните на пример.

Как видим, такая групповая линия имеет большую толщину, чем другие проводники в схеме.

Чтобы не запутаться, куда какие проводники идут, их нумеруют.

На рисунке я отметил соединительный провод под номером 8 . Он соединяет 30 вывод микросхемы DD2 и 8 контакт разъёма XP5. Кроме этого, обратите внимание, куда идёт 4 провод. У разъёма XP5 он соединяется не со 2 контактом разъёма, а с 1, поэтому и указан с правой стороны соединительного проводника. Ко 2-му же контакту разъёма XP5 подключается 5 проводник, который идёт от 33 вывода микросхемы DD2. Отмечу, что соединительные проводники под разными номерами электрически между собой не связаны, и на реальной печатной плате могут быть разнесены по разным частям платы.

Электронная начинка многих приборов состоит из блоков. А, следовательно, для их соединения применяются разъёмные соединения. Вот так на схемах обозначаются разъёмные соединения.

XP1 — это вилка (он же «Папа»), XS1 — это розетка (она же «Мама»). Всё вместе это «Папа-Мама» или разъём X1 (X2 ).

Также в электронных устройствах могут быть механически связанные элементы. Поясню, о чём идёт речь.

Например, есть переменные резисторы, в которые встроен выключатель. Об одном из таких я рассказывал в статье про переменные резисторы . Вот так они обозначаются на принципиальной схеме. Где SA1 — выключатель, а R1 — переменный резистор. Пунктирная линия указывает на механическую связь этих элементов.

Ранее такие переменные резисторы очень часто применялись в портативных радиоприёмниках. При повороте ручки регулятора громкости (нашего переменного резистора) сначала замыкались контакты встроенного выключателя. Таким образом, мы включали приёмник и сразу той же ручкой регулировали громкость. Отмечу, что электрического контакта переменный резистор и выключатель не имеют. Они лишь связаны механически.

Такая же ситуация обстоит и с электромагнитными реле . Сама обмотка реле и его контакты не имеют электрического соединения, но механически они связаны. Подаём ток на обмотку реле — контакты замыкаются или размыкаются.

Так как управляющая часть (обмотка реле) и исполнительная (контакты реле) могут быть разнесены на принципиальной схеме, то их связь обозначают пунктирной линией. Иногда пунктирную линию вообще не рисуют , а у контактов просто указывают принадлежность к реле (K1 .1) и номер контактной группы (К1.1 ) и (К1.2 ).

Ещё довольно наглядный пример — это регулятор громкости стереоусилителя. Для регулировки громкости требуется два переменных резистора. Но регулировать громкость в каждом канале по отдельности нецелесообразно. Поэтому применяются сдвоенные переменные резисторы, где два переменных резистора имеют один регулирующий вал. Вот пример из реальной схемы.

На рисунке я выделил красным две параллельные линии — именно они указывают на механическую связь этих резисторов, а именно на то, что у них один общий регулирующий вал. Возможно, вы уже заметили, что эти резисторы имеют особое позиционное обозначение R4.1 и R4.2 . Где R4 — это резистор и его порядковый номер в схеме, а 1 и 2 указывают на секции этого сдвоенного резистора.

Также механическая связь двух и более переменных резисторов может указываться пунктирной линией, а не двумя сплошными.

Отмечу, что электрически эти переменные резисторы не имеют контакта между собой. Их выводы могут быть соединены только в схеме.

Не секрет, что многие узлы радиоаппаратуры чувствительны к воздействию внешних или «соседствующих» электромагнитных полей. Особенно это актуально в приёмопередающей аппаратуре. Чтобы защитить такие узлы от воздействия нежелательных электромагнитных воздействий их помещают в экран, экранируют. Как правило, экран соединяют с общим проводом схемы. На схемах это отображается вот таким образом.

Здесь экранируется контур 1T1 , а сам экран изображается штрих-пунктирной линией, который соединён с общим проводом. Экранирующим материалом может быть алюминий, металлический корпус, фольга, медная пластина и т.д.

А вот таким образом обозначают экранированные линии связи. На рисунке в правом нижнем углу показана группа из трёх экранированных проводников.

Похожим образом обозначается и коаксиальный кабель. Вот взгляните на его обозначение.

В реальности экранированый провод (коаксиальный) представляет собой проводник в изоляции, который снаружи покрыт или обмотан экраном из проводящего материала. Это может быть медная оплётка или покрытие из фольги. Экран, как правило, соединяют с общим проводом и тем самым отводят электромагнитные помехи и наводки.

Повторяющиеся элементы.

Бывают нередкие случаи, когда в электронном устройстве применяются абсолютно одинаковые элементы и загромождать ими принципиальную схему нецелесообразно. Вот, взгляните на такой пример.

Здесь мы видим, что в схеме присутствуют одинаковые по номиналу и мощности резисторы R8 — R15. Всего 8 штук. Каждый из них соединяет соответствующий вывод микросхемы и четырёхразрядный семисегментный индикатор. Чтобы не указывать эти повторяющиеся резисторы на схеме их просто заменили жирными точками.

Ещё один пример. Схема кроссовера (фильтра) для акустической колонки. Обратите внимание на то, как вместо трёх одинаковых конденсаторов C1 — C3 на схеме указан лишь один конденсатор , а рядом отмечено количество этих конденсаторов. Как видно из схемы, данные конденсаторы необходимо соединить параллельно , чтобы получить общую ёмкость 3 мкФ.

Аналогично и с конденсаторами C6 — C15 (10 мкФ) и C16 — C18 (11,7 мкФ). Их необходимо соединить параллельно и установить на место обозначенных конденсаторов.

Следует отметить, что правила обозначения радиодеталей и элементов на схемах в зарубежной документации несколько иные. Но, человеку, получившему хотя бы базовые знания по данной теме разобраться в них будет гораздо проще.

Чем отличается принципиальная схема от монтажной: разновидности электрических схем

Современное электрическое оборудование в своей работе использует многочисленные технологические процессы, протекающие по различным алгоритмам.

Электромонтёру, напомним, что это специалист, который занимается эксплуатацией, монтажом, наладкой и ремонтом электрооборудования, нужно иметь правильную информацию обо всех особенностях электрооборудования. Для этого создают специальные электрические схемы.

Электросхема представляет собой документ, в котором по определённым правилам обозначаются связи между составными частями устройств, которые работают за счёт протекания электроэнергии.

Проще говоря, электрическая схема – это чертёж или графическое изображение электрооборудования и цепей связи.

Самая простая электрическая цепь может содержать всего лишь три элемента: источник, нагрузку и соединительные провода.

Но в реальности электрические цепи намного сложнее. Они, помимо основных элементов, содержат различные выключатели, рубильники, пускатели, контакторы, предохранители, реле в автоматах, электроизмерительные приборы, розетки, вилки и другое.

Всё это и указывается в электрической схеме и даёт понимание электромонтёрам о том, как работает установка и из каких элементов она состоит.

Основное назначение электросхемы – помощь в подключении установок, а также в поиске неисправности в цепи.

Электрические схемы создаются для электриков всех специальностей. Но каждая отдельная схема имеет свои особенности оформления. Чаще всего электрические схемы делят на принципиальные и монтажные.

Оба типа этих схем очень взаимосвязаны. Они дополняют информацию друг у друга, выполняются по единым стандартам, понятным всем пользователям, но имеют отличия в своём назначении.

Итак, принципиальная электрическая схема представляет собой графическое изображение электрической цепи, на котором все её элементы изображают в виде условных знаков.

На экране вы видите таблицу с условными обозначениями элементов электрической цепи.

Принципиальные электрические схемы создают в первую очередь для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания.

На экране вы видите простейшую принципиальную электрическую схему цепи.

Обратите внимание, она состоит из источника электрической энергии в виде батареи гальванических элементов, нагрузки в виде лампы накаливания и выключателя.

Что касается монтажных электрических схем, то они представляют собой чертежи или эскизы частей электрооборудования, по которым выполняется сборка, монтаж электроустановки. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.

На экране вы видите пример монтажной электрической схемы.

По этой схеме электромонтёр увидит, что все элементы электрической цепи крепятся на монтажной плате. Источником электроэнергии служит батарея от карманного фонарика. Монтажные провода, которые идут к батарее, припаиваются непосредственно к её электродам. А малогабаритная лампочка вворачивается в ламповый патрон, который закреплён на плате. В свою очередь монтажные провода крепятся к клеммам лампового патрона с помощью пайки, как и провода к выключателю. А контакты выключателя также закреплены на монтажной плате.

По указанным примерам схем можно сделать вывод, что основным отличием принципиальной и монтажной электрических схем является то, что принципиальная схема показывает соединение только основных элементов цепи, без комплектующей арматуры (например, электророзеток, вилок, ламповых патронов), а вот монтажная электрическая схема показывает точное (реальное) расположение элементов относительно друг друга, комплектующую арматуру и места подключения проводов.

Получается, что все монтажные схемы создаются на основе принципиальных и содержат всю необходимую информацию по производству монтажа электроустановки, включая выполнение электрических соединений. Без их использования создать качественно, надёжно и понятно для всех специалистов электрические подключения современного оборудования невозможно.

Для того чтобы правильно вычертить электрическую схему нужно обязательно соблюдать размеры и пропорции условных графических обозначений.

Линии связей между элементами схемы обязательно нужно проводить параллельно или взаимно перпендикулярно, соблюдая условие замкнутости цепи, наклонные линии не применять.

Итоги урока

На этом уроке мы говорили об электрических схемах. Узнали, что электросхема – это чертёж или графическое изображение электрооборудования и цепей связи. Основное назначение электрической схемы – помощь в подключении установок, а также в поиске неисправности в цепи. Электрические схемы чаще всего делят на принципиальные и монтажные. Принципиальные электрические схемы создают для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.

Все электрические схемы подразделены на несколько типов и каждый уважающий себя электрик просто обязан уметь их читать — понимать для чего они нужны, чем они отличны друг от друга, какую информацию несут, какие условные обозначения применяются на различных типах электрических схем и т.д. Многие люди, даже специалисты в электрике, путают понятия — «виды» и «типы» электросхем.

Виды схем: электрические, пневматические, гидравлические и комбинированные.

Комбинированные электросхемы применяются в проектах автоматизации различных технологических процессов, когда в проектах вместе с различными электрическими двигателями, аппаратами, датчиками одновременно используются элементы пневмоавтоматики и гидравлики. Такие схемы называют комбинированные электропневматические, электропневмогидравлические или электрогидравлические.

Типы электрических схем: функциональные, структурные, принципиальные и монтажные. Также существуют специальные типы схем, например, схемы внешних электрических и трубных проводок, схемы прокладки кабелей. По ним выполняют монтаж и подключение проводок к электрооборудованию и средствам автоматизации.

Самым распространенным типом электрических схем являются схемы принципиальные. Они дают четкое представление о работе электроустановки, т. к. на данных схемах показывают все электрические цепи. На принципиальных схемах условными обозначениями изображаются все электрические элементы, аппараты и устройства с учетом реальной последовательности их работы.
Все элементы на принципиальных схемах имеют буквенно-цифровые обозначения, которые выполняются согласно ГОСТ.

Как правило, схемы имеют дополнения: различные диаграммами и таблицами переключения контактов, которые поясняют порядок срабатывания сложных элементов, например, многопозиционных переключателей.

Схемы электрические принципиальные могут быть выполнены совмещенным или разнесенным способом. Совмещенным способом обычно выполняют относительно несложные принципиальные схемы. Схемы, в которых имеется несколько двигателей и развитая схема управления, в большинстве случаев выполняют разнесенным способом.

Для чтения принципиальных схем необходимо знать алгоритм функционирования схемы, понимать принцип действия приборов, аппаратов и систем автоматизации, на базе которых построена принципиальная схема.

Используйте на своих сайтах и блогах или на YouTube кликер для adsense

Используя принципиальную схему, можно выполнить проверку правильности электрических соединений при монтаже и наладке электрооборудования. Данные схемы незаменимы в эксплуатации и поиске неисправностей при ремонте.

На основе электрических принципиальных схем разрабатываются монтажные схемы. На этих схемах показывается реальное расположение электродвигателей, электрических аппаратов и устройств. Все элементы на монтажных схемах выполняются аналогично по тем же ГОСТ, как и на схемах принципиальных.

Все провода на монтажной схеме имеют свой уникальный номер, который после монтажа наносится на электрический провод. На таких схемах провода идущие в одном направлении часто объединяют в жгуты или пучки и показывают одной толстой линией.

Если на принципиальных схемах отдельные элементы одного и того же аппарата могут находится в разных частях схемы, например, катушка пускателя — в цепях управления, а контакты в силовых цепях, то на монтажной схеме все элементы того же пускателя располагаются рядом. При этом выводы аппарата на схеме нумеруются таким же образом, как на реальном аппарате.

Существует несколько вариантов выполнения монтажных схем. Самый популярный из них — это адресный метод. В этом методе провода на схемах не показывают, а только обозначают номерами около выводов электрических аппаратов. Хотя такую схему и проще выполнить при использовании компьютерных программ, она получается существенно сложнее и часто приводит к ошибкам при монтаже.

Кроме электрических принципиальных и монтажных схем существуют еще структурные и функциональные схемы. Они помогают разобраться с общим принципом действия какого-либо сложного электроустройства или отдельного его элемента. Структурные схемы от функциональных отличаются тем, что в них определяются и обозначаются основные функциональные части устройства, а на на функциональных схемах объясняются процессы, которые в них протекают, т.е. разъясняется принцип работы устройства.

Например, такие схемы очень популярны при описании принципа работы сложных электронных устройств. В этом случае развернутая принципиальная схема может только запутать и испугать, особенно не опытных электриков, которые в большинстве своем очень бояться различной электроники. А так, разобравшись по структурной схеме из каких отдельных блоков состоит устройство, как эти блоки между собой взаимодействуют, поняв по функциональной схеме как работают конкретные блоки и элементы устройства и обратившись уже затем к проблемной части на принципиальной схеме, можно быстро решить любую возникшую проблему.

Существуют также объединенные схемы. На таких схемах может быть показаны схемы нескольких типов, например электрическая принципиальная и монтажная. Структурная схема может быть совмещена с функциональной. И т.д.

Электрическая схема представляет собой документ, в котором по правилам ГОСТ обозначаются связи между составными частями устройств, работающих за счет протекания электроэнергии. Как Вы понимаете, этот чертеж дает понимание электрикам о том, как работает установка и из каких элементов она состоит. Основное назначение электросхемы – помощь в подключении установок, а также поиске неисправности в цепи. Далее мы расскажем, какие бывают виды и типы электрических схем, предоставив краткое описание, характеристики и примеры каждой разновидности.

Общая классификация

Для начала следует разобраться, что подразумевают под типами, а что под видами документов. Итак, согласно ГОСТ 2.701-84, существуют следующие виды схем (в скобках краткое обозначение):

Что, касается типов, основными считаются:

Исходя из указанных обозначений, можно по наименованию электросхемы понять ее вид и тип. Как пример, документ с названием Э3 является принципиальной электрической схемой. С виду она выглядит так:

Далее мы подробно рассмотрим, назначение и состав каждой из перечисленных типов электросхем. Рекомендуем перед этим ознакомиться со стандартными условными обозначениями на схемах, чтобы было еще проще понять, что собой представляет каждый вариант чертежа.

Назначение каждой электросхемы

Этот тип документа является наиболее простым и дает понимание о том, как работает электроустановка и из чего она состоит. Графическое изображение всех элементов цепи позволяет изначально увидеть общую картину, чтобы переходить к более сложному процессу подключения или же ремонта. Порядок чтения обозначается стрелочками и поясняющими надписями, что позволяет разобраться в структурной электрической схеме даже начинающему электрику. Принцип построения Вы можете увидеть на примере ниже:

Функциональная электросхема установки, по сути, не слишком отличается от структурной. Единственное отличие – более подробное описание всех составляющих узлов цепи. Выглядит этот документ следующим образом:

Принципиальная электрическая схема чаще всего применяется в распределительных сетях, т.к. дает самое раскрытое пояснение о том, как работает рассматриваемое электрооборудование. На таком чертеже должны обязательно быть указаны все функциональные узлы цепи и вид связи между ними. В свою очередь, принципиальная электросхема может иметь две разновидности: однолинейная или полная. В первом случае на чертеже изображают только первичные сети, называемые также силовыми. Пример однолинейного изображения Вы можете увидеть ниже:

Полная принципиальная схема может быть развернутой или элементной. Если электроустановка несложная и на один главный чертеж можно нанести все пояснения, достаточно сделать развернутый план. Если же Вы имеете дело со сложной аппаратурой, которая имеет в составе цепь управления, автоматизации и измерения, лучше разнести все отдельные узлы на разные листы, чтобы не запутаться.

Существует также принципиальная электросхема изделия. Этот тип документа представляет собой своеобразную выкопировку из общего плана, на которой обозначено только, как работает и из чего состоит определенный узел.

Эту разновидность электрических схем мы чаще всего используем на сайте, когда рассказываем о том, как самостоятельно выполнить монтаж электропроводки. Дело в том, что на монтажной электросхеме можно показать точное расположение всех элементов цепи, способ их соединения, а также буквенно-цифровые характеристики составляющих чертеж установок. Если взять за пример схему электропроводки в однокомнатной квартире, на ней мы увидим, где нужно размещать розетки, выключатели, светильники и остальные изделия.

Основное назначение монтажной схемы – руководство для проведения электромонтажных работ. Согласно подготовленному чертежу можно понять, где, что и как нужно подключать.

Кстати, монтажной также считается электросхема соединений, которая предназначена для подключения электрооборудования, а также соединения установок между собой в пределах одной цепи. При подключении бытовой техники руководствуются именно монтажной схемой.

Ну и последней из применяемых в распределительных сетях электросхемой является объединенная, которая может включать в себя несколько видов и типов документов. Ее используют в том случае, если можно без сильного нагромождения чертежа обозначить все важные особенности цепи. Используют объединенный проект чаще всего на предприятиях. Домашним мастерам такой тип схемы вряд ли может встретиться. Пример Вы можете увидеть ниже:

Существует также схема кабельных трасс, которая представляет собой упрощенный план прокладки кабельной линии к распределительным пунктам и трансформаторным подстанциям. Ее назначение аналогично монтажной электросхеме – с помощью данного документа монтажники руководствуются как вести линию от точки А к точке Б.

Напоследок рекомендуем просмотреть полезное видео по теме:

Вот мы и рассмотрели основные виды и типы электрических схем, а также их назначение и характеристики. Зная условные обозначения и имея под рукой всю нужную документацию совсем не сложно разобраться в том, как работает та или иная установка.

Будет интересно прочитать:

  • Виды электрического теплого пола
  • Какие бывают кабель каналы
  • Программы для черчения схем

При эксплуатации электрического оборудования нередко приходится иметь дело со схематическим обозначением на всевозможных графических изображениях. В них иногда бывает тяжело разобраться даже бывалым электрикам из-за большого разнообразия их типов, которые отличаются назначением и принципом исполнения. Именно поэтому необходимо детально рассмотреть деление на виды электрических схем и особенности каждой из них.

Само понятие подразумевает под собой комплекс условных обозначений, которые предназначены для определения каких-либо конструктивных элементов или частей. В соответствии с правилами и требованиями ГОСТ 2.701-84 выделяют несколько видов, отличающихся как сферой применения, так и типом устанавливаемых обозначений.

Разделение по видам приведено в таблице ниже:

Таблица: разновидности схема

Вид схемы Буквенное обозначение
1Электрические Э
2Гидравлические Г
3Пневматические П
4Газовые (кроме пневматических) X
5Кинематические К
6Вакуумные В
7Оптические Л
8Энергетические Р
9Деления Е
10Комбинированные С

Так, для одного и того же устройства или объекта, при необходимости, могут разрабатываться сразу несколько схем, поясняющих принцип подключения, работы или реализации функций. Для электротехнического оборудования схемы подразделяются на несколько типов:

  • Принципиальные или полные – обозначаются цифрой 3;
  • Структурные – обозначаются цифрой 1;
  • Функциональные – обозначаются цифрой 2;
  • Общие – обозначаются цифрой 6;
  • Монтажные или схемы соединений – обозначаются цифрой 4;
  • Подключений – обозначаются цифрой 5;
  • Расположения и объединенные – обозначаются цифрой 7 и 0 соответственно.

При составлении конкретной схемы используется, как правило, буквенно-цифровые обозначения, к примеру, для электрической функциональной маркировка будет выглядеть как Э2, для газовой структурной Х1 и т.д.

Принципы графического обозначения каких-либо элементов на схемах определяются отраслевыми и государственными стандартами. Они же устанавливают требования к расположению составных частей, их размеры, нанесение шифров, наименований или маркировок.

Определение и назначение каждой электросхемы

Каждый вид электрической схемы реализуется в виде чертежа или графического изображения, выполненного вручную или посредством печатных приспособлений. Основные отличия обусловлены описанием тех или иных функций, указанием последовательности, принципа действия или привязкой к чему-либо.

Принцип построения схем регламентируется стандартом ЕСКД, который реализуется рядом нормативных документов, среди которых достаточно важными считаются ГОСТ 2.702-2011, а также ГОСТ 2.708-81.

Они устанавливают:

  • требования к изображениями;
  • принципам расположения компонентов;
  • оформления чертежей;
  • нанесению обозначений и технических характеристик.

Далее детально рассмотрим особенности каждого вида электрических схем.

Принципиальная (полная)

Принципиальная схема предназначена для пояснения принципа действия того или иного устройства. Наиболее часто ее применяют для различных распределительных устройств в силовых цепях, каких-либо приборов и т.д.

Пример принципиальной схемы

На принципиальных схемах обязательно указываются действующие электрические компоненты и проводимые связи между ними, силовые контакты и электрически узлы, соединяющие радиодетали. В свою очередь, такие электрические схемы подразделяются на два подвида: однолинейные и полные.

Однолинейные также называют первичными цепями, на них, как правило, обозначается силовая часть оборудования или электроустановки. С другой стороны однолинейная схема широко распространена для обозначения трехфазных цепей, где все оборудование на трех фазах имеет идентичное расположение и подключение. За счет чего в однолинейном варианте демонстрируется только одна фаза с некоторыми отступлениями в местах, где оборудование на разных фазах отличается.

Кроме силовых цепей существуют и слаботочные, для питания защит, средств измерительной техники и различных электронных устройств. Такие схемы вторичных цепей называются полными, так как показывают полную картину всего оборудования, выделяя даже состояние некоторых контактов и частей оборудования. Увы, из-за сложности современной аппаратуры, далеко не все устройства можно изобразить на одном листе, поэтому полные бывают элементными и развернутыми.

Полная схема

На структурных схемах осуществляется общее изображение устройства, все компоненты или отдельные узлы которого выполняются в виде блоков, обозначающих оборудование, а связи между блоками могут говорить о тех или иных операциях, связующих отдельные блоки между собой.

Структурная схема

Этот тип графического изображения призван дать общее представление об устройстве и принципе действия, поэтому на них часто проставлены стрелочки, имеются поясняющие надписи и прочие обозначения, упрощающие понимание процесса или поясняющие работу прибора. Для работы с таким изображением не нужно иметь электротехнического образования, так как ее обозначения будут понятны даже не искушенному в электричестве человеку.

Функциональная схема является более детальным вариантом структурной, на ней также все элементы изображаются отдельными блоками. Главное отличие в том, что каждый блок имеет уже индивидуальную форму обозначения в соответствии с его функциональным назначением. Возможно также выделение различных видов связей между частями, объединение деталей в блоки и т.д.

Функциональная схема

Общая

Общая схема предназначена для изображения мест расположения электрических аппаратов на местности или в пределах электроустановки. Определяет основные типы электрических соединений этих аппаратов, места их реализации и т.д. Данный тип является обязательным при разработке различных конструкторских документов на этапе проектирования. Но кроме общей, конструкторская документация включает в себя еще две не менее важные схемы – соединений и подключений.

Общая схема

Схема соединений (монтажная)

Схема соединения используется для графического изображения мест подключения электрооборудования. На ней указываются конкретная привязка к частям зданий, распредустановок, по отношению к которым и должен осуществляться монтаж электрооборудования, благодаря чему такой тип схем еще называют монтажными.

Наиболее часто монтажные схемы используются для обозначения разводки электрических цепей в здании, широко применяются во время ремонта, чтобы обозначить места прокладки проводки, установки распределительных коробок и вывода точек подключения к приборам и контактам аппаратов.

Монтажная схема

На рисунке выше приведен пример монтажной схемы, как видите, для каждого варианта могут устанавливаться свои условные обозначения, указываемые отдельно. Имеются привязки к каждой конкретной комнате и планируемому электрооборудованию, осветительным приборам и т.д. В дальнейшем она используется не только для монтажных работ, но может применяться и в процессе эксплуатации.

Подключений

Схема подключения используется для указания принципов соединения различных электрических или электронных блоков в единую систему. Иногда предполагается, что блоки имеют территориальное разделение, в других ситуациях они могут находиться в пределах одного распределительного устройства, шинной сборки или стойки. Ее пример приведен на рисунке ниже:

Схема подключения

В зависимости от сложности графического изображения и количества отображаемых подключений оно может дополняться таблицами соединений для пояснения порядка расположения выводов и подключения изделия.

Расположения

Также входит в состав проектной документации и помогает определить местоположения всех частей электроустановки относительно друг друга и других значимых объектов.

Схема расположения

На схеме расположения могут наноситься:

  • составные части всего объекта, а при необходимости и связи между всеми частями;
  • соединительные провода, кабели, шнуры и т.д. в упрощенном виде;
  • наименование каждого элемента, его тип и документ, на основании которого он применяется.

Такое изображение может выполняться как в двухмерном, так и в трехмерном пространстве. Но в любом случае изображение должно соблюдать масштаб по отношению к натурным размерам и расстояниям.

Трехмерная схема расположения Объединенная схема

Объединенная схема строиться на основании нескольких типов изображений, рассмотренных нами ранее. Такое построение призвано упростить работу электромонтажников или проектировщиков за счет объединения различной информации в единое целое. Но на практике далеко не всегда целесообразно объединять несколько типов графических элементов. Это связанно со сложностью некоторых приборов и устройств, в которых из-за нагромождения элементов довольно сложно объединять разные изображения.

Чтение электрических схем и чертежей – схема монтажная

Описание электрической принципиальной схемы

⇐ ПредыдущаяСтр 9 из 29

На основе типовых схем включения вышеперечисленных элементов и технических требований, предъявляемых к электросчетчику, была разработана электрическая принципиальная схема устройства. Электрическая схема условно разбита на функциональные модули: узел измерения мощности (К1446ПМ1), узел индикации (LCD Winstar Wh2602A), узел коммуникации (MAX 232 и слот чтения MMC карт), узел коммутации цепи, узел питания. Электрическая принципиальная схема представлена на чертеже 050702 ДП 05.02.Э3.

Узел измерения мощности состоит из микросхемы КР1446ПМ1 (поз. DA1) и компонентов обеспечивающих ее работу. Так как КР1446 имеет в своем составе не только аналоговую часть, но и цифровую, необходима подача на нее тактового сигнала. В данном случае внешняя часть тактового генератора представляет собой кварцевый резонатор на 4 МГц и 2 керамических конденсатора емкостью по 26 пФ.

Чтобы получить мгновенное значение мощности необходимо подать на микросхему сигналы пропорциональные напряжению и току в электросети. Напряжение пропорциональное сетевому подается на ИС со средних точек делителей, выполненных на резисторах R1,R2 и R3,R4. Данные резисторы выполняют роль датчиков напряжения. Для измерения мгновенного значения тока в сети используется трансформатор тока (Т1), первичная обмотка, которого включена последовательно с нагрузкой, а на вторичной обмотке создается напряжение пропорциональное току в цепи, данное напряжение подается на входы ICP и ICM КР1446ПМ1. Сигналы тока и напряжения поступают на дельта-сигма АЦП микросхемы, а затем перемножаются. Для функционирования АЦП необходимо опорное напряжение, которое формируется на выводе RVSO. От данного напряжения зависит коэффициент пересчета и для его изменения используется переменный резистор RP1.

Чтобы обеспечить определённые пределы действующих значений напряжений дифференциального сигнала на входах ICP и ICM, необходимо рассчитать номиналы резисторов R8,R9 по формуле :

R = 0,0059×K (1)

где K — коэффициент трансформации трансформатора.

Так как коэффициент используемого трансформатора – 2542, то найдем значения резисторов по формуле:

R=0,0059×2542=14,99 (2)

Исходя из найденного значения выбираем из стандартного ряда резисторы по 15 Ом.

ИМС К1446ПМ1 перемножает мгновенные значения тока и напряжения и формирует на выходе LFPO импульсы с частотой пропорциональной мгновенной мощности. Данные импульсы поступают на счетный вход таймера-счетчика (PB1) микроконтроллера, который выполняя определенные алгоритмы рассчитывает потребляемую мощность. Вывод LFPO напрямую подключен к входу микроконтроллера, так как уровни сигналов у 2 микросхем совпадают и нет необходимости использовать согласующие устройства. Тактирование микроконтроллера осуществляется от тактового генератора, внешними элементами, которого являются: кварцевый резонатор (поз. BQ2) 16МГц и 2 керамических конденсатора по 20 пФ (поз.C7,позю.C8). Для поддержания включенного состояния микроконтроллера на выводе RESET должен быть высокий уровень, а для ограничения потребляемого тока последовательно включен резистор R7.

ЖК индикатор (поз. HG1) подключен к порту «С» микроконтроллера. Каждый байт информации передается на дисплей за 2 такта, так как последний подключен по 4-х проводной схеме. Линии данных подключены к выводам контроллера (поз. DD1) PC0-PC3, линия разрешения обмена — к выводу PC4 и линия выбора регистров — к выводу PC6. Так как яркость свечения жк индикатора зависит от напряжения питания и может меняться, есть необходимость ее регулировать и для этого используется переменный резистор RP2.

Выводы порта B используются для подключения MMC карты к контроллеру, но подключить выводы мк напрямую к выводам карты памяти не возможно, так как напряжения логической 1 для последней составляет 3,3 В. В связи с этим для понижения напряжения используются делители, выполненные на резисторах R13-R16 , R14-R17 , R15-R18 . Для питания карты памяти необходимо напряжение 3.3 В и ток до 100 млА. Напряжение питания схемы составляет 5 В, из чего следует, что для питания карты памяти понадобиться стабилизатор напряжения. Последний выполненного на стабилитроне VD2, транзисторе VT2 и резисторе R20. Транзистор включен по схеме эмиттерного повторителя и применен, чтобы обеспечить необходимый ток нагрузки и исключить протекание большого тока через стабилитрон.

Выводы МК, предназначенные для обмена данными с ПК (RxD, TxD), подключены к выводам микросхемы MAX 232CPE, которая преобразует КМОП уровни в уровни RS232.

Узел коммутации выполнен на реле (поз. К1), с напряжением питания 5 в. Подключение катушки к выводу микроконтроллера осуществляется не напрямую, а через транзисторный ключ, так как катушка потребляет значительный ток, который может вывести микроконтроллер из строя. Транзисторный ключ выполнен выполненный на КТ342В (поз. VT1) и резисторе R19. Во время включения и отключения реле ее катушка, благодаря своей индуктивности создает ЭДС самоиндукции, которая может вывести транзистор из строя. Для защиты последнего параллельно катушке включен диод (поз. VD1), таким образом, что возникающая во время коммутации ЭДС создаст ток через диод, а напряжение на диоде не превысит 0,7 вольт.

Питание устройства осуществляется от встроенного трансформаторного блока питания, выполненного на трансформаторе Т2, диодном мосте VD3, сглаживающем фильтре С1 и линейном стабилизаторе напряжения LM7805(поз. DA2). Питание устройства, так же может осуществляться от внешнего источника напряжения номиналом 5 вольт.

Date: 2016-06-06; view: 1314; Нарушение авторских прав

Понравилась страница? Лайкни для друзей:

Как читать электрические схемы

Каждая электрическая схема состоит из множества элементов, которые, в свою очередь, также включают в свою конструкцию различные детали. Наиболее ярким примером служат бытовые приборы. Даже обычный утюг состоит из нагревательного элемента, температурного регулятора, контрольной лампочки, предохранителя, провода и штепсельной вилки. Другие электроприборы имеют еще более сложную конструкцию, дополненную различными реле, автоматическими выключателями, электродвигателями, трансформаторами и многими другими деталями. Между ними создается электрическое соединение, обеспечивающее полное взаимодействие всех элементов и выполнение каждым устройством своего предназначения.

В связи с этим очень часто возникает вопрос, как научится читать электрические схемы, где все составляющие отображаются в виде условных графических обозначений. Данная проблема имеет большое значение для тех, кто регулярно сталкивается с электромонтажом. Правильное чтение схем дает возможность понять, каким образом элементы взаимодействуют между собой и как протекают все рабочие процессы.

Виды электрических схем

Для того чтобы правильно пользоваться электрическими схемами, нужно заранее ознакомиться с основными понятиями и определениями, затрагивающими эту область.

Любая схема выполняется в виде графического изображения или чертежа, на котором вместе с оборудованием отображаются все связующие звенья электрической цепи. Существуют различные виды электрических схем, различающиеся по своему целевому назначению. В их перечень входят первичные и вторичные цепи, системы сигнализации, защиты, управления и прочие. Кроме того, существуют и широко используются принципиальные и монтажные электрические схемы, однолинейные, полнолинейные и развернутые. Каждая из них имеет свои специфические особенности.

К первичным относятся цепи, по которым подаются основные технологические напряжения непосредственно от источников к потребителям или приемникам электроэнергии. Первичные цепи вырабатывают, преобразовывают, передают и распределяют электрическую энергию. Они состоят из главной схемы и цепей, обеспечивающих собственные нужды. Цепи главной схемы вырабатывают, преобразуют и распределяют основной поток электроэнергии. Цепи для собственных нужд обеспечивают работу основного электрического оборудования. Через них напряжение поступает на электродвигатели установок, в систему освещения и на другие участки.

Вторичными считаются те цепи, в которых подаваемое напряжение не превышает 1 киловатта. Они обеспечивают выполнение функций автоматики, управления, защиты, диспетчерской службы. Через вторичные цепи осуществляется контроль, измерения и учет электроэнергии. Знание этих свойств поможет научиться читать электрические схемы.

Полнолинейные схемы используются в трехфазных цепях. Они отображают электрооборудование, подключенное ко всем трем фазам. На однолинейных схемах показывается оборудование, размещенное лишь на одной средней фазе. Данное отличие обязательно указывается на схеме.

На принципиальных схемах не указываются второстепенные элементы, которые не выполняют основных функций. За счет этого изображение становится проще, позволяя лучше понять принцип действия всего оборудования. Монтажные схемы, наоборот, выполняются более подробно, поскольку они применяются для практической установки всех элементов электрической сети. К ним относятся однолинейные схемы, отображаемые непосредственно на строительном плане объекта, а также схемы кабельных трасс вместе с трансформаторными подстанциями и распределительными пунктами, нанесенными на упрощенный генеральный план.

В процессе монтажа и наладки широкое распространение получили развернутые схемы с вторичными цепями. На них выделяются дополнительные функциональные подгруппы цепей, связанных с включением и выключением, индивидуальной защитой какого-либо участка и другие.

Обозначения в электрических схемах

В каждой электрической цепи имеются устройства, элементы и детали, которые все вместе образуют путь для электрического тока. Они отличаются наличием электромагнитных процессов, связанных с электродвижущей силой, током и напряжением, и описанных в физических законах.

В электрических цепях все составные части можно условно разделить на несколько групп:

  1. В первую группу входят устройства, вырабатывающие электроэнергию или источники питания.
  2. Вторая группа элементов преобразует электричество в другие виды энергии. Они выполняют функцию приемников или потребителей.
  3. Составляющие третьей группы обеспечивают передачу электричества от одних элементов к другим, то есть, от источника питания – к электроприемникам. Сюда же входят трансформаторы, стабилизаторы и другие устройства, обеспечивающие необходимое качество и уровень напряжения.

Каждому устройству, элементу или детали соответствует условное обозначение, применяющееся в графических изображениях электрических цепей, называемых электрическими схемами. Кроме основных обозначений, в них отображаются линии электропередачи, соединяющие все эти элементы. Участки цепи, вдоль которых протекают одни и те же токи, называются ветвями. Места их соединений представляют собой узлы, обозначаемые на электрических схемах в виде точек. Существуют замкнутые пути движения тока, охватывающие сразу несколько ветвей и называемые контурами электрических цепей. Самая простая схема электрической цепи является одноконтурной, а сложные цепи состоят из нескольких контуров.

Большинство цепей состоят из различных электротехнических устройств, отличающихся различными режимами работы, в зависимости от значения тока и напряжения. В режиме холостого хода ток в цепи вообще отсутствует. Иногда такие ситуации возникают при разрыве соединений. В номинальном режиме все элементы работают с тем током, напряжением и мощностью, которые указаны в паспорте устройства.

Все составные части и условные обозначения элементов электрической цепи отображаются графически. На рисунках видно, что каждому элементу или прибору соответствует свой условный значок. Например, электрические машины могут изображаться упрощенным или развернутым способом. В зависимости от этого строятся и условные графические схемы. Для показа выводов обмоток используются однолинейные и многолинейные изображения. Количество линий зависит от количества выводов, которые будут разными у различных типов машин. В некоторых случаях для удобства чтения схем могут использоваться смешанные изображения, когда обмотка статора показывается в развернутом виде, а обмотка ротора – в упрощенном. Таким же образом выполняются и другие условные обозначения электрических схем.

Изображения трансформаторов также осуществляются упрощенным и развернутым, однолинейным и многолинейным способами. От этого зависит способ отображения самих устройств, их выводов, соединений обмоток и других составных элементов. Например, в трансформаторах тока для изображения первичной обмотки применяется утолщенная линия, выделенная точками. Для вторичной обмотки может использоваться окружность при упрощенном способе или две полуокружности при развернутом способе изображения.

Графические изображения других элементов:

  • Контакты. Применяются в коммутационных устройствах и контактных соединениях, преимущественно в выключателях, контакторах и реле. Они разделяются на замыкающие, размыкающие и переключающие, каждому из которых соответствует свой графический рисунок. В случае необходимости допускается изображение контактов в зеркально-перевернутом виде. Основание подвижной части отмечается специальной незаштрихованной точкой.
  • Выключатели. Могут быть однополюсными и многополюсными. Основание подвижного контакта отмечается точкой. У автоматических выключателей на изображении указывается тип расцепителя. Выключатели различаются по типу воздействия, они могут быть кнопочными или путевыми, с размыкающими и замыкающими контактами.
  • Плавкие предохранители, резисторы, конденсаторы. Каждому из них соответствуют определенные значки. Плавкие предохранители изображаются в виде прямоугольника с отводами. У постоянных резисторов значок может быть с отводами или без отводов. Подвижный контакт переменного резистора обозначается в виде стрелки. На рисунках конденсаторов отображается постоянная и переменная емкость. Существуют отдельные изображения для полярных и неполярных электролитических конденсаторов.
  • Полупроводниковые приборы. Простейшими из них являются диоды с р-п-переходом и односторонней проводимостью. Поэтому они изображаются в виде треугольника и пересекающей его линии электрической связи. Треугольник является анодом, а черточка – катодом. Для других видов полупроводников существуют собственные обозначения, определяемые стандартом. Знание этих графических рисунков существенно облегчает чтение электрических схем для чайников.
  • Источники света. Имеются практически на всех электрических схемах. В зависимости от назначения, они отображаются как осветительные и сигнальные лампы с помощью соответствующих значков. При изображении сигнальных ламп возможна заштриховка определенного сектора, соответствующего невысокой мощности и небольшому световому потоку. В системах сигнализации вместе с лампочками применяются акустические устройства – электросирены, электрозвонки, электрогудки и другие аналогичные приборы.

Как правильно читать электрические схемы

Принципиальная схема представляет собой графическое изображение всех элементов, частей и компонентов, между которыми выполнено электронное соединение с помощью токоведущих проводников. Она является основой разработок любых электронных устройств и электрических цепей. Поэтому каждый начинающий электрик должен в первую очередь овладеть способностями чтения разнообразных принципиальных схем.

Именно правильное чтение электрических схем для новичков, позволяет хорошо усвоить, каким образом необходимо выполнять соединение всех деталей, чтобы получился ожидаемый конечный результат. То есть устройство или цепь должны в полном объеме выполнять назначенные им функции. Для правильного чтения принципиальной схемы необходимо, прежде всего, ознакомиться с условными обозначениями всех ее составных частей. Каждая деталь отмечена собственным условно-графическим обозначением – УГО. Обычно такие условные знаки отображают общую конструкцию, характерные особенности и назначение того или иного элемента. Наиболее ярким примером служат конденсаторы, резисторы, динамики и другие простейшие детали.

Гораздо сложнее работать с полупроводниковыми электронными компонентами, представленными транзисторами, симисторами, микросхемами и т.д. Сложная конструкция таких элементов предполагает и более сложное отображение их на электрических схемах.

Например, в каждом биполярном транзисторе имеется минимум три вывода – база, коллектор и эмиттер. Поэтому для их условного изображения требуются особые графические условные знаки. Это помогает различить между собой детали с индивидуальными базовыми свойствами и характеристиками. Каждое условное обозначение несет в себе определенную зашифрованную информацию. Например, у биполярных транзисторов может быть совершенно разная структура – п-р-п или р-п-р, поэтому изображения на схемах также будут заметно отличаться. Рекомендуется перед тем как читать принципиальные электрические схемы, внимательно ознакомиться со всеми элементами.

Условные изображения очень часто дополняются уточняющей информацией. При внимательном рассмотрении, можно увидеть возле каждого значка латинские буквенные символы. Таким образом обозначается та или иная деталь. Это важно знать, особенно, когда мы только учимся читать электрические схемы. Возле буквенных обозначений расположены еще и цифры. Они указывают на соответствующую нумерацию или технические характеристики элементов.

Схемы по электрике. Виды и типы. Некоторые обозначения

Во время работ по электротехнике человек может столкнуться с обозначениями элементов, которые условно обозначены на электромонтажных схемах. Разнообразия схемы по электрике очень широки. Они имеют разные функции и классификацию. Но все графические обозначения в условном виде приводятся к одним формам, и для всех схем элементы соответствуют друг другу.

Электромонтажная схема – это документ, в котором обозначены связи составных элементов разных устройств, потребляющих электроэнергию, между собой по определенным стандартным правилам. Такое изображение в виде чертежа призвано научить специалистов по электрическому монтажу, чтобы они поняли из схемы принцип действия устройства, и из каких составных частей и элементов она собрана.

Главное предназначение электромонтажной схемы – оказать помощь в монтаже электроустройств и приборов, простом и легком обнаружении неисправности в электрической цепи. Далее разберемся в видах и типах электромонтажных схем, выясним их свойства и характеристики каждого типа.

Схемы по электрике: классификация

Все электрические схемы, как документы, разделяются на виды и типы. По соответствующим стандартам можно найти разделение этих документов по видам схем и типам. Разберем их подробную классификацию.

Виды электромонтажных схем следующие:

  • Электрические.
  • Газовые.
  • Гидравлические.
  • Энергетические.
  • Деления.
  • Пневматические.
  • Кинематические.
  • Комбинированные.
  • Вакуумные.
  • Оптические.

Основные типы:

  • Структурные.
  • Монтажные.
  • Объединенные.
  • Расположения.
  • Общие.
  • Функциональные.
  • Принципиальные.
  • Подключения.

Рассматривая схемы по электрике, перечисленные обозначения, по названию электросхемы определяют тип и вид.

Обозначения в электросхемах

В современный период в электромонтажных работах используются как отечественные, так и импортные элементы. Зарубежные детали можно представить широким ассортиментом. На схемах и чертежах они также обозначаются условно. Описывается не только размер параметров, но и список элементов, входящих в устройство, их взаимосвязь.

Теперь следует разобраться, для чего предназначена каждая конкретная электросхема, и из чего она состоит.

Принципиальная схема

Такой тип используется в распределительных сетях. Он обеспечивает полное раскрытие работы электрооборудования. На чертеже обязательно обозначают функциональные узлы, их связь. Схема имеет два вида: однолинейная, полная. На однолинейной схеме изображены первичные сети (силовые). Вот ее пример:

Полный вариант схемы по электрике изображается в элементном или развернутом виде. Если устройство простое, и на чертеже входят все пояснения, то хватит развернутого плана. При сложном устройстве с цепью управления, измерения и т. д., оптимальным решением будет изобразить все узлы на отдельных листах, во избежание путаницы.

Бывает также принципиальная электросхема, на которой изображена выкопировка плана с обозначением отдельного узла, его состав и работа.

Монтажная схема

Такие схемы по электрике применяются для разъяснения монтажа какой-либо проводки. На них можно изобразить точное положение элементов, их соединение, характеристики установок. На схеме проводки квартиры будет видно размещение розеток, светильников и т.д.

Эта схема руководит электромонтажными работами, дает понимание всех подключений. Для монтажа бытовых устройств такая схема лучше подходит для работы.

Объединенная схема

Этот тип схемы включает в себя разные виды и типы документов. Ее применяют для того, чтобы не загромождать чертеж, обозначить важные цепи, особенности. Чаще объединенные схемы применяют на предприятиях промышленности. Для домашнего применения она вряд ли имеет смысл.

Изучив условные обозначения, подготовив необходимую документацию, не трудно разобраться в работе любой электроустановке.

Порядок сборки по электрической схеме

Самым сложным делом для электрика является понимание взаимодействия элементов в схеме. Нужно знать, как читать и собирать схему. Сборка предполагает определенные правила:

  • Во время сборки необходимо руководствоваться одним направлением, например, по часовой стрелке.
  • Лучше для начала разделить схему на части, если много элементов и схема сложная.
  • Начинают сборку от фазы.
  • При каждом выполненном шаге по сборке нужно предположить, что будет происходить, если в данный момент подать напряжение.

После окончания сборки обязательно должна образоваться замкнутая цепь. Для примера разберем подключение в домашних условиях люстры, состоящей из 3-х плафонов, с применением двойного выключателя.

Сначала определим порядок работы люстры. При включении 1-й клавиши должна загораться одна лампочка, если включить 2-ю клавишу, то другие две. По схеме на выключатель и люстру идут по 3 провода. От сети идут два провода, фаза и ноль.

Индикатором определяем и находим фазу, соединяем ее с выключателем, не прерывая ноль. Провод присоединяем к общей клемме выключателя. От него пойдут 2 провода на 2 цепи. Один из проводов соединим с патроном лампы. От патрона выводим второй проводник, соединяем с нулем. Одна цепь готова. Для проверки щелкаем первой клавишей выключателя, лампа горит.

2-й провод от выключателя подключаем к патрону другой лампы. От патрона провод соединяем с нулем. Если по очереди щелкать клавишами выключателя, то будут светиться разные лампы.

Теперь подключим третью лампу. Соединяем ее параллельно к любой лампе. В люстре один провод стал общим. Его делают отличительным по цвету. Если у вас провода все одинаковые по цвету, то во избежание путаницы необходимо при монтаже пользоваться индикатором. Для подключения люстры обычно не требуется особого труда, так как эта схема не особо сложная.

типов электрических цепей | Инженерные книги Pdf

Если вы хорошо разбираетесь в электричестве, этот пост может показаться детской забавой. (Эй, это электричество 101!) Но для многих различные типы цепей — это то, о чем вы узнали в средней школе и быстро забыли. Это одна из тех тем, которые медленно исчезают из вашего мозга, потому что они вам просто не нужны. Такое случается. Если вы хотите погрузиться в основы электричества, вам нужно знать о типах цепей и о том, как они работают.Итак, приступим! Если бы вы могли выучить это в восьмом классе, вы, безусловно, сможете выучить это сейчас.

Прежде всего, давайте определим слово «цепь». Цепь определяется как полный и замкнутый путь, по которому может течь циркулирующий электрический ток. Это также может означать систему электрических проводников и компонентов, образующих такой путь. Каждый раз, когда вы щелкаете (работающим) выключателем, вы замыкаете цепь и позволяете электрическим токам делать свое дело.

Одним из основных типов электрических цепей являются силовые цепи.Эти цепи передают и контролируют большие объемы электроэнергии. Если вам интересно, другим основным типом схемы является электронная схема, которая обрабатывает и передает информацию (они используются в компьютерах, телевизорах, сотовых телефонах и т. Д.).

Типы цепей

Закрытые и открытые схемы

Замкнутый контур имеет полный путь. Обрыва цепи нет. Чтобы цепь работала, она должна быть замкнута; таким образом, открытые цепи не работают.Поначалу это может быть трудной идеей, но схемы сильно отличаются от открытых ресторанов или открытых дверей. Когда цепь разомкнута, ток не может проходить.

Цепи серии

и параллельные схемы

Последовательная цепь — это цепь, в которой один и тот же ток протекает через все компоненты цепи. У течения есть только один путь. Если у вас когда-либо были проблемы с рождественскими огнями, возможно, вы немного знаете о последовательных схемах. Если огни построены по последовательной схеме (как и многие праздничные огни), когда одна лампочка отсутствует или перегорела, ток не может течь, и свет не включается.Последовательные схемы могут быть очень неприятными, потому что, если они не работают, вам нужно выяснить, какая часть отвечает за все.

Параллельная схема — это схема, в которой компоненты скомпонованы так, что ток должен пропасть (с битами, протекающими через каждую параллельную ветвь) перед встречей и повторным объединением. Поскольку ток разделяется, каждый компонент получает заряд. И если один путь сломается, другие пути все равно будут работать, потому что они не зависят друг от друга. (Так что, если вы ищете новые рождественские огни, убедитесь, что они включены в параллельную схему, чтобы избежать лишних хлопот.) Дома всегда строятся с параллельными цепями, поэтому, если один свет перегорит, весь ваш дом не потеряет электроэнергию.

Короткие замыкания

Короткое замыкание — это цепь, которая позволяет току проходить по непредусмотренному пути. Таким образом, он не встречает сопротивления (или не встречает его совсем). Часть схемы, обойденная коротким замыканием, может перестать функционировать, и может начаться протекание большого количества тока. Это вызывает нагрев проводов и потенциально может вызвать возгорание.Как мы уже обсуждали, автоматические выключатели и коробки предохранителей устанавливаются для отключения цепей в качестве меры безопасности при коротком замыкании. Короткое замыкание — это не просто электрическая неисправность, как некоторые считают.

Circuits Unit (Complete)

Цели:
Учащиеся смогут:
1) Описывать, как энергия передается от батарей по проводам в свет (в форме лампочки) и / или тепло.
2) Опишите части цепи (включая разомкнутый и замкнутый переключатель).
3) Опишите разницу между последовательной и параллельной цепями.
4) Создайте простую последовательную и параллельную цепь, используя такие компоненты, как провода, алюминиевая фольга, батареи и лампы.
5) Опишите качества материалов, которые сделают их проводниками электричества или изоляторами, на основе их экспериментов.

Основные вопросы:
1) Что такое электричество?
2) Что такое проводник?
3) Что такое изолятор?
4) Что такое схема?
5) В чем разница между последовательной схемой и параллельной схемой?
6) В чем был бы недостаток разводки всего дома по последовательной схеме?

Вводная геологоразведочная деятельность (оценка предшествующих знаний):

Слияние слов электричества — Учащиеся определяют ЭЛЕКТРИЧЕСТВО, используя свои собственные слова.
1. Напишите на доске ЭЛЕКТРИЧЕСТВО и пусть студенты по очереди пишут, что, по их мнению, это означает.
2. Также попросите их назвать что-нибудь, что использует электричество.
3. Обсудите все, что думают об электричестве и устройствах, которые его используют.
4. Предложите им подумать об устройствах, которые используют электроэнергию, которых они могут не ожидать, например, о часах в комнате, утренних объявлениях, кулере для напитков, освещенных указателях выхода и т. Д.

Электроэнергия Ролевая игра

Цель: Продемонстрировать поведение электрического тока при его контакте с проводником по сравнению с его контактом с изолятором.Чтобы электрическая цепь
работала, она должна непрерывно проходить от источника
питания к устройству, которое питает его. Если цепь разорвана или
заблокирован изолятором, питание не может пройти.

Процедуры:
1. Попросите учащихся встать непрерывной линией бок о бок.
Студенты будут обнимать друг друга за плечи.

2. Первый человек в очереди начинает волну, наклоняясь, а затем снова вставая.Это последовательно подтянет и всех остальных в линии, имитируя электричество, протекающее через проводник .

4. Следующие студенты будут моделировать изолятор . Повторите линию учеников, обнимая друг друга за плечи, но на этот раз пусть один ученик посередине опускает руки по бокам. Они по-прежнему должны быть рядом с другими учениками, но не связаны с ними. Опять же, первый человек в очереди наклоняется в талии и встает. Что происходит?

4. Обсудите со студентами, что произошло на этот раз — как изгибная волна остановилась на незнакомом ученике. Это имитирует эффект изолятора (непривязанного ученика), который представляет собой материал, не позволяющий электричеству легко проходить через него.

5. Укажите, что хороший проводник — это плохой изолятор, а плохой проводник — хороший изолятор. Проведите мозговой штурм с учениками: один из предметов, которые, по их мнению, могут быть хорошими проводниками, и те, которые будут хорошими изоляторами.Спросите их, как они узнают, что есть что.

6. После завершения урока по электричеству и схемам еще раз обсудите эту гипотезу со студентами, чтобы увидеть, подтвердили или опровергли их эксперименты с изоляторами и проводниками их предсказания.

Электрическая цепь — ток, параллель, цепи и устройства

Электрическая цепь — это система проводящих элементов, предназначенная для управления траекторией электрического тока для определенной цели. Цепи состоят из источников электроэнергии , таких как генераторы и батареи; элементы, которые преобразуют, рассеивают или накапливают эту энергию, такие как резисторы, конденсаторы и катушки индуктивности; и соединительные провода.Цепи часто включают предохранитель или автоматический выключатель для предотвращения перегрузки по мощности.

Устройства, подключенные к цепи, подключаются к ней одним из двух способов: последовательно или параллельно . Последовательная цепь образует единый путь для прохождения тока, в то время как параллельная цепь образует отдельные пути или ответвления для прохождения тока. Параллельные цепи имеют важное преимущество перед последовательными цепями. Если устройство, подключенное к последовательной цепи, выходит из строя или выключается, цепь разрывается, и другие устройства в цепи не могут потреблять энергию.Отдельные пути параллельной цепи позволяют устройствам работать независимо друг от друга, поддерживая цепь, даже если одно или несколько устройств выключены.

Первая электрическая цепь была изобретена Алессандро Вольта в 1800 году. Он обнаружил, что может производить постоянный поток электричества , используя чаши с раствором соли , соединенные металлическими полосками . Позже он использовал чередующиеся диски из , меди, , цинка и картона, которые были пропитаны солевым раствором, чтобы создать свою гальваническую батарею (ранняя батарея ).Прикрепив провод, идущий сверху вниз, он заставил электрический ток течь по своей цепи. Первое практическое использование схемы было в электролизе , что привело к открытию нескольких новых химических элементов. Георг Ом (1787-1854) обнаружил, что некоторые проводники имеют большее сопротивление, чем другие, что влияет на их эффективность в цепи. Его знаменитый закон гласит, что напряжение на проводнике, деленное на ток, равно сопротивлению, измеренному в Ом .Сопротивление вызывает нагрев в электрической цепи, что часто нежелательно.

Автомобильные электрические цепи

Легковые автомобили и легкие грузовики имеют разветвленные электрические системы с большим количеством проводов. и сотни схем. Электрическая цепь — это в основном маршрут или путь через какие электроны текут. Электрическая цепь должна образовывать замкнутый контур, чтобы ток продолжал течь. В электронам нужен обратный путь к их источнику (батарее или генератору), иначе им некуда идти.

По сути, существует два типа автомобильных электрических цепей:

* Последовательная цепь — это цепь, в которой все элементы цепи соединены встык в виде цепочки. У тока есть только один путь, поэтому количество тока, проходящего через него, будет одинаковым во всем. В Общее сопротивление в последовательной цепи равно сумме отдельных сопротивлений в каждом элементе схемы. Если один элемент в последовательной цепи выходит из строя, непрерывность нарушается, и вся цепь выходит из строя, потому что ток не может завершиться его путешествие по цепи.

* Параллельная цепь — это такая схема, в которой элементы схемы подключены рядом или параллельно друг другу. Этот создает несколько ответвлений или путей, по которым может течь ток. Сопротивление в любой данной отрасли будет определять падение напряжения и ток протекает только через эту ветвь и только через эту ветвь. Одним из преимуществ параллельной схемы является то, что различные сегменты или пути цепи могут работать независимо друг от друга. Если один элемент открывается (ломается непрерывность), это не нарушит функции другого.

Некоторые схемы объединяют в себе элементы как последовательной, так и параллельной схемы. Их можно было бы назвать последовательно-параллельными электрическими цепями . Схема . В этом типе цепи часть цепи может иметь нагрузки, включенные последовательно, в то время как в другой части нагрузки будут параллельно.

Поиск и устранение неисправностей в автомобильных электрических цепях часто требует измерения вольт, ампер или ом. Это три основных единицы измерения, которые используются для описания того, что происходит внутри электрической цепи.

ВОЛЬТ

Напряжение — это разность электрических потенциалов между двумя точками или величина «толчка», который заставляет электроны поток. Это также называется электродвижущей силой (ЭДС). Это похоже на давление, которое заставляет сжатый воздух проходить через шланг, но Вместо того, чтобы измеряться в фунтах на квадратный дюйм, напряжение измеряется в единицах, называемых вольтами.

Вы можете измерять напряжение с помощью цифрового или аналогового вольтметра. Для автомобилей последних моделей рекомендуется использовать цифровой вольтметр, поскольку уровни напряжения, которые вы измеряете, часто должны быть считаны с точностью до десятых долей вольта (0.1 вольт).

Все электрические системы легковых автомобилей и легких грузовиков имеют напряжение 12 вольт с середины 1950-х годов. Электрический Все системы имеют отрицательное (-) заземление, при этом корпус обычно служит заземлением для многих электрических цепей. В Отрицательный кабель аккумулятора прикреплен к металлическому корпусу или шасси, а положительный кабель аккумулятора (+) подключен к источнику питания сторона электрических цепей и системы зарядки автомобиля.

Многие датчики и цепи датчиков используют более низкое напряжение, обычно 5 В, в то время как катушки зажигания генерируют очень высокое напряжение. напряжение (от 5000 до 35000 вольт) для зажигания свечей зажигания.В гибридных автомобилях используется аккумулятор высокого напряжения (от 140 до 300 вольт), генератор. и электродвигатель для их систем стоп-пуска и электропривода.


Измерение напряжения аккумуляторной батареи цифровым вольтметром.

Соблюдайте особую осторожность при работе с гибридными электрическими компонентами (которые обычно имеют цветовой код ОРАНЖЕВЫЙ ), и избегайте контакт с катушками зажигания или проводами свечей зажигания при работающем двигателе, чтобы снизить риск поражения электрическим током.Шок от Проволока свечи зажигания может быть болезненной, но не смертельной из-за низкого тока (силы тока). А вот шок от гибридной батареи может быть смертельный!

AMPS

Ток — это количество или объем электронов, которые проходят через проводник или цепь. Это мера объема, и указывается в единицах, называемых ампер или ампер . Аналогия с воздушным шлангом — количество кубических футов на минута прохождения воздуха через шланг.Один ампер равен 6,3 миллионам триллионов электронов (6,3 с 18 нулями после него). за одну секунду! Это много электронов, но относительно небольшой ток во многих автомобильных цепях. Стартер, например, может потреблять несколько сотен ампер при проворачивании двигателя.

А измеряется амперметром или мультиметром с функцией усилителя. Для измерения силы тока обычно требуется индуктивный датчик, который зажимается вокруг провода для измерения тока, протекающего через него, хотя очень малые токи (100 мА или меньше) могут часто измеряются непосредственно через сам измеритель без использования индуктивного датчика.

Предохранители используются для защиты электрических цепей от опасных перегрузок, которые могут привести к их перегреву, расплавлению или возгоранию. Номинальные характеристики предохранителей зависят от того, сколько ампер они могут выдержать, прежде чем предохранитель перегорит и остановит прохождение тока. через цепь. Таким образом, перегоревший предохранитель часто является признаком перегрузки цепи или неисправности. например, короткое замыкание, которое вызывает чрезмерный ток в цепи. Для получения дополнительной информации см. Соответствующую статью «Центры питания: реле и предохранители

».

Осторожно: Если перегорел предохранитель, замените его на тот, который имеет ТОЧНЫЙ ток в усилителе, что и оригинал.НЕ заменяйте замену предохранитель с более высоким номинальным током, так как это может привести к перегреву цепи или ее повреждению. И НИКОГДА не заменяйте перегоревший предохранитель на твердый. провод или провод, так как это вообще не докажет защиты от перегрузки.

Ом

Электрическое сопротивление — это противодействие прохождению тока или ограничение, препятствующее прохождению электронов. Сопротивление измеряется в единицах, называемых Ом . Поток воздуха через шланг можно уменьшить, защемив его, уменьшив диаметр шланга. шланг или удерживая палец над выпускным отверстием.Точно так же ток, протекающий через провод, можно замедлить или контролировать, добавив сопротивление. Сопротивление можно создать, изменив состав материала, уменьшив размер провод или провод (меньший провод имеет большее сопротивление, чем большой провод), или путем добавления тепла (тепло увеличивает сопротивление).

Сопротивление измеряется омметром или мультиметром с функцией измерения сопротивления.

Осторожно: НЕ ПЫТАЙТЕСЬ измерять сопротивление (Ом) в любой цепи, которая находится под напряжением или находится во включенном состоянии, поскольку это может повредить омметр.Сопротивление измеряется при отключенном токе.

ЗАКОН ОМ

Один вольт равен силе, необходимой для проталкивания тока в один ампер через цепь с сопротивлением в один Ом. Это Закон Ома назван в честь ученого, который первым его понял. Закон Ома можно выразить по-разному:

Понимание закона Ома и взаимосвязи между вольтами, омами и амперами является ключом к пониманию электрических токов и того, что происходит внутри автомобильной электрической цепи.Закон Ома объясняет, почему высокое сопротивление в цепи подавляет ток и вызывает падение напряжения. Это также объясняет, почему короткое замыкание может привести к быстрому перегреву и возгоранию провода из-за утечки тока.

Общие проблемы в автомобильных электрических цепях

Короткое замыкание — это тип неисправности, которая может возникнуть, если ток, проходящий через электрическую цепь, не проходит через компонент, питаемый цепью, а находит другой путь к земле.Это может произойти, если провод трется об острый край и замыкается на массу, или если изоляция соседних проводов протирается или повреждается, позволяя току в одном проводе перескакивать на соседний провод. Короткое замыкание может привести к утечке тока из-за пониженного сопротивления в цепи. Это может привести к быстрому перегреву провода, возможно, к расплавлению или возгоранию изоляции вокруг него и возникновению электрического пожара. Короткое замыкание обычно вызывает перегорание предохранителя цепи.

Примечание. Если в цепи сгорел предохранитель и новый предохранитель перегорел, как только вы его заменили, скорее всего, в цепи произошло короткое замыкание.

Короткое замыкание чаще всего возникает там, где проводка трется об острый металлический край, например, когда проводка проходит через переборку, брандмауэр между моторным отсеком и пассажирским отсеком, дверью или другой полостью тела. Резиновые втулки обычно используются для защиты проводки в местах, где она проходит через металлические панели. Но если втулка повреждена или отсутствует, проводка трутся об острый край и замыкаются.

Короткое замыкание также может возникнуть между соседними проводками, если изоляция вокруг проводов повреждена или треснула.Изоляция может стать хрупкой с возрастом и может потрескаться или отслоиться от проводки, позволяя оголенному металлу под ней вступать в электрический контакт с соседними проводами или телом.

Прерывистое короткое замыкание может возникать, когда провода периодически контактируют в результате изменений температуры, вызывающих расширение и сжатие металла, или в результате вибрации. Найти непостоянные шорты может быть сложно, потому что проблема возникает и исчезает. Шевеление и тряска проводов или обдув их горячим воздухом с помощью термофена может потребоваться для имитации условий, вызывающих короткое замыкание.

Короткое замыкание можно отремонтировать, обмотав оголенную или поврежденную проводку изолентой или заменив поврежденную проводку.

Обрыв — это еще один тип неисправности, который может возникнуть в автомобильных электрических цепях. Обрыв — это именно то, что подразумевает название: разрыв в проводке, который останавливает ток и убивает цепь. Обрыв не приведет к срабатыванию предохранителя, но предотвратит работу цепи. Обрыв может произойти, если обрыв провода, разъем проводки ослаблен или отсоединен, или сильная коррозия внутри электрического разъема создала такое большое сопротивление, что ток не может течь через цепь.

Обрывы также могут возникать в электронных схемах, если образуются микротрещины в паяных соединениях или на печатных платах. Схема может нормально пропускать ток в холодном состоянии, но когда она нагревается и расширяется, микротрещины могут открываться, вызывая периодическое размыкание.

Перегрузки — это состояние, которое может возникнуть в цепи, когда электродвигатель или другое устройство находится в рабочих условиях, которые заставляют его потреблять больше тока, чем обычно. Примером может служить временная перегрузка в цепи электродвигателя стеклоочистителя, если дворники забиты льдом или сильным снегом.Перегрузка может вызвать перегорание предохранителя цепи.

Некоторые конкретные примеры проблем автомобильных электрических цепей

Типичный пример закона Ома, вызывающего электрическую проблему в вашем автомобиле или грузовике, — это ослабленный или корродированный кабель аккумулятора. Бедные соединение создает электрическое сопротивление, которое не позволяет аккумуляторной батарее подавать нормальный ток в электрическую систему автомобиля. Это, в свою очередь, может помешать стартеру проворачивать двигатель достаточно быстро, чтобы запустить его, или может вообще помешать стартеру работать.Ослабленное или корродированное соединение аккумулятора также может помешать генератору поддерживать аккумулятор полностью заряженным, что приведет к его разрядке. наезжать.

Другой пример действия закона Ома — цепь топливного насоса с плохим заземлением. Плохое заземление создает высокое сопротивление, уменьшающее ток, протекающий через топливный насос. Это приводит к тому, что насос вращается намного медленнее, чем обычно, что вызывает падение объема топлива и давления, которое может привести к потере мощности или нестабильной работе двигателя.

Низкое напряжение в системе из-за разряда батареи или низкого уровня заряда может нанести серьезный ущерб электронным модулям управления автомобиля. Множество модулей не будут нормально работать, если на них не будет подаваться напряжение 12 вольт. Это, в свою очередь, может вызвать различные виды управляемости или проблемы с производительностью.

Коррозия — частая причина высокого сопротивления электрических цепей. Коррозия может быть вызвана воздействием влаги и окисления. электрические разъемы и клеммы в электрической системе.Это одна из причин, по которой страховые компании насчитывают много автомобилей с был затоплен. Попадание воды в проводку внутри автомобиля может вызвать коррозию и многочисленные проблемы с электричеством в будущем.

Вибрация также может вызывать высокое сопротивление электрических разъемов и проводки. Движение происходит при движении автомобиля. может вызвать трение и микроскопический износ электрических разъемов, которые не поддерживаются должным образом. Со временем это может привести к плохой проблемы с электрическим подключением и цепью из-за большого тока в этой цепи.

Измерение падения напряжения для поиска электрических проблем

Падение напряжения происходит, когда ток проходит через компонент в цепи. Сопротивление, создаваемое устройством, вызывает соответствующее падение напряжения, которое можно рассчитать с помощью закона Ома, если вы знаете сопротивление компонента и ток.

ПАДЕНИЕ НАПРЯЖЕНИЯ = СОПРОТИВЛЕНИЕ x ТОК

Вы можете измерить падение напряжения в цепи или на соединении с помощью цифрового вольтметра.Выводы вольтметра подключены с обеих сторон проверяемого компонента схемы или соединения. Если соединение ослабло или корродировало, это создаст сопротивление в цепи и ограничит прохождение тока, вызывая чрезмерное падение напряжения.

Как показывает практика, падение напряжения БОЛЕЕ одной десятой вольта (0,1 В) на низковольтном или низковольтном соединении означает проблему. Цепи, которые работают с более высокими напряжениями или токами (например, цепь вывода напряжения для системы зарядки), могут выдерживать напряжение падает до полвольта (0.5 вольт), но лучше всего 0,1 вольт или меньше.

Измерение падения напряжения — эффективное средство для быстрого определения проблем с автомобильной электрической цепью, таких как ослабление или коррозия. разъемы, провода, переключатели и т. д. Это более точно, чем просто измерение напряжения в цепи или использование простой контрольной лампы, чтобы увидеть есть ли питание или нет, потому что он сообщает вам, есть ли чрезмерное сопротивление, которое может ограничить ток в цепи.


Автомобильные электрические схемы

Производители транспортных средств публикуют электрические схемы для всех различных электрических цепей в транспортных средствах. Они делают.Их можно получить на технических веб-сайтах производителей автомобилей или в автомобильной источник вторичного рынка, такой как AlldataDIY за небольшую платеж. Правильная электрическая схема абсолютно необходима для поиска и устранения неисправностей в электрических цепях.

На схемах подключения

используются символы (см. Ниже) для обозначения различных компонентов цепи. Отдельные цепи обычно пронумерованы, а провода в цепях имеют цветовую кодировку. облегчить идентификацию.Если для провода используется двухцветный код, это означает, что провод одного цвета и на том же проводе есть цветная полоса другого цвета.


Щелкните здесь, чтобы загрузить или распечатать эту статью.




Статьи по теме:

Тест самопроверки по основам электрической системы

Устранение неполадок в электрической системе

Электрические нагрузки для автомобильных систем, освещения и аксессуаров

Испытание падения напряжения

Силовые центры: реле и предохранители

Устранение неисправностей в кластере электронных приборов

Безопасность аккумуляторной батареи и запуск от внешнего источника ( Прочтите в первую очередь !!!)

Диагностика разряженной батареи

Тестирование батареи

Поиск и устранение неисправностей в системе запуска и зарядки

Устранение неполадок с электрическими окнами

Устранение неполадок фар

Фары (фары и лампы)

Разряд высокой интенсивности (HID) Фары

Щелкните здесь, чтобы увидеть больше технических статей Carley Automotive

Сравнение серий

и параллельных цепей: в чем разница?

Один из первых принципов, которые нужно понять, когда вы изучаете электричество, — это различие между параллельной цепью и последовательной цепью.Оба типа цепей питают несколько устройств с помощью электрического тока, протекающего по проводам, но на этом сходство заканчивается.

Чтобы понять разницу между схемой, в которой устройства подключены последовательно , от схемы, в которой они подключены параллельно, вы должны сначала понять основы электрической схемы.

Проще говоря, все схемы работают, обеспечивая замкнутый контур проводов, по которым может течь электрический ток.Электрический ток — это, по сути, движение электронов по цепи от источника (через горячие провода) и обратно к источнику (через нейтральные провода). Когда свет или другие устройства подключаются к этому контуру цепи, движущийся ток может питать эти устройства. Любое прерывание пути (например, размыкание переключателя) останавливает поток электрического тока — мгновенно прерывая цепь.

Что такое последовательная цепь?

Последовательная цепь — это замкнутая цепь, в которой ток проходит по одному пути.В последовательной схеме устройства по контуру цепи соединены в непрерывный ряд, так что при выходе из строя или отключении одного устройства вся цепь прерывается. Таким образом, все устройства в цепи перестают работать одновременно. Последовательные схемы несколько редки в домашней проводке, но иногда они используются в цепочках рождественских огней или ландшафтных светильниках, где выход из строя одной лампочки приводит к потемнению всей цепочки.

Когда лампочка гаснет в цепочке праздничных огней, это создает разрыв в проводке.Однако многие современные гирлянды для праздничных фонарей теперь подключаются через параллельную цепь, так что гирлянда может оставаться работоспособной даже при неисправности одной из лампочек. Большинство новых светодиодных праздничных огней имеют параллельную схему подключения.

Что такое параллельная цепь?

Гораздо чаще, чем последовательные цепи, встречаются параллельные, включая большинство домашних цепей, питающих осветительные приборы, розетки и приборы. Параллельная цепь также является замкнутой цепью, в которой ток разделяется на два или более пути, прежде чем вернуться вместе, чтобы завершить полную цепь.Здесь проводка настроена так, что каждое устройство находится в постоянном контакте с трактом главной цепи. Отдельные устройства просто «подключаются» к главному контуру цепи, подобно тому, как съезды на автостраде позволяют машинам существовать и выезжать на автостраду, не прерывая ее. Параллельная схема имеет много таких петель «вне рампы / при включении», так что отказ в каком-либо одном контуре никогда не приводит к отключению всей схемы.

Большинство стандартных 120-вольтных бытовых цепей в вашем доме являются (или должны быть) параллельными цепями.Розетки, переключатели и осветительные приборы подключены таким образом, что горячий и нейтральный провода поддерживают непрерывный путь цепи, независимый от отдельных устройств, которые получают питание от цепи.

Иногда этот непрерывный путь создается путем «врезки» в провода цепи для питания розетки или осветительной арматуры (пигтейлы являются выходными и входными рампами для тока). В других случаях конструкция устройства создает непрерывный непрерывный путь.Например, стандартная розетка розетки имеет металлическую полосу (соединительный язычок) между парами винтовых клемм, которая обеспечивает сохранение пути к следующей розетке. Если розетка выходит из строя, соединительный язычок на устройстве гарантирует, что ток продолжает течь к следующей розетке в цепи.

Когда использовать последовательную цепь вместо параллельной

Один пример домашнего хозяйства, где последовательная проводка полезна, когда одна розетка GFCI (прерыватель цепи замыкания на землю) используется для защиты других стандартных розеток, расположенных «ниже по потоку» от GFCI.

Розетка GFCI имеет винтовые клеммы с меткой «линия», а также винтовые клеммы с меткой «нагрузка». Клеммы нагрузки могут использоваться для расширения проводки до дополнительных обычных розеток за пределами GFCI, что позволяет им также пользоваться защитой GFCI. Однако, если GFCI выйдет из строя, все подключенные нижестоящие розетки также перестанут функционировать. Таким образом, этот участок схемы является примером последовательного подключения.

Другой предмет, который использует последовательную проводку, — это удлинитель.В удлинителе используется один переключатель для управления несколькими приборами и устройствами в параллельной схеме. Однако, если вы выключите удлинитель, вы выключите все приборы и устройства, подключенные к удлинителю.

Что такое «последовательные» и «параллельные» схемы? | Последовательные и параллельные схемы

Цепи, состоящие только из одной батареи и одного сопротивления нагрузки, очень просто анализировать, но они не часто встречаются на практике. Обычно мы находим цепи, в которых вместе соединено более двух компонентов.

Серия

и параллельные схемы

Существует два основных способа соединения более двух компонентов схемы: серии и параллельно .

Схема конфигурации серии

Сначала пример последовательной схемы:

Здесь у нас есть три резистора (с маркировкой R 1 , R 2 и R 3 ), соединенных длинной цепочкой от одного вывода батареи к другому. (Следует отметить, что обозначение нижним индексом — эти маленькие числа в правом нижнем углу буквы «R» — не связаны со значениями резистора в омах.Они служат только для идентификации одного резистора от другого.)

Определяющей характеристикой последовательной цепи является то, что существует только один путь для прохождения тока. В этой схеме ток течет по часовой стрелке от точки 1 до точки 2, от точки 3 до точки 4 и обратно до 1.

Конфигурация параллельной цепи

Теперь давайте посмотрим на другой тип схемы, параллельную конфигурацию:

Опять же, у нас есть три резистора, но на этот раз они образуют более одного непрерывного пути прохождения тока.Есть один путь от 1 к 2 до 7 к 8 и снова к 1. Есть еще один от 1 до 2 до 3 до 6 до 7 до 8 и снова 1. И затем есть третий путь от 1 до 2 до 3 до 4 до 5 до 6 до 7 до 8 и снова обратно к 1. Каждый отдельный путь (через R 1 , R 2 и R 3 ) называется ветвью .

Определяющей характеристикой параллельной цепи является то, что все компоненты подключены между одним и тем же набором электрически общих точек. Глядя на схематическую диаграмму, мы видим, что все точки 1, 2, 3 и 4 электрически общие.То же самое с точками 8, 7, 6 и 5. Обратите внимание, что все резисторы, а также батарея, подключены между этими двумя наборами точек.

И, конечно же, сложность не ограничивается простыми последовательностями и параллелями! У нас могут быть цепи, которые представляют собой комбинацию последовательной и параллельной цепи.

Последовательно-параллельная схема конфигурации

В этой схеме у нас есть две петли для протекания тока: одна от 1 до 2 до 5 до 6 и снова обратно к 1, а другая от 1 до 2 до 3 до 4 до 5 до 6 и снова обратно к 1 .Обратите внимание, как оба пути тока проходят через R 1 (от точки 1 к точке 2). В этой конфигурации мы бы сказали, что R 2 и R 3 параллельны друг другу, а R 1 последовательно с параллельной комбинацией R 2 и R 3 .

Это всего лишь предварительный обзор того, что будет в будущем. Не волнуйся! Мы рассмотрим все эти схемы подробно, по очереди! Вы можете сразу перейти к следующим страницам, посвященным последовательным и параллельным схемам, или к разделу Что такое последовательно-параллельная схема? в главе 7.

Основы последовательного и параллельного подключения

Что такое последовательное соединение?

Основная идея «последовательного» соединения заключается в том, что компоненты соединяются встык в линию, образуя единый путь, по которому может течь ток:

Что такое параллельное соединение?

С другой стороны, основная идея «параллельного» подключения состоит в том, что все компоненты подключаются через выводы друг друга. В чисто параллельной схеме никогда не может быть более двух наборов электрически общих точек, независимо от того, сколько компонентов подключено.Есть много путей для прохождения тока, но только одно напряжение на всех компонентах:

Конфигурации последовательных и параллельных резисторов

имеют очень разные электрические свойства. В следующих разделах мы рассмотрим свойства каждой конфигурации.

ОБЗОР:

  • В последовательной цепи все компоненты соединены встык, образуя единый путь для прохождения тока.
  • В параллельной цепи все компоненты соединены друг с другом, образуя ровно два набора электрически общих точек.
  • «Ветвь» в параллельной цепи — это путь для электрического тока, образованный одним из компонентов нагрузки (например, резистором).

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Электрическое короткое замыкание — типы, причины и профилактика

Короткое замыкание — это соединение с низким сопротивлением между двумя проводниками, которые подают электроэнергию в цепь. Это вызовет избыточное протекание напряжения и вызовет чрезмерное протекание тока в источнике питания.Электричество пройдет по «короткому» маршруту и ​​вызовет короткое замыкание.

Что такое Типы электрического короткого замыкания

1. Нормальное короткое замыкание

Это когда горячий провод, по которому проходит ток, касается нейтрального провода. Когда это произойдет, сопротивление мгновенно упадет, и большой ток пройдет неожиданным путем.

2. Короткое замыкание при замыкании на землю

Короткое замыкание на землю. Короткое замыкание возникает, когда проводящий ток под напряжением контактирует с некоторой заземленной частью системы.Это может быть заземленная металлическая настенная коробка, оголенный провод заземления или заземленная часть прибора.

Каковы основные причины электрического короткого замыкания
  • Неисправность изоляции провода цепи

Если изоляция повреждена или старая, горячие провода могут соприкасаться с нейтралью. Это вызовет короткое замыкание.

Возраст провода, гвоздей или шурупов может повредить изоляцию и привести к короткому замыканию.Есть риск, что вредители прогрызут изоляцию, а также оголят жилы проводов.

Если есть какие-либо незакрепленные соединения или крепления проводов, это позволит контактировать токоведущий и нейтральный провод. Если вы видите неисправные соединения проводов, не пытайтесь исправить это самостоятельно и немедленно обратитесь к специалисту.

Если вы подключите прибор к розетке, его проводка станет продолжением цепи. Следовательно, если есть какие-либо проблемы в электропроводке прибора, это перерастет в проблемы цепи.

Короткое замыкание может произойти в шнурах питания, вилках или внутри устройства. Убедитесь, что у вас есть защита от короткого замыкания для всех приборов.

Как предотвратить короткое замыкание
  • Розетки и устройства для мониторов

К каждой розетке подключена сеть проводов. Если есть неисправные провода, неплотные соединения коробки или розетка старше 15-25 лет, это может привести к короткому замыканию.Обратите внимание на возможные признаки неисправности розеток, в том числе:

  1. Ожоги на выходе или запах гари
  2. Искры, исходящие из розетки
  3. Жужжащий звук из розетки

Аналогичным образом проверьте приборы и их проводку. Неисправная проводка или трещины в приборе могут вызвать короткое замыкание. Отремонтируйте такие приборы или замените их полностью.

  • Меньше электроэнергии во время шторма

Короткое замыкание в результате удара молнии может быть чрезвычайно опасным, поскольку большое количество электричества может привести к повреждению.Уменьшите потребление электроэнергии во время шторма, так как это может помочь предотвратить короткое замыкание и уменьшить ущерб в случае скачка напряжения.

  • Пройдите ежегодный осмотр электрооборудования

Вызовите сертифицированного специалиста и проводите электрическую проверку не реже одного раза в год. Они могут определить критические проблемы и решить их до того, как они станут опасными, потому что они знают, как исправить короткое замыкание.

  • Установите устройства, предотвращающие короткое замыкание
  1. Автоматические выключатели или предохранители: Автоматический выключатель — это коммутирующее устройство в цепи, которое прерывает ненормальный ток.Он использует внутреннюю систему пружин или сжатого воздуха, чтобы определять любые изменения в текущем потоке. Он «разрывает» цепь и прерывает прохождение тока. Плавкий предохранитель — это устройство, обеспечивающее защиту от перегрузки по току. В нем есть металлическая полоса или проволока, которая плавится при прохождении через нее большого количества тока. Это прерывает цепь.
  1. Прерыватели цепи замыкания на землю (GFCI): GFCI работает, сравнивая величину тока, протекающего в цепи и из нее. Если есть замыкание на землю или дисбаланс между входящими и выходящими токами, GFCI отключит электрическое питание.
  1. Прерыватели цепи при возникновении дугового замыкания (AFCI): Устройство AFCI разрывает цепь при обнаружении электрической дуги в цепи. Это помогает предотвратить электрические пожары.

Проверьте AFCI и GFCI, и где вы должны их установить, чтобы получить дополнительную информацию о том, где вы должны установить AFCI и GFCI.

D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет. Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния.Он хранит обширный инвентарь электрических соединителей, фитингов, автоматических выключателей, распределительных коробок, проводов, предохранительных выключателей и т. Д. Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной продукции и современных решений в области электрического освещения. Поскольку компания D&F закупает материалы оптом, она имеет уникальную возможность предложить конкурентоспособную структуру ценообразования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *