Заземление вместо нуля в частном доме: Контур заземления вместо нуля — Домострой

Содержание

Контур заземления вместо нуля — Домострой

Мой горький опыт электрика позволяет мне утверждать: Если у Вас «заземление» сделано как надо – то есть в щитке есть место присоединения «заземляющих» проводников, и все вилки и розетки имеют «заземляющие» контакты – я вам завидую, и вам не о чем беспокоиться.

Правила подключения заземления

В чем же состоит проблема, почему нельзя подключать провод заземления на трубы отопления или водоснабжения?

Реально в городских условиях блуждающие токи и пр. мешающие факторы столь велики, что на батарее отопления может оказаться что угодно. Однако основная проблема, в том, что ток срабатывания автоматов защиты достаточно велик. Соответственно один из вариантов возможной аварии — пробой накоротко фазы на корпус с током утечки как раз где-то на границе срабатывания автомата, то есть, в лучшем случае 16 ампер. Итого, делим 220в на 16А – получаем 15 ом. Всего каких-то тридцать метров труб, и получите 15 ом. И потек ток куда-то, в сторону не пиленого леса. Но это уже не важно. Важно то, что в соседней квартире (до которой 3 метра, а не 30, напряжение на кране почти те же 220.), а вот на, скажем, канализационной трубе – реальный ноль, или около того.

А теперь вопрос – что будет с соседом, если он, сидя в ванной (соединившись с канализацией посредством открывания пробки) коснется крана? Угадали?

Приз — тюрьма. По статье о нарушении правил электробезопасности повлекшем жертвы.

Не надо забывать, что нельзя делать имитацию схемы «заземления» , соединяя в евророзетке «нулевой рабочий» и «нулевой защитный» проводники, как иногда практикуют некоторые «умельцы». Такая замена крайне опасна. Не редки случаи отгорания «рабочего нуля» в щите. После этого на корпусе Вашего холодильника, компьютера и т.д. очень прочно размещается 220В.

Последствия будут примерно такими же, как и с соседом, с той разницей, что за это ни кто ответственности нести не будет, кроме того, кто сделал такое соединение. А как показывает практика, это делают сами же хозяева, т.к. считают себя достаточными специалистами, чтобы не вызывать электриков.

«Заземление» и «зануление»

Одним из вариантов «заземления» является «зануление». Но только не как в случае описанном выше. Дело в том, что на корпусе распределительного щита, на Вашем этаже имеется нулевой потенциал, а если точнее, нулевой провод, проходящий через этот самый щиток, просто-напросто имеет контакт с корпусом щита посредством болтового соединения. Нулевые проводники с расположенных на этом этаже квартир, тоже присоединяются к корпусу щита. Давайте рассмотрим этот момент поподробнее. Что мы видим, каждый из этих концов заведен под свой болт (на практике правда часто встречается по парное соединение этих концов). Вот как раз туда и надо подсоединять наш новоиспеченный проводник, который в последствии будет называться «заземлением».

В этой ситуации тоже есть свои нюансы. Что мешает «нулю» отгореть на входе в дом. Собственно говоря, ни чего. Остается лишь надеяться, что домов в городе меньше чем квартир, а значит и процент возникновения такой проблемы значительно меньше. Но это опять же русский «авось», который проблему не решает.

Единственно правильное решение, в этой ситуации. Взять металлический уголок 40х40 или 50х50, длинной метра 3, забить его в землю, чтобы за него не запинались, а именно, копаем яму на два штыка лопаты в глубину и максимально забиваем туда наш уголок, а от него провести провод ПВ-3 (гибкий, многожильный), сечением не менее 6 мм. кв. до, Вашего распределительного щита.

В идеале «контур заземления» должен состоять из 3х — 4х уголков, которые свариваются металлической полосой той же ширины. Расстояние между уголками должно составлять 2 м.

Только не надо сверлить в земле дыру метровым буром и опускать туда штырь. Это не правильно. Да и КПД такого заземления близко к нулю.

Но, как и в любом способе здесь есть свои минусы. Вам, конечно, повезло, если Вы живете в частном доме, или хотя бы, на первом этаже. А как быть тем, кто живет этаже на 7-8? Запастись 30-ти метровым проводом?

Так как же найти выход из создавшейся ситуации? Боюсь, что ответ на этот вопрос Вам не дадут даже самые опытные электромонтажники.

Что требуется для разводки по дому

Для разводки по дому Вам понадобится медный провод заземления, соответствующей длины, и сечением не менее 1,5 мм. кв. и, конечно, розетка с «заземляющим» контактом. Короб, плинтус, скоба — дело эстетики. Идеальный вариант, это когда Вы делаете ремонт. В этом случае я рекомендую выбрать кабель с тремя жилами в двойной изоляции, лучше ВВГ. Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй — на «заземляющий» контакт розетки. При наличии в щите УЗО заземляющий проводник не должен нигде на линии иметь контакта с N проводником (в противном случае будет срабатывать УЗО).

Не надо так же забывать, что «земля» не имеет права разрываться, посредством каких либо выключателей.

Во всех жилых домах для защиты от действия электрического тока используется заземление или зануление. В некоторых случаях заземляется электрический щит и, одновременно, производится соединение нулевой жилы основного кабеля с этим же щитом. Однако, нередко возникает вопрос, можно ли использовать зануление вместо заземления, и наоборот.

Схемы заземления и зануления

Данные схемы защиты необходимо применять очень осторожно. В первую очередь, это связано с неравномерным распределением нагрузок на фазы. При одинаковой нагрузке на каждую фазу, через общий нулевой провод будет протекать незначительный ток. Однако, если загружена только одна фаза из трех, то значение тока в нулевом проводе будет таким же, как и в этой фазе.

В жилых домах зануление делать не рекомендуется. Как правило, нулевые жилы имеют меньшее сечение, чем линии фаз. Нулевой провод очень часто остается без контроля, постепенно слабеет его соединение, происходит окисление. При сильном нагреве он просто отгорает. В этой ситуации происходит прямое попадание фазы на щит. Через заземление, ток попадает в квартиру и выводит из строя всю заземленную технику. Бытовые приборы находятся под напряжением, в результате, повышается вероятность поражения электрическим током.

Таким образом, нежелательно использовать зануление в жилых домах. Обычно, его применяют на промышленных предприятиях, где распределение нагрузки фаз более равномерное, а нулевой провод выполняет функцию защиты.

Что такое зануление

Если о заземлении знают, практически все, то про зануление многие имеют очень смутное представление. Тем не менее, оно используется достаточно часто и для правильной эксплуатации, нужно знать его устройство и принцип действия.

В электротехнике занулением называется соединение нулевого провода электрической сети с корпусом прибора, оборудования и прочих потребителей. В отличие от заземления, защищающего людей, зануление, прежде всего, защищает оборудование. Поэтому, говорить про зануление вместо заземления, не совсем корректно. Каждая схема предназначена для использования в какой-то определенной сфере. При защите оборудования, зануление искусственным путем создает ситуацию короткого замыкания, при которой срабатывает автоматический выключатель.

Для устойчивой и надежной работы зануления, его можно заземлить отдельно. Таким образом, повышается эффективность работы всей защитной системы, особенно при выходе из строя нулевого провода.

Во всех жилых домах для защиты от действия электрического тока используется заземление или зануление. В некоторых случаях заземляется электрический щит и, одновременно, производится соединение нулевой жилы основного кабеля с этим же щитом. Однако, нередко возникает вопрос, можно ли использовать зануление вместо заземления, и наоборот.

Схемы заземления и зануления

Данные схемы защиты необходимо применять очень осторожно. В первую очередь, это связано с неравномерным распределением нагрузок на фазы. При одинаковой нагрузке на каждую фазу, через общий нулевой провод будет протекать незначительный ток. Однако, если загружена только одна фаза из трех, то значение тока в нулевом проводе будет таким же, как и в этой фазе.

В жилых домах зануление делать не рекомендуется. Как правило, нулевые жилы имеют меньшее сечение, чем линии фаз. Нулевой провод очень часто остается без контроля, постепенно слабеет его соединение, происходит окисление. При сильном нагреве он просто отгорает. В этой ситуации происходит прямое попадание фазы на щит. Через заземление, ток попадает в квартиру и выводит из строя всю заземленную технику. Бытовые приборы находятся под напряжением, в результате, повышается вероятность поражения электрическим током.

Таким образом, нежелательно использовать зануление в жилых домах. Обычно, его применяют на промышленных предприятиях, где распределение нагрузки фаз более равномерное, а нулевой провод выполняет функцию защиты.

Что такое зануление

Если о заземлении знают, практически все, то про зануление многие имеют очень смутное представление. Тем не менее, оно используется достаточно часто и для правильной эксплуатации, нужно знать его устройство и принцип действия.

В электротехнике занулением называется соединение нулевого провода электрической сети с корпусом прибора, оборудования и прочих потребителей. В отличие от заземления, защищающего людей, зануление, прежде всего, защищает оборудование. Поэтому, говорить про зануление вместо заземления, не совсем корректно. Каждая схема предназначена для использования в какой-то определенной сфере. При защите оборудования, зануление искусственным путем создает ситуацию короткого замыкания, при которой срабатывает автоматический выключатель.

Для устойчивой и надежной работы зануления, его можно заземлить отдельно. Таким образом, повышается эффективность работы всей защитной системы, особенно при выходе из строя нулевого провода.

Можно ли использовать заземление вместо нуля?

Мой горький опыт электрика позволяет мне утверждать: Если у Вас «заземление» сделано как надо – то есть в щитке есть место присоединения «заземляющих» проводников, и все вилки и розетки имеют «заземляющие» контакты – я вам завидую, и вам не о чем беспокоиться.

Правила подключения заземления

В чем же состоит проблема, почему нельзя подключать провод заземления на трубы отопления или водоснабжения?

Реально в городских условиях блуждающие токи и пр. мешающие факторы столь велики, что на батарее отопления может оказаться что угодно. Однако основная проблема, в том, что ток срабатывания автоматов защиты достаточно велик. Соответственно один из вариантов возможной аварии — пробой накоротко фазы на корпус с током утечки как раз где-то на границе срабатывания автомата, то есть, в лучшем случае 16 ампер. Итого, делим 220в на 16А – получаем 15 ом. Всего каких-то тридцать метров труб, и получите 15 ом. И потек ток куда-то, в сторону не пиленого леса. Но это уже не важно. Важно то, что в соседней квартире (до которой 3 метра, а не 30, напряжение на кране почти те же 220.), а вот на, скажем, канализационной трубе – реальный ноль, или около того.

А теперь вопрос – что будет с соседом, если он, сидя в ванной (соединившись с канализацией посредством открывания пробки) коснется крана? Угадали?

Приз — тюрьма. По статье о нарушении правил электробезопасности повлекшем жертвы.

Не надо забывать, что нельзя делать имитацию схемы «заземления» , соединяя в евророзетке «нулевой рабочий» и «нулевой защитный» проводники, как иногда практикуют некоторые «умельцы». Такая замена крайне опасна. Не редки случаи отгорания «рабочего нуля» в щите. После этого на корпусе Вашего холодильника, компьютера и т.д. очень прочно размещается 220В.

Последствия будут примерно такими же, как и с соседом, с той разницей, что за это ни кто ответственности нести не будет, кроме того, кто сделал такое соединение. А как показывает практика, это делают сами же хозяева, т.к. считают себя достаточными специалистами, чтобы не вызывать электриков.

«Заземление» и «зануление»

Одним из вариантов «заземления» является «зануление». Но только не как в случае описанном выше. Дело в том, что на корпусе распределительного щита, на Вашем этаже имеется нулевой потенциал, а если точнее, нулевой провод, проходящий через этот самый щиток, просто-напросто имеет контакт с корпусом щита посредством болтового соединения. Нулевые проводники с расположенных на этом этаже квартир, тоже присоединяются к корпусу щита. Давайте рассмотрим этот момент поподробнее. Что мы видим, каждый из этих концов заведен под свой болт (на практике правда часто встречается по парное соединение этих концов). Вот как раз туда и надо подсоединять наш новоиспеченный проводник, который в последствии будет называться «заземлением».

В этой ситуации тоже есть свои нюансы. Что мешает «нулю» отгореть на входе в дом. Собственно говоря, ни чего. Остается лишь надеяться, что домов в городе меньше чем квартир, а значит и процент возникновения такой проблемы значительно меньше. Но это опять же русский «авось», который проблему не решает.

Единственно правильное решение, в этой ситуации. Взять металлический уголок 40х40 или 50х50, длинной метра 3, забить его в землю, чтобы за него не запинались, а именно, копаем яму на два штыка лопаты в глубину и максимально забиваем туда наш уголок, а от него провести провод ПВ-3 (гибкий, многожильный), сечением не менее 6 мм. кв. до, Вашего распределительного щита.

В идеале «контур заземления» должен состоять из 3х — 4х уголков, которые свариваются металлической полосой той же ширины. Расстояние между уголками должно составлять 2 м.

Только не надо сверлить в земле дыру метровым буром и опускать туда штырь. Это не правильно. Да и КПД такого заземления близко к нулю.

Но, как и в любом способе здесь есть свои минусы. Вам, конечно, повезло, если Вы живете в частном доме, или хотя бы, на первом этаже. А как быть тем, кто живет этаже на 7-8? Запастись 30-ти метровым проводом?

Так как же найти выход из создавшейся ситуации? Боюсь, что ответ на этот вопрос Вам не дадут даже самые опытные электромонтажники.

Что требуется для разводки по дому

Для разводки по дому Вам понадобится медный провод заземления, соответствующей длины, и сечением не менее 1,5 мм. кв. и, конечно, розетка с «заземляющим» контактом. Короб, плинтус, скоба — дело эстетики. Идеальный вариант, это когда Вы делаете ремонт. В этом случае я рекомендую выбрать кабель с тремя жилами в двойной изоляции, лучше ВВГ. Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй — на «заземляющий» контакт розетки. При наличии в щите УЗО заземляющий проводник не должен нигде на линии иметь контакта с N проводником (в противном случае будет срабатывать УЗО).

Не надо так же забывать, что «земля» не имеет права разрываться, посредством каких либо выключателей.

Чем «земля» отличается от «нуля»? Разбираемся в сложностях электрики

Если вы знакомы с электрикой, наверняка знаете понятия «нуль» и «земля». В чем разница, или это практически одно и то же? Ответ в нашей статье.

В Советском Союзе была принята двухпроводная сеть, где были лишь фазный и нулевой проводник, а заземление выполнялось на батарею или трубу водоснабжения. Сейчас стал популярен монтаж трехпроводной сети, в котором есть нулевой и заземляющий проводники. В щитовой они оба садятся на заземляющую шину. Если они объединены в щитовой, тогда чем они вообще отличаются? Отвечаем, опираясь на нормативные документы.

Что такое «нуль» и «земля» согласно ПУЭ?

То, что мы привыкли называть «нулем» и «землей» в ПУЭ называется нулевым рабочим проводником (N) и нулевым защитным проводником (PE). Вот как они трактуются в нормативном документе:

1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.

1.7.18.а Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока.

Из этих формулировок понятно, что защитный нулевой проводник необходим для защиты от поражения электрическим током. То есть к нему должно заземляться электрооборудование, например, стиральная машинка, бойлер, котел и т.д. В то же время рабочий нулевой проводник необходим для питания оборудования, то есть по нему будет протекать ток.

В некоторых случаях допускается использовать «нуль» (PE) в качестве «земли», как это указано в ПУЭ 1.7.18.б. В этом случае провод становится совмещенным проводником, который сочетает функции нулевого защитного и нулевого рабочего проводников. Он будет называться PEN. Однако здесь есть один нюанс, который важно знать.

Дело в том, что согласно ПУЭ 1.7.83 «В цепи заземляющих и нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей». То есть нулевой защитный проводник («земля») должен идти непрерывно от щитка к розетке или осветительному прибору. Если мы, к примеру, посадим заземление на нуль, тогда «путь» прервется путем вынимания вилки из розетки. И если произойдет пробой, корпус остального оборудования, заземленного на этот провод, окажется под напряжением.

Далее в этом же пункте сказано: «В цепи нулевых рабочих проводников, если они одновременно служат для целей зануления, допускается применение выключателей, которые одновременно с отключением нулевых рабочих проводников отключают все провода, находящиеся под напряжением». Из этого следует, что «нуль» можно использовать в качестве «земли», если при его отключении, отключаются и все стальные проводники, находящиеся под напряжением. Осуществить такое в квартирных условиях довольно сложно.

Как должно осуществляться заземление в трехпроводной сети?

На данный момент в большинстве новостроек укладывают именно трехпроводную сеть, в которой идет фаза, нуль и заземление (желто-зеленый провод). «Нуль» и «земля» присоединяются в щитке к одной заземляющей шине, но не под общий контактный зажим (ПУЭ 7.1.36). Затем заземление одним непрерывным проводом подводится к каждой розетке. У большинства современного электрооборудования уже есть третий заземляющий контакт на вилке, который обеспечивает заземление корпуса прибора при включении его в розетку.

Вывод

Главная отличительная особенность «нуля» и «земли» в их назначении. «Нуль» совместно с фазой предназначен для питания электроприборов, а «земля» для защиты людей и животных от поражения электрическим током, если случится пробой. Рабочий «нуль» можно использовать в качестве «земли», если не нарушаются условия ПУЭ 1.7.83. Мы же рекомендуем класть проводку сразу с заземляющим проводником, что исключает необходимость использовать «ноль» не по назначению.

Проверьте свои знания в электрике:

Чем отличается заземление от зануления?

Отличие заземления от зануления значительное. Попробуем разобраться в этом вопросе. Зануление согласно ПУЭ – это преднамеренная защита, которая используется исключительно в промышленных целях и не должна практиковаться на бытовом уровне.

Но все же, очень часто, в квартирах делается зануление. По всем прогнозам, такая система далека от совершенства и совсем не безопасна. Почему же тогда прибегают к такой крайней мере? Отчасти из-за недостатка знаний в этой области, или из-за безвыходной ситуации.

Во время ремонта квартиры многие делают полный или частичный электромонтаж не только с целью удобства расположения розеток и выключателей, но и для замены изношенной электропроводки. Так же, современный человек желает сделать свое жилье более безопасным, поэтому, пожелания заказчика сводятся к тому, чтобы в доме было заземление.

Что используется в новостройках: заземление или зануление?

Новостройки по всем правилам обеспечиваются трехпроводным кабелем (фаза, ноль, земля) в однофазной системе и пятипроводным кабелем (три фазы, ноль, земля) в трехфазной системе, т.е. по системе заземления TN-C-S или TN-S. В таких системах занулением и не пахнет.

Можно ли в старом фонде сделать заземление?

Старый фонд очень редко подвергается реконструкции. Для того чтобы перевести с системы TN-C, т.е. двухпроводная система (фаза и ноль), на такие эффективные системы как TN-C-S и TN-S, в которых предусмотрен защитный проводник РЕ (земля), своими силами практически не возможно. Модернизацией в основном занимается специализированная электротехническая компания.

Система TN-C

В системе TN-C нет защитного проводника (земли). Никто не станет тянуть из своей квартиры отдельный заземляющий провод для того, чтобы сделать заземление, к примеру, в подвале. Хотя, некоторые решаются обеспечить себя заземлением, если квартира расположена на первом этаже. Но большинству населения такой маневр осуществить не представляется возможным.

Прежде чем подключить защитный проводник РЕ (земля) из квартиры, нужно определить, какие есть возможности.Определите наличие заземления в щитовой, к которой можно подключить третий проводник. В щитовой должна быть либо заземляющая шина РЕ, либо все этажные щитовые должны быть соединены между собой металлической шиной, и в итоге подсоединены к общему контуру заземления дома, т.е. речь идет о повторном заземлении. Это дает возможность подключить к щиту заземляющий проводник из квартиры. Если эти два варианта отсутствуют, значит, в доме нет заземления и в этом случае делают запрещенное зануление. Как уже было сказано ранее, такой метод в жилом секторе совсем не безопасен.

Как делается зануление?

Зануление не выполняет роль заземления, такая схема расчитана на эффект короткого замыкания. На производстве нагрузки более или менее распределены равномерно, и ноль выполняет в основном защитные функции. Здесь нулевой проводник цепляют к корпусу электродвигателя. При попадании на корпус электродвигателя напряжения одной из фаз, произойдет короткое замыкание. В свою очередь, сработает на выключение автоматический выключатель или автомат дифференциальной защиты. Следует принять во внимание еще один неоспоримый факт — все электроустановки на производстве соединены между собой металлической заземляющей шиной и выведены на общий контур заземления всего здания.

Можно ли сделать зануление в квартире?

Можно,но не нужно. Чем это грозит? Предположим ваше оборудование (стиральная машина,бойлер и др.) занулены. Если нулевой провод по каким-либо причинам обгорит или электрик случайно перепутал подключение проводов (вместо нуля подключил фазу), то ваше оборудование просто перегорит из-за большого напряжения.

Если вы запланировали электромонтажные работы в своем жилье, а затем узнаете, что в доме нет заземления ни в каком виде, все же лучше прокладывать трехжильный кабель. Две жилы (фаза и ноль) подключаем планово, а вот третий проводник защитного заземления оставляем незадействованным до ожидания реконструкции стояков, где будет предусмотрено заземление.

Если вы все же надумали сделать в квартире зануление, нужно помнить, что вы берете на себя огромную ответственность. В любом случае, при наличии заземления или зануления, нельзя пренебрегать установкой защитной аппаратуры, таких как УЗО (Устройство защитного отключения) и ограничитель напряжения.

Своими руками

Заземление дома своими руками. Как сделать.

Заземление – обязательный элемент организации электропроводки частного дома. Ведь при непредвиденном пробое электричества именно заземление защищает от удара током. Да и те, кто пробовал взяться за включенную в сеть стиральную машинку сзади, знают, как ощутимо «щипаются» её открытые металлические части.

Кроме стиральной машинки напрямую, а не через евророзетку, желательно заземлять:

  • микроволновые печи – при плохом контакте с розеткой она способна довольно ощутимо биться током, поэтому практически у всех моделей сзади есть винтовая клемма отдельного заземления;
  • электроплиты (духовки и варочные поверхности) – из-за высокой мощности очень велика вероятность пробоя, поэтому заземления через розетку недостаточно;
  • персональные компьютеры – заземляются за любой крепежный винт сзади на корпусе, что позволяет убрать плавающие потенциалы и улучшить скорость работы беспроводного интернета.

Кроме того, на один заземляющий контур можно подсоединять электроприборы и молниезащиту (при наличии УЗИП), что сэкономит время и силы при строительстве.

Что нужно знать о заземлении

Перед тем, как начать собирать своими руками контур заземления, необходимо разобраться в терминологии. Сам контур состоит из заземлителей и металлосвязи. Заземлители – металлические штыри длиной 2-3 м, полностью, погружаемые в землю. А металлосвязь соединяет между собой эти штыри и распределительный щит в доме.

В качестве заземлителей, согласно «Правилам устройства электроустановок», могут быть металлические трубы, уголки, пруты или многопроволочные канаты.

Категорически запрещается использовать арматуру для заземляющего контура – недостаточный диаметр сечения и ребристая поверхность быстро приводят к проржавению конструкции и потере заземляющих свойств.

Между собой заземлители можно соединять любыми из указанных проводников, но стоит учесть, что уголки и металлические ленты довольно сложно сгибать на поворотах.

Поэтому при выборе металлосвязи нужно заранее определиться со схемой контура и способом ввода заземляющего проводника в дом.

Схемы заземляющего контура – их преимущества и недостатки

От выбранной схемы будет зависеть надежность и долговечность всей конструкции. Так, условно контуры делятся на:

  • линейные – когда заземлители уложены в ряд и соединяются друг с другом последовательно;
  • с замкнутым контуром (треугольные, квадратные, овальные) – когда все заземлители соединены в замкнутый круг.

Линейная схема немного проще в исполнении – нужно на одно соединение меньше и не требуется много места. Монтаж уложенных в ряд заземлителей можно производить даже вдоль отмостки фундамента (но не ближе 1,2 м от края). Зато замкнутый контур надежнее – даже при выходе из строя одного соединения контур будет работать, ведь цепь не разомкнется.

Типы подключения заземления к распределительному щитку

Подключение к линии электропередач, в основной своей массе, происходит воздушными линиями. Заземление линий в этом случае выполнено по системе TN-C, когда в дом подводятся два провода – фаза (L) и ноль (совмещенный защитный и рабочий провод PEN), а нейтраль самого источник питания заземлена.

Чтобы в этом случае подключить контур заземления дома или дачи к электрическому щиту, необходимо самостоятельно переделать систему заземления:

    с TN-C на TN-C-S – в этом случае провод PEN подключается к рабочему нулю N и защитному проводу PE;

с TN-C на ТТ – провод PEN подключается напрямую к нулю N, а PE выводится на шину заземления.

В первом варианте провод PEN разделяется и подключается на две отдельные шины N и PE, которые обязательно маркируются. Ноль – синей изолентой, заземление – желтым знаком заземления. Шина N должна крепиться в щитке специальными изоляторами, чтобы не контактировать с коррусом. А шина заземления PE крепится прямо на корпус. Обе шины соединяются с собой токопроводящей перемычкой.

При разделении PEN проводника ни в коем случае в дальнейшем нельзя соединять провода N и PE – это приведет к короткому замыканию!

Во втором варианте провод PEN не разделяется, а крепится к шине N и в дальнейшем считается нулем. К шине PE будут крепиться только провода заземления электроприборов. Этот способ предпочтительнее, так как при отгорании PEN-проводника все пользователи линии электропередач будут подключены на шины заземления в домах. И если заземление есть не у всех жителей, то это может привести к поломке техники у тех пользователей, кто всё же озаботился его устройством.

Единственный недостаток системы ТТ – необходимость установки УЗО или реле напряжения, что ведет за собой увеличение затрат на организацию электропроводки.

Как сделать заземление – детальная инструкция с фото

Устройство заземления делится на два этапа – монтаж заземлителей и подключение контура к щитку. Учитывая трудоемкость процесса, всю работу можно разделить на два дня. Главное, дождаться сухой погоды.

Устройство заземляющего контура

Соблюдая последовательность работ, сделать контур заземления сможет даже непрофессионал.

Единственное требование к работнику – физическая сила, так как придется хорошенько помахать кувалдой.

  1. Очень важно выбрать место для контура – в случае пробоя электричества над ним не должны находиться люди и животные. Идеальный вариант – спрятать заземление под огражденной клумбой или заасфальтированной дорожкой.
  2. Размечается место под контур. Самой популярной схемой является треугольник, так как для улучшения токопроводящих свойств минимальное количество заземлителей в контуре – три. Оптимальное расстояние между ними – 1,2 м, но может варьироваться от 1 м до 1,5 м. Важно соблюдать одинаковый шаг между заземлителями.

  • Хотя размещать контур нужно не ближе 1 м от дома, максимальное расстояние не должно превышать 10 м.
  • По разметке равнобедренного треугольника и по направлению к дому выкапывается траншея глубиной 50-70 см. В вершинах мощными ударами кувалды вбиваются металлические уголки или трубы на глубину ниже промерзания грунта (в среднем 2-3 м). Чем тяжелее кувалда – тем быстрее идет работа. А заземлители из медных труб очень удобно забивать обычным перфоратором.

  • Верхние концы заземлителей не забивают до конца, но с таким расчетом, чтобы после засыпания траншеи над ними было еще 50 см земли.
  • Соединяются вершины треугольника металлическими полосами или прутами. Очень важно места соединения сваривать – это позволит избежать регулярного подкручивания болтов при использовании крепежей. Если же контакта заземлителя с металлосвязью не будет, то вся работа по устройству контура бессмысленна. (13)

    Заземляющий проводник, идущий к дому, также приваривается к контуру. На конце, расположенном на стене дома, приваривается болт, к которому и будет идти заземляющий провод от шины в щитке.

  • Все сварочные стыки после остывания замазываются битумной мастикой в несколько слоев. Это предотвратит коррозию и, как результат, потерю контакта.
  • Траншея засыпается землей, а часть заземляющего проводника, находящегося на поверхности («земляная» шина), красится – для защиты металла от влаги. Традиционная краска для проводника заземления – красного цвета. Но ни в коем случае нельзя красить весь проводник – он должен контактировать с землей для рассеивания напряжения.
  • Работы по подключению заземления к щитку можно отложить на любой другой день – если всё сделано правильно, контур прослужит без ремонта 50-70 лет, поэтому спешить с подключением нужно только при наличии уже подключенных к сети электроприборов.

    Правильное подключение заземления – залог безопасности и долгой службы техники

    Очень важно правильно подключить «земляную» шину к щитку. Для этого используются медные, алюминиевые или стальные проводники. Для медных изделий сечение не должно быть меньше 10 кв.мм, для алюминиевых – 16 кв.мм, а для стальных – 75 кв.мм. Использоваться могут как металлические полосы, так и витые провода.

    Для крепления металлических полос делается отверстие по диаметру болта и фиксируется гайкой с шайбой. Провода к болтам должны крепиться специальными клеммами, а ни в коем случае не накручиваться на них.

    Место соединения должно быть зачищено до блеска и покрыто консистентной смазкой – она защищает металл от окисления и электрокоррозии.
    К щиту заземляющий проводник крепится на корпус также винтовым соединением. Если дверца щита не заземлена, необходимо заземлить и её – еще одним проводником. Важно заранее подобрать шины заземления в щитке с достаточным количеством отверстий для разных приборов – крепить два провода в одну точку категорически запрещается.

    Существует распространенное заблуждение, что электроприборы лучше заземлять «чисто», а не через общий контур заземления. Но в этом случае большое количество «индивидуальных» заземлителей создают свой контур, при этом при пробое электричества на одном приборе вполне вероятно появление напряжения на другом.

    Проверка заземления

    Очень важно не пренебрегать проверкой заземления. В идеале, проводить её нужно раз в несколько лет, чтобы удостовериться, что контакты в месте сварки не отошли. Проверка проводится специальными измерительными приборами, которые для одноразового пользования покупать нецелесообразно. Без специального же омметра проверять сопротивление контура бесполезно и даже опасно.

    Так, при подключении обыкновенной лампочки к фазе и контуру она будет гореть, даже если вместо контура воткнуть в землю лом – из-за маленького электропотребления. Если же использовать мощный прибор, например, обогреватель, это может быть опасно для здоровья. К тому же нужно точно измерить сопротивление контура – оно не должно превышать 4 Ом.

    Можно использовать трехэлектродный метод с амперметром и вольтметром, а в качестве источника тока взять понижающий трансформатор на 12-16 вольт, но ведь и эти приборы есть не у каждого. Поэтому лучше пригласить один раз электрика и быть уверенным в качественно выполненной работе!

    Что нельзя делать при заземлении

    Все мы знаем и понимаем, что заземление — это способ защитить себя от поражения электрическим током и свое имущество от поломки и пожара вследствие короткого замыкания. Очень многие хотят защитится от несчастных случаев, но не все понимают принцип действия защитного заземления. А это незнание может привести к еще большим бедам, чем само отсутствие заземления.

    Данная моя статья о том, что ни в коем случае НЕЛЬЗЯ делать, пытаясь что-то сконструировать у себя дома «наподобие» заземления.

    1. НЕЛЬЗЯ подключать заземление к розеткам и электроприборам, если в вашей сети стоят только автоматические выключатели! Автомат отключает электрическую сеть только при коротком замыкании фазы с нулем или фазы с фазой. Он сработает только при наличии тока во много раз превышающего номинальный ток самого автомата. Ваше искусственное или естественное заземление в большинстве случаев имеет сопротивление, которое не сможет создать в цепи таких токов, необходимых для мгновенного отключения автоматического выключателя (для безопасности необходимое время срабатывания — 0,4 секунды).
    Предположим, что сопротивление нейтрали на подстанции — 4 Ом (по правилам). Допустим, что и ваше заземление, с учетом повторных заземлений, тоже 4 Ом. На одном из бытовых электроприборов происходит «пробой» фазы на корпус. Заземленный корпус! С помощью ваших заземляющих проводников на всех заземленных корпусах электроприборов и контактах розеток появится потенциал в 110 Вольт. А если сопротивление вашего заземляющего контура более 4 Ом, то и напряжение будет значительно больше.
    Автомат на 16 Ампер, который будет у вас стоять в электрощите, отключается за 0,4 секунды при токе, проходящем через него, равным 160 Ампер. Если сопротивление на подстанции 4 Ом и сопротивление вашего заземление 4 Ом, то ток при коротком замыкании фаза-ноль будет равным 27,5 Ампер. А если мы учтем сопротивление самой электролинии, то ток будет еще меньше. Автомат на 16 ампер отключится только через 40-180 секунд. Все это время на вашем заземлении и корпусах электроприборов будет очень опасный потенциал. И еще. Все это время (40 — 180 секунд) ваша электропроводка будет находиться под колосальной нагрузкой, а это приводит к возгоранию и пожару.

    Чтобы достичь сопротивление заземления в 4 Ом необходимо сделать очень качественный и надежный контур заземления (уж точно не с 3-я стержнями соединенными в треугольник!).

    Достичь сопротивления заземления даже 4 Ома тремя штырями, особенно вбитых в виде треугольника, весьма проблематично.

    Что касается автомата на 16 Ампер, то чтобы он отключился при коротком замыкании за 0,4 секунды сопротивление заземления должно быть менее 1,5 Ом. Этого достичь очень проблематично даже профессиональным электрикам.

    2. НЕЛЬЗЯ делать из труб центрального отопления или водоснабжения контур заземления и подсоединять к нему корпуса электроприборов и заземляющий контакт розеток.

    При таком заземлении, в случае возникновения в сети короткого замыкания, не сработает ни один автоматический выключатель. А вот под опасным напряжением окажутся все металлические конструкции, в том числе в соседних квартирах и домах.

    В любой момент трубы отопления или водоснабжения могут перестать быть контуром заземления — ремонт или коррозия металла. Тем более сейчас многие стали использовать пластиковые трубы, поэтому трубы не могут быть естественным заземлением, тем более защитным проводником.

    Чтобы самим не стать пострадавшими от горе-соседей, решивших сделать такое горе-заземление, я бы порекомендовал ставить на вводе в ваш дом или квартиру в разрыв металлических труб пластиковые муфты. Тогда ваше, например, отопление не будет являться для кого-то контуром заземления.

    Используйте на своих сайтах и блогах или на YouTube кликер для adsense

    3. НЕЛЬЗЯ делать зануление в двухпроводной электропроводке. Некоторые, считая что так они себя обезопасят от поражения электрическим током, соединяют заземляющие контакты розеток и электроприборов, а также металлические корпуса электрооборудования с нейтральным проводом электропроводки (ноль). Некоторые ведут третий провод в электрощит и там его «сажают» на ноль, а еще хуже — делают в электрической розетке просто перемычку между заземляющим и нулевым контактами.

    Чем это грозит? Любое попадание на нулевой провод (нейтраль) фазы — перехлестывание проводов на линии электропередач, смена местами ноля и фазы после аварии — и на зануленных корпусах появляется напряжение. При этом сгорают все электроприборы, включенные в сеть.

    ПУЭ (правила устройства электроустановок) прямо говорит — занулению подлежат токопроводящие поверхности электроустановок, к которым относятся лифты, насосные станции, трансформаторные подстанции, вводные щиты зданий. А не бытовые однофазные электроприборы! Согласно пункту Российского ПУЭ 7 1.7.132 не допускается совмещение функций нулевого защитного и нулевого рабочего проводников в цепях однофазного и постоянного тока.

    Для защиты от поражения электрическим током в домах и квартирах с двухпроводной электропроводкой, тем более если есть дети, установлены водонагреватели, стиральные машины, микроволновки, электрические плиты, единственно верное решение — это установка 10 мАмперного устройства защитного отключения на каждую линию розеток и отдельно на освещение.

    Самый правильный вариант: после вводного автомата ставится УЗО на 30 мА и по линиям ставятся УЗО по 10 мА.

    Также в электрощите желательно установить вместо однополюсного автоматического выключателя двухполюсной, отключающий и фазу и ноль.

    4. НЕЛЬЗЯ подключать в электрощите и трехпроводной электропроводке заземляющий проводник к заземляющим контактам и корпусам электроприборов, если само заземление еще до конца не сделано. Ведь в случае попадания фазы на защитный провод под напряжением окажутся токопроводящие корпуса электроприборов, особенно это опасно при отсутствии устройства защитного отключения.

    Так же если подключить заземляющие проводники при неисправном заземлении, то статические и емкостные токи всех подключенных электроприборов суммируются, и через защитный проводник можно получить смертельный удар электрическим током при исправных электроприборах.

    И еще раз: от поражения электрическим током человека может защитить только УЗО. Автоматические выключатели реагируют только на короткое замыкание. А заземление снимает статические, емкостные токи с электроприборов и немного снижает опасный потенциал при замыкании фазы на корпус.

    5. НЕЛЬЗЯ подключать самостоятельно нейтральный провод к своему заземлению, то есть не делайте повторное заземление нейтрального провода на вводе и зануление бытовых электроприборов. Данным процессом должна заниматься энергопередающая организация (электросеть). При возникновении аварийных ситуаций на питающей линии, обрыв нейтрального провода, смена местами фазы и нейтрали, перехлестывании проводов на воздушных линиях единственной нейтралью (нулевым проводом) всех домов через ваше заземление может стать ваша заземленная нейтраль. Самодельное заземление вряд ли выдержит такой нагрузки и отгорит, в лучшем случае вызвав пожар, а если и выдержит, то нет гарантии что обеспечит безопасное напряжение прикосновения на открытых токопроводящих поверхностях.

    Если уж и делать повторное заземление или зануление, то доверять это только квалифицированным специалистам!

    В чем разница между заземлением и занулением

    При монтаже электросетей в помещениях разного назначения обязательно должна быть предусмотрена защита, предотвращающая возможное поражение человека током. И для этого используется заземление и зануление. Причем далеко не все знают, в чем их разница. Ведь обе они обеспечивают безопасность использования электрических приборов.

    По сути, эти два понятия во многом схожи, из-за чего их часто путают, но выполняют они свои функции по-разному. Поэтому постараемся разобраться, что в них общего и чем отличаются.

    Заземление

    Начнем с разбора каждой системы по отдельности.

    Так, заземление – это преднамеренное соединение электрической сети, прибора или оборудования со специальной конструкцией, закопанной в землю посредством нулевого проводника.

    По сути, это единая система, соединяющая между собой токопроводящие элементы приборов и оборудования (к примеру, их корпусы), подсоединенные к ним провода, и штыри, закопанные в землю (контур).

    Благодаря высокому сопротивлению контура при касании фазного провода на корпус в случае пробоя, большая часть напряжения уходит в землю, и хоть потенциал все же будет оставаться на корпусе, но его значение будет значительно сниженным и неопасным для человека.

    Международный стандарт, разработанный МЭК, включает в себя несколько систем заземления, различия между которыми сводится к разным видам заземления источника питания (генератора или трансформаторной подстанции), и заземления открытых участков сети, приборов.

    В стандарт входит три системы – TN, TT и IT.

    Первая буква индекса указывает на тип заземления источника (T – «земля), получается, что в первых двух системах трансформаторная подстанция подключается к заземляющему контуру.

    Что касается третьей (IT), то у нее источник питания заизолирован, либо же подключен к прибору, обеспечивающему высокое сопротивление (I – изоляция).

    Вторая буква индекса указывает на тип заземления открытых участков сети. В системе TN (N — нейтраль) эти участки соединены с нейтральным проводником источника, подключенного к заземляющему контуру (глухое заземление нейтрали).

    Для соединения оборудования и приборов используются рабочий (N) и защитный (PE) нулевые проводники.

    Что касается двух других систем – TT и IT, то второй буквенный индекс указывает на то, что открытые участки сети, оборудование и приборы заземляются своим отдельным контуром.

    В свою очередь система TN делится на подсистемы, их три – TN-C, TN-S, TN-C-S.

    Различия между ними сводятся к использованию разных защитных проводников, которыми потребители соединяются с нейтралью источника.

    В подсистеме TN-C используется объединенный проводник (PEN), совмещающий в себе и рабочий, и защитный «нуль». Эта подсистема является уже устаревшей, поэтому при укладке новых электросетей она не используется.

    Подсистема TN-S отличается тем, что у нее рабочий и защитный «нули» — это разные проводники. То есть, к нейтрали подключается N-проводник, а к заземляющему контуру – PE-проводник, хоть они совмещены на источнике питания.

    Третья подсистема – TN-C-S является промежуточным звеном между первыми двумя подсистемами. У нее от нейтрали отходит PEN-проводник, то есть нулевые проводники объединены, но на определенном участке сети они разделяются и к потребителям подходит отдельно рабочий и защитный «нули». После разделения защитный «нуль» дополнительно заземляется.

    Более подробно о системах заземления, их достоинствах и недостатках можно почитать здесь https://elektrikexpert.ru/sistemy-zazemlenij.html.

    Требования, выдвигаемые заземлению достаточно серьезные. Ведь оно должно обеспечить отвод опасного напряжения с прибора или оборудования в случае пробоя.

    Заземление в обязательном порядке делается для сетей, в которых напряжение выше 42 В переменного тока или 110 В – постоянного тока.

    Поэтому при проектировании должны правильно подбираться части сети и оборудования, которые подлежат обязательному заземлению, осуществляться контроль за тем, чтобы заземляющая цепь нигде не прерывалась.

    Серьезно подходят и к выбору проводников, их сечение должно обеспечивать соответствующую пропускную способность.

    Все требования, которые выдвигаются системам заземления прописаны в ПУЭ (Правила устройства электроустановок).

    Зануление

    А теперь по занулению. В определении этого термина указывается, что зануление – преднамеренное соединение токопроводящих, но не находящихся под напряжением, элементов приборов и оборудования с глухозаземленной нейтралью (трехфазные трансформаторы), выводом источника тока (однофазный трансформатор), средней точкой источника, подающего постоянный ток.

    То есть, корпус любого прибора, подключенного к сети, должен быть дополнительно соединен с нейтралью источника питания.

    Для систем TT и IT зануление не применяется, поскольку для заземления потребителей используется отдельный контур.

    Для создания зануления используется нулевой защитный проводник (PE), который соединяется с нейтралью источника.

    Но в ПУЭ сразу же дается пояснение, что в качестве защитного проводника может использоваться и рабочий (N), что подразумевает, что для создания зануления может использоваться и PEN-проводник.

    В чем их отличие?

    Получается, что зануление, по сути, это то же заземление, сделанное по системе ТN, но если рассматривать более подробно, то разница между ними есть.

    Первое, это то, что при заземлении совмещенный нулевой PEN-проводник (системы TN-C и TN-C-S) и PE-проводник (система TN-S) выступают в качестве посредника между приборами и заземляющим контуром трансформатора.

    То есть, имеется источник питания, возле которого закопан контур и вместе они соединены.

    Проводка от источника идет на потребитель (помещение), где она разветвляется, чтобы обеспечить запитку всех электроприборов и оборудования.

    Чтобы заземлить эти приборы (обеспечить защиту), используется та же проводка, а именно нулевые проводники, и контур трансформатора.

    А вот при занулении выполняется соединение не с контуром, а непосредственно с нейтральным проводником трансформатора.

    А поскольку в обоих случаях используется один проводник — нулевой (в совмещенном – PEN-проводник, в разделенном – РЕ-проводник), то в конструктивном плане заземление и зануление – одно и то же.

    Второе, каждый из них работает по-разному, хоть и конструкция – одинакова.

    В случае с заземлением, при появлении опасного потенциала на незакрытых участках сети, он будет отводиться в землю посредством заземляющего контура, обладающего высоким сопротивлением.

    Зануление же работает с точностью до наоборот. При соприкосновении фазы с корпусом, подключенным к нулевому проводнику, происходит резкое возрастание силы тока в следствие малого сопротивления, то есть происходит короткое замыкание, в результате которого срабатывают автоматические выключатели, устройства защитного отключения, либо же плавятся предохранители.

    Вот и получается, что заземление и зануление в техническом плане – одно и то же, но обеспечивают они защиту по-разному.

    В целом же, обе они направлены на обеспечение максимальной защиты человека от возможного поражения электрическим током при пробое фазы на нуль, и дополняют друг друга.

    Особенности создания заземления и зануления

    Теперь о том, как все выглядит на деле. При создании подсистемы TN-C-S совмещенный нулевой проводник (PEN) тянется от трансформатора к помещению.

    В вводном распределительном устройстве (ВРУ) происходит разделение его на N и PE-проводники. На конечный потребитель при этом доходит три провода – фаза, рабочий и защитный нули.

    При подключении прибора получается, что посредством PE-проводника он соединяется с PEN-проводником, который является и соединителем с заземляющим контуром, и глухозаземленной нейтралью.

    Примерно то же происходит и в подсистеме TN-S с той лишь разницей, что заземление и зануление осуществляется разделенными нулевыми проводниками.

    То есть в этих двух подсистемах создавая заземление, автоматически выполняется и зануление.

    А вот в системе TN-C этого не происходит. Дело в том, что в ней используется PEN-проводник, который не расщепляется на вводе.

    Получается, что к конечному потребителю доходит только два провода – фаза и рабочий ноль, а защитного РЕ-проводника – нет, по сути, конечный потребитель не заземлен.

    Поэтому и создается зануление – соединение корпусов потребителей с нулевым рабочим проводником.

    Если в вышеуказанных подсистемах создавая заземление сразу же появляется и зануление, то в этой его приходится создавать отдельно.

    В данном случае зануление является альтернативой заземлению, чтобы обеспечить хоть какую-то защиту.

    Поэтому TN-C считается устаревшей, поскольку она не обеспечивает должную безопасность.

    Часто возникает вопрос – зачем вообще нужно зануление, ведь заземления считается более безопасной системой.

    Моделируем ситуацию: произошел пробой фазы на корпус. Заземление обеспечило отвод большей части напряжения в землю, но часть его все же осталась на корпусе, при этом произойдет повышение значения тока, хоть и незначительно.

    Это не опасно для человека, но может привести к неприятным последствиям. Поскольку из-за отсутствия зануления не произойдет сильного скачка тока, то защитные средства просто не сработают, и поврежденный участок не отключиться.

    В результате возможно повреждение оборудования или участка электросети, возникновение пожара.

    Получается, что зануление и заземление дополняют друг друга, первый делает отключение поврежденного участка цепи, а второй нейтрализует негативные последствия возникшего КЗ в сети, обеспечивая максимально возможную защиту от поражения электрически током.

    Часто указывается, что в системах TN-S и TN-C-S зануление не делается. И это так, но только частично. Ведь согласно изложенному, создавая заземление, делаем сразу и зануление. И только у TN-C зануление – отдельный вид работ.

    Отсюда можно сразу и судить, где используется зануление, а где нет. Присутствует оно везде, где используется система TN. Но если в старых постройках его приходилось создавать отдельно, то в новых зданиях оно делается в процессе монтажа заземления.

    Что будет если вместо нуля использовать землю?

    Можно ли подключить заземление вместо нуля? Что будет если вместо нуля подключить землю. Опасность поражения электрическим током и шаговое напряжение, неправильная работа УЗО и дифавтоматов. Электросчетчики будут продолжать работать

    Чем отличается ноль от земли

    Основные отличия нулевого и заземляющего проводов в их назначении – НОЛЬ используется для подачи питания, а ЗЕМЛЯ выполняет защитную функцию.

    Источник: http://electricvdome.ru/zazemlenie/zazemlenie-vmesto-nulya.html

    Конструкция и назначение заземляющих устройств

    Подобные конструкции подразделяются на рабочие и защитные устройства.

    1. Рабочее используется для организации безопасности функционирования агрегатов промышленного назначения. Также распространено в частных хозяйствах.
    2. Система защитного заземления обязательна для электросетей в жилом секторе.

    Установка заземляющего устройства (ЗУ) требуется в соответствии с Правилами устройства электроустановок и Правилами эксплуатации электроустановок потребителей.

    Прикосновение людей к токоведущим частям, открытым в результате неправильной эксплуатации электрооборудования, дефектов конструкции, прихода в негодность изоляции и других причин, встречается часто. Некачественная конструкция ЗУ и ее монтаж может повлечь тяжелые последствия для людей: электрический шок, ожоги, нарушение работы сердца и иных органов человека поражение током часто приводит к ампутации конечностей, инвалидности и даже летальным исходам.

    Система заземления состоит из наружной и внутренней частей, которые стыкуются в электрическом щитке. Наружное заземляющее устройство состоит из комплекса металлических электродов и проводников, отводящих аварийный ток от электрооборудования в землю в безопасных для людей местах. Электроды называются заземлителями. Электрические жилы – это заземляющие проводники, представляют собой штыри длиной 1,5 м, диаметром 1 мм.

    Изготавливаются промышленностью из меди или стали, покрытой медью. Их основное достоинство — повышенная проводимость тока. Вбиваются в землю молотами или кувалдами на глубину 50 см, контакт с землей должен быть максимально прочным, иначе ухудшится способность конструкции отводить ток.

    Простая конструкция изготавливается из одного электрода. Применяется в молниеотводах или для защиты удаленных объектов и оборудования. В индивидуальных хозяйствах предпочтение отдается многоэлектродным устройствам. Размещаются в один ряд и называются линейными профилями ЗУ. Стандартная длина цепи — 6 метров. Между собой соединяются латунными муфтами, крепление резьбовое, сварка не рекомендуется. Заземляющие проводники устанавливаются через клеммы. Скручивания, пайки жил исключаются.

    Не пропустите: Как укладывать керамическую плитку: советы профессионалов по укладке аккорд керама марацци

    По-прежнему распространено такое устройство, как контур заземления (замкнутый вариант). Сооружается на расстоянии не ближе 1 метра и не далее 10 метров от дома. Размещается в траншее в виде равностороннего треугольника. Длина стороны 3 м, глубина – 50 см, ширина – 40 см. По углам вбиваются заземлители. Эта же операция проделывается с другими вертикальными электродами (не свыше пяти единиц). Заземлители в нижней опорной части свариваются с горизонтальными изделиями.

    Изготавливаются из меди, покрытого медью или цинком стального уголка (полка 5 мм, полоса 40 мм), Часто применяется стандартный уголок из нержавеющей стали любого профиля. Изделия не окрашиваются, так как в этом случае ухудшатся электротехнические свойства из-за ослабления контакта с землей.

    Конструкция контура несложная, ее можно сделать собственными руками. Но работа упрощается при использовании готовых заземляющих устройств, представленных на рынке, в комплекте с которыми есть провода заземления. Финансовые потери окупятся за счет применения качественных материалов, стойких к коррозии и с большим сроком эксплуатации.

    Источник: http://TokMan.ru/fakty-i-sekrety/zazemlenie-vmesto-nulevogo-provoda.html

    Зачем нужен ноль в электросети

    Электроснабжение современных жилых районов и промышленных предприятий осуществляется по системе TN, или с глухо заземлённой нейтралью. Это значит, что вторичные обмотки понижающего трансформатора соединены по схеме “звезда”, средняя точка которой без разрывов подключена к контуру заземления подстанции.

    От трансформаторной подстанции к потребителям электроэнергия подаётся по четырём проводам – три фазных L1, L2, L3 и один нулевой N. Для подключения бытового электроприбора необходимы два провода – фаза и и ноль, или нейтраль.

    В системе электроснабжения TN нулевой проводник выполняет две функции:

    • В однофазной сети. Для протекания электрического тока цепь должна быть замкнута. Условно говоря, по фазным проводам напряжение поступает к электроприборам, а нейтраль служит для замыкания электроцепи.
    • В трёхфазной системе электроснабжения. В этой сети благодаря сдвигу фаз три электроприбора одинаковой мощности могут работать без нейтрали и трёхфазные электродвигатели подключают именно таким образом. В этой сети нулевой проводник служит не для подачи питания, а для протекания уравнительного тока, появляющегося при неравномерном распределении нагрузки по фазам и предотвращения колебаний напряжения при изменении потребляемой мощности.
    Информация! В некоторых типах электрических кабелей сечением более 4мм² нулевая жила изготавливается из более тонкого провода.

    Источник: http://electricvdome.ru/zazemlenie/zazemlenie-vmesto-nulya.html

    Зачем нужно заземление

    В обычной ситуации ток по заземляющему проводнику не протекает, он используется только в случае аварии. Попадание высокого напряжения на корпус электроприбора и последующее прикосновение к нему является опасным для жизни человека, поэтому, согласно ПУЭ п.1.7.32-33 все металлические части рекомендуется соединять с контуром заземления отдельным проводом или при помощи соответствующей клеммы в розетке.

    В этом случае при нарушении изоляции между токоведущим частями и заземлённым корпусом появляется короткое замыкание в сети и ток в фазном проводе резко возрастает, что приводит к срабатыванию защиты.

    Если замыкание на корпус электроприбора произошло через некоторое сопротивление, то протекающего тока может быть недостаточно для срабатывания автоматического выключателя. Роль заземления в этом случае снизить напряжение прикосновения до безопасной величины, тем самым снизить разность потенциалов между человеком и поврежденной техникой. Чем меньше разность потенциалов – тем меньше протекающий через человека ток.

    Источник: http://electricvdome.ru/zazemlenie/zazemlenie-vmesto-nulya.html

    Отключение заземляющего провода в щите

    Это самый простой и надёжный способ, для которого достаточно иметь вольтметр или индикатор напряжения с двумя щупами:

    1. 1. отключить питание линии вводным автоматическим выключателем;
    2. 2. отсоединить заземляющие провода в электрощитке;
    3. 3. обеспечить возможность безопасного проведения измерений на втором конце кабеля;
    4. 4. подать питание включением вводного автомата;
    5. 5. попарно измерить напряжение между всеми тремя концами кабеля.

    Между нулевым и фазным проводами индикатор покажет наличие сетевого напряжения. Оставшийся провод является заземлением.

    Источник: http://rentps3.ru/provodka/zazemlenie-vmesto-nulya.html

    Воровство электроэнергии через заземление

    Если кто-нибудь решил в условиях квартиры использовать в качестве земли водопроводную трубу, то он должен знать, что подвергает чью-то жизнь смертельной опасности. Дело в том, что в нормальном состоянии водопроводные трубы действительно соединены с землей (если не используются какие-то соединения труб из полимеров), но в случае, например, ремонта трубы, когда она будет отрезана ниже места присоединения заземляющего проводника, возникает прямая угроза жизни человека, прикоснувшегося к трубе.

    Источник: http://srub-brusa.ru/bezopasnost/zemlya-vmesto-nulevogo-provoda.html

    Как отличить ноль от заземления

    Для того чтобы правильно подключить эти провода, необходимо определить, какой из них является нейтралью, а какой землёй. Существуют различные способы, как отличить ноль от заземления:

    • Цветовая маркировка. В электропроводке, выполненной согласно ГОСТу 31947-2012, цвет оболочки провода определяется его назначением. Нейтраль имеет синюю или голубую окраску, земля окрашена в продольные жёлтые и зелёные полосы.
    • При помощи УЗО или дифавтомата, установленных в электрощитке. После определения при помощи индикаторной отвёртки фазного проводника к нему и одному из оставшихся подключается электроприбор или лампа мощностью более 10 Вт. Если срабатывания защиты не произошло, значит, был выбран нейтральный проводник. В противном случае это заземление.
    • Тестером или вольметром. Электропроводка в щитке отключается от контура заземления, после чего одним из приборов определяются два провода, между которыми имеется напряжение 220В. Оставшийся проводник является заземлением.

    Источник: http://electricvdome.ru/zazemlenie/zazemlenie-vmesto-nulya.html

    Можно ли использовать заземление вместо нуля

    Подключение нуля вместо заземления является нарушением ПУЭ п.7.1.36, запрещающем соединение питающих и защитных проводов. И даже если это сделать в частном доме или квартире, в которые не приходит с проверкой инспектор по электробезопасности, при подключении земли вместо нейтрали возможны различные негативные последствия.

    Источник: http://electricvdome.ru/zazemlenie/zazemlenie-vmesto-nulya.html

    Отличия способов защиты

    Заземление происходит благодаря выравниванию потенциалов и защите от губительного воздействия тока. Заземление используется в домах и квартирах, ее можно монтировать самостоятельно. Однако подобная установка не моментально сработает при возникновении тока. Его легко установить самостоятельно, при наличии сварочного аппарата и нескольких кусков металла. При этом, нужно иметь хорошую теоретическую базу, для подсчета и выбора оптимального места для соединения к нейтралу.

    При зануленении, подобные токи заставляют сработать выключатель, из-за чего бытовое устройство отключается от сети, вместе с остальными приборами, включая трансформаторы, компьютеры и другое. При нарушении работы нулевого провода в щитке, система прекратит работу, при этом вы можете стать жертвой удара током. Из-за того, что контур зануления находится вне дома, он может ухудшится спустя некоторое время. Особо это отражается в местах объединения соединений. При ежегодной проверки этого можно избежать.

    Источник: http://srub-brusa.ru/bezopasnost/zemlya-vmesto-nulevogo-provoda.html

    Будет ли шаговое напряжение?

    Шаговое напряжение появляется при попадании на землю провода, находящегося под напряжением и протекании тока по поверхности земли.

    Теоретически, если выполнены все требования к контуру заземления, указанные в ПУЭ-7 п.1.8.39, при использовании заземления вместо нуля шаговое напряжение возникнуть не должно, но на практике не всегда эти правила соблюдаются, особенно если контур был изготовлен самостоятельно и его первичная и повторные проверки не производились.

    Совет! Для большей безопасности рекомендуется размещать контур заземления не под пешеходными зонами, а под клумбами и другими зелёными зонами.

    Источник: http://electricvdome.ru/zazemlenie/zazemlenie-vmesto-nulya.html

    Как получить электричество из земли и возможно ли это

    Вопросами бесплатного получения электроэнергии задавалось множество хороших инженеров, таких как Никола Тесла, так и толпы лжеученных, которых ждало лишь разоблачение.
    Результатом их работы является целый ряд схем и способов получения энергии из альтернативных источников. Реально действующих установок или опытов, которые могут нести практическую пользу немного.

    В этой статье мы рассмотрим, как можно получить электричество из земли.

    Возможно ли это?

    Прежде чем рассмотреть технологические схемы и ответить на вопрос «как взять электроэнергию из почвы?», давайте разберемся насколько это реально.

    Считается, что в земле очень много энергии и, если сделать установку – вы вечно будете бесплатно ей пользоваться. Это не так, ведь чтобы получить энергию нужен определенный участок земли и металлические штыри, которые вы в неё установите. Но штыри будут окисляться и рано или поздно приём энергии закончится. Кроме того, её количество зависит от состава и качества самой почвы.

    Чтобы добиться хорошей мощности нужен очень большой участок земли, поэтому в большинстве случаев энергии, полученной из земли, достаточно для включения пары светодиодов или небольшой лампочки.

    Из этого следует, что энергию из земли получить можно, но использовать её как альтернативу электросетям вряд ли получится.

    Электричество из нуля и заземлителя

    Этот способ подходит для жителей частных домов, если у них есть заземляющий контур. Знаете ли вы, что между заземлителем и нулевым проводом часто наблюдается разность потенциалов в 10-20 Вольт? Это значит, что их можно использовать бесплатно. Повысить их вы можете с помощью трансформатора.

    Энергия потребленная таким образом счётчиком учитываться не будет. Такое напряжение можно определить либо вольтметром, либо подключив между этими двумя проводами низковольтную лампочку типа тех, что устанавливают в габариты или приборные панели автомобилей.

    Важно! Не перепутайте фазу с нулём – это опасно!

    Стоит отметить, что в качестве заземлителя используется отдельное устройство из металлических штырей, вбитых на глубину более 1 метра. Трубопровод в большинстве случаев не даст хорошего результата. Подробнее про заземление в частном доме вы можете узнать из нашей отдельной статьи.

    Потенциал между крышей и землей

    Этот метод также требует вбить в землю металлический штырь, к нему подключается провод. Второй провод подключается к металлической крыше. Так вы получите пару Вольт. Ток от такой схемы будет ничтожно мал и не факт, что его хватит для включения одного светодиода.

    Гальванический элемент

    Следующий способ – простая химия. Это самый реальный и понятный способ получения электричества из земли в домашних условиях. Для этого нужны медные и цинковые электроды. В их роли могут выступать пластины, штыри, гвозди. Если медь распространена – с цинком могут возникнуть проблемы, поэтому легче найти оцинкованное железо.

    Нужно забить ваши электроды в землю на одинаковом расстоянии друг от друга. Допустим 1 метр в глубину и 0,5 метра между электродами. В таком случае медь будет катодом, а цинк – анодом. Напряжение такого элемента может составлять порядка 1-1,1 Вольта. Это значит, чтобы получить из земли электричество напряжением в 12 вольт нужно забить 12 таких электродов и соединить их последовательно.

    Решающим фактором в такой батарее является площадь электродов, от этого зависит и сила тока, ровно, как и от того, что находится между ними.

    Обратите внимание

    Для того, чтобы батарея выдавала ток – земля должна быть влажной, для этого её можно полить, иногда цинковый электрод заливают раствором соли или щёлочи.

    Для повышения токовой отдачи можно забить больше электродов и соединить их параллельно. Таким образом устроены все современные батареи и аккумуляторы.

    На схеме ниже вы видите еще одну интересную реализацию такой батареи из медных труб и оцинкованных стержней.

    Однако с течением времени электроды разрушаться и батарея постепенно прекратит свою работу.

    Метод получения электричества по Белоусову

    Валерий Белоусов много лет изучает молнии и защиту от них. Он является автором книг о бесплатной энергии и разработал ряд решений, чтобы получить электричество из земли.

    На схеме вы можете видеть два условных обозначения заземления. Здесь один из них – это заземлитель, а второй, рядом с которым буква «А» – ноль бытовой электросети. На следующем видео демонстрируется работа такой установки и описываются результаты, полученные с её помощью:

    Полученной энергии достаточно чтобы запитать светодиодную лампу на 220 Вольт малой мощности. Такой способ удобно использовать на даче, он может быть легко воспроизведён в домашних условиях.

    Получение бесплатного электричества из земли своими руками возможно. Но говорить о практическом применении и подключении мощных потребителей сложно. Холодильник вы так не запустите. На сегодняшний день единственным хорошо изученным источником электроэнергии из недр земли являются природные ресурсы, такие как уголь, газ, топливо для атомных электростанций и т.д.

    Наверняка вы не знаете:

    Источник: https://samelectrik.ru/elektrichestvo-iz-zemli.html

    Источник: http://rentps3.ru/provodka/zazemlenie-vmesto-nulya.html

    Будут ли работать электроприборы

    Единственное, для чего не имеет значения порядок подключения ноля и фазы – это работа электроприборов. Для этих устройств важно только величина напряжения в розетке, а она не меняется от того, какой провод куда подключен.

    С точки зрения электротехники не имеет значения, каким проводом нейтральная клемма розетки соединяется с нейтралью трансформатора – N при правильном соединении или РЕ при ошибочном.

    Информация! В системе электроснабжения TN-C-S отдельные провода N и РЕ разделяются не в подстанции, а во вводном щитке в здание, после чего подключаются к трансформатору общим проводом PEN.

    Источник: http://electricvdome.ru/zazemlenie/zazemlenie-vmesto-nulya.html

    Заземление одной розетки в частном доме

    Станица. Частный дом. К дому идет однофазная лини (2 провода). В доме стоят древние пробки и древний счетчик (пробки заменить на автоматы нет возможности и смысла, счетчик на 5Ампер). По дому так же идет древняя двухжильная алюминиевая проводка. Никакого щитка и заземления нет (делалось все лет так 40-50 назад).

    Мне нужно заземлить одну розетку в своей комнате, дабы избавиться от ударов тока компьютера, фона колонок, микрофона и др. проблем.

    Вопрос: как правильно заземлить ТОЛЬКО ОДНУ, повторяю, ТОЛЬКО ОДНУ РОЗЕТКУ, чтоб избавиться от вышеописанных проблем и не получить новых?

    З. Ы. Заранее благодарю за путевые ответы.

    З. З. Ы. Просьба не писать всякий бред, не советовать менять проводку, счетчик, и делать нормальное заземление всей домашней сети (я это буду делать только осенью).

    Абсолютно безопасная проводка, с помощью которой происходит соединение всех имеющихся мощных электроприборов с заземляющими устройствами, обязательна и необходима в каждом жилом помещении. Заземление обеспечивает безопасную эксплуатацию электроприборов. При пробое фазного проводника или при нарушении изоляции заземление защищает человека от поражения электрическим током в случае соприкосновения с корпусом электроустройств а.

    Как заземлить розетку своими руками

    Заземление не только сохраняет жизнь и здоровье человека, но и защищает электрические приборы от поломки. Некоторая техника (бойлеры, стиральные машины, посудомойки) должна подключаться только к заземленным розеткам, это указывается производителем в инструкции по эксплуатации. В случае поломки или несчастных случаев из-за неправильного подключения, производитель не несет никакой ответственности.

    Стоит знать, что заземление розеток в квартирах и частных домах значительно отличается.

    Содержание пошаговой инструкции:

    Видео — Как заземлить розетку

    Заземление розеток в новой квартире

    Заземление розеток в новой квартире

    Стоит знать, что новые правила укладки электрической проводки при возведении жилых домов, принятые в 2003 году, подразумевают монтаж 5-ти жильного стояка, в котором один из проводов играет роль заземляющего проводника.

    Если в здании используется системы TN-С-S или TN-S, то заземлить все имеющиеся розетки довольно просто. Данная система имеет рабочий нулевой (N) и защитный (PE) проводники и три или одну фазы L, которые соединены в главных электрических щитках, расположенных на площадках перед квартирами. В щитках уже предусмотрены специальные шины, к которым подключают проводники фазы, нуля и заземления, ведущие из квартиры. Шина заземления связана с металлическим корпусом электро щитка.

    Как заземлить розетку в квартире

    Основные правила подключения розетки с заземлением

    При подключении розетки, из стены должно торчать три или пять проводов: фазы, ноль и непосредственно сам заземляющий провод. При работах требуется отключить подачу электроэнергии в квартиру. Фаза и ноль подсоединяются к тем клеммам, которые расположены возле отверстий в розетке, в которые вставляется вилка электроприбора. Желательно заранее определить с помощью электрического щупа-индикатора фазу и ноль. Заземляющий провод крепится к клеммам, расположенный посередине розетки.

    Если в одно гнездо в стене устанавливается двойная или тройная розетка, то следует соединить специальные клеммы-перемычки между устройствами. Не стоит слишком сильно зажимать болтами провода с клеммами, провод может переломиться. После закрепления всех контактов, розетку вставляют в отверстие в стене и фиксируют ее в неподвижном состоянии с помощью специальных лапок-стопоров.

    Заземление розеток в старых домах

    Розетка с заземлением

    Практически все старые здания строились по типовому проекту, в котором не предусмотрено заземления электропроводки. Ненадежная система TN-C состоит из фазы и нуля, представленная двужильными или четырех жильными кабелями. Розетки подключаются к двум проводам: фазе и нулю, вместо заземления используется зануление. Считается, что данная система может уберечь только от котроткого замыкания с помощью автоматического выключения. Уберечь человека от поражения электрическим током данная система не может, поэтому считается довольно ненадежной и устаревшей.

    В данном случае существует два выхода из ситуации: монтаж энергоснабжающим и организациями дополнительного заземления нулевого провода или использование автоматов УЗО, которые располагают на электрическую цепь, питающую мощную бытовую технику. При монтаже дополнительного заземления в квартире требуется поменять всю проводку, чтобы подвести заземление ко всем розеткам.

    Если же используется УЗО, то чаще всего его ставят на самые энергоемкие линии: розетки, к которым подключены потребляющие высокую мощность приборы. Конечно, УЗО не защитит от удара электрическим током в случае пробоя, но предотвратит смертельную травму.

    Как нельзя заземлять розетки в квартире

    Если в проведенных электрических коммуникациях отсутствует провод заземления, а проводить его отдельно хлопотно, иногда советуют заменить обычную розетку на евророзетки и в ней перемкнуть ноль и «землю». Специалисты не рекомендуют пользоваться этим ухищрением, так как существует возможность оплавления вилки электроприбора и его поломки. Также данный способ «заземления» чреват электротравмами.

    Как подключить розетку

    Нельзя использовать в качестве заземления водопроводные и отопительные трубы. В случае замены соседями металлических труб на пластиковые, получается разрыв, который чреват накапливанием блуждающих токов и электротравмами.

    Как сделать надежное и качественное заземление в собственном доме

    Сделать заземление розеток в частном доме и обезопасить работу электрических приборов значительно проще, чем в многоквартирном строении, в котором уже утверждены и проведены все электрические коммуникации.

    Конструкция заземляющего контура для частного дома состоит из стальных заземлителей, которые вбивают и вкапывают глубоко в почву. Вертикальные стальные уголки скрепляются между собой горизонтальными полосами, образуя контур. К нему ведет проводник, который подключается к шине заземления в электрощите.

    Для изготовления вертикального контура применяется стальной угол, имеющий размеры 50 на 50 на 5 миллиметров. Длина уголков должна быть не менее 2 метров. Для горизонтальных заземлителей применяется стальные полосы, имеющие размеры 40 на 4 мм. Длина полос — 1,2 м. Проводник, который ведет в электрощиток, должен быть также стальным, сечением не менее 8 миллиметров.

    Эффективное заземление в частном доме предполагает наличие контура заземления, рассчитанного специалистами

    Размещают контур заземления в земле, не ближе чем на 1 метр к фундаменту строения. Горизонтальные стальные полосы вкапываются в землю на метр в глубину в форме обычного треугольника или квадрата. В вершины квадрата или треугольника вбивают в землю стальные уголки на 2-3 м в глубину. Далее весь контур нужно скрепить между собой с помощью сварки. К одному из углов приваривают стальной проводник, который прикрепляется другим концом к электрическому щитку в доме.

    Заземление розеток

    После того, как заземляющий контур изготовлен и подключен к электрощитку, можно приступить к монтажу трехжильной проводки в доме или усовершенствоват ь уже имеющуюся систему проводки в строении. При смене проводки на трехжильную рекомендуется использовать евророзетки, в которых есть специальная клемма заземления.

    Основные ошибки при изготовлении заземляющего контура

    Для вертикальных заземлителей не желательно использовать обычную арматуру. Поверхность арматуры прокалена, это может нарушить распределение тока по сечению. Также данный материал быстро окисляется в земле, что приводит к появлению ржавчины.

    Нельзя соединять детали контура болтами. Со временем крепежные материалы могут окислиться, что приведет к потере контакта между деталями контура. Такое заземление со временем окажется малоэффективным.

    Стальной контур, используемый для заземления, нельзя красить. Швы сварки следует обработать антикоррозийными веществами, предварительно зачистив их. Краска создает сопротивление и окрашенный защитный контур окажется абсолютно бесполезным и даже опасным.

    Заземление розеток в доме или квартире — дело важное и ответственное. Если человек не знает, как правильно прокладывать электрические коммуникации, лучше всего обратится к специалистам. Тем более, что электромонтажные работы связаны с риском для жизни и здоровья.

    Также на нашем сайте Вы можете прочитать статью о электропроводке своими руками в квартире.

    Николай Журавлёв главный редактор

    Автор публикации 09.01.2015

    Понравилась статья?
    Сохраните, чтобы не потерять!

    Безопасность электропроводки – это обязательное условие для любой квартиры или дома. Заземление обеспечивает безопасную эксплуатацию электрических бытовых приборов. Оно также может спасти человека от поражения электрическим током в случае пробоя фазного проводника, нарушения изоляционного слоя, при накапливании потенциала на металлических частях. Перед тем как сделать розетку с заземлением в квартире или на даче, нужно разобраться с особенностями схемы подачи электропитания в квартире.

    Зачем нужно заземление и его типы

    Заземление – это способ обеспечения безопасности человека и бытовых приборов. При поломке электронной техники на корпусе накапливается заряд. Если человек дотронется до металла под напряжением, произойдет поражение электрическим током. Заземление используется для того, чтобы ток и потенциал с корпуса шли на землю, не приносят вреда человеку.

    Электрическая сеть обязательно должна состоять из фазы и нуля. Дополнительно может подключаться защитный проводник – заземление. Есть разные схемы подключения заземляющей жилы – она может отсутствовать, подключаться совместно с нулевым проводом или выделяться в отдельный проводник.

    Прежде чем выбирать схему заземления, нужно узнать, какая схема используется в доме. Она закладывается еще на этапе строительства здания и монтажа электропроводки. Всего выделяют 6 схем, к самым распространенным относятся:

      TN-C. Подача электричества осуществляется с помощью четырехпроводной системы. От фазного проводника отходят 3 жилы, четвертый провод одновременно является нулем и заземлением и имеет маркировку PEN (PE – земля, N – ноль). Такое соединение небезопасно для человеческой жизни. В случае обрыва земли электроприборы прекратят свою работу и устройство будет находиться под напряжением. На металлических частях будет накапливаться потенциал, который при случайном прикосновении человека может привести к летальному исходу. Установка защитных устройств вроде УЗО не поможет. От таких схем нужно переходить к TN-C-S, TN-S.

    После выбора схемы можно приступать к монтажу розетки

    Подключение розетки с заземлением

    Чтобы занулить розетку своими руками, надо следовать алгоритму:

    • отключение фазы и нуля;
    • отключение подачи электропитания;
    • крепление контактов розетки к фазе и нулю;
    • подключение заземляющего провода к розетке;
    • установка защитного корпуса электророзетки.

    Перед тем как в розетке сделать заземление, определить фазу и ноль можно с помощью индикаторной отвертки или тестера. К соответствующим клеммам розетки нужно подключать фазу и ноль от электропроводки. Заземляющая жила подключается к клемме, которая расположена между фазным и нулевым контактом.

    Если заземляющая жила отсутствует, нельзя выполнять зануление. Это приведет к тому, что при пропадании нуля возникнет короткое замыкание, которое может вызвать пожар или выбивание пробок на автомате.

    Заземление в доме

    В частном доме заземление проводится двумя способами:

    • без заземляющего контура;
    • с заземляющим контуром.

    При отсутствии контура в роли заземляющей конструкции выступает стальная труба или металлические части на деревянном столбе. Используя подобный метод, нужно соблюдать два условия – минимальная глубина должна составлять 1 метр и растекание тока должно быть не более 4 Ом на 220 В.

    Схема с заземляющим контуром имеет распределительную шину, с которой начинается вся система. Все металлические части контура должны надежно соединиться друг с другом. Для этого используется сварка компонентов.

    При создании контура чаще всего допускаются следующие ошибки:

    • Ненадежные соединения частей. Плохой контакт приводит к окислению и образованию ржавчины, из-за чего контур может разрушаться. Важно делать качественное соединение.
    • Выбор неподходящего металла. Металлическая арматура не подходит для соединения – в ней нарушается равномерность распределения токов.

    Нельзя красить контур. Краска не защищает его от коррозии, а лишь добавляет сопротивления, из-за чего понижается эффект заземления.

    Защита при отсутствии заземления

    Если в электропроводке стояка есть заземляющая клемма, к ней проводится земля. Это самый простой способ. В ином случае нужно выбирать другой метод.
    Как заземлить розетку, если нет провода заземления:

      Использование УЗО. Этот метод применяется, когда в проводке нет клеммы для заземления. УЗО устанавливается на линии, по которым подключаются мощные бытовые приборы с металлическим корпусом (посудомоечные или стиральные машины, водонагреватели). Нужно учитывать, что УЗО не обеспечивает полноценную защиту. Это лишь временный способ до установки заземляющего контура.

    Заземление нужно проводить правильно. Есть опасные способы, которые могут привести к непоправимой ситуации:

    • Соединение заземляющего кабеля с нулем. При обрыве нулевой жилы может произойти возгорание.
    • Подключение заземления к водопроводной или отопительной системе. В случае нарушения изоляционного слоя все элементы будут находиться под напряжением. Прикосновение к ним приводит к негативным последствиям для здоровья и жизни.
    • Подключение к арматуре ближайшей высоковольтной линии. Потенциал с линии может перейти на арматуру, из-за чего нарушатся защитные свойства изолятора, произойдет перенапряжение или другое опасное последствие.

    Подобные способы категорически запрещены правилами ПУЭ и СНиП. При использовании перечисленных методов в опасности находится не только владелец квартиры, но и его соседи. Ни в коем случае не стоит заземляться таким способом.

    Как сделать своими руками заземление в частном доме

    Электропроводка во всех современных квартирах и домах делается с третьим защитным проводником, который подключается к шине PE заземления в электрическом щите.

    Назначение заземления.

    При помощи заземляющих контактов розетки соединяются металлические корпуса холодильников, СВЧ печей, стиральных машин и т. д. с заземлением. Благодаря чему при возникновении поломок бытовой техники, при которых происходит пробой фазы на корпус- возникает короткое замыкание или токи перегрузки и выбивает автомат.

    Да же если при незначительных утечках его не выбьет и человек прикоснется к металлическому корпусу- ток проходящий через его тело будет очень малым и безопасным.  Сопротивление тела человека от 1000 до 100 000 Ом, а сопротивление заземления по нормам должно быть не более 4 Ом. И ток на землю пропорционально будет во столько раз больше, во сколько раз больше сопротивление человека, чем заземления.

    Таким образом заземление защищает нас от электротравматизма, а кроме того заземленный металлический корпус электроприборов многократно снижает уровень излучаемого ими вредного электромагнитного излучения.

    В обязательном порядке сделайте перемычку между заземляющей и нулевой шинами в электрощите на 380 Вольт. Это защитит вашу всю бытовую технику и лампочки от перегорания в случае обрыва нуля. Подробнее об этом в статье о скачках напряжения.

    Как сделать заземление.

    В качестве естественного заземляющего устройства могут использоваться металлические трубы или конструкции, находящиеся в земле.

    Но как показывает моя многолетняя практика электрика, эффективные естественные заземлители возле частного дома находятся очень редко, поэтому делать заземление приходится самостоятельно. Это не сложный процесс и с ним справиться практически любой. Для этого Вам понадобятся:

    • Для электродов- трубы или уголок с толщиной стенки от 4 миллиметров, арматура толщиной не менее 14 мм.
    • Для соединений— сварочный аппарат.
    • Для резки— болгарка или ножовка по металлу.
    • Металлическая полоса шириной не менее 50 мм и толщиной от 3 миллиметров (50х3) для соединения электродов и монтажа заземляющего вывода возле электрощита.
    • Для подключения у электрощиту— медный провод ПВ3 сечением не менее 10 квадратных миллиметров.

    Я делаю заземление по следующим образом:

    1. Выкапываю траншею в виде треугольника.
    2. Забиваю кувалдой три арматуры или уголка длиной 2 метра по вершинам треугольника ниже уровня земли на сантиметров 20-30. Если дом стоит на песчаных почвах с высоким удельным сопротивлением, тогда делаем треугольник со стороной 3 метра и забиваем 6 электродов через каждые 1.5 метра. Это делается для того, что бы добиться необходимой величины сопротивления не более 4 Ом. А если посыпать  солью электроды— сопротивление значительно снизится, но ускорится процесс коррозии.
    3. Все электроды соединяем полосой (50х3 мм) между собой надежно только при помощи сварки.
    4. Делаем вывод полосой к фундаменту дома и запускаем ее через стену в дом возле электрощита.
    5. Покрываем все места сварки антикором.
    6. Я после этого проверяю величину сопротивления специальным дорогостоящим измерительным прибором с работы. При необходимости добавляю электроды. Вам придется пропустить этот шаг.
    7. Засыпаем траншею.
    8. Окрашиваем внешнюю часть полосы, находящуюся над поверхностью земли.
    9. В доме к полосе привариваем болт.
    10. Надеваем и опрессовываем наконечник на медный провод. Прикручиваем его к болту.
    11. Заводим провод в щит и подключаем его к главной заземляющей шине (ГЗШ). На нее же присоединяется заземляющий проводник от линии электропитания и на отдельную шину заземления PE. И обязательно делается перемычка между ГЗШ и нулевой шиной.  Но если у Вас не трехфазный ввод на 380 В, а однофазный на 220 Вольт, то в установке ГЗШ нет необходимости, тогда подключайте провод с заземляющего контура сразу на шину PE.

    Вот и все заземление для вашего дома готово! Теперь осталось подключить к шине PE все проводники, идущие на розетки и светильники.

    Металл в земле подвергается коррозии, поэтому не используйте тонкое железо и хорошо сваривайте.

    Правильное заземление своими руками в частном доме и квартире

    Жизнь насыщается электроприборами. «Хрущевская» норма энергопотребления в 1,3 кВт на квартиру (220 В; пробки – 6 А) ныне вызывает смех. Электроприборы дают комфорт и экономят немало денег, но есть оборотная сторона медали: возрастает опасность электрошока. Поэтому без защитного заземления (а для стиральной машины – и рабочего) теперь не обойтись. Но в старых домах его нет, а частнику нужно делать самому; цены же в специализированных организациях соответствуют объему работы. Чем платить такие деньги, проще сделать заземление в доме своими руками – работа не легкая, но и не сложная.

    Можно ли делать заземление самому?

    Но не будет ли проблем с электриками? Штрафовать они любят.

    Если заземление сделано правильно, а измерения показали сопротивление растекания тока не более 4 Ом, формального повода для придирок не возникнет. Устройство заземления дома подробно регламентируется следующими нормативными документами:

    • ПТБЭ – Правила техники безопасности при эксплуатации электроустановок потребителей.
    • ПУЭ – Правила устройства электроустановок потребителей.
    • ПТЭЭ – Правила технической эксплуатации электроустановок потребителей.

    Однако ни в одной из этих книжек ни сном, ни духом, ни прямым текстом не сказано, что заземление должна делать специализированная организация. Сделано по правилам, нормам соответствует – защищайтесь на здоровье, претензий быть не может. В настоящей статье описывается, как правильно сделать заземление частного дома и устроить заземление в квартире, если дом не заземлен.

    Но! Если заземление сделано специализированной организацией по проекту, проверено и принято энергослужбой, и все-таки случилась авария, вы имеете полное право требовать возмещения ущерба. При самодельном заземлении такая возможность, разумеется, исключается. Можно заказать у энергетиков проект, оплатить приемку готового, получить на руки акт ввода в эксплуатацию. Однако практика показывает, что, если «шарахнуло», судиться с энергетиками бесполезно. А в договоре с коммерческой фирмой возмещение ущерба прописывается. Но и работа выходит очень дорогая.

    Защитное и рабочее заземления

    Защитное заземление спасает людей от электрошока, а включенную в сеть аппаратуру от выхода из строя при пробое какого-либо электроприбора на корпус. При наличии молниеотвода – также при ударе молнии.

    Рабочее заземление при электрическом ЧП выполняет роль защитного, но оно же обеспечивает нормальную работу электрооборудования. Постоянное рабочее заземление применяется только в промышленном оборудовании. Для бытовой техники считается достаточным заземление через евророзетку. Но в реальных условиях кое-что из «бытовухи» полезно все же заземлить наглухо:

    1. Стиральную машину. У нее большая собственная электрическая емкость, и во влажном помещении вполне исправная машина, даже включенная в надежно заземленную евророзетку, может безвредно, но ощутимо «щипаться».
    2. Микроволновая печь. В ней, как известно, работает источник СВЧ – магнетрон большой мощности. При плохом контакте в розетке микроволновка может «сифонить» на опасном для здоровья уровне. На многих микроволновках сзади можно увидеть винтовую клемму под отдельный заземлитель, причем инструкция об этом стыдливо умалчивает: наличие такой клеммы переводит устройство из разряда бытовой техники в промышленное оборудование. А так – ну, это такой декоративный элемент.
    3. Электродуховка и индукционная плита (варочная поверхность). Внутренняя проводка в них работает в тяжелых условиях, мощность же велика, так что высока и вероятность пробоя.
    4. Настольный компьютер. Его импульсный блок питания (ИБП) компактности ради устроен так, что нормальную рабочую утечку дает побольше стиралки. От таких плавающих потенциалов на корпусе и производительность снижается, и «глюков» добавляется, и скорость интернета падает. Наглухо заземлить компьютер можно за любой крепежный винт сзади.

    У автора этих строк скорость беспроводного интернета после правильного заземления компьютера возросла с 17,8 кбит/с до 310 кбит/с (!).

    Части заземления

    Заземлители – вбитые или врытые в землю металлические проводники. Не менее полуметра заземлителя должно находиться ниже максимального горизонта промерзания; в местах с плюсовой зимой – ниже горизонта просыхания, т.е. в слое почвы со стабильной влажностью. Чаще всего это обеспечивается при длине заземлителя в 2-3 м. Точные данные о необходимой длине и количестве заземлителей можно получить в местной энергослужбе.

    Металлосвязь – сварная металлическая конструкция, соединяющая между собой верхние концы заземлителей и заведенная в дом в виде шины заземления. Вводов шин заземления в доме может быть несколько, но одна непременно должна заземлять вводный щит (ВЩ, или вводно-распределительное устройство – ВРУ). Заземлители с металлосвязью образуют жесткий цельный контур заземления.

    Заземляющие проводники соединяют заземлительные клеммы электроустановок с шиной заземления. Они могут быть как голыми жесткими, так и гибкими многожильными в изоляции. В последнем случае их сечение должно быть не менее 4 кв.мм, а расцветка оболочки – желтая с продольной зеленой полосой. Допустим перенос заземляющего проводника с шины на шину заземления.

    К шине заземления заземляющие проводники подключаются на специальные контактные площадки: зачищенные до блеска и смазанные консистентной смазкой ее участки с резьбовыми отверстиями не менее М4 под болты. Смазка, помимо защиты от окисления, нужна для предотвращение электрокоррозии (см. след. разд).

    Ряд контактных площадок обозначается с одной или с двух сторон, если он на транзитном участке шины, парами косых, под углом 45 градусов, черными полосами. Сплошное окрашивание шины заземления недопустимо, но допустимо ее замоноличивание, кроме контактных рядов, в стену.

    Электрическое сопротивление металлосвязи измеряется от ЗАЗЕМЛИТЕЛЬНОЙ КЛЕММЫ электроустановки до наиболее удаленной от нее наземной части контура заземления. То есть, заземляющий проводник электрически считается частью металлосвязи. Сопротивление любой металлосвязи не должно превышать 0,1 Ом.

    Зачем несколько заземлителей?

    Одним заземлителем нельзя обойтись, потому что земля – проводник нелинейный. Ее сопротивление сильно зависит от приложенного напряжения и площади контакта с заземлителем. У одного заземлителя площадь поверхности слишком мала, чтобы обеспечить надежную защиту. Между двумя заземлителями, разнесенными на 1-2 м, возникает потенциальная поверхность, и эффективная площадь контакта с землей возрастает в сотни раз. Но разносить заземлители слишко далеко нельзя: потенциальная поверхность разорвется, и останется просто два заземлителя. Оптимальное расстояние между заземлителями в рыхлом грунте вне зоны вечной мерзлоты – 1,2 м.

    Как нельзя заземлять

    Непригодное по ПУЭ заземление

    П. 1.7.110 ПУЭ категорически запрещает заземлять электроустановки на любые трубопроводы. «Радиолюбительское» заземление на водяную трубу теперь также недопустимо: любой кусок пластиковой трубы в домовой разводке многократно увеличивает поражающее действие тока пробоя. А что будет, и по закону и по-свойски, если пробой у вас убьет принимающую душ жену соседа, объяснять не нужно.

    Также запрещено выводить наружу заземляющие проводники и подключать их к шине заземления на неподготовленные контактные площадки. На рисунке справа – дважды непригодное к использованию заземление.

    Дело тут в том, что каждый металл имеет свой электрохимический потенциал. При неизбежном снаружи увлажнении образуется гальваническая пара и начинается электрокоррозия; смазка спасает от нее только в сухом помещении. Коррозионный процесс распространяется под оболочку заземляющего проводника. Хозяин пребывает в полной уверенности, что «его заземление его бережет», но при аварии заземляющий проводник мгновенно отгорает.

    Также запрещено заземлять электроустановки последовательно, друг через друга, и подключать более одного заземляющего проводника на одну контактную площадку шины заземления (рис. ниже). В первом случае одна аварийная установка «потянет» за собой другие, и все они будут создавать помехи друг другу; это называется – электромагнитная несовместимость. В обоих случаях работы по устранению аварии связаны с риском для жизни.

    Правльное (справа) и неправильное (слева и в центре) подключения к заземлению

    О молниеотводах

    По ПУЭ объект, снабженный контуром заземления, обязательно должен оборудоваться и молниеотводом. Особенно необходим молниеотвод на даче. Дачные поселки и так места, предпочтительные для ударов молний: ведь дачники, стараясь снабдить себя водой, копают колодцы, забивают скважины на воду, прокладывают водопроводные трубы неглубоко или вообще по поверхности почвы. Дачные же строения большей частью возводятся из горючих материалов, а пожарная охрана далеко, и грозу всегда сопровождает сильный ветер.

    Известны случаи, когда целые дачные поселки выгорали от удара молнии. И если на пожарище обнаружится контур заземления, но не найдется остатков молниеотвода, и властям, и соседям виновника долго искать не нужно.

    Простейший молниеотвод – две заостренных арматурины, торчащие вверх от концов конька крыши на 1,2–1,5 м. С контуром они соединяются стальной проволокой не менее 6 мм, или стальной же шиной 15х3 мм, или полосой из нескольких слоев оцинковки, набранной до нужного сечения – 45 кв.мм.

    Шина молниеовода не должна быть шире 60 мм, иначе при ударе молнии произойдет разбрызгивание плазмы, последствия которого разрушительны. Попросту говоря, слишком широкая шина сработает как своего рода антенна, не отводящая молнию в землю, а распространяющая ее в стороны.

    Все детали молниеотвода соединяются только сваркой. Слоеную шину нужно по краям проварить прихватами с шагом 50-60 см с захватом всех слоев.

    Заземление частного дома

    Контур заземления частного дома может быть выполнен различными способами в зависимости от особенностей строения и свойств грунта. Три наиболее распространенных показаны на рисунке. Во всех случаях заземлители лучше делать из труб со сплющенным в острие концом. На нижнем полуметре трубы насверливают вразброс десяток-полтора отверстий 5-8 мм. Летом, в жару и сушь, в такой заземлитель можно заливать раствор соли (полпачки на ведро воды), чтобы сопротивление растекания держалось в норме.

    Также во всех случаях шина заземления такая же, как для молниеотвода. Но использовать для металлосвязи «слойку» из оцинковки нельзя: быстро проржавеет.

    Различные виды контуров заземления

    Для дачного дома или аналогичного ему жилья, а также в качестве рабочего заземления при наличии защитного зануления строят простейший контур (на рисунке – справа). В постоянно влажном грунте или для рабочего заземления можно обойтись двумя заземлителями; для защитного заземления нужны три, расположенные в ряд или, лучше, треугольником. Размещают заземлители не ближе 1,2 м от края отмостки.

    Линейный контур с двумя группами заземлителей (средний рисунок) нужно делать если присутствует хотя бы один из следующих факторов:

    • Электроввод – подземный через ВЩ.
    • В дом заведены коммуникации: вода, канализация, газ, связь, в любом сочетании или хотя бы одна из них.
    • Долговременно (свыше 20 мин.) потребляемая мощность превышает 1 кВт.

    И, наконец, полный контур заземления (левый рисунок) необходим при наличии любого из следующего:

    • Электроввод – 220/380 В через ВРУ или ЩВС (щит вводный силовой).
    • Общая площадь помещения – свыше 100 кв. м.
    • Долговременно потребляемая мощность – свыше 3 кВт.
    • Наличие стационарных электроустановок промышленного типа (с клеммой заземления; напр. – сверлильный станок, циркулярка и т.п.).
    • Наличие ДГУ резервного электропитания.

    Измерение заземления

    Сделали вы себе контур, и вам, разумеется, хочется убедиться, надежно ли он вас защитит. Для этого нужно измерить сопротивление растекания тока в почве и сопротивление металлосвязи. Профессионалы для этого пользуются специальными приборами, как старыми советскими ПКП-3, так и современными электронными.

    Вам же измерить заземление бытовым тестером нельзя: данные будут достоверными при подаче измерительного напряжения в 600 В. Вспомним: земля – нелинейный проводник. Поэтому одолжите или возьмите напрокат электронный измеритель заземлений или старый, но надежный электроиндукционный ручной мегомметр – меггер. Меггеры до сих пор в употреблении: в них нет никакой электроники, они не требуют элктропитания, нечувствительны к наводкам в измерительных проводах и не создают шумов в измеряемой цепи. Правда, металлосвязь меггером не промеряешь, но у сварного контура и правильно подключенных заземляющих проводниках она десятилетиями держится в норме.

    Сопротивление же растекания меггером, включенным на омы, измеряют по схеме на рисунке. Расстояние пары измерительных электродов (они справа) до угла или края металлосвязи – 12-15 м. Электроды должны быть голыми и зачищенными до блеска; металл – любой. Электроды погружают в грунт на 0,6-1 м на расстоянии 1,2-1,5 м друг от друга.

    Измерение сопротивления растекания заземления меггером

    Полярность подключения меггера нужно соблюдать: защитное заземление должно выдерживать удар молнии. Обычные молнии – отрицательные, т.е. представляют собой поток электронов. Отмечены единичные случаи положительных молний: из земли прямо в небо бьет толстенный столб огня. Но разрушительная сила такой природной катастрофы примерно равна взрыву тактического ядерного заряда, только без проникающей радиации и радиоактивного загрязнения местности, так что заземление от положительной молнии не спасает.

    Собственно же процедура измерения элементарна: крутят ручку меггера и смотрят, сколько показала стрелка на шкале.

    Предупреждение: использовать для измерения заземления сетевое напряжение, гасящий резистор и миллиамперметр смертельно опасно!

    Видео: пример монтажа комплекта заземления

    Квартирное заземление

    В СССР и РФ до 1997 г. электроснабжение многоквартирных домов осуществлялось по схеме с глухозаземленной нейтралью (схема TN–C). В этой схеме домовый проводник защитного заземления (PE) совмещен в нейтралью трехфазного ввода (N). Эта схема дает большую экономию металла, и в огромном СССР, при необходимости интенсивного жилищного строительства и жестком централизованном управлении энергослужбами, во времена слабой насыщенности жилья электроприборами была вполне оправдана. Но у нее есть два существенных недостатка, «во всей красе» проявивших себя в рыночном обществе века электроники:

    1. Схема TN–C мало пригодна в качестве рабочего заземления: ток в нейтрали – сам по себе электропомеха.
    2. В случае отгорания нуля на подстанции происходит тяжелая авария: в розетках дома оказывается фазное напряжение 380 В; электроприборы взрываются и возгораются; в доме возникает пожар. На металлических же корпусах электроустановок появляется линейное напряжение 220 В; отсюда – массовый электротравматизм со смертельными случаями.

    Энергетики, нужно отдать им должное, прекрасно, как профессионалы, понимая ситуацию, даже во время ельцинской «демократии» насколько могли, ноль держали. Ныне энергоснабжающие предприятия в достаточной степени обеспечены финансами на зарплату специалистам и материалы для ремонта. Случаев отгорания нуля не отмечено уже несколько лет.

    Но проблема электромагнитной совместимости из-за отсутствия рабочего заземления остается. Поэтому с 1997 г. новыми СНиП и ПУЭ предусматривается запитка многоквартирных домов по схеме TN–C–S. При этом каждый дом снабжается контуром заземления, а защитный проводник PE разводится по квартирным евророзеткам.

    Как узнать, есть ли заземление в доме? Для этого нужно открыть домовый ЩВС. Этого на полном законном основании может потребовать любой владелец приватизированной квартиры, но открывать должен ДЭЗовский электрик; вы можете только смотреть в его присутствии. Даже если у вас группа допуска к электроустановкам IV или V, дающая право единоличного их осмотра.

    Осмотра достаточно: если от подстанции приходят пять жил кабеля, у вас система TN–C–S, и вам эта статья вообще не нужна. Если же жил четыре – у вас TN–C, и нужно думать, как заземлиться.

    Скажем сразу: сделать контур заземления для многоэтажки своими силами нереально: нужно разрешение ДЭЗа, нужен утвержденный проект, нужен большой объем земляных работ с применением спецтехники на придомовой территории (а если там детская площадка?) Если вопрос решается поквартирно, то единственный выход: защитное зануление и УЗО.

    Защитное зануление

    В качестве рабочего заземления защитное зануление пригодно лишь для стиральной машины. Микроволновка от него только больше «засифонит», а компьютер – заглючит. Но при нуле, соответствующем ПТБ и ПУЭ, защиту оно даст надежную.

    Устройство защитного зануления сводится к подведению заземляющего проводника от этажного щитка к заземляющим контактам евророзеток. Самому заниматься этим нет смысла: за такую работу охотно и за небольшую плату берутся ДЭЗовские или РЭСовские электрики (РЭС – район электросетей; районное энергоснабжающее предприятие). Но если ноль (нейтраль) слабоват, нужно еще и ставить УЗО.

    Как узнать, хороша ли у вас нейтраль? Верный признак плохого нуля – бессистемные колебания напряжения в сети при стабильной погоде. Или внезапное повышение напряжения сети вечером, при максимальной нагрузке. Если это наблюдается сразу во всем доме – ноль плохой, и нужны УЗО.

    УЗО

    УЗО – устройство защитного отключения. Они бывают трехфазными и однофазными, а по принципу работы – дифференциальными реле (дифреле) и электронными заземлениями.

    Дифреле измеряет токи в фазе и нуле. Если утечки нет, то токи равны. Если ток в фазном проводе больше, чем в нейтрали – где-то «течет», и срабатывает аварийный контактор. Выключившее электричество дифреле обесточивает и себя, так что по устранении причины утечки его нужно включать вручную.

    Дифреле выполняются либо в виде настенной розетки, либо в виде блочка, размещаемого рядом со встроенной розеткой или распределительной коробкой («дозой») возле счетчика, сразу на всю квартиру, либо в виде включаемой в розетку коробочки, в которую, в свою очередь, включается электроприбор. Первые и последние удобны, но менее надежны: в них размыкатель тиристорный, а не электромеханический.

    Электронное заземление, грубо говоря, имитирует электромонтера с индикатором. Чувствительность современной электроники на порядки выше, чем у неонки, и для создания рабочей электроемкости достаточно собственной емкости монтажа. Электронные заземления монтируются непосредственно на корпусе электроустановки.

    Однако все УЗО имеют два недостатка:

    • УЗО совершенно непригодны в качестве рабочего заземления: они или не устранят помеху, или будут упрямо выключать и выключать совершенно исправный прибор.
    • УЗО защищают только от пробоя на корпус. При отгорании нуля, когда защита более всего нужна, УЗО сами сгорают быстрее, чем успевают что-либо отключить.

    Как все-таки заземлить квартиру

    Но как же все-таки сделать заземление в квартире? К счастью, обрыв нуля случается не чаще, чем удар молнии. Поэтому для домов, запитанных по схеме TN–C можно рекомендовать следующий порядок заземления:

    1. Для стиральной машины оборудовать евророзетку с защитным занулением. Это обойдется намного дешевле, чем разводить защитный проводник по всей квартире.
    2. Дорогие устройства запитать через УЗО-дифреле. Для лампочек в нем смысла нет: сгоревшую заменить дешевле.

    А затем приступить к радикальным мерам: собраться всем миром, то бишь всем домом, избрать надежного доверенного человека – владельца приватизированной квартиры, и поручить ему выяснить, во что обойдется устройство контура заземления специализированной фирмой, и смогут ли они сделать контур для вашего дома. Если по ПУЭ контур возможен, а расходы в расчете на квартиру окажутся посильными – пусть общественный ходатай, не заходя в ДЭЗ, заключает с ними договор, а все оргвопросы те уж сами уладят – это их хлеб, так что процедура отработана.

    Напоследок

    Электроснабжение TN–C и дома без контура заземления – не самое легкое из наследий развитого социализма. Но вспомним законы Мэрфи, среди них есть и положительные. Один их них такой: «Из всякого безвыходного положения существует по крайней мере два выхода».

    ***

    © 2012-2020 Вопрос-Ремонт.ру

    Загрузка…

    что еще почитать:

    Вывести все материалы с меткой:

    Отгорание нуля

    Какие бывают последствия отгорания нуля?

    Приходилось ли вам слышать о том, что у кого-то сгорела дорогостоящая аппаратура. Возможно, тебе лично пришлось испытать такую неприятность. Почему такое произошло? Причина оказалась в том, что на проводнике в какой-то момент, присутствовало не 220 В, а 380 В. Как такое возможно? Кого винить в произошедшем? Кто будет покрывать убытки?

    Были такие случаи, когда пьяный электрик во время профилактических работ в контактных соединениях перепутал проводники, вместо проводника нуль подсоединил фазу, а между фазой и фазой напряжение составляет 380 Вольт.

    Но чаще всего, 380В может поступить в наши обители с неожиданной стороны. Проблема кроется в отгорании нуля. Что это за таинственное отгорание нуля? Как оно происходит? Как защититься от нежданного “гостя”?

    Для чего нужен нулевой проводник?

    Отгорание нуля это лексикон электриков, на техническом языке — обрыв нуля. Проводник нуль используется в трехфазной схеме звезда. Есть еще другая схема, схема треугольник. У такой схемы присутствуют три фазных проводника: А, В, С, но отсутствует четвертый проводник, нулевой. В основном используется в промышленных целях.

    В схеме звезда четыре проводника, три фазных и нулевой. Нашему населению достается именно схема звезда и другого быть быть не может. Итак, в многоквартирный дом приходят не два проводника, как некоторые могут полагать, а четырехжильный или пятижильный провод, с защитным заземлением РЕ. Но пока во внимание заземление мы намерено брать не будем, на данный момент он нас не интересует.

    Мощный силовой кабель приходит в водный распределительный щит. С главного щита идет распределение по подъездам, а с подъезда по этажам, с этажей по квартирам. Трехфазная схема распределяется равномерно по этажам. Если в подъезде 36 квартир, три фазы будут распределены следующим образом: фаза А – 12 квартир, фаза В – 12 квартир, фаза С – 12 квартир. Распределено равномерно, для баланса работы трехфазной схемы.

    Но вот только жители не согласовывают включение и выключение энергопотребителей, да и такого на практике быть не может. Получается так, что один стояк может оказаться сильно загруженным, а другой остается мало задействованным. Что происходит в системе? Произошел перекос  в трехфазной схеме или  дисбаланс. Поставщику электроэнергии никогда не добиться равенства потребления электроэнергии с подобной схемой. Понятно, почему. Люди не роботы, действовать подобно бездушным изобретениям по заданным алгоритмам не могут.

    Представим себе, как кипит жизнь в многоэтажном доме. Одни что — то включают, другие выключают. В общем и целом, потребление электроэнергии, чаще всего, происходит более или менее одинаково. Но бывает хороший перекос: по стояку фазы А “густо” разбирают энергию, а по фазе С “пусто”. С этим все понятно. Давайте немного углубимся в трехфазную схему звезда.

    Переменные токи каждой фазы в трех одинаковых нагрузках сдвинуты по фазе ровно на одну треть и в идеале компенсируют друг друга, поэтому нагрузка в такой схеме называется трехфазной сосредоточенной нагрузкой. В средней точке ровна  нулю. При равномерной нагрузке трех фаз, например, работают станки на производстве, потребление энергии одинаково по всем фазам. Нуль остается невостребованным, нет дисбаланса. В связи с чем, сечение нулевого проводника гораздо меньше чем по фазе. Нет смысла тратить дорогой металл на то, в чем нет необходимости, там, где появляются незначительные токи. Но у нас в доме приборы работают не от трехфазной схемы, а от однофазной — это все в корне меняет.

    Как отгорает нуль?

    Тенденция отгорания нуля началась в эпоху 90-х годов. Эпоха экономического преобразования. На рынке появилось большое количество электротехники. Современная аппаратура: компьютеры, телевизоры, радиоприемники, DVD проигрыватели и многое другое. Характер таких устройств несколько отличается от классических бытовых потребителей. Дело в том, что такие приборы выбрасывают в сеть дополнительные импульсные токи, которые не компенсируются в средней точке. Когда включаются приборы , имеющие различные величины сопротивлений, на нулевом проводе может скопится равный или превышающий ток одной из фаз. Это те условия, которые могут создать отгорание нуля, из-за перегрузки на нулевой проводник.

    Отгорание происходит в слабых местах, например, в плохо обжатом контакте. Такой перекос может из-за отгорания нуля  создать катастрофические последствия: скачек напряжения до 380 Вольт. Большая часть дорогостоящей аппаратуры может сгореть. Но вот спросить будет не с кого.

    Как защитить аппаратуру во время отгорания нуля?

    Для защиты бытовой техники от подобных неприятностей, поможет реле контроля напряжения.

    реле напряжения

    Надежная работа любых бытовых электроприборов от простой лампочки до посудомоечной машины зависит от стабильности электросети. Резкое повышение напряжения или его падение ниже допустимого предела, приводят к быстрому выходу из строя телевизоров, компьютеров, холодильников, стиральных машин и т.п. Это может привести к перегреву обмоток электродвигателей бытовых приборов и последующему выходу их из строя.

    Реле напряжения отключает напряжение, если его значение выходит за допустимые пределы. Тем самым защищает все подключённые к нему устройства и приборы. То есть реле напряжения — это защита по напряжению. Для установки реле защиты и другим электромонтажным работам в Нижнем Новгороде, можно обратится за помощью к электрикам профессионалам.

    Итак, подведем итог: отгорание нуля в наше время не редкость. Причины мы выяснили, следствия отгорания нуля понятны, как защитить аппаратуру узнали. Осталось приобрести надежное реле напряжения.

    Советую не покупать реле напряжения Ресанта, время срабатывания 1 секунда, за такую медлительность все погорит. Приобретать прибор лучше со временем срабатывания по отсечке 0,2 секунды. Такой прибор стоит недешево, но без него ущерб может возрасти во много раз. Ставить прибор или надеяться на авось, решать вам.

    Отгорание нуля. Видео.

    Что такое модульно-штыревое заземление?

    Оцените качество статьи:

    Устройство

    , назначение, принцип действия

    Современные приборы, оборудование и бытовые приборы, потребляющие электрическую энергию, требуют соблюдения определенных мер безопасности при обращении с ними. Одно из таких мероприятий — нейтрализация квартиры. Эта система очень похожа на, однако существенно отличается по принципу действия.

    Основные понятия заземления

    При отсутствии и невозможности его оснащения используется заземление.Однако этот тип защиты не защищает напрямую от поражения электрическим током. При прикосновении к токоведущим частям именно заземление обеспечивает необходимую безопасность. Обнуление отличается от заземления быстрым срабатыванием средств защиты. То есть при прикосновении к опасному месту срабатывает автоматическая защита, отключающая электрический ток.

    Для обеспечения желаемого эффекта нейтральный провод подсоединяется к корпусу устройства, а нейтральный нейтральный провод электрической сети.Такая схема будет называться обнулением. Таким образом, нейтральный провод выполняет не только свою основную функцию, но и обеспечивает необходимую защиту.

    Однако заземление не всегда гарантирует высокий уровень безопасности. В случае обрыва нулевого провода по какой-либо причине все подключенные к сети устройства в квартире будут иметь на корпусе фазу вместо нуля. Такая ситуация представляет серьезную опасность для жизни и здоровья человека. Иногда аварии возникают из-за спутывания проводов, когда вместо нуля может быть подключена фаза.Максимальный эффект от применения нейтрализации можно получить, хорошо зная принцип его действия.

    Как работает обнуление

    Если какое-либо устройство или оборудование, подключенное к нейтральному проводу, ударяется о корпус, происходит короткое замыкание. В поврежденной цепи срабатывает автоматический выключатель, чтобы отключить электрический ток. Как вариант, электричество можно отключить с помощью предохранителя. Время отключения для каждого случая регламентируется ПУЭ. Например, при номинальном фазном напряжении электрической сети 220 или 380 вольт оно не превышает 0.4 секунды.

    Для заземляющего устройства используются специальные жилы. В однофазной сети это обычно третья жила кабеля или провода. К этим проводникам предъявляются повышенные требования. Их сопротивление должно быть небольшим, чтобы защитное оборудование могло сработать в течение определенного периода времени. В случае высокого сопротивления машины очень часто не работают. Из-за этого вероятность контакта с корпусом оборудования или устройства резко возрастает.Поэтому к качеству монтажа и подключения таких секций предъявляются очень жесткие требования. Не допускайте разрывов этих проводов для подключения автоматических выключателей или предохранителей. Несоблюдение этих правил приведет к тому, что заземление в квартире будет иметь низкий эффект.

    Обнуление обеспечивает не только быстрое отключение устройства от сети. С его помощью устанавливается минимальное напряжение, при котором он срабатывает при касании. В результате значительно повышается электробезопасность.

    При отсутствии заземления в квартире защитное заземление розеток на практике выполняется следующим образом. Главный нейтральный провод, расположенный в электрическом щите, разделен на две части. Они состоят из нейтрального проводника и защитного проводника. Защитный провод подключается к розетке и подключается к заземляющему контакту в ней. Это обеспечивает дополнительную безопасность.

    Разница между заземлением и заземлением значительна. Попробуем разобраться в этом вопросе.Обнуление согласно PUE — это преднамеренная защита, которая используется исключительно в промышленных целях и не должна применяться на бытовом уровне.

    Но тем не менее, очень часто заземление делают в квартирах. По всем прогнозам, такая система далека от совершенства и отнюдь не безопасна. Почему же тогда они прибегают к такой крайней мере? Отчасти из-за недостатка знаний в этой области или из-за безвыходной ситуации.

    При ремонте квартиры многие делают полную или частичную разводку не только для удобства расположения розеток и выключателей, но и для замены изношенной электропроводки.Также современный мужчина хочет сделать свой дом более безопасным, поэтому пожелания заказчика сводятся к тому, чтобы в доме было заземление.

    Что используется в новостройках: заземление или заземление?

    Новостройки по всем правилам обеспечиваются трехжильным кабелем (фаза, ноль, земля) в однофазной системе и пятижильным кабелем (три фазы, ноль, земля) в трехпроводной. фазовая система, то есть в системе заземления TN-CS или TN-S. В таких системах нет запаха обнуления.



    Можно ли сделать заземление в старом фундаменте?

    Старый фонд реконструируется редко. Для перехода от системы TN-C, т. Е. От двухпроводной системы (фаза и ноль), для таких эффективных систем, как TN-CS и TN-S, в которых предусмотрен защитный провод PE (заземление), практически необходимо невозможно само по себе. Модернизация в основном выполняется специализированной электротехнической компанией.


    В системе TN-C нет защитного провода (заземления).Никто не будет тянуть из квартиры отдельный провод заземления, чтобы сделать заземление, например, в подвале. Хотя некоторые решаются на заземление, если квартира находится на первом этаже. Но для большинства населения такой маневр невозможен.

    Перед тем, как подключить защитный провод РЕ (заземление) из квартиры, нужно определить, какие есть возможности. Определите наличие заземления в распределительном щите, к которому можно подключить третий провод.В диспетчерской должна быть шина заземления PE, или все диспетчерские на этаже должны быть соединены между собой металлической шиной и, в конечном итоге, подключены к общему контуру заземления дома, то есть речь идет о повторном заземлении. Это дает возможность подключить заземляющий провод от квартиры к щиту. Если эти два варианта отсутствуют, значит, в доме нет заземления, и в этом случае делается запрещенное заземление. Как уже говорилось ранее, в жилом секторе такой способ вовсе не безопасен.

    Как выполняется заземление?

    Пристрелка роли заземления не играет, такая схема рассчитана на действие короткого замыкания. На производстве нагрузки распределяются более-менее равномерно, а ноль выполняет в основном защитные функции. Здесь нейтральный провод прикреплен к корпусу двигателя. Если напряжение одной из фаз попадет на корпус двигателя, произойдет короткое замыкание. В свою очередь, сработает автоматический выключатель или автоматический выключатель дифференциальной защиты.Следует учесть еще один неоспоримый факт — все электроустановки на производстве соединены между собой металлической заземляющей шиной и выведены на общий контур заземления всего здания.

    Можно ли в квартире сделать заземление?

    Можно, но не обязательно. В чем угроза? Предположим, ваше оборудование (стиральная машина, бойлер и т. Д.) Заземлено. Если нейтральный провод по каким-то причинам горит или электрик случайно перепутал соединение проводов (вместо нуля он подключил фазу), то ваше оборудование просто сгорит из-за высокого напряжения.

    Если вы запланировали в доме электромонтажные работы, а потом выяснили, что в доме нет заземления ни в каком виде, все же лучше проложить трехжильный кабель. Две жилы (фазу и ноль) подключаем по плану, но третий провод защитного заземления оставляем неиспользованным до тех пор, пока не планируется реконструкция стояков, где будет обеспечено заземление.

    Если вы все же решили сделать заземление в квартире, нужно помнить, что вы берете на себя огромную ответственность.В любом случае, при наличии заземления нельзя пренебрегать установкой защитного оборудования, такого как УЗО (устройство остаточного тока) и ограничителя напряжения.

    Защитное заземление — это система, в которой токопроводящие части оборудования, которые обычно не находятся под напряжением, соединяются с нейтралью. В целях защиты сознательно создается соединение между открытыми проводящими элементами глухозаземленной нейтрали (в сетях с трехфазным током).

    В однофазных сетях контакт осуществляется с глухозаземленным выходом однофазного источника тока, а в случае постоянного тока — с глухозаземленной точкой источника тока.Хотя у заземления есть серьезные недостатки, система по-прежнему широко используется во многих приложениях защиты от тока.

    Разница между заземлением и заземлением

    Есть отличия между заземлением и заземлением:

    1. В случае заземления избыточный ток и появившееся на корпусе напряжение перенаправляются на землю. Принцип обнуления основан на обнулении на заслонке.
    2. Заземление более эффективно защищает человека от поражения электрическим током.
    3. Заземление основано на быстром и значительном снижении напряжения. Тем не менее некоторое (уже безобидное) напряжение остается.
    4. Обнуление — это создание соединения между металлическими частями, в котором нет напряжения. Принцип обнуления основан на преднамеренном создании короткого замыкания в случае пробоя изоляции или попадания тока на нетоковедущие части электроустановок. Как только происходит короткое замыкание, срабатывает автоматический выключатель, перегорают предохранители или срабатывают другие защитные меры.
    5. Заземление чаще всего применяется на линиях с изолированной нейтралью в системах IT и TT в трехфазных сетях, где напряжение не превышает тысяч вольт. Заземление применяется при напряжении более тысячи вольт с нейтралью в любом режиме. Обнуление используется в глухозаземленных нейтралах.
    6. При обнулении все элементы электроприборов, не находящиеся под напряжением в штатном режиме, подключаются к нулю. Если фаза случайно задевает нейтрализуемые элементы, ток резко возрастает и электрооборудование отключается.
    7. Заземление не зависит от фаз электроприборов. Организация заземления требует соблюдения строгих условий подключения.
    8. В современных домах заземление применяется редко. Однако этот способ защиты до сих пор встречается в многоэтажных домах, где по каким-то причинам невозможно организовать надежное заземление. На предприятиях, где действуют повышенные стандарты электробезопасности, основным методом защиты является заземление.

    Примечание! Для правильного определения нулевых точек и выбора способа защиты требуется помощь квалифицированного электрика.Можно сделать заземление, собрать элементы схемы и установить в землю своими руками.

    Схема работы

    Как упоминалось выше, обнуление основано на срабатывании короткого замыкания после попадания фазы на металлический корпус электрической установки, подключенной к нулю. По мере увеличения тока срабатывает защитный механизм, отключающий питание.

    Согласно нормам Правил устройства электроустановок, при нарушении целостности линии она должна отключиться автоматически.Время отключения регламентировано — 0,4 секунды (для сетей 380 / 220В). Для отключения используются специальные проводники. Например, в случае однофазной разводки используется третья жила кабеля.

    Для правильной установки нуля важно, чтобы контур фаза-ноль имел низкое сопротивление. Это гарантирует срабатывание защиты на необходимый период времени.

    Организация заземления требует высокой квалификации, поэтому такие работы должны выполняться только квалифицированными электриками.

    На схеме ниже показано, как работает система:

    Область применения

    Защитное заземление применяется в электроустановках с четырехпроводными электрическими сетями и напряжением до 1 кВт в следующих случаях:

    • в электроустановках с заземленной нейтралью в сетях TN-C-S, TN-C, TN-S с проводниками типов N, PE, PEN;
    • в сетях постоянного тока с заземленной серединой источника;
    • в сетях переменного тока и трех фаз с заземленным нулем (220/127, 660/380, 380/220).

    Сети 380/220 допускаются в любых строениях, где заземление электроустановок является обязательным. Для жилых помещений с сухими полами не нужно обустраивать заземление.

    Электрооборудование 220/127 применяется в специализированных помещениях, где существует повышенная опасность поражения электрическим током. Такая защита необходима в уличных условиях, где металлические конструкции касаются рабочих.

    Проверка эффективности заземления

    Чтобы проверить эффективность обнуления, необходимо измерить сопротивление контура фаза-ноль в точке, наиболее удаленной от источника питания.Это даст возможность проверить безопасность в случае текущего воздействия кейса.

    Сопротивление измеряется с помощью специального оборудования. Измерительные приборы оснащены двумя измерительными проводами. Один зонд направлен на фазу, второй — на нейтрализованную электроустановку.

    По результатам измерений устанавливается уровень сопротивления по фазному и нулевому контурам. По полученному результату рассчитывается ток однофазного короткого замыкания по закону Ома.Расчетное значение тока однофазного короткого замыкания должно быть равно или превышать ток отключения защитного оборудования.

    Предположим, что автоматический выключатель подключен для защиты электрической цепи от перегрузок и коротких замыканий. Ток срабатывания составляет 100 ампер. По результатам измерений сопротивление фазной и нулевой петли составляет 2 Ом, а фазное напряжение в сети — 220 вольт. Рассчитываем ток однофазной цепи по закону Ома:

    I = U / R = 220 Вольт / 2 Ом = 110 Ампер.

    Поскольку расчетный ток короткого замыкания превышает мгновенный ток срабатывания автоматического выключателя, мы заключаем, что защитная нейтрализация эффективна. В противном случае необходимо было бы заменить автоматический выключатель на устройство с меньшим рабочим током. Еще одно решение проблемы — уменьшение сопротивления контура фаза-ноль.

    Часто при проведении расчетов рабочий ток машины умножается на коэффициент надежности (Kn) или коэффициент безопасности.Причина в том, что отсечка не всегда равна указанному показателю, то есть возможна определенная ошибка. Следовательно, использование коэффициента позволяет получить более надежный результат. Для старого оборудования Kn от 1,25 до 1,4. Для нового оборудования применяется коэффициент 1,1, так как такие станки работают с большей точностью.

    Опасность заземления в квартире

    Скачки напряжения опасны как для людей, так и для бытовой техники в квартирах. В многоквартирных домах одна из квартир будет получать низкое напряжение, а другая — высокое.Если в розетке квартиры произойдет обрыв нейтрального проводника, то при следующем включении электроустановки (например, бойлера) человек получит электрошок.

    Обнуление особенно опасно в двухпроводной системе. Например, при проведении электромонтажных работ электрик может заменить нейтральный провод на фазный. В электрических щитах эти жилы не всегда отмечены определенным цветом. В случае замены электрооборудование будет под напряжением.

    Согласно нормам Правил устройства электроустановок на бытовом уровне, заземление для бытового использования не допускается именно по причине его ненадежности. Обнуление эффективно только для защиты крупных промышленных объектов. Однако, несмотря на запрет, некоторые люди решаются установить заземление в собственном доме. Происходит это либо из-за отсутствия других методов решения проблемы, либо из-за недостаточных знаний по данному предмету.

    Обнуление в квартире технически возможно, но эффективность такой защиты непредсказуема, как и возможные Негативные последствия… Далее мы рассмотрим ряд ситуаций, которые возникают при заземлении квартиры.

    Обнуление розеток

    В некоторых случаях предлагается защитить электроприборы путем перемычки вывода рабочего нуля розетки на защитный контакт. Подобные действия противоречат п. 1.7.132 ПУЭ, поскольку предполагают использование нулевого провода двухпроводной электрической сети как рабочего, так и защитного нуля одновременно.

    На входе в жилище чаще всего находится устройство, предназначенное для переключения фазы и нуля (двухполюсное устройство или так называемый пакетный пакер). Нулевое переключение, используемое в качестве защитного проводника, не допускается. Другими словами, запрещается использовать в качестве защиты проводник, в электрическую цепь которого входит коммутационный аппарат.

    Опасность защиты с помощью перемычки в розетке заключается в том, что при нулевом повреждении (независимо от площади) корпуса электроустановок попадают под фазное напряжение. При обрыве нулевого провода электрический приемник перестает работать. В этом случае провод кажется обесточенным, что провоцирует необдуманные действия со всеми вытекающими отсюда последствиями.

    Примечание! При выходе из строя нуля любое оборудование в квартире или частном доме становится источником опасности.

    Фаза и ноль поменяны местами

    При проведении электромонтажных работ в двухпроводном стояке своими руками велика вероятность перепутать ноль и фазу.

    В домах с двухпроводной системой жилы кабеля лишены отличительных особенностей. При работе с проводами в панели пола электрик может просто ошибиться, перепутав фазу и ноль местами.В результате на корпуса электроустановок попадет фазное напряжение.

    Сжигание нуля

    Нулевые обрывы (нулевое выгорание) часто возникают в зданиях с плохой проводкой. Чаще всего электропроводка в таких домах проектировалась из расчета 2 киловатта на жилую единицу. Электропроводка в старых домах сегодня не только изношена физически, но и не выдерживает возросшего количества бытовой техники.

    При обрыве нуля возникает дисбаланс на трансформаторной подстанции, от которой запитан жилой дом.Возможен перекос в общей электрической панели здания или в панели пола дома. Следствием этого будет скачкообразное снижение напряжения в одних квартирах и повышение в других.

    Низкое напряжение вредно для некоторых типов электроприборов, включая кондиционеры, холодильники, вытяжки и другие устройства, оснащенные электродвигателями. Высокое напряжение опасно для всех типов электроустановок.

    Альтернатива обнулению

    В подсистеме TN-S заземление защитного проводника PE осуществляется только на одном участке — на контуре заземления трансформаторной подстанции или электрогенератора.На этом этапе PEN проводник разъединен, и тогда защиты и рабочего нуля нигде не найти.

    В такой схеме электроснабжения заземление и заземление органично взаимодействуют, создавая условия для высокой электробезопасности. Однако в системах с изолированной нейтралью (IT, TT) заземление не используется. Электрооборудование, работающее в системе TT и IT, заземлено собственными цепями. Поскольку ИТ-система предполагает подачу электроэнергии только конкретным потребителям, рассматривать такой способ организации защиты в жилых домах нет смысла.Единственная альтернатива неправильному и, следовательно, опасному заземлению шины PE — это система TT. Такая система особенно актуальна, поскольку переход на технически совершенные системы TN-S, TN-C-S технически и финансово затруднен для домов, возраст которых превышает 20-25 лет.

    Электрическая сеть, построенная по стандарту ТТ, предназначена для обеспечения качественной защиты от напряжения нетоковедущих частей. Все работы по организации заземления необходимо проводить в соответствии со стандартами, указанными в пункте 1.7.39 Правил устройства электроустановок.

    Электроэнергия характеризуется двумя основными параметрами: током и напряжением. Всем известны последствия превышения силы тока (короткого замыкания) — от выхода из строя того или иного электроприбора до пожара в квартире или на лестничной клетке. Поскольку опасность от короткого замыкания очевидна, обычная автоматическая вилка устанавливается практически в каждой квартире в распределительном щите. Недостаток — отключение электричества при небольшой перегрузке.Преимущество — защита от воздействия коротких замыканий.

    Но перенапряжение — это скрытая опасность. Большинство электроприборов имеют либо встроенный стабилизатор, выравнивающий напряжение, либо, как в случае с нагревателями, перепады напряжения в пределах 30% от нормы не влияют на их работоспособность. И причем тут остаточный потенциал от высокого напряжения?

    Если устройство заземлено, оно уходит в землю. Если в квартире нет заземления, оно оседает на теле или накапливается на поверхности окружающих предметов.Если они касаются такого объекта, статический потенциал превращается в электрический ток, который стремится по пути меньшего сопротивления, в данном случае через человеческое тело.

    Наиболее опасные незаземленные водонагревательные электроприборы, стиральные машины, электроплита. Негласное правило, известное еще с советских времен, что возле работающей электроплиты нужно стоять в обуви на резиновой подошве и не брать обеими руками металлические сковороды — это написано кровью. Резина имеет высокое сопротивление, поэтому поток электронов не стремится к земле через тело человека.

    Естественно, это говорит о неадекватном заземлении в те времена. Но ведь большинство живут в одних и тех же квартирах с одинаковой разводкой, а современные бытовые электроприборы стали мощнее, соответственно, опаснее. Как заземлить квартиру в доме, сданном до 1998 года?

    Наиболее продуманным примером заземления является громоотвод, который проводит электрический разряд по пути наименьшего сопротивления от самой высокой точки к земле, минуя системы электросвязи здания.Для высоковольтных линий молниеотводы представляют собой опоры электропередачи (линии электропередач), которые не позволяют грозовым разрядам достигать провода, тем самым создавая перепады напряжения в сети во время грозы.

    Второй тип — это УЗИП (устройство защиты от перенапряжения). Один электрод подключен к проводу низкого напряжения, а другой заземлен. Пространство между электродами преимущественно заполнено инертным газом. При достижении определенного напряжения на 1–5% ниже максимума, при котором может функционировать конкретное устройство, происходит пробой — напряжение выравнивается.УЗИП используются для устранения остаточного напряжения на сетевых коммутационных кабелях.

    Третий тип используется для заземления в многоквартирном доме. В качестве заземления используется нейтральный или дополнительный заземляющий провод, который подключается к каждой розетке как дополнительный контакт к розетке 220В или в случае промышленного трехфазного напряжения 380В.

    Заземление квартир и частных домов

    Заземление дома можно провести своими силами, так как естественный участок (грунт) находится в непосредственной близости.Достаточно провести ко всем розеткам в частном доме дополнительный провод защитного заземления сечением 16 мм для алюминия или 10 мм для меди и заземлить его возле распределительного щита в грунт на глубину до не менее 1,5 м. В сельской местности многие люди так заземляют свой жилой дом.

    Но заземлить квартиру таким способом не получится. Ну где взять природный участок на четвертом этаже? Некоторые «умельцы» использовали металлические элементы системы централизованного отопления или газоснабжения в качестве заземления в старых домах.Но после серии случаев поражения электрическим током соседей, маленьких детей или взрывов в системе газоснабжения от этой практики отказались. Теперь заземление в квартире проводят только до распределительного щита.

    Как сделать заземление в квартире, уже зависит от имеющегося заземления в многоквартирном доме. Заземление в многоквартирных домах осуществляется по трем схемам:

    • TN-S — заземление современным способом, установленным стандартом с 1998 года;
    • TN-C-S — кабель защитного заземления подводится только к распределительному щиту;
    • TN-C — в качестве заземления используется нулевой провод, который заземляется на трансформаторной подстанции, например, заземление в хрущевке осуществляется по такому принципу.

    Как сделать заземление в квартире, если его нет? Прежде чем делать заземление в квартире своими руками, нужно определиться со схемой заземления. Для этого откройте распределительную коробку в подъезде. Если через стояк пропущен пятижильный провод, это как минимум TN-C-S, а значит, достаточно подключить провод защитного заземления к желто-зеленому защитному проводу.

    Далее нужно подойти к распределительному щиту в квартире, если счетчик электроэнергии стоит на подъезде, то посмотрите провода, идущие от него в квартиру.Если есть 3 провода и один из них желто-зеленый, значит в квартире используется современная схема заземления TN-S. В этом случае не стоит ломать голову над вопросом, как правильно сделать заземление.

    Важно! В больших современных квартирах 3 и более комнат в квартиру можно провести две фазы, соответственно проводов будет больше. Главное наличие провода желто-зеленого цвета.
    Все равно до подключения мощного электроприбора, потребляющего больше 3х.2 кВт / ч, проверьте заземление розетки. Возможно, через некоторое время после ввода дома в эксплуатацию была сделана незаземленная ветка.

    Если в общем распределительном щите нет провода защитного заземления, это старая цепь TN-C. В этом случае можно проводить только заземление розеток. Но, в случае значительных перегрузок или фазового дисбаланса, что случается не так и редко, устройства, подключенные в данный момент к обнуленной электросети, могут выйти из строя. Единственный выход за общие средства жильцов многоквартирного дома или самостоятельно — поменять всю электропроводку.

    Этапы самозаземления

    Если при проведении электрических коммуникаций использовалась схема TN-CS, можно провести самостоятельное заземление розеток, придерживаясь следующей последовательности действий:

    1. Обесточить квартиру — открутить все заглушки или выключить автоматические заглушки или ползунки.
    2. Освободите доступ к проводке — удалите штукатурку или другие отделочные материалы в необходимых местах.
    3. Демонтировать необходимые розетки.
    4. Подсоедините зачищенные концы проводов к специальным контактам, имеющимся в розетках евростандарта.
    5. Подключите все выводы к заземленной розетке.
    6. Обесточить стояк или дом.
    7. Подключите предусмотренное заземление к общему заземлению стояка или фазы.
    8. Включить электричество в доме и в квартире.

    Вывод

    Такое заземление эффективно только в том случае, если бытовой прибор подключен к заземленной электросети TN-S. Определить это можно по соединительному штекеру. Если это для розеток евростандарта, то TN-S поддерживается.

    С с появлением электричества в быту встал вопрос о его безопасном использовании. Давайте разберемся, как решить эту важную задачу, давайте разберемся: что такое заземление, как работает заземление, , как сделать обнуление в частном доме своими руками. А кроме того, можно ли вместо заземления использовать заземление.

    Содержимое
    1.
    2.
    3.
    4.
    5.
    6.

    Что, как и откуда берется

    Известно, что электроэнергию производят электростанции. От них электрический ток напряжением в десятки и сотни тысяч вольт по трехфазным проводам идет к потребителю.

    Напряжение настолько велико, потому что, согласно законам физики, чем выше напряжение, тем меньше потери при передаче на большие расстояния.

    Тогда понижающие трансформаторные подстанции преобразуют высокое напряжение в гораздо более низкое (но все же опасное) напряжение, и оно будет поступать в наш дом по проводам или подземным кабелям.

    Ток должен подойти к электроприбору, сделать полезную работу и уйти. В случае переменного напряжения, используемого в быту, для этого используются фазный (питающий) и нейтральный провода. Откуда идет электрический ток, понятно; но куда девается электричество? В землю! Немного упрощенно, но по большому счету это так. Он в земле.

    Трансформатор подстанции имеет заземление, подключенное к отдельному линейному проводу. Это тот самый «ноль» в нашем →.Особенно любопытных в этом можно убедиться, рассмотрев обычную трансформаторную подстанцию ​​с воздушными линиями … 3 провода входили, 4 выходили 4. На входе — три фазы высокого напряжения, на выходе — три фазы низкого напряжения и нулевой провод. .

    А теперь перейдем к главному — защите человека.

    Заземление в квартире

    Самый надежный способ обезопасить себя от поражения электрическим током в повседневной жизни — заземление электроприборов.Ведь у многих наших помощников по хозяйству металлические (читай — токопроводящие) корпуса, и в результате обрыва или повреждения изоляции фазный провод может задеть корпус устройства. И тогда прикосновение к нему становится смертельно опасным …

    Во избежание неприятностей корпус устройства заземляют. Теперь при попадании фазы в корпус происходит короткое замыкание и срабатывает защита, отключающая подачу тока.

    Схема заземления в частном доме 380.Устройство заземления в частном доме своими руками. Выбор дизайна зависит от многих факторов.

    Оставлять жилое помещение без качественного заземления как минимум безрассудно. Любая неисправность бытовой техники потенциально опасна для жителей. Нарушение изоляции приводит к прохождению тока к телу, а это уже грозит самыми неприятными последствиями.

    Во избежание поражения электрическим током людей, использующих устройства, в каждой розетке предусмотрен третий контакт для отвода тока.Но работает только в случае подключения всех розеток к заземляющему контуру, погруженному в землю за пределами жилого дома.

    В то время в квартирах чаще всего использовались двухпроводные алюминиевые провода, в одной комнате у нас был 1 выключатель и 1 розетка. Что такое земля? Защитное заземление — основа пассивных частей электрооборудования для защиты людей от опасных электрических токов.

    В настоящее время все мы не обходимся без мобильного телефона, у нас обычно есть телевизор или компьютер в каждой комнате.На кухнях есть посудомоечные машины, ванны или сушильные машины. Мы больше не думаем об одном гнезде в комнате и рассчитываем собрать 4-5 или более гнезд.

    Цепь заземления в частном доме представляет собой конструкцию из металлических заготовок, вкопанных в землю на одинаковом расстоянии и замкнутых между собой соответствующей полосой.

    Он состоит из штифтов или углов, расположенных в одну линию или выстроенных в одну линию (квадрат). Закапывают «стояки» на глубину не менее семидесяти сантиметров. Они свариваются полосой металла шириной 4 и толщиной 0.3 см.

    В каких случаях необходимо заземление?

    Многие устройства оснащены металлическими корпусами. Поэтому иногда рука, касающаяся стиральной машины или холодильника, вызывает электрический разряд или постоянное напряжение. Из-за достаточно большого количества небезопасных или устаревших устройств изоляции также могут возникать опасные для жизни вещи. Хотя даже относительно простое устройство имеет относительно высокое напряжение, обычно ток составляет всего 1 мА. По мере подъема устройства ток постоянно увеличивается.Поэтому необходимо обустроить землю в квартирах, т.е. снизить электрический заряд до земли, подключив прибор к третьему подводящему кабелю.

    На заметку. Во избежание проблем с энергонаблюдением сопротивление цепи не должно превышать 4 Ом. Нигде в нормативных документах этой организации не указано, что нельзя делать заземление частного дома своими руками. Если все сделано правильно, претензий быть не должно.

    Перед тем, как установить систему заземления для частного дома, следует уточнить несколько важных моментов:

    Как правило, изоляция этого кабеля желтого цвета с зеленой полосой.В сертифицированных штекерных разъемах этот кабель подключается к электронной почте. вторичный выходной контакт. Этот провод во входных шкафах соединен с корпусом шкафа «нулевым» проводом и цепью заземления: металлическими полосами и трубными конструкциями, прикрученными к земле.

    Заземление в старой постройке дома устанавливали только на кухнях, где устанавливались стандартные плиты. Заземление в новостройке обычно встречается в каждом гнезде, а также в организации, которая заботится о мощности электричества, регулирует мощность дома.

    1. Лучшая электропроводность глины. Эта грунтовка — лучшее место для нанесения защитного контура.
    2. Песчаные почвы можно обрабатывать солевым раствором. Это улучшит проводимость, но при этом сократит срок эксплуатации конструкции (что вряд ли устроит владельцев).
    3. Замкнутая петля, то есть соединенная металлической лентой геометрической формы, более надежно закрепленная по прямой. В случае коррозии одной из опор вся конструкция продолжит полноценно функционировать.
    4. Место, где находится земля, опасно для человека и животных! Может быть потенциальный ток. Животное, пострадавшее от шока, погибнет из-за своего небольшого размера. Это место опасно и для маленьких детей.
    5. Контур должен быть обнесен или покрыт элементами декора, в которых никто не двинется. Например, построить холм из камней.

    Процесс сборки контура включает следующие этапы:

    CCTV и заземление

    Каждый день он проводит измерения и экспериментирует на мышах и насекомых, чтобы выяснить возможное воздействие неионизирующего излучения на организмы.Как зависит выраженность симптомов? От чувствительности каждого человека, от вида излучения, от продолжительности воздействия и от возраста. Особенно уязвимы дети. Беспроводной телефон или беспроводные игры не нужны. Является ли действие электромагнитного излучения на организм человека кумулятивным? Эпидемиологические исследования показали, что по мере увеличения использования мобильного телефона рядом с мозгом повышается вероятность роста опухоли.

    • Потребуются Уголки (50 мм) длиной 2 метра или шпильки диаметром 32 мм.
    • Сделана разметка на выбранном сайте. Расстояние между штырями 1-1,2 метра.
    • Углы заточены за счет обрезки концов болгаркой.
    • В точках разметки выкапываются углубления глубиной 70 сантиметров. Это значение нужно для того, чтобы зимой опустить контур ниже точки промерзания почвы. Ямы соединяются траншеями одинаковой глубины.
    • Уголок кувалдой или отбойным молотком забивают вертикально в каждую из ям. Над поверхностью остается только ее верхний край, необходимый для дальнейшей установки.
    • Все столешницы сварены металлической полосой.
    • От ближайшей булавки к подвалу дома идет автобус (круглая сталь). Обычный провод не подойдет, он слишком быстро сгниет в земле.
    • В основании к шине приваривается болт М10 (поможет в работе). К нему крепится провод, идущий прямо к щитку электропитания — к клеммной колодке, к которой подключается заземляющий провод от розеток в доме.

    Радиация, помимо прямого воздействия, также оказывает долгосрочное воздействие на здоровье.Считаете ли вы, что чрезвычайно важно ограничить использование беспроводных устройств, излучающих опасное излучение? Конечно. Средства защиты сводят к нулю воздействие радиационного загрязнения. Мы можем использовать беспроводные устройства, если соблюдаем правила.

    Современные люди также «бомбардируются» облучением от экзогенных источников. Достаточно ли достаточного сокращения внутренних источников? Это важно, потому что внешние источники не могут их контролировать. Однако для высоких частот были начаты и применены методы защиты стен специальными красителями.

    Важно! Болт необходимо смазать консистентной смазкой для предотвращения коррозии.

    Способы подключения к коммутатору

    Провод подключается к болту М10 шины заземления. В стене пробивается отверстие через перфоратор, через который провод выводится к распределительному щиту в помещении. Проволока может быть алюминиевая (16 кв. Мм) или медная (6 кв. Мм).

    Могут ли приборы для измерения радиации в домашних условиях уменьшить облучение? Вы можете получить такое устройство, чтобы контролировать, какие уровни радиации присутствуют в космосе.Конечно, не всегда легко понять, где именно происходит излучение, но, по крайней мере, можно определить опасные точки и избежать их.

    Сколько радиации мы получаем от наших устройств и как их защитить Как мы можем повредить наш мобильный телефон, беспроводной телефон или маршрутизатор? В последние годы появился еще один вид загрязнения: электромагнитное. Сколько излучения излучает каждое устройство, каковы пределы безопасности и как мы можем защитить его?

    Частные дома в настоящее время подключены к электросети через воздушные линии с заземлением TN-C.Суть такой системы в том, что нейтральный провод линии заземлен. Фаза и рабочий ноль, подключенные к защитному проводу, подключаются к зданиям.


    Для таких линий есть два способа подключения.

    Что входит в космические исследования: Измерение нагрузки с помощью специальных инструментов в спящем положении. Требуемая продолжительность измерений и испытаний для различных корректирующих мер составляет около двух часов для первой контрольной позиции и увеличивается примерно на полчаса до одного часа для каждой последующей.Во время измерений заказчик может отслеживать эффективность проверяемых мер и формировать собственное мнение об ожидаемых результатах. Затем измерения обрабатываются в офисе, и проводится окончательное исследование с выводами и предлагаемыми мерами.

    Система заземления TN-C-S

    Непосредственно на совмещенных проводах, разделенных на два отдельных: рабочий и защитный. То есть получается трехжильная разводка.

    • Это делается путем размещения внутри экрана шины, к которому будет подключен защитный провод (заземление).
    • От шины заземления к шине проложена перемычка с подключенным нулевым проводом.
    • На третьей шине смонтирована фаза.

    Соединение TT

    Фаза и комбинированный провод (нулевой и защитный), подключенные к дому по воздуху, смонтированы на отдельных шинах, изолированных от электрощита.

    Исследование включает в себя: Запись текущей ситуации. Определение источников нагрузки. Тестирование различных мер защиты и мониторинг производительности. Предлагаемые контрмеры. Полезная информация о том, как привлечь внимание к общей информации по этой проблеме и связанным с ней проблемам со здоровьем.

    РАДИОЛИНСКИЙ ОБРАЗЕЦ ЕЖЕДНЕВНО ЕЖЕДНЕВНО. Часто задаваемые вопросы: Почему в машине больше радиации? Поскольку автомобиль прикреплен, ваш мобильный телефон вынужден излучать более сильный сигнал для связи с базовой станцией, тем самым повышая уровень ее излучения. По этой причине лучше использовать внешнюю антенну. Внешняя антенна стоит около 30 евро в зависимости от устройства и входит в автомобильный комплект вне автомобиля.

    Заземление дома выводится на третью шину, имеющую металлическое соединение с корпусом щита.
    Преимущества системы заземления TT ​​:

    Защита от случайного возникновения потенциального напряжения на корпусе бытовой техники. Это происходит в случае перегорания совмещенного провода или появления напряжения в нулевом проводе при неравномерной нагрузке по фазам (иногда до 40 В).

    Лучше всего, если вы уже выключили свой мобильный телефон до того, как дойдете до заправочной станции. Искра, которая может возникнуть при открытии или закрытии сотового телефона, может вызвать «взрыв», хотя вероятность этого практически равна нулю.Если у вас есть кардиостимулятор, перед использованием мобильного телефона проконсультируйтесь с врачом. Использование мобильных устройств может создавать помехи в работе схемы кардиостимулятора, что может повлиять на работу кардиостимулятора. Скорее всего, если вы разговариваете по самому мобильному телефону, а не с кем-то рядом.

    При установке перемычки между шиной заземления и проводом заземления в аварийной ситуации ток течет к шине заземления.

    недостатки :

    Стоимость Также требуется реле напряжения.

    Что важно помнить при выполнении монтажных работ

    Перед тем, как подключить их к соответствующему проводу в доме, вы должны соблюдать простые правила:

    Система заземления TT ​​

    Чтобы ограничить помехи, вы должны говорить с противоположной стороны от кардиостимулятора и не класть мобильный телефон в карман рядом. к нему. Если у вас возникла аритмия, вам следует прекратить его использование и обратиться к врачу. Помехи прекращаются, когда мы извлекаем сотовый телефон. Однако каждый кардиостимулятор отличается своей чувствительностью к помехам.Большинство родителей чувствуют себя в безопасности, когда их ребенок подвижен, потому что они могут общаться с ними, где бы они ни находились.

    1. не заземлять приборы последовательно;
    2. выводить несколько розеток на одно крепление на заземляющем проводе;
    3. не красить и не размещать заземляющий провод на стене;
    4. Клеммы
    5. или площадки для крепления заземляющих контактов, в которых находятся отверстия под болты М4, необходимо смазать консистентной смазкой для предотвращения коррозии;
    6. изоляция заземляющих проводов должна быть желтого цвета с зеленой полосой, а их сечение не менее 4 квадратных метров.мм

    Некоторые бытовые приборы следует заземлять не через розетку, а прикрепив провод непосредственно к корпусу (на специальном креплении).

    Но хорошо ли пользоваться мобильными телефонами? Директивы ЕС не выделяют возраст пользователей, поэтому нет необходимости принимать специальные меры для детей. Мобильный телефон похож на беспроводной? Беспроводные телефоны излучают электромагнитное излучение, но их мощность передачи намного ниже, чем у мобильных телефонов. Ассортимент портативных устройств намного меньше мобильных.Сигнал телефонной трубки должен пройти всего несколько метров, чтобы достичь базы телефона, в то время как сигнал мобильной связи имеет гораздо большее расстояние и, следовательно, должен быть сильнее.

    • стиральная машина — устройство с большой мощностью, которое во влажной среде может проводить ток даже при полностью исправной изоляции;
    • сказывается тем, что при плохом контакте с розеткой может излучать волны, опасные для здоровья. Многие производители выпускают печи со специальным винтом заземления на корпусе;
    • духовка и варочная поверхность — эти устройства отличаются повышенным энергопотреблением и повышенным риском повреждения изоляции;
    • компьютер, работающий от источника бесперебойного питания, также нуждается в отдельном заземлении.Утечка из блока питания мешает работе компьютера и снижает скорость интернета. Системный блок компьютера заземляется через любой крепежный винт на корпусе.

    Установка заземления в частном доме — дело ответственное. Большинство владельцев справятся с этой задачей самостоятельно. А те, кто сомневается, могут обратиться в соответствующие службы.

    Нюансы заземления частного дома

    Защищает ли корпус от радиации? Чехол может защитить только мобильный телефон, но не вас.Действительно, по мнению экспертов, корпус «заставляет» соту излучать больше излучения для связи с базовой станцией. Продаются различные наклейки, наклеиваются на мобильное устройство и «обещают» защитить вас от их излучения. На самом деле эти наклейки излучают мало света, то есть, по словам их производителей, они используют излучение, чтобы включить свет, превращая его в электричество.

    Таким образом, считается, что они удаляют его из нашего тела, потому что вместо того, чтобы быть принятым нашим телом, он использует наклейку.В мобильных измерениях, однако, не было снижения радиации, но оказалось, что использование наклейки имеет противоположный эффект: то есть мобильный передает с большей интенсивностью, чтобы преодолеть наклейки с препятствиями.

    Монтаж цепи заземления коммерческой фирмой с последующим приемом работ службой регулирования мощности — удовольствие недешевое. Но в случае аварии можно будет потребовать возмещения ущерба.

    Какой вариант заземления в частном доме выбрать, каждый решает сам.Главное, чтобы все было выполнено качественно и прослужило долгие годы.

    Монтаж заземления в частном доме на видео

    Содержимое:

    Многие люди живут и проводят время в загородных домах и в частных загородных домах. Они стараются создать для себя максимальный уют и комфорт, окружить всеми удобствами. Подавляющее большинство таких объектов полностью электрифицировано, поэтому часто возникает вопрос, как сделать заземление в частном доме своими руками.

    Схема заземления в частном доме своими руками 220 и 380в

    В каждом частном доме устраивают заземление в зависимости от того, какое напряжение к нему подключено — 220 или 380 вольт. Обе схемы заземления практически одинаковы. В обоих случаях контур заземления устройства будет точно таким же. Существующие отличия касаются способа подключения в зависимости от типа электрической сети.

    При подключении к однофазной сети напряжением 220 вольт используются три провода — фаза, ноль и земля.Розетки также имеют три соответствующих контакта. Если подключено трехфазное напряжение 380 вольт, используются пять проводов, из которых три фазные, а два других служат нулем и заземлением. Так же в розетках пять контактов.

    Категорически запрещается использовать нейтральный провод вместо заземляющего провода независимо от напряжения в электрической сети. В этом случае вполне возможен выход из строя дорогостоящей бытовой техники и оборудования. Кроме того, существует реальная угроза здоровью и жизни людей в доме.

    При заземлении в частном доме следует учитывать разницу в сопротивлении. Если установка выполняется по правилам, то сопротивление заземления при напряжении 220 вольт будет около 30 Ом. При напряжении 380 вольт этот показатель будет равен 10 Ом. Большую роль играет удельное сопротивление заземления, в котором проложен контур заземления. Например, каменистая почва имеет очень низкие показатели.

    Схемы заземления

    В первую очередь нужно определиться с наиболее подходящим вариантом схемы заземления для частного дома.В зависимости от этого в будущем будет смонтирована вся система.


    Наиболее популярные схемы заземления:

    • Замкнутый контур в виде треугольника. Его главным преимуществом считается более надежная работа. В случае повреждения перемычки между контактами, работа системы продолжится с любой стороны.
    • Линейная схема состоит из нескольких выводов, установленных на одной линии и соединенных последовательно друг с другом.Недостатком этой системы является ее полный отказ, если перемычка установлена, установленная в самом начале.

    Для частного дома лучше всего треугольник. По работе эта схема ничем не отличается от других систем, но КПД у нее намного выше. Исходя из конкретных условий, вы можете использовать свой вариант и настроить заземление в виде прямоугольника или другой формы.

    Необходимые инструменты и материалы

    Для изготовления искусственного заземления используется сталь металлическая.Лучше всего для этих целей подходят круглые прутки, трубы разного сечения и углов.

    Категорически запрещается использовать профильную арматуру в качестве заземлителей и заземлителей. Это происходит из-за горячего внешнего слоя, присутствующего во всех изделиях этого типа. В результате распределение тока по поперечному сечению нарушается, и процесс окисления происходит намного быстрее.


    Для защиты металла от коррозии практикуется использование оцинкованных электродов.В некоторых случаях токопроводящий бетон может выполнять функции заземляющего проводника.

    Существуют комплекты заводского изготовления, состоящие из бесшовных штифтов с медным покрытием. Их длина 1,5 метра, а на конце есть резьба. Для соединения штифтов между собой предусмотрены специальные латунные резьбовые муфты. Погружение электродов в землю осуществляется мощными ручными ударными инструментами с использованием адаптера и направляющей головки. Электроды соединяются с заземляющим проводом зажимами из нержавеющей стали.Защита компаундов от коррозии на стыках осуществляется путем покрытия специальной пастой.

    Не красить заземления и не наносить на них другие покрытия, снижающие проводимость. Однако под действием коррозии толщина стальных деталей постепенно уменьшается. Этот фактор необходимо учитывать, поэтому сечение электрода подбирается с определенным запасом. Таким образом обеспечивается достаточно продолжительная работа схемы.


    В нормативных документах определяется минимально допустимое сечение заземления, которое следует учитывать при выборе материалов.Так, для прутка оцинкованного этот параметр составляет 6 мм2, для прутка из обычного черного металла — 10 мм2, а для проката прямоугольного сечения — 48 мм2. Стенки труб или полок из стального проката выбираются минимальной толщиной 4 мм.

    Большое значение имеет правильный выбор материала для соединения электродов. В большинстве случаев используется полоса, но в определенных условиях допускается использование трубы, уголка или проволоки. С помощью этих материалов можно провести заземление непосредственно к электрическому щиту.Сечение заземляющего проводника внутри здания должно совпадать с сечением фазового проводника, используемого в проводке.

    Все заземляющие проводники подключены к одной заземляющей шине, используемой для коммутации. Сама шина сделана из специальной электробронзы. Он является одним из элементов распределительного щита и крепится непосредственно на его стене. Для выполнения работ могут потребоваться кувалда и лестница. Соединение деталей из проката черных металлов осуществляется сваркой.

    Монтаж системы заземления

    В частных домах практиковалось использование в форме треугольника с равными сторонами. Для того чтобы сделать контур заземления в частном доме своими руками планировку будущей постройки, выполняйте точно такую ​​же конфигурацию. Расстояние заземления от фундамента здания не должно превышать 1 метр.


    После завершения разметки по периметру треугольника отрывается траншея глубиной от 0,8 до 1 метра.Его ширина колеблется от 50 до 70 см, что обеспечивает удобство при сварочных и других работах. Сама траншея необходима для прокладки горизонтального соединительного заземления.

    В каждой вершине треугольника забиты вертикальные заземлители под углом 2-3 метра в длину. Их почти полностью засыпают ударами кувалды. Чтобы уголки лучше заходили в землю, их концы заостряют. Облегчить работу поможет устройство небольших колодцев напротив каждой вершины треугольника, глубиной около 1.5 мес. В этом случае углы забиваются в землю на меньшее расстояние.


    После выполнения всех подготовительных работ можно приступать к непосредственному монтажу контура заземления:

    • В самом начале работы углы забиваются в землю таким образом, чтобы их верхний край выступал примерно на 20–25 см над поверхностью дна траншеи.
    • По окончании монтажа вертикального заземления выполняется горизонтальная обвязка с целью создания замкнутого контура.Все соединения производятся сваркой — к концам уголков приваривается стальная полоса. Использование болтовых соединений не допускается, так как через некоторое время происходит окисление этих мест. В результате контакт теряется и цепь заземления начинает работать неэффективно.
    • После полной сборки контура заземления его необходимо подключить к электрическому щиту. Делается это с помощью заземлителя, для которого используется стальная проволока сечением 8-10 мм.Его приваривают к контуру, а затем укладывают в траншею до стыка с щитом. В этом месте также приваривается болт диаметром 6 или 8 мм, к которому будет крепиться заземляющий провод.
    • Если нет стальной проволоки, то заземляющим проводом вполне может быть стальная полоса, такая же, как и в горизонтальном заземляющем проводе. Полоса будет еще эффективнее, так как у нее большая площадь контакта с землей. Однако с ним труднее работать, особенно при укладке на изгибы траншеи.
    • По окончании всех сварочных работ места сварки обрабатываются специальными антикоррозийными составами. Краску для этих целей использовать нельзя, так как она полностью нарушает связь металла с землей и система заземления просто не сработает.

    После проверки всех соединений выкопанную траншею засыпают землей. Далее заземление необходимо подключить к оборудованию, установленному в доме. Во многих частных домах используется система заземления TN-C, где они заземлены.После установки собственного контура заземления эта схема перестанет работать и потребует переделки системы TN-C-S или TT.

    Система заземления TN-C-S

    В цепи TN-C нет отдельного заземляющего проводника, поэтому его необходимо преобразовать в цепь TN-C-S. Для этого необходимо в электрощите разделить совмещенный PEN-провод, который одновременно является нулевым рабочим и защитным проводником. После разъединения должны получиться два отдельных провода: N — рабочий и PE — защитный.


    Поскольку в дом подводится всего два питающих провода, для получения трехжильной внутренней разводки необходимо использовать специальную заземляющую шину РЕ, соединенную с экраном через металлическую поверхность. Подключается к проводу PEN, выведенному из внешней сети.

    Затем шину РЕ соединяют перемычкой с такой же шиной, подключенной к нулевому рабочему проводнику N. Нулевую шину обязательно изолировать от экрана. После этого сам экран подключается к цепи заземления.Для этого используется многожильный медный провод, один конец которого соединяется с экраном, а другой прикрепляется к заземляющему проводнику с помощью болта, приваренного к концу.

    Заземление по схеме ТТ

    Эта система не требует разделения проводов PEN. Схема предусматривает подключение фазного провода к шине, изолированной от электрощита. Далее он будет выполнять функцию нулевого провода. После этого корпус щита подключается к цепи заземления.


    Таким образом, заземление в частном доме своими руками по схеме ТТ не предусматривает какого-либо контура электрического соединения с проводником PEN. Это подключение имеет значительные преимущества перед схемой TN-C-S. При поджигании провода PEN нулевой потенциал на корпусах инструментов останется. Поэтому схема ТТ считается более надежной и безопасной. Серьезным недостатком является его дороговизна, так как наличие в схеме защитных устройств обязательно.

    Как сделать собственное заземление дома

    Как сделать заземление в частном доме

    . .

    Растущее количество различных электроприборов помогает нам в работе и в жизни. Нагрузка на электросети почти всегда максимальная, даже в самом бедном селе. Постоянно включенный телевизор, часто используемая стиральная машина, посудомоечная машина каждый день работает и не выключается, не говоря уже о различных источниках освещения, утюги, пылесосы и компьютеры.Практически всегда страдает безопасность в эксплуатации электроприборов, а устройства защиты УЗО не срабатывают вовремя из-за отсутствия контура заземления в частном доме. Как сделать заземление в частном доме, расскажет эта статья.

    .

    Грамотно и практически бесплатно произвести заземление в частном доме сможет любой домовладелец. Работа над его дизайном довольно проста и не требует специальных знаний. Энергонадзор может проверять цепь заземления раз в сто лет и практически не обращает внимания на безопасность домовладельцев.Достаточно того, что у вас будет гарантия самостоятельно избежать поражения электрическим током.

    .

    Итак, что нам нужно знать в первую очередь? Это то, что нужно делать в соответствии с четко регламентированными инструкциями. Она рассказывает, как произвести заземление частного дома согласно Правилам устройства электроустановок, Правилам техники безопасности для электроустановок и Правилам техники эксплуатации электроустановок. Согласно этим документам, контур заземления частного дома необходимо проверять на сопротивление сразу после изготовления, и его величина не должна превышать 4 Ом.И никто не может запретить вам сделать контур заземления в частном доме самостоятельно, вместо того, чтобы переплачивать деньги специалистам сторонних компаний.

    Все плюсы контура заземления:

    • отсутствие аварийного напряжения на корпусах бытовой техники;
    • соответствие нормам эксплуатации электроприборов, что увеличивает срок их службы;
    • безопасный контакт человека с металлическим корпусом приборов;
    • значительное снижение вредного воздействия на организм человека электромагнитного излучения;
    • снижение уровня помех в сети частного дома, возникающих при скачках напряжения;
    • снижение числа смертей от поражения электрическим током.

    Создание контура заземления

    Итак, как сделать контур заземления? Самая простая петля заземления в частном доме может быть сделана из трех или четырех металлических стержней произвольного диаметра (10-45 мм). Их забивают в землю в виде равностороннего треугольника или квадрата с длиной стороны не менее, м и глубиной 2 м. Детали контура между собой обычно соединяются сваркой с металлической полосой сечением 4х25 мм, или больше. Соединение верхних краев контура между собой и металлической покрышкой, вставленной в частный дом, называют металлической склейкой.Сопротивление металлического соединения не должно быть больше, Ом. Он измеряется от механического соединения на шине заземления до последнего, самого дальнего элемента контура заземления.

    Место для установки контура заземления обычно выбирается исходя из ближайшего расположения к щитку учета и большинства источников повышенной опасности — электроприборов, то есть рядом с кухней частного дома. Внутри частного дома петля заземления наматывается с помощью металлической планки, подходящей для щита электричества.С регистрационной платой цепь заземления соединяется медным проводом диаметром 6-10 мм, имеющим желтую оболочку с зеленой продольной полосой и прикрученной гайкой к болту, приваренному к металлической планке, диаметром более 10 мм.

    Сделать контур заземления для своей квартиры практически невозможно, живя в многоэтажном доме. Многие очень грамотные во всех отношениях люди пытаются заменить землю нулевым проводом. Это очень опасно по двум причинам:

    • : если в результате аварии в доме пропадет ноль, все здания будут под высоким напряжением;
    • при неравномерном распределении нагрузки по фазам и при посадке на нейтральный провод вместо земли в металлических корпусах бытовой техники есть потенциальные, то есть опасные для жизни разности напряжений.

    Вместо самодельного заземления частного дома можно приобрести готовый контур заземления, изготовленный на заводе. Стоит больших денег из-за качественного изготовления металлических прутков, с гальваническим покрытием тонким слоем меди.

    Предупреждаем всех от желания сделать контур заземления, соединив металлический провод с водопроводными трубами или трубами системы отопления — это запрещено п. 1.7.110 Электроустановок Устройства.Часто такие эксперименты заканчиваются человеческими жертвами — электричество не любит шуток. В случае пробоя изоляции проводов вместо земли разряд тока попадает на водопроводную трубу и по току струя воды может вызвать поражение электрическим током людей, которые беззаботно принимают душ в соседнем доме.

    Все контактирующие элементы заземляющего контура, выведенные наружу частного дома и имеющие между собой механическое соединение, должны быть соединены через подготовленные контактные площадки.Поскольку металлы обладают разной электрохимической активностью, во влажную погоду между ними образуется гальваническая пара, что приводит к коррозии.

    Коррозия в этом случае может распространяться даже под оболочкой заземляющего провода, проводимого в доме от контура автобуса.

    Чтобы предотвратить это явление, все механические соединения соединены с контактными площадками, очищены до блеска и смазаны электротехнической смазкой особой консистенции.

    Категорически запрещается подключать несколько электроприборов последовательно к заземляющему контуру дома.Каждый из них необходимо подключить к отдельной шине заземления.

    Из всего вышесказанного следует, что самостоятельное изготовление и установка контура заземления в частном доме вполне по силам любому человеку, который хочет защитить себя и свою семью от чрезвычайных ситуаций и человеческих жертв.

    .

    Какое заземление дома. Как сделать правильное заземление

    Рано или поздно любой из вас столкнется с тем, что ему расскажут о том, что цифровую технику нужно заземлить или прочтите это в инструкции по эксплуатации.Но немногие понимают важность наличия земли. Поэтому подумайте об этом, когда будет слишком поздно. Многие из вас слышали о статическом электричестве и его влиянии на электронику. Не забывайте, что кроме статики есть еще блуждающие токи. Часто они возникают во время грозы или сильного электромагнитного импульса. Все эти разряды должны уходить в землю, не создавая разности потенциалов. Только есть одна проблема, куда девается накопленный заряд, если нет выхода из системы, то есть заземления? Ладно, заряд идет либо на внутренние компоненты цифровых устройств, либо на вас, при прикосновении к системному блоку.

    При работе с электрическими сетями подумайте о собственной безопасности; любое неправильное соединение может быть закорочено с соответствующими последствиями. Приступая к прокладке локальных сетей или протягиванию линий электропередач, убедитесь, что кабель исправен, используя тестовые наборы. Устройства этого класса помогут всесторонне протестировать линию и устранить оголенные участки.

    Если ваше оборудование не заземлено, то помимо вышеперечисленных проблем есть еще кое-что. Один из них — это подключение цифровой техники, а второй — срабатывание средств защиты в цепях питания.Что касается первого, то для нормальной работы оборудования требуется заземление. Например, блок питания ATX заземляется на корпус, оттуда заземление идет на корпус компьютера, с которого должно быть снято повышенное напряжение. Во второй ситуации проблема в том, что как бы безупречно и дорого ни сетевой фильтр или блок бесперебойного питания Вы не включили блок питания компьютера, то без заземления он становится обычным удлинителем, то есть без функций защиты буду работать.

    Типичные ошибки заземления:

    • Первый и наиболее распространенный метод — заземлить сеть в системе отопления или трубопроводе. Преимущество этого метода в том, что очень легко получить уверенный контакт с землей, и вам не придется выполнять какие-либо сложные работы, кроме как проложить провод к трубе. Недостатком является то, что любой, кто прикоснется к трубе или водяной струе, может получить удар электрическим током. Поэтому использовать этот метод категорически нельзя!
    • Второй распространенный метод — заземлить на ноль, то есть привести ноль и заземление в один провод.Решение в основном работает, но если произойдет смена фазы и нуля, то все ваше оборудование немедленно превратится в фейерверк. В этом случае в лучшем случае сгорит только электроника. В худшем случае фаза пройдет через вас. Поэтому и этот метод использовать нельзя.
    • Также можно увидеть такой способ выполнения, как подключение к другим системам заземления. Например, подключите нулевой провод к земле газопровода или молниеотвода. В принципе, этот способ сработает, но если молниеотвод сработает, то все оборудование, которое будет контактировать с ответвлением, сгорит.Вероятность такого случая хоть и невелика, но есть. Что касается газопровода, то можно получить либо штраф от газовой службы, либо поражение электрическим током на кухне (в худшем случае — взрыв!).

    Если вы не остановились на одном из вышеперечисленных методов, вы сделали правильный выбор.

    Для организации заземления отдельной электрической цепи необходимо сделать отдельное заземление. Возможны два варианта: первый — организация заземления в квартире, второй — в частном доме:

    Организация заземления в квартире

    Организация заземления в квартире — вопрос сложный, так как обычно каждая квартира подключается к общему заземлению.Если у вас его нет, то сначала нужно уточнить в местной электросетевой компании, как устроена сеть заземления, и только потом что-то делать самому.

    Чаще всего общий заземляющий провод прокладывают возле счетчиков электроэнергии. Оттуда и нужно протянуть землю по всей квартире. Если нет заземляющего провода и устроить общую сеть, заземление тоже не светит, то остается только одно: вывести землю. То есть отдельно организовать контур заземления снизу дома и протянуть от него «землю» в квартиру.

    Организация заземления в частном доме

    Организация заземления в частном доме осуществляется несколькими способами. Самый простой — протянуть заземляющий провод до естественного контура заземления. Это может быть канализация (сам железный резервуар!) Или труба колодца (это внешняя труба, которая в основном отвечает за то, чтобы колодец не был засыпан песком и не контактировал с водопроводной трубой!).

    Создание заземления

    Если на участке нет естественных контуров заземления, то нужно построить свои собственные.Для этого выберите на участке место для установки заземления, а также материал для схемы. Место для установки контура выбирается исходя из состава почвы. Именно состав почвы повлияет на характеристики почвы, а также на ее эффективность. Что касается грунта, то предпочтение отдается торфяно-суглинистому составу, так как его стойкость в несколько раз меньше стойкости песка. Если у вас вокруг песчаник, то монтаж усложнится тем, что контур необходимо контактировать с влажным слоем земли как минимум двумя электродами.

    Пошаговая инструкция:

    1. На месте установки контура заземления нужно вырыть траншею глубиной до одного метра и шириной не более полуметра, в которую будет проложена сама цепь. Траншея может иметь форму треугольника или вытягиваться одной сплошной линией. Практически без разницы.
    2. Теперь нужно забить вертикальное заземление на глубину не менее 1,5 метра в углах траншеи или на расстоянии, равном длине вертикального заземления пополам.
    3. В качестве заземления могут использоваться стальные трубы диаметром 16 мм для вертикального заземления или 32 мм для горизонтального, а также стальной уголок с толщиной стенки не менее 4 мм (40x40x4) или арматура с поперечным сечением. площадью не менее 10 мм кв.
    4. Как только вертикальные заземлители будут вбиваться в землю, они соединяются между собой стальными полосами. Их размер должен быть не менее 40 × 4 мм. Крепятся к заземлению с помощью сварки. Это необходимо для надежного контакта, но можно использовать болтовое соединение — это не будет промахом!
    5. Когда основная цепь заземления готова, заземляющий провод ведет от нее к распределительному устройству.То есть соедините выход заземления измерителя с заземлением вашей цепи через толстый провод, а не стальную полосу.
    6. После полной установки схемы и ее коммутации с сетью необходимо ее проверить. Правда, сделать это не так-то просто, так как для этого потребуется специальное оборудование, либо нужно будет вызвать электриков, которые специально занимаются этими измерениями.
    • Вертикальные электроды контура глубоко заглублены и также касаются влажного слоя почвы.
    • Сеть заземления надежно сварена.
    • Сеть заземления имеет низкое сопротивление, а также очень высокую проводимость и площадь поперечного сечения проводников.
    • Контакт с землей происходит непосредственно с металлом проводника и почвой.
    • Конструкция не имеет сильных следов коррозии.
    • Для отвода избыточного электрического тока от системного блока достаточно, предварительно обесточив оборудование, закрепить заземляющий провод на корпусе!
    • Будьте осторожны, подключая получившуюся цепь с электрической цепью, возможен разряд.
    • Используйте резиновые перчатки и инструмент, изолированный от электрического тока.
    • Если вы не уверены в своих силах, откажитесь, доверив создание специалисту — электрику!

    Таким образом, правильно установленный контур заземления всегда может защитить вас от повреждений. поражение электрическим током, а также для защиты компьютера от короткого замыкания и перегорания элементов в цепи.

    Практически на всех объектах, связанных с электричеством, необходима защита людей от поражения электрическим током.Все знают, зачем нужно заземление, но мало кто представляет, как его правильно установить, чтобы оно полностью выполняло свои функции.

    Если все металлические части оборудования подсоединить к заземляющему устройству, то при наведении потенциала на них электрический ток уйдет на землю. Тогда при прикосновении к металлу через человека пройдет гораздо меньший ток, который не представляет для него опасности.

    Как электроэнергия передается потребителям?

    Электроэнергия поступает от источника по линиям электропередачи сначала на подстанции, а затем у потребителей.Для его передачи используются трехфазные провода. Четвертый проводник — земля. В трехфазной сети обмотки трансформаторной подстанции соединены по схеме «звезда». Общая точка (нейтраль) с нулевым потенциалом заземлена. Это необходимо для нормальной работы электрооборудования. Такое заземление называется рабочим, а не защитным.

    В квартиру обычно подается напряжение 220 В между проводниками фазы и нейтрали к общему В, вход частного дома может быть 380 В — трехфазный и нейтраль.Затем провода расходятся к розеткам и осветительным приборам во всех комнатах. Здесь также не следует забывать, зачем нужно заземление. Для защиты от поражения электрическим током прокладывают еще один заземляющий провод с фазным и нулевым проводниками.

    Как защитить себя от поражения электрическим током?

    Один из способов исключить поражение электрическим током или значительно снизить его — установка. Зачем нужна Бытовая техника с металлическими корпусами: стиральные машины, электроплиты, холодильники и т. Д.


    При наращивании потенциала на металлических корпусах бытовой техники ток должен идти на землю. Но для этого сначала нужно сделать устройство в виде металлической конструкции, создающей электрический контакт с землей. Он может быть сплошным или состоять из проводящих элементов, погруженных в землю.

    Заземление в розетке

    Зачем нужно электрическое заземление при наличии металлических корпусов или других элементов? Этот вопрос многим понятен.Они могут случайно попасть под напряжение при обрыве изоляции проводов или от короткого замыкания, опасного для человека в момент контакта.

    Это также относится к металлическим частям светильников и люстр. В жилом доме от электрощита к каждой розетке прокладывают заземляющий провод сечением 2,5 мм 2. Зачем нужно заземление в розетке? Необходимо заземлить через ее контакт с бытовым прибором. В противном случае вам придется прокладывать покрышку по всей квартире и производить от нее соединения с корпусом каждого устройства, что не очень эстетично.


    Штыри заземления расположены так, что они подключаются первыми, как только вилка шнура бытового прибора вставляется в розетку. Если розетки соединены шлейфом, заземление подводится к каждой из них отдельно от распределительной коробки.

    Установка заземления

    Итак, зачем вам заземление в индивидуальном доме? Он выполнен в виде замкнутого контура. Форма может быть любой, но меньше всего материалов уходит на треугольную.По периметру равностороннего треугольника выкапывается траншея на глубину 1 м, а на вершинах забиваются стальные трубы или уголки длиной 2,5 м. Для защиты от коррозии лучше использовать материалы с цинковым или медным покрытием. Электроды красить нельзя. Можно только покрыть лаком место сварки.


    Электроды должны выступать на 20 см из дна траншеи. Контур заделывают полосой, а из него убирают заземлитель из того же материала в дом.К свободному концу приваривают болт и в электрическую панель вставляют провод PE сечением 6 мм 2 или более. Омметром проверяется значение электрического сопротивления контура. По требованиям ЭИ для жилых домов оно должно быть не более 30 Ом.

    Если показатель превышает установленный предел, по контуру блокируются дополнительные углы и делается перемычка. Таким образом увеличивается площадь соприкосновения конструкции с землей. Для уменьшения сопротивления цепи провод от нее заменяют медным, имеющим большую проводимость.После траншея засыпается грунтом. Использование щебня, отсевов или мусора для этого не допускается. Следует использовать материал, удерживающий влагу: глина, торф, суглинок.

    Выравнивание потенциалов

    Сегодня даже дети знают, зачем нужно заземление. Важно обеспечить уменьшение разности потенциалов на поверхности земли, чтобы на человека не влияло напряжение прикосновения и шагов. На участке, расположенном над замкнутым контуром, потенциал изменяется плавно, а за его пределами происходит резкое падение.Чтобы этого не произошло, снаружи закапывают соединенные с электродами горизонтальные стальные полосы.


    Согласно требованиям ПУЭ изготавливается из меди. В продаже есть специальные наборы, но они дорогие. Для заземления конструкций частных домов обычно используются стальные детали.

    Заключение

    Подведем итоги. Итак, зачем вам это нужно? В первую очередь, это связано с защитой людей от опасного поражения электрическим током. Важно правильно оборудовать контур заземления и произвести необходимые подключения электроприборов.От того, как произведен его монтаж, и подобраны материалы, зависит здоровье и безопасность жителей.

    Многие «продвинутые» простые люди устанавливают заземление в своей квартире или частном доме (чаще всего), часто не понимая, что это такое и зачем оно нужно. При этом забывают, что незнание в этом вопросе может привести к более негативным последствиям, чем отсутствие заземления. В этой статье мы рассмотрим вопрос.

    Электрическое заземление Бывают двух типов: рабочее и защитное.

    Рабочая площадка необходимы для правильного функционирования электроприборов и устройств. Рабочее (функциональное) заземление — заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ). Примером такого типа заземления является преднамеренное соединение разрядников, нейтрали трансформатора или генераторов с землей. Рабочее заземление — это также соединение с заземлением молниеотводов, защищающее электроустановки от прямых ударов молнии и от индуцированных перенапряжений.Они выделяются особым классом молниезащитного заземления.
    Этот вид заземления используется в производстве. Нас больше всего интересует другой вид заземления — защитное.

    Защитное заземление предназначен для защиты человека от поражения электрическим током. О том, как этот вид заземления обеспечивает безопасность человека, рассмотрим подробнее на примере квартиры или частного дома.

    Основным элементом всей бытовой системы является контур заземления.Это конструкция, состоящая из металлических электродов (заземлителей) — уголков, стержней, труб, находящихся в земле (грунте). Эффективность заземления определяется способностью заземления рассеивать ток. При установке защитного заземления следует учитывать множество факторов, определяющих эффективность распыления: состав почвы и климатические условия.
    Почва состоит из земли, песка, глины и т. Д. Каждый компонент имеет свою собственную проводимость, поэтому знание состава почвы позволяет нам рассчитать проводимость, необходимую для правильного проектирования заземления.

    Внутренняя электропроводка квартиры или частного дома должна выполняться по современным стандартам. трехжильный провод (фаза + ноль + земля). Все электроприборы, электрооборудование и электромонтажные изделия подключаются к контуру заземления с помощью проводов (жил) защитного заземления.

    Наверняка многие обратили внимание на то, что современные электрические розетки и вилки оснащены заземляющими контактами. Провод защитного заземления подключается к контакту заземления в розетке, а контакт на вилке соединяется с корпусом прибора.Вставив розетку в розетку, подключаем заземляющий контур (землю) к металлическому корпусу устройства.

    Если в цепи электропроводки или в электрическом устройстве фазный провод начинает контактировать с нулевым или заземляющим проводом, либо с металлическим корпусом устройства, это происходит. В случае короткого замыкания появляется очень большой ток — порядка 150-300 Ампер. При таком электрическом токе срабатывают автоматический выключатель и УЗО, т.е. отключают электрическую цепь от питания.Это убережет электропроводку от пожара, а ваше жилье и имущество — от пожара.

    В обоих случаях и при больших токах и при малых заземление выполняет функцию — «возьму огонь на себя». Те. электрический ток, попадая на корпус прибора, устремляется через проводники защитного заземления к. И чем лучше электрические характеристики схемы, тем быстрее ток распространяется по земле (земле), тем самым защищая нас от «удара» тока.

    Правильная работа системы защитного заземления в квартире или частном доме обеспечивается только при правильном монтаже заземляющего устройства.В процессе эксплуатации необходимо периодически проверять заземляющее устройство, что включает в себя визуальный осмотр с частичной перекопкой грунта и измерением сопротивления заземляющего устройства. Состояние контактных соединений между корпусами электрических устройств и заземляющим устройством также следует регулярно проверять — эта проверка называется проверкой металлических соединений и включает в себя проверку состояния контактных соединений в защитном заземлении цепи и проверку состояния соответствующие проводники.

    Одним из самых известных, распространенных и применяемых видов электрозащиты от поражения электрическим током является использование заземления металлических корпусов различного оборудования и электроприборов.

    Но, несмотря на знакомое слово, лишь немногие рядовые потребители электроэнергии знакомы с понятиями заземления. Более того, даже среди специалистов идут жаркие споры о правильности различных способов заземления по новым правилам.

    Также очень часто можно наблюдать ситуацию, когда сотрудники энергоснабжающих компаний сами неосознанно нарушают или сознательно идут на нарушение правил и норм относительно заземления и всего, что с этим связано.

    Согласно нормам ПУЭ, указанным в п. 1.7.28, заземлением называется электрическое соединение, выполненное особым образом с помощью проводников любой точки электрической сети, электроустановки, электрооборудования или электрооборудования с зарядным устройством. (заземляющее устройство).

    Народное заземление

    Многие недооценивают важность заземления, считая его бюрократической формальностью, несмотря на очень веские аргументы и требования постулатов электробезопасности.

    Также среди обычных пользователей существует путаница с определением этого понятия: многие люди думают о заземлении как о металлическом штыре, вбитом в землю, в то время как другие считают заземление соединения с металлическим шкафом электрической панели, а другие путают этот термин с обнулением.

    Все приведенные выше представления могут быть правильными только при соблюдении требований стандартов седьмой редакции OLC, о которых будет сказано ниже.


    контур заземления

    Если говорить о представлениях людей о металлических штырях как заземляющем устройстве, то его можно считать правильным, если его сопротивление не более 30 Ом.Кстати о заземлении бытовых электроприборов С помощью проводника защитного РЕ, подключенного к этажному электрощиту, необходимо, чтобы в нем правильно была проведена сама разводка.

    Что касается обнуления, то его следует использовать во вводном распределительном устройстве (ВРУ).

    Принципы защиты земли

    Чтобы понять термины и их значения, необходимо рассмотреть принципы защиты с заземлением, а также понять различия между существующими системами.

    Принципы защиты:

    • Уменьшение до минимального безопасного значения разности потенциалов, которая возникает между заземленным проводящим корпусом оборудования и другими проводящими поверхностями, электрически связанными с землей;
    • Утилизация опасного напряжения, возникающего на корпусе электрического прибора.
    • Инициирование срабатывания защитного выключателя и УЗО из-за токов утечки, возникающих при коротком замыкании фазного провода на заземленный корпус электрооборудования.

    В случае использования УЗО при контакте с фазным напряжением оно мгновенно отключается от заземленного корпуса, поскольку оно реагирует на небольшие токи. Если сеть защищена только автоматическим выключателем или плавким предохранителем, для срабатывания может потребоваться время.


    Чем ниже сопротивление заземления (допускается не более 30 Ом), тем больше будет ток короткого замыкания, тем быстрее сработают автоматические выключатели.

    Требования новых правил

    ПУЭ седьмой редакции существенно отличается от предыдущей в части, в которой прописаны принципы и стандарты выполнения заземления.Подразумевается, что в старых домах, построенных до 1997 года, электроснабжение квартир и домов осуществлялось в однофазной сети по двухпроводной системе — фаза L и нулевой N, либо в трехфазной сети. сетка по четырехпроводной — три фазы и ноль.

    Эта старая система называется TN-C. Согласно ПУЭ, электроснабжение новостроек или любая модернизация электросетей в старых домах должна осуществляться исключительно по системе TN-S или TN-C-S.

    Более подробно эти системы будут рассмотрены ниже, чтобы защитить их домашнюю электросеть, если она все еще работает по устаревшим стандартам.

    Чтобы определить, как обстоят дела с проводкой, узнать, есть ли заземление в хрущевке или любом другом старом доме, нужно проверить, сколько проводов идет для входа в квартиру, а также заглянуть в электрощиток.

    Введение в полиэтиленовый провод

    Характерной особенностью правильных систем является наличие третьего защитного провода PE, определение которого на английском языке аналогично понятию «земля», существующему среди электриков: защита земли — защита земли.

    Означает, что данный провод PE имеет электрическое соединение с зарядным устройством, то есть заземлен, и с его помощью заземляются все корпуса бытовой техники, подключенные к сети через трехконтактную розетку.


    В соответствии с международной цветовой идентификацией изоляция проводов PE обозначается желтым цветом с продольной зеленой полосой.

    Но не всегда наличие трехпроводной проводки у входа в квартиру свидетельствует о соответствии нормам TN-S, или TN-S-S, часто подключение защитного провода не соответствует нормам.Чтобы самостоятельно убедиться в правильности подключения, следует ознакомиться с существующими системами заземления и способами их выполнения.

    Толкование систем заземления

    Чтобы ознакомиться с системами заземления, необходимо разобрать, что означает каждая буква в их обозначениях.
    TN происходит от французского словосочетания «Terre-Neutral», которое означает «земля-нейтраль», система с глухой заземленной нейтралью.

    Электромонтаж следует проводить не на одном болте, как это часто бывает (грубое нарушение), а на отдельных зажимах.


    зажим заземления

    Разделение должно происходить перед счетчиком, после чего эти жилы не должны никуда подключаться.


    Шина N должна быть на изоляторе и подключена к шине PE (которая часто обозначается символом заземления) с помощью перемычки для упрощения измерений.


    Принципиально схема разделения PEN не отличается, если имеется входной автоматический выключатель или выключатель, предохранители и прямое подключение счетчика или с использованием трансформаторов тока.

    Приведенные выше схемы и фотографии даны не в качестве руководства к действию, а для того, чтобы жильцы многоквартирного дома имели наглядное пособие, как должно выглядеть заземление в случае модернизации системы электроснабжения до новых стандартов.


    Самозаземление

    Если система старая, то нужно либо потребовать доработку, составив петицию на весь дом, либо сделать заземление в квартире своими руками, но не нарушая правил.

    Очень часто многие советуют выполнить в доме трехпроводную систему, но шину РЕ никуда не подключать, дожидаясь лучших времен. Этот способ допустим только с применением УЗО, потому что при наличии опасного напряжения на корпусе одного электроприбора оно по проводу РЕ распространится на все другие электроприборы, и от поломки спасет только УЗО.


    Но в другой бытовой технике могут быть подключены к корпусу помехоподавляющие конденсаторы, из-за них системный блок Компьютер иногда щипается.

    Это не опасно, но несколько электрических устройств, подвешенных на одном проводе РЕ, не подключенном к земле, будут мешать. Поэтому единственный выход в квартире — через систему ТТ (две глухазаземленные нейтрали), и ждать модернизации.

    В этой системе отдельно заземленный защитный провод PE и нулевой рабочий провод нигде не соприкасаются. Запрещается использовать в качестве трубопроводов коммуникации. Эти иллюстрации помогут вам сделать заземление

    самостоятельно.


    Система ТТ, которой не страшны нулевые обрывы, очень популярна в сельской местности, где качество ВЛ очень низкое.


    Для частного дома также есть возможность выполнить разделение PEN на вводной панели TN-S-S при условии соответствия сечений вводных проводов.



    Разделение за счетчиком будет негативно воспринято государственными органами из-за возможного неправильного учета электроэнергии.


    Консультации — Специалист по спецификациям | Точки заземления: одиночные или множественные?

    Возможно, нет такой неясной, необъяснимой и неверно понятой концепции электротехники, как заземление.Многие из этих недоразумений являются результатом методологий и практик, которые в течение многих лет применялись в индустрии проектирования зданий. Фактически, некоторые из этих подходов к заземлению даже прямо противоположны.

    Но один аргумент, который постоянно возникает среди инженеров, — это вопрос о одноточечном или многоточечном заземлении — что лучше? (Общий обзор заземления и его необходимость см. В разделе «Основы заземления» на стр. 18).

    Одноточечное заземление означает именно то, что подразумевает его название.Электрические, телекоммуникационные и IT-системы заземлены в одной точке. В многоточечном заземлении эти системы заземлены в нескольких точках.

    Одноточечный

    Рисунок 1 (стр. 16) демонстрирует типичную одноточечную систему заземления, укомплектованную заземлением системы питания и телекоммуникаций. Вся сеть заземления возвращается к заземлению здания в общей точке. Основная шина заземления (MEGB) используется в качестве узла сети заземления здания.MEGB подключается к нейтральной шине распределительного устройства, которая, в свою очередь, соединяется с шиной заземления, трубой холодной воды, строительной сталью, корпусом распределительного устройства и заземляющим стержнем. Таким образом достигается нулевое значение , опорное значение (см. «Основы заземления»), и вся система заземления здания оказывается на уровне потенциала здания.

    У этой одноточечной конструкции есть несколько преимуществ. Например, если замыкание фазы на землю происходит в части оборудования в системе распределения электроэнергии, обратно к источнику предоставляется относительно управляемый путь с низким сопротивлением.Ток короткого замыкания имеет ограниченные маршруты обратно к источнику и не имеет возможности разойтись по нескольким путям, создавая параллельные цепи. Если было введено несколько путей, ток короткого замыкания разделился бы между путями в зависимости от импеданса цепей.

    Одноточечное заземление также ограничивает контуры заземления, которые возникают, когда между двумя точками существует более одного токопроводящего пути. Если электрическое оборудование подключено не только к шинам заземления, как на рисунке 1, но и к различным стальным колоннам здания — если они есть — и если потенциал заземления отличается в здании из-за грозы, в многоточечной системе заземления , шум может распространиться, вызвать сбои в работе оборудования и его будет трудно изолировать.

    Если питание для ИТ-оборудования подается от отдельно выделенного источника, независимого от системы заземления здания, в системе может возникать шум. Это форма синфазного шума, при которой заземление источника питания привязано к точке, отличной от точки заземления оборудования. Эти паразитные токи — иными словами, шум — могут проникать на заземленное оборудование и, таким образом, подпитывать оборудование.

    Когда ударяет молния

    Еще одним преимуществом одноточечной системы заземления является ее эффективность при преодолении повышений потенциала земли , которые возникают, когда гроза проходит над зданием и вызывает электрические нарушения.Удар молнии или повышение потенциала здания из-за грозы может вызвать повышение или понижение потенциала в системе заземления здания. Когда электрические компоненты заземлены в разных точках, каждая точка может иметь разные потенциалы от других близлежащих точек, таким образом устанавливая оборудование с разными потенциалами.

    В этой ситуации необходима общая точка заземления, а одноточечная система обеспечивает предсказуемый метод заземления. Общий потенциал возрастет из-за удара молнии, но каждый компонент будет иметь одинаковый потенциал, потому что они электрически связаны со зданием в одной и той же точке.Потенциал компонентов будет равномерно расти и падать. Это имеет большое значение для защиты электронного оборудования от воздействия молнии при соблюдении рекомендаций NEC.

    Однако одноточечное заземление не лишено недостатков. Одним из недостатков является то, что он полагается на общий узел — MEGB — для системы заземления здания. В этих системах особое внимание следует уделять правильному соединению проводов с шиной и правильной установке заземляющих проводов для минимизации высокочастотного шума.

    Еще одна проблема, связанная с одноточечным заземлением, — это будущие испытания и техническое обслуживание оборудования. Трудно изолировать MEGB для тестирования или модификации, не затрагивая оборудование, которое использует MEGB в качестве эталона.

    Наконец, возможно, самый интригующий аргумент в споре о том, что одно или несколько точек, касается способности обрабатывать высокие частоты — 10 МГц или более. Современные цифровые компьютерные устройства часто выдают частоты в диапазоне от 100 МГц до 300 МГц. На этих частотах аргумент в пользу одноточечного заземления имеет тенденцию нарушаться из-за длины заземляющих проводов.Когда несколько элементов электронного оборудования сгруппированы вместе в одном непрерывном пространстве, они являются эффективными источниками нежелательных электрических шумов. Свойства заземляющего проводника таковы, что на высоких частотах проводник, длина которого составляет 1/4 длины волны (или кратной ей) частоты помех, становится эффективной антенной. Эмпирическое правило, разработанное EIA / TIA и BICSI, заключается в определении длины проводника не более чем на 1/20 длины волны наивысшей частоты угрозы. В этом отношении одноточечное заземление обычно не работает.

    Многоточечный

    В отличие от одноточечной, многоточечная система не отслеживает единичный путь к зданию. Во многих существующих зданиях используется многоточечное заземление путем подключения одного и того же электрического оборудования к заземляющим шинам, строительной стали, трубам холодной воды или другим электродам. Можно сказать, что при многоточечном заземлении часто используется подход «чем больше, тем лучше».

    На рис. 2 (стр. 16) представлена ​​многоточечная система заземления здания, в которой шины заземления в каждом электрическом и телекоммуникационном шкафах соединены со строительной сталью и с основной шиной заземления.И BICSI, и EIA / TIA являются сторонниками многоточечного заземления. Стандарт EIA / TIA J-STD-607-A вводит концепцию эквалайзеров заземления для заземления электросвязи. Они предназначены для выравнивания потенциалов между компонентами системы заземления. В конце концов, цель многоточечного заземления одна и та же — обеспечить несколько путей для протекания заземляющих токов и уравнять потенциалы по всей системе заземления здания. И можно утверждать, что многоточечное заземление обеспечивает более эффективную безопасность, чем одноточечное заземление.

    Когда дело доходит до внедрения систем заземления, одним из способов эффективного применения многоточечного заземления является использование опорных сеток сигналов . Обычно используемый в фальшполах, в которых много электронного и компьютерного оборудования расположены в одной комнате, SRG в основном представляет собой сеть соединенных между собой заземляющих проводов, расположенных под фальшполом. Оборудование в комнате прикреплено к нему с помощью токопроводящих лент. По сути, SRG действует как эквипотенциальная плоскость, к которой относится оборудование.Заряд может легко рассеиваться в сети от одной или нескольких единиц оборудования, поддерживая тот же потенциал оборудования.

    SRG также может быть прикреплен к строительной стали или другим токопроводящим дорожкам в непосредственной близости. Чувствительное цифровое оборудование может быть эффективно подключено к SRG в нескольких точках, что обеспечивает большую гибкость в компоновке оборудования, поскольку оборудование может быть заземлено в любом месте комнаты. Такая практика может минимизировать повреждение оборудования, ограничивая потенциальные различия между частями оборудования.Но что более важно, он может минимизировать потенциал касания .

    Потенциал прикосновения — это разница в напряжении между частью оборудования под напряжением и ногами любого человека, который прикасается к оборудованию. Человек, прикоснувшийся к оборудованию, может получить опасный или даже смертельный удар электрическим током. Когда заряд накапливается на корпусе оборудования — из-за статического электричества, грозы или по другим причинам — он может рассеиваться на SRG, что значительно снижает риск потенциального прикосновения.

    Еще одно важное различие между двумя типами систем состоит в том, что там, где одноточечное заземление устраняет контуры заземления, многоточечные системы могут облегчить их выполнение.Если система заземления здания основана на нескольких путях заземления и многочисленных соединениях со строительной сталью, паразитные токи могут проходить через стальные опоры здания, затем через электрическую систему и, наконец, обратно на землю. Множественные подключения дают возможность паразитным токам нанести ущерб электрическим, телекоммуникационным и ИТ-системам. Если системы заземления питания и электросвязи переплетаются, ток короткого замыкания или паразитный ток в одной системе может указать путь к другой и иметь неблагоприятные последствия.

    В споре о многостороннем и одноточечном споре обе стороны могут предложить существенные доказательства в поддержку своей позиции. У каждой стратегии дизайна есть свои недостатки.

    Как правило, каждый из них выполняет определенные задачи, соблюдая правила NEC. Однако дизайнер не всегда может реализовать только одну стратегию, полностью исключив другую. Проектное приложение и потребности здания являются факторами, способствующими выбору наилучшего решения. Ответ на вопрос «что лучше, одно- или многоточечное заземление?» не так однозначен, как сами стратегии.Чаще всего эффективные системы заземления зданий реализуют обе стратегии. В электрически сложном здании со сложными силовыми и ИТ-компонентами следует полагаться на «гибридную» систему.

    Лучшее из двух систем

    Одноточечное заземление должно использоваться в качестве основы системы заземления здания. Обеспечьте основную шину заземления, которая будет служить общей точкой распределения для стояков заземления и соединений. Привяжите MEGB к шине заземления главного распределительного устройства и оттуда пройдите в здание.Шины заземления для питания и телекоммуникаций должны использоваться в каждом шкафу, обеспечивая при этом единственный путь назад к источнику (трансформаторам). Также необходимо привязать системы заземления телекоммуникаций и IT к системе заземления питания и конечному соединению на МЭГБ.

    Многоточечное заземление следует использовать почти как подсистему заземления для центров обработки данных и компьютерных залов, заполненных высокочастотным электронным оборудованием, где преимущества многоточечного заземления могут быть эффективно реализованы с помощью SRG.

    Однако крайне важно, чтобы эта многоточечная подсистема была привязана к одноточечной системе заземления здания. Его не следует рассматривать как отдельную систему заземления. Этот тип гибридной системы будет работать в большинстве приложений.

    Это первая статья, состоящая из двух частей. Вторая часть, которая появится в летнем (июньском) выпуске, показывает, как эта гибридная конструкция может создать надежную и эффективную систему для построения компонентов. Будет обсужден точный дизайн SRG.

    Основы заземления

    Заземление электрической системы имеет три различных цели: вызвать срабатывание устройств максимальной токовой защиты в случае неисправности; обеспечить нулевое задание для электрической системы здания ; и к выравнивает разность потенциалов в системе.

    Национальный электротехнический кодекс (NFPA 70) предусматривает, что заземление должно происходить на служебном входе в здание (система электропроводки в помещении) и на каждом отдельно производном источнике — в большинстве случаев трансформаторе.На служебном входе земля и нейтраль соединены вместе; затем заземляющий провод берется от нейтральной шины к заземляющему стержню (ам), корпусу распределительного устройства, строительной стали, подземной трубе для холодной воды или другим имеющимся электродам (NEC 250.30, 250.52) .

    Создание соединения нейтрали с землей на служебном входе создает опорное напряжение между фазой и землей для электрической системы. Этот нулевой эталон устанавливает удобную систему отсчета для измерения напряжения между фазой и землей.Соединение нейтрали с землей также создает эффективную систему заземления и сводит к минимуму напряжение относительно земли, а также может ограничивать перенапряжения на проводниках к электрическому оборудованию. Это позволяет обеспечить ожидаемую производительность оборудования за счет изолирования потенциальной неисправности.

    Заземление каждой отдельно созданной системы также полезно в случае неисправности, поскольку электроны, исходящие от источника — трансформатора, генератора или инверторов — будут пытаться вернуться к источнику. В случае замыкания фазы на землю ток будет проходить обратно по заземляющему проводу или пути заземления — например, по трубопроводам и корпусам оборудования — к источнику.Источник будет обеспечивать ток на фазном проводе (ах) в соответствии с требованиями короткого замыкания, тем самым вызывая срабатывание устройства максимального тока. Назначение заземляющего провода в этом случае — обеспечить обратный путь к источнику с низким сопротивлением.

    Обратите внимание, что заземляющий провод не возвращает ток на землю. В этом смысле термин «заземляющий провод» не совсем точен. Часто это называют «заземлением оборудования» или «защитным заземлением», последнее является наиболее подходящим термином, поскольку оно предназначено для обеспечения безопасности персонала путем изоляции неисправности в системе.

    Во многих критически важных приложениях работа ИТ-оборудования является основным направлением проектирования. Но аспект надежности центра обработки данных, о котором часто забывают, — это конструкция системы заземления и необходимость обеспечения системы эквипотенциального заземления. Если электрическое и IT-оборудование не заземлено должным образом, существует скрытая возможность возникновения переходных процессов, EMI, RFI и статического электричества, влияющих на правильную работу оборудования. Когда в источнике питания или в корпусах корпуса возникает шум, данные электронного оборудования могут быть повреждены.Даже если кажется, что ИТ-оборудование функционирует нормально, могут быть ошибки данных или, в крайних случаях, катастрофические сбои.

    Выключатели и заземляющие провода

    Термин «земля» относится к соединению с землей, которое действует как резервуар заряда. Заземляющий провод обеспечивает проводящий путь к земле, который не зависит от нормального пути прохождения тока в электрическом приборе. На практике в бытовых электрических цепях он подключается к электрической нейтрали на сервисной панели, чтобы гарантировать достаточно низкое сопротивление для отключения автоматического выключателя в случае электрического сбоя (см. Иллюстрацию ниже).Прикрепленный к корпусу устройства, он удерживает напряжение корпуса при потенциале земли (обычно принимаемом за ноль напряжения). Это защищает от поражения электрическим током. Заземляющий провод и предохранитель или прерыватель являются стандартными устройствами безопасности, используемыми в стандартных электрических цепях.

    Нужен ли заземляющий провод? Устройство будет нормально работать без заземляющего провода, поскольку он не является частью токопроводящей дорожки, по которой к устройству подается электричество.Фактически, если заземляющий провод сломан или удален, вы, как правило, не заметите разницы. Но если на корпус попадет высокое напряжение, может возникнуть опасность поражения электрическим током. При отсутствии заземляющего провода условия опасности поражения электрическим током часто не приводят к срабатыванию выключателя, если в цепи нет прерывателя замыкания на землю. Частично роль заземляющего провода состоит в том, чтобы заставить выключатель сработать, обеспечивая путь к земле, если «горячий» провод соприкасается с металлическим корпусом устройства.

    В случае электрической неисправности, которая приводит к опасному высокому напряжению в корпусе устройства, вы хотите, чтобы автоматический выключатель немедленно отключился, чтобы устранить опасность. Если корпус заземлен, в заземляющем проводе прибора должен протекать большой ток, который отключит прерыватель. Это не так просто, как кажется — привязки заземляющего провода к заземляющему электроду, вбитому в землю, обычно недостаточно для срабатывания прерывателя, что меня удивило. U.S. Статья 250 Национального электротехнического кодекса требует, чтобы заземляющие провода были привязаны к электрической нейтрали на сервисной панели. Таким образом, при межфазном замыкании ток короткого замыкания протекает через провод заземления устройства к сервисной панели, где он присоединяется к нейтральному тракту, протекая через главную нейтраль обратно к центральному отводу сервисного трансформатора. Затем он становится частью общего потока, приводимый в действие служебным трансформатором в качестве электрического «насоса», который производит достаточно высокий ток короткого замыкания для отключения выключателя.В электротехнической промышленности этот процесс привязки заземляющего провода к нейтрали трансформатора называется «соединением», и суть в том, что для обеспечения электробезопасности вы должны быть одновременно заземлены и соединены.

    Это лишь верхушка айсберга, важная для правильного заземления и соединения электрических систем. См. Сайт Майка Холта для получения дополнительной информации.

    Index

    Практические концепции схем


    Майк Холт

    Влияние заземления на воспаление, иммунный ответ, заживление ран, а также профилактику и лечение хронических воспалительных и аутоиммунных заболеваний

    J Inflamm Res.2015; 8: 83–96.

    Джеймс Л. Ошман

    1 Nature’s Own Research Association, Dover, NH, USA

    Gaétan Chevalier

    2 Кафедра биологии развития и клеточной биологии, Калифорнийский университет в Ирвине, Ирвин, Калифорния, США

    Ричард Браун

    3 Кафедра физиологии человека, Орегонский университет, Юджин, Орегон, США

    1 Nature’s Own Research Association, Довер, Нью-Хэмпшир, США

    2 Кафедра биологии развития и клеточной биологии Калифорнийского университета в Ирвине, Ирвин, Калифорния, США

    3 Кафедра физиологии человека, Орегонский университет, Юджин, штат Орегон, США

    Для переписки: Гаэтан Шевалье, Департамент развития и клеточной биологии, Калифорнийский университет в Ирвине, 2103 Макго-Холл, Ирвин, Калифорния, 92697 -2300, США, тел. + 1760815 9271, факс +1858225 3514, электронная почта десять.labolgcbs @ cgobld Авторские права © 2015 Oschman et al. Эта работа опубликована Dove Medical Press Limited и находится под лицензией Creative Commons Attribution — Non Commercial (unported, v3.0) License. Полные условия лицензии доступны по адресу http://creativecommons.org/licenses/by-nc/3.0 / Некоммерческое использование работы разрешено без какого-либо дополнительного разрешения Dove Medical Press Limited, при условии, что работа имеет надлежащую атрибуцию. Эта статья цитируется в других статьях в PMC.

    Abstract

    Многопрофильные исследования показали, что токопроводящий контакт человеческого тела с поверхностью Земли (заземление или заземление) оказывает интригующее воздействие на физиологию и здоровье.Такие эффекты относятся к воспалению, иммунным ответам, заживлению ран, а также к профилактике и лечению хронических воспалительных и аутоиммунных заболеваний. Этот отчет преследует две цели: 1) проинформировать исследователей о том, что представляется новым подходом к изучению воспаления, и 2) предупредить исследователей о том, что продолжительность и степень (сопротивление заземлению) заземления экспериментальных животные — важный, но обычно упускаемый из виду фактор, который может повлиять на результаты исследований воспаления, заживления ран и туморогенеза.В частности, заземление организма вызывает измеримые различия в концентрациях лейкоцитов, цитокинов и других молекул, участвующих в воспалительной реакции. Мы представляем несколько гипотез для объяснения наблюдаемых эффектов, основанных на результатах текущих исследований и нашем понимании электронных аспектов физиологии клеток и тканей, клеточной биологии, биофизики и биохимии. Экспериментальное повреждение мышц, известное как мышечная болезненность с отсроченным началом, использовалось для мониторинга иммунного ответа в заземленных и необоснованных условиях.Заземление уменьшает боль и изменяет количество циркулирующих нейтрофилов и лимфоцитов, а также влияет на различные циркулирующие химические факторы, связанные с воспалением.

    Ключевые слова: хроническое воспаление, иммунная система, заживление ран, лейкоциты, макрофаги, аутоиммунные заболевания

    Введение

    Заземление означает прямой контакт кожи с поверхностью Земли, например, босиком или руками , или с различными системами заземления. Субъективные сообщения о том, что ходьба босиком по Земле укрепляет здоровье и дает чувство благополучия, можно найти в литературе и практиках различных культур со всего мира. 1 По разным причинам многие люди не хотят выходить на улицу босиком, если только они не отдыхают на пляже. Опыт и измерения показывают, что постоянный контакт с Землей приносит устойчивые выгоды. Доступны различные системы заземления, которые позволяют часто контактировать с Землей, например, во время сна, сидя за компьютером или прогулок на открытом воздухе. Это простые токопроводящие системы в виде листов, циновок, повязок на запястья или щиколотки, липких пластырей, которые можно использовать в доме или офисе, и обуви.Эти приложения подключаются к Земле через шнур, вставленный в заземленную розетку или прикрепленный к заземляющему стержню, помещенному в почву снаружи под окном. При использовании обуви в подошве обуви на подушечке стопы, под плюсневыми костями, в точке акупунктуры, известной как почка 1, размещается токопроводящая заглушка. С практической точки зрения эти методы предлагают удобный, рутинный и удобный в использовании. подход к заземлению или заземлению. Их также можно использовать в клинических ситуациях, как будет описано в разделе, озаглавленном «Краткое изложение результатов на сегодняшний день». 1

    Недавно группа из примерно дюжины исследователей (включая авторов этой статьи) изучала физиологические эффекты заземления с различных точек зрения. По результатам этого исследования в рецензируемых журналах опубликовано более десятка исследований. Хотя в большинстве этих пилотных исследований было задействовано относительно небольшое количество субъектов, вместе взятых, исследование открыло новые и многообещающие рубежи в исследованиях воспалений с широкими последствиями для профилактики и общественного здравоохранения.Полученные данные заслуживают рассмотрения сообществом исследователей воспаления, у которого есть средства для проверки, опровержения или уточнения интерпретаций, которые мы сделали до сих пор.

    Заземление уменьшает или даже предотвращает основные признаки воспаления после травмы: покраснение, жар, отек, боль и потерю функции (и). Быстрое исчезновение болезненного хронического воспаления было подтверждено в 20 тематических исследованиях с использованием медицинских инфракрасных изображений (). 2 , 3

    Фотографические изображения, подтверждающие ускоренное улучшение 8-месячной незаживающей открытой раны, перенесенной 84-летней женщиной, страдающей диабетом.

    Примечания: ( A ) Показывает открытую рану и бледно-серый оттенок кожи. ( B ) Снято после одной недели процедур заземления, показывает заметный уровень заживления и улучшения кровообращения, на что указывает цвет кожи. ( C ) Снимок, сделанный после 2 недель лечения заземлением, показывает, что рана зажила, а цвет кожи значительно улучшился. Лечение состояло из ежедневного 30-минутного сеанса заземления с помощью пластыря с электродом, когда пациент сидел удобно.Причиной раны, прилегающей к левой щиколотке, стал плохо подогнанный ботинок. Через несколько часов после ношения ботинка образовался волдырь, который затем превратился в стойкую открытую рану. Пациент проходил различные процедуры в специализированном раневом центре без каких-либо улучшений. Визуализация сосудов нижних конечностей показала плохое кровообращение. При первом осмотре она слегка хромала и испытывала боль. После первых 30 минут воздействия заземления пациент сообщил о заметном уменьшении боли.По ее словам, после 1 недели ежедневного заземления ее уровень боли уменьшился примерно на 80%. В то время у нее не было никаких признаков хромоты. Через 2 недели она сказала, что полностью избавилась от боли.

    Быстрое выздоровление после серьезной раны с минимальным отеком и покраснением, ожидаемым при такой серьезной травме.

    Примечания: Велосипедист получил травму на соревнованиях Тур де Франс — цепное колесо выбило ему ногу. ( A ) Пластыри заземления помещали выше и ниже раны как можно скорее после травмы.Фото любезно предоставлено доктором Джеффом Спенсером. ( B ) 1-е сутки после травмы. ( C ) 2-е сутки после травмы. Покраснение, боль и припухлость были минимальными, и велосипедист смог продолжить гонку на следующий день после травмы. ( B и C ) Авторские права © 2014. Перепечатано с разрешения Basic Health Publications, Inc. Обер Калифорния, Синатра СТ, Цукер М. Заземление: самое важное открытие в области здравоохранения? 2-е изд. Лагуна-Бич: Основные публикации о здоровье; 2014 г. 1

    Уменьшение воспламенения с помощью заземления, документированное с помощью медицинского инфракрасного изображения.

    Примечания: Тепловизионные камеры регистрируют крошечные изменения температуры кожи для создания карты с цветовой кодировкой горячих участков, указывающих на воспаление. На панели A показано уменьшение воспаления после сна в заземленном состоянии. Медицинское инфракрасное изображение показывает теплые и болезненные области (стрелки в верхней части панели A ). Сон на земле в течение 4 ночей разрешил боль, а горячие области охладились.Обратите внимание на значительное уменьшение воспаления и возврат к нормальной термической симметрии. На панели B показаны инфракрасные изображения 33-летней женщины, получившей гимнастическую травму в возрасте 15 лет. Пациентка долгое время страдала хронической болью в правом колене, отеком и нестабильностью и не могла стоять в течение длительного времени. Простые действия, такие как вождение, усиливали симптомы. Ей приходилось спать с подушкой между колен, чтобы уменьшить боль. Периодическое лечение и физиотерапия на протяжении многих лет приносили минимальное облегчение.17 ноября 2004 г. она обратилась с жалобой на значительную болезненность правого медиального колена и легкую хромоту. Верхние изображения на панели B были сделаны в положении ходьбы, чтобы показать внутреннюю часть обоих колен. Стрелка указывает на точное место боли у пациента и указывает на выраженное воспаление. Нижние изображения на панели B , сделанные через 30 минут после заземления электродной накладкой. Пациент сообщил о легком уменьшении боли. Обратите внимание на значительное уменьшение воспаления в области колен. После 6 дней заземления она сообщила об уменьшении боли на 50% и сказала, что теперь она может дольше стоять без боли и ей больше не нужно спать с подушкой между ног.После 4 недель лечения она почувствовала себя достаточно хорошо, чтобы играть в футбол, и впервые за 15 лет не почувствовала нестабильности и незначительной боли. К 12 неделям она сказала, что ее боль уменьшилась почти на 90% и отека не было. Впервые за много лет она научилась кататься на водных лыжах. Пациентка обратилась в офис после 6 месяцев лечения, чтобы сообщить, что она завершила полумарафон, о чем она даже не мечтала, что когда-либо сможет это сделать до лечения.

    Наша основная гипотеза состоит в том, что соединение тела с Землей позволяет свободным электронам с поверхности Земли распространяться по телу и внутрь тела, где они могут оказывать антиоксидантное действие.В частности, мы предполагаем, что мобильные электроны создают антиоксидантную микросреду вокруг области восстановления повреждений, замедляя или предотвращая появление реактивных форм кислорода (АФК), доставляемых окислительным взрывом, от причинения «побочного повреждения» здоровой ткани, а также предотвращения или уменьшения образования таковых. — так называемая «воспалительная баррикада». Мы также предполагаем, что электроны с Земли могут предотвратить или устранить так называемое «тихое» или «тлеющее» воспаление. В случае подтверждения эти концепции могут помочь нам лучше понять и исследовать воспалительную реакцию и заживление ран, а также получить новую информацию о том, как иммунная система функционирует в условиях здоровья и болезней.

    Сводка результатов на сегодняшний день

    Заземление улучшает сон, нормализует дневной и ночной ритм кортизола, уменьшает боль, снижает стресс, переводит вегетативную нервную систему с симпатической на парасимпатическую активацию, увеличивает вариабельность сердечного ритма, ускоряет заживление ран и снизить вязкость крови. Резюме было опубликовано в журнале Journal of Environmental and Public Health . 4

    Влияние на сон

    В одном из первых опубликованных исследований заземления изучалось влияние заземления на сон и циркадные профили кортизола. 5 В исследовании приняли участие 12 человек, которые испытывали боль и имели проблемы со сном. Они спали заземленными в течение 8 недель, используя систему, показанную на рисунке. В течение этого периода их дневные профили кортизола нормализовались, и большинство испытуемых сообщили, что их сон улучшился, а уровень боли и стресса снизился.

    Заземленная система сна.

    Примечания: Заземленная система сна состоит из хлопкового полотна с вплетенными в него проводящими углеродными или серебряными нитями. Нити соединяются с проводом, который выходит из окна спальни или через стену к металлическому стержню, вставленному в землю рядом со здоровым растением.В качестве альтернативы его можно подключить к заземляющей клемме электрической розетки. Сон в этой системе соединяет тело с Землей. Люди, использующие эту систему, часто сообщают, что заземленный сон улучшает качество сна и уменьшает боли по разным причинам.

    Результаты эксперимента привели к следующим выводам: 1) заземление тела во время сна дает количественные изменения в суточных или циркадных уровнях секреции кортизола, которые, в свою очередь, 2) вызывают изменения сна, боли и стресса (тревога, депрессия, и раздражительность), согласно субъективным оценкам.Эффекты кортизола, описанные Ghaly и Teplitz 5 , особенно важны в свете недавних исследований, показывающих, что длительный хронический стресс приводит к устойчивости к глюкокортикоидным рецепторам. 6 Такая устойчивость приводит к неспособности подавлять воспалительные реакции, что может, таким образом, увеличивать риски различных хронических заболеваний. Этот эффект дополняет результаты, описанные в разделе «Влияние на боль и иммунный ответ».

    Воздействие на боль и иммунный ответ

    Пилотное исследование влияния заземления на боль и иммунного ответа на травму использовало мышечную болезненность с отсроченным началом (DOMS). 7 DOMS — это мышечная боль и скованность, возникающая в течение нескольких часов или дней после напряженных и незнакомых упражнений. DOMS широко используется в качестве исследовательской модели физиологами, занимающимися физическими упражнениями и спортом. Болезненность DOMS вызвана временным повреждением мышц, вызванным эксцентрическими упражнениями. Фаза сокращения, которая происходит, когда мышца укорачивается, как при поднятии гантели, называется концентрической, тогда как фаза сокращения, когда мышца удлиняется, как при опускании гантели, называется эксцентрической.

    Восемь здоровых испытуемых выполнили незнакомое эксцентрическое упражнение, которое вызвало боль в икроножных мышцах. Для этого им предложили выполнить два подхода по 20 подъемов пальцев ног со штангой на плечах и подушечками стоп на деревянной доске размером 2 × 4 дюйма. 7

    Все субъекты ели стандартизированную пищу в одно и то же время дня и придерживались одного и того же цикла сна в течение 3 дней. Ежедневно в 17.40 у четырех испытуемых на икроножных мышцах и подошвах стоп были прикреплены проводящие заземляющие пластыри.Они отдыхали и спали на системах заземления, подобных показанной на рисунке. Они оставались на заземленных простынях, за исключением посещения туалета и приема пищи. В качестве контроля четыре субъекта следовали одному и тому же протоколу, за исключением того, что их пластыри и листы не заземлялись. Перед тренировкой и через 1, 2 и 3 дня после нее были проведены следующие измерения: уровень боли, магнитно-резонансная томография, спектроскопия, содержание кортизола в сыворотке и слюне, химический анализ крови и ферментов, а также количество клеток крови. 7

    Боль контролировалась двумя методами.Субъективный метод включал использование визуальной аналоговой шкалы утром и днем. Во второй половине дня на правую икроножную мышцу накладывали манжету для измерения кровяного давления и накачивали до уровня острого дискомфорта. Боль была задокументирована с точки зрения максимально допустимого давления. У заземленных испытуемых было меньше боли, о чем свидетельствует как аналоговая шкала болезненности (), так и их способность выдерживать более высокое давление манжеты для измерения кровяного давления (). 7

    Изменения в отчетах по визуальной аналоговой шкале боли после обеда.

    Изменение уровня боли после полудня (после полудня) с помощью манжеты для измерения кровяного давления.

    Отчет об обоснованном исследовании DOMS 7 содержит обзор литературы по изменениям химического состава крови и содержания форменных элементов (эритроцитов, лейкоцитов и тромбоцитов), ожидаемых после травмы. Иммунная система обнаруживает патогены и повреждение тканей и реагирует, инициируя каскад воспаления, отправляя нейтрофилы и лимфоциты в область. 8 12 Как и ожидалось, количество лейкоцитов увеличилось у необоснованных или контрольных субъектов.Количество лейкоцитов у заземленных субъектов неуклонно снижалось после травмы (). 7

    Сравнение количества лейкоцитов, сравнение предварительного и пост-теста для каждой группы.

    Предыдущие исследования показали увеличение нейтрофилов после травмы. 13 16 Это произошло как с заземленными, так и с незаземленными субъектами (), хотя количество нейтрофилов всегда было ниже у заземленных субъектов. 7

    Сравнение количества нейтрофилов до и после теста для каждой группы.

    Ожидается, что по мере увеличения количества нейтрофилов количество лимфоцитов будет уменьшаться. 17 19 В исследовании DOMS количество лимфоцитов у заземленных субъектов всегда было ниже, чем у незаземленных (). 7

    Сравнение количества лимфоцитов до и после теста для каждой группы.

    Обычно нейтрофилы быстро проникают в поврежденную область 8 , 20 22 , чтобы разрушить поврежденные клетки и посылать сигналы через сеть цитокинов для регулирования процесса восстановления.Производство нейтрофилами АФК и активных форм азота (РНС) называется «окислительным взрывом». 21 В то время как АФК уничтожают патогены и клеточный мусор, чтобы ткань могла регенерировать, АФК также могут повреждать здоровые клетки, прилегающие к области восстановления, вызывая так называемое побочное повреждение. Тот факт, что у заземленных субъектов было меньше циркулирующих нейтрофилов и лимфоцитов, может указывать на то, что первоначальное повреждение разрешилось быстрее, побочное повреждение уменьшилось, а процесс восстановления ускорился.Это могло бы объяснить уменьшение основных признаков воспаления (покраснение, жар, отек, боль и потеря функции) после острого повреждения, как описано, например, в и, а также быстрое уменьшение хронического воспаления, задокументированное в.

    Наша рабочая гипотеза включает следующий сценарий: подвижные электроны Земли проникают в организм и действуют как естественные антиоксиданты; 3 они частично проходят через матрикс соединительной ткани, в том числе через воспалительную преграду, если таковая имеется; 23 нейтрализуют АФК и другие окислители при ремонте; и они защищают здоровые ткани от повреждений.Тот факт, что у заземленных субъектов меньше циркулирующих нейтрофилов и лимфоцитов, может быть полезным из-за вредной роли, которую, как считается, эти клетки играют в продлении воспаления. 24 Мы также поднимаем вероятность того, что воспалительная баррикада на самом деле формируется у незаземленных субъектов в результате побочного повреждения здоровых тканей, как было предположено Селье в первом и последующих изданиях его книги The Stress of Life (). 25

    Формирование воспалительной баррикады.

    Примечания: Copyright © 1984, Селье Х. Воспроизведено из Селье Х. Стресс жизни . Пересмотренное изд. Нью-Йорк: McGraw-Hill Companies, Inc .; 1984. 25 ( A ) Нормальная соединительнотканная территория. ( B ) Та же ткань после травмы или воздействия раздражителя. Сосуд расширяется, клетки крови мигрируют к раздражителю, клетки соединительной ткани и волокна образуют толстую непроницаемую баррикаду, которая предотвращает распространение раздражителя в кровь, но также препятствует проникновению регенеративных клеток, которые могут восстанавливать ткань и замедлять проникновение антиоксидантов в нее. поле ремонта.Результатом может стать длительный очаг не полностью разрешенного воспаления, из которого в конечном итоге могут просачиваться токсины в систему и нарушаться функционирование органа или ткани. Это называется «тихим» или «тлеющим» воспалением. ( C ) Воспалительный мешок, мешочек Селье или гранулема, как первоначально описано Selye, 30 , широко используется в исследованиях воспаления.

    Хотя могут быть и другие объяснения, мы предполагаем, что быстрое разрешение воспаления происходит потому, что поверхность Земли является обильным источником возбужденных и подвижных электронов, как описано в другой нашей работе. 1 Мы также предполагаем, что контакт кожи с поверхностью Земли позволяет электронам Земли распространяться по поверхности кожи и внутрь тела. Один из путей внутрь тела может лежать через точки акупунктуры и меридианы. Известно, что меридианы представляют собой пути с низким сопротивлением для прохождения электрических токов. 26 28 Другой путь — через слизистые оболочки дыхательных путей и пищеварительного тракта, которые проходят через поверхность кожи. Sokal и Sokal 29 обнаружили, что электрический потенциал на теле, на слизистой оболочке языка и в венозной крови быстро падает примерно до -200 мВ.Когда тело отключено от Земли, потенциал быстро восстанавливается. Эти эффекты показывают изменения во внутренней электрической среде внутри тела. 29

    Селье 30 изучал гистологию стенки воспалительного мешка или баррикады (). Он состоит из фибрина и соединительной ткани. Наша гипотеза состоит в том, что электроны могут частично проходить через барьер и затем нейтрализовать активные формы кислорода (свободные радикалы). 30 Путь или коридор полупроводникового коллагена может объяснить, как электроны с Земли быстро ослабляют хроническое воспаление, не устраняемое диетическими антиоксидантами или стандартной медицинской помощью, включая физиотерапию ().Баррикада, вероятно, ограничивает проникновение циркулирующих антиоксидантов в ремонт.

    В совокупности эти наблюдения показывают, что заземление человеческого тела значительно изменяет воспалительную реакцию на травму.

    Анатомические и биофизические аспекты

    Представление о том, что воспалительная баррикада образуется из побочного повреждения здоровых тканей, окружающих место повреждения, подтверждается классическими исследованиями Селье, опубликованными вместе с его описанием гранулемы или мешочка Селье (). 25 , 30 Более того, исследования в области клеточной биологии и биофизики показывают, что человеческое тело оснащено общесистемной коллагеновой жидкокристаллической полупроводниковой сетью, известной как живая матрица, 31 или, другими словами, a система наземной регуляции 32 , 33 или матричная система тенсегритильности тканей (). 34 Эта сеть, охватывающая все тело, может доставлять подвижные электроны к любой части тела и, таким образом, регулярно защищать все клетки, ткани и органы от окислительного стресса или в случае травм. 23 , 31 Живая матрица включает внеклеточные и соединительнотканные матрицы, а также цитоскелеты всех клеток. 31 Считается, что интегрины на поверхности клетки обеспечивают полупроводимость электронов внутрь клетки, а связи через ядерную оболочку позволяют ядерной матрице и генетическому материалу быть частью схемы. 23 Наша гипотеза состоит в том, что эта электронная схема, охватывающая все тело, представляет собой первичную систему антиоксидантной защиты.Эта гипотеза является центральным пунктом данного отчета.

    Живая матрица, система регуляции почвы или матрица тенсегритичности тканей — это непрерывная волокнистая паутина или сеть, которая проникает в каждую часть тела. Внеклеточные компоненты этой сети состоят в основном из коллагена и основного вещества. Это самая большая система в организме, так как это единственная система, которая затрагивает все остальные системы.

    Внеклеточная часть матричной системы состоит в основном из коллагена и основных веществ (и).Цитоскелет состоит из микротрубочек, микрофиламентов и других волокнистых белков. Ядерный матрикс содержит другую белковую ткань, состоящую из гистонов и родственных материалов.

    Коллаген и основное вещество.

    Примечания: (A) Коллаген, основной белок внеклеточного матрикса соединительной ткани, представляет собой тройную спираль с гидратной оболочкой, окружающей каждую полипептидную цепь. Белок может переносить электроны посредством полупроводников, а протоны (H + ) и гидроксилы (OH ) мигрируют через гидратную оболочку.Эти движения зарядов могут быть очень быстрыми и жизненно важны. ( B ) Авторские права © 2005. R Paul Lee Воспроизведено с разрешения Lee RP. Интерфейс. Механизмы духа в остеопатии. Портленд, Орегон: Stillness Press; 2005. 67 Основное вещество — это сильно заряженный полиэлектролитный гель, огромный резервуар электронов. Обратите внимание на фибриллы коллагена, встроенные в единицы основного вещества, известные как матрисомы (термин, введенный Гейне). 33 Деталь матрицы справа ( b ) показывает огромные запасы электронов.Электроны из основного вещества могут мигрировать через сеть коллагена в любую точку тела. Мы предполагаем, что они могут поддерживать антиоксидантную микросреду вокруг области заживления травм, замедляя или препятствуя реактивным формам кислорода, доставляемым окислительным взрывом, вызывать побочное повреждение здоровой ткани, а также предотвращать или уменьшать образование так называемой «воспалительной баррикады». ».

    Не принято считать, что коллаген и другие структурные белки являются полупроводниками.Эта концепция была представлена ​​Альбертом Сент-Дьёрдьи на лекции в память о Корани в Будапеште, Венгрия, в 1941 году. Его доклад был опубликован в журналах Science (На пути к новой биохимии?) 35 и Nature (Исследование уровней энергии) в биохимии). 36 Идея о том, что белки могут быть полупроводниками, была немедленно и решительно отвергнута биохимиками. Многие современные ученые продолжают отвергать полупроводимость в белках, потому что живые системы имеют только следовые количества силикона, германия и соединений галлия, которые являются наиболее широко используемыми материалами в электронных полупроводниковых устройствах.Однако существует множество способов изготовления органических полупроводников без использования металлов. Одним из источников путаницы было широко распространенное мнение, что вода — это просто наполнитель. Теперь мы знаем, что вода играет решающую роль в ферментативной активности и полупроводимости. Гидратированные белки на самом деле являются полупроводниками и стали важными компонентами мировой индустрии микроэлектроники. Для некоторых приложений предпочтительнее использовать органические микросхемы, поскольку они могут быть очень маленькими, самосборными, прочными и с низким энергопотреблением. 37 , 38

    Один из лидеров в области молекулярной электроники, Н.С. Хуш, поблагодарил Альберта Сент-Дьерди и Роберта С. Малликена за предоставление двух концепций, фундаментальных для промышленного применения: теории биологической полу- проводимость и теория молекулярных орбиталей соответственно. 39 В недавних исследованиях, получивших награды Общества исследования материалов в Европе и США, ученые из Израиля создали гибкие биоразлагаемые полупроводниковые системы, используя белки из крови, молока и слизи человека. 40 Кремний, наиболее широко используемый полупроводниковый материал, является дорогостоящим в чистом виде, необходимым для полупроводников, негибким и экологически опасным. Согласно прогнозам, органические полупроводники приведут к появлению нового ряда гибких и биоразлагаемых компьютерных экранов, сотовых телефонов, планшетов, биосенсоров и микропроцессорных чипов. Мы прошли долгий путь с тех времен, когда полупроводимость в белках так решительно отвергалась. 41 , 42 , 43

    Молекулы полиэлектролита основного вещества, связанные с матрицей коллагеновой соединительной ткани, являются резервуарами заряда ().Таким образом, матрица представляет собой обширную окислительно-восстановительную систему всего тела. Гликозаминогликаны имеют высокую плотность отрицательных зарядов из-за сульфатных и карбоксилатных групп на остатках уроновой кислоты. Таким образом, матрица представляет собой систему, охватывающую все тело, способную поглощать и отдавать электроны везде, где они необходимы для поддержания иммунного функционирования. 44 Внутренние части клеток, включая ядерный матрикс и ДНК, являются частями этой биофизической электрической системы хранения и доставки. Продолжительность воздействия заземления на восстановление травм можно оценить по-разному.Во-первых, из медицинских инфракрасных изображений мы знаем, что воспаление начинает спадать в течение 30 минут после соединения с землей через проводящий участок, помещенный на кожу. 2 , 3 Во-вторых, в этот же период увеличивается метаболическая активность. В частности, наблюдается увеличение потребления кислорода, частоты пульса и дыхания, а также снижение оксигенации крови в течение 40 минут заземления. 45 Мы подозреваем, что «заполнение» резервуаров с зарядом происходит постепенно, возможно, из-за огромного количества заряженных остатков в полиэлектролитах, а также из-за того, что они расположены по всему телу.Когда резервуары с зарядом насыщены, организм находится в состоянии, которое мы называем «подготовленностью к воспалительным процессам». Это означает, что основное вещество, пронизывающее каждую часть тела, готово быстро доставить антиоксидантные электроны к любому месту повреждения через полупроводниковую коллагеновую матрицу (см.).

    Резюме центральной гипотезы этого отчета: сравнение иммунного ответа у необоснованного и заземленного человека.

    Примечания: ( A ) После травмы незаземленный человек (мистер Туфель) образует воспалительную преграду вокруг места травмы.( B ) После травмы заземленный человек (мистер Бэрфут) не образует воспалительную преграду, потому что активные формы кислорода, которые могут повредить близлежащие здоровые ткани (побочное повреждение), немедленно нейтрализуются электронами, полупроводниками из насыщенного электронами основного вещества. через коллагеновую сеть.

    Эти соображения также подразумевают антивозрастные эффекты заземления, поскольку доминирующая теория старения подчеркивает кумулятивный ущерб, вызванный АФК, вырабатываемым во время нормального метаболизма или производимым в ответ на загрязняющие вещества, яды или травмы. 46 Мы предполагаем антивозрастной эффект заземления, основанный на том, что живая матрица достигает каждой части тела и способна доставлять антиоксидантные электроны к участкам, где целостность ткани может быть нарушена реактивными окислителями из любого источника. 47 , 48

    Молекулы, образующиеся во время иммунного ответа, также отслеживались в исследовании DOMS. 7 Параметры, которые постоянно различались на 10% или более между заземленными и незаземленными субъектами, нормализованные до исходного уровня, включали креатинкиназу, соотношение фосфокреатин / неорганический фосфат, билирубин, фосфорилхолин и глицеринфосфорилхолин.Билирубин — природный антиоксидант, который помогает контролировать АФК. 49 53 Хотя уровни билирубина снизились как в обоснованных, так и в необоснованных группах, разница между участниками была большой (). 7

    Сравнение уровней билирубина до и после теста для каждой группы.

    Маркеры воспаления менялись одновременно с изменением показателей боли. Это было выявлено как с помощью визуальной аналоговой шкалы боли, так и путем измерения давления на правой икроножной мышце (и).Авторы исследования DOMS предположили, что билирубин мог использоваться в качестве источника электронов у незаземленных субъектов. 7 Возможно, меньшее снижение уровня циркулирующего билирубина у заземленных людей было связано с наличием в поле восстановления свободных электронов с Земли.

    Другие маркеры подтверждают гипотезу о том, что заземленные субъекты более эффективно устраняют повреждение тканей: показатели боли, соотношение неорганического фосфата и фосфокреатина (Pi / PCr) и креатинкиназа (CK).Повреждение мышц широко коррелировали с КК. 54 56 Как видно, значения CK у необоснованных испытуемых постоянно были выше, чем у заземленных испытуемых. 7 Различия между Pi / PCr двух групп контролировали с помощью спектроскопии магнитного резонанса. Эти соотношения указывают на скорость метаболизма и повреждение клеток. 57 60 Уровни неорганических фосфатов указывают на гидролиз PCr и аденозинтрифосфата.Незаземленные субъекты имели более высокие уровни Pi, в то время как заземленные субъекты демонстрировали более высокие уровни PCr. Эти результаты показывают, что митохондрии заземленных субъектов не производят столько метаболической энергии, вероятно, потому, что потребность в ней меньше из-за более быстрого достижения гомеостаза. Различия между группами показаны в.

    Уровни креатинкиназы до и после теста для каждой группы.

    Отношения неорганического фосфата / фосфокреатина (Pi / PCr) до теста по сравнению с пост-тестом для каждой группы.

    Пилотное исследование 7 о влиянии заземления на ускорение выздоровления от боли DOMS обеспечивает хорошую основу для более крупного исследования. Представленные здесь концепции резюмируются в виде сравнения между «мистером Ботинсом» (необоснованный человек) и «мистером Бэрфут» (обоснованным лицом).

    Обсуждение

    Текущие объемные исследования коррелируют воспаление с широким спектром хронических заболеваний. Поиск по запросу «воспаление» в базе данных Национальной медицинской библиотеки (PubMed) выявил более 400 000 исследований, из которых только в 2013 году было опубликовано более 34 000 исследований.Наиболее частой причиной смерти и инвалидности в США являются хронические заболевания. Семьдесят пять процентов национальных расходов на здравоохранение, которые в 2008 году превысили 2,3 триллиона долларов США, идут на лечение хронических заболеваний. Болезни сердца, рак, инсульт, хроническая обструктивная болезнь легких, остеопороз и диабет являются наиболее распространенными и дорогостоящими хроническими заболеваниями. 61 Другие включают астму, болезнь Альцгеймера, расстройства кишечника, цирроз печени, муковисцидоз, рассеянный склероз, артрит, волчанку, менингит и псориаз.Десять процентов всех долларов здравоохранения тратится на лечение диабета. Остеопороз поражает около 28 миллионов стареющих американцев. 61 , 62 Однако существует несколько теорий о механизмах, связывающих хроническое воспаление с хроническим заболеванием. Обобщенные здесь исследования заземления представляют собой логичную и проверяемую теорию, основанную на различных доказательствах.

    Описание иммунного ответа в учебнике описывает, как большие или маленькие повреждения заставляют нейтрофилы и другие белые кровяные тельца доставлять большое количество ROS и RNS для разрушения патогенов и поврежденных клеток и тканей.Классические описания в учебниках также относятся к «воспалительной баррикаде», которая изолирует поврежденные ткани, чтобы препятствовать перемещению патогенов и мусора из поврежденной области в соседние здоровые ткани. Селье описал, как мусор коагулирует, образуя воспалительную баррикаду (). Этот барьер также препятствует перемещению антиоксидантов и регенеративных клеток в заблокированную зону. Восстановление может быть неполным, и это неполное восстановление может создать порочный воспалительный цикл, который может сохраняться в течение длительного периода времени, что приводит к так называемому тихому или тлеющему воспалению, которое, в свою очередь, со временем может способствовать развитию хронического заболевания.

    Каким бы примечательным это ни казалось, наши открытия предполагают, что эта классическая картина воспалительной баррикады может быть следствием отсутствия заземления и, как следствие, «недостатка электронов». Раны заживают по-разному, когда тело заземлено (и). Заживление происходит намного быстрее, а основные признаки воспаления уменьшаются или устраняются. Профили различных маркеров воспаления с течением времени сильно различаются у здоровых людей.

    Те, кто исследует воспаление и заживление ран, должны знать, как заземление может изменить временной ход воспалительных реакций.Им также необходимо знать, что экспериментальные животные, которых они используют для своих исследований, могут иметь очень разные иммунные системы и реакции, в зависимости от того, были ли они выращены в заземленных или незаземленных клетках. Стандартная исследовательская практика состоит в том, чтобы исследователи тщательно описывали свои методы и вид животных, которых они используют, чтобы другие могли повторить исследования, если захотят. Предполагается, что, например, все крысы линии Вистар будут генетически и физиологически похожи. Однако сравнение новообразований у крыс Sprague-Dawley (первоначально аутбредных от крысы Wistar) из разных источников выявило весьма значимые различия в частоте возникновения эндокринных опухолей и опухолей молочной железы.Частота опухолей мозгового вещества надпочечников также варьировала у крыс от одних и тех же поставщиков, выращенных в разных лабораториях. Авторы «подчеркнули необходимость крайней осторожности при оценке исследований канцерогенности, проводимых в разных лабораториях и / или на крысах из разных источников». 63

    С нашей точки зрения, в этих вариациях нет ничего удивительного. Животные будут сильно различаться по степени насыщения их зарядовых резервуаров электронами. Их клетки сделаны из металла, и если да, то заземлен ли этот металл? Насколько близко их клетки находятся к проводам или трубопроводам, по которым проходит электричество 60/50 Гц? Согласно нашим исследованиям, эти факторы будут иметь измеримое влияние на иммунные реакции.Фактически, они представляют собой «скрытую переменную», которая могла повлиять на результаты бесчисленных исследований, а также могла повлиять на способность других исследователей воспроизвести конкретное исследование.

    Доминирующие факторы образа жизни, такие как изоляционная обувь, высотные здания и возвышающиеся кровати, отделяют большинство людей от прямого контакта кожи с поверхностью Земли. Связь с землей была повседневной реальностью в прошлых культурах, которые использовали шкуры животных для обуви и сна. Мы предполагаем, что процесс уничтожения патогенов и очистки участков повреждений с помощью ROS и RNS эволюционировал, чтобы воспользоваться преимуществом постоянного доступа организма к практически безграничному источнику мобильных электронов, который Земля обеспечивает, когда мы находимся в контакте с ней.Антиоксиданты являются донорами электронов, и мы твердо верим, что лучший донор электронов находится прямо у нас под ногами: поверхность Земли с ее практически неограниченным хранилищем доступных электронов. Электроны с Земли на самом деле могут быть лучшими антиоксидантами с нулевыми отрицательными вторичными эффектами, потому что наше тело эволюционировало, чтобы использовать их в течение эонов физического контакта с землей. Наша иммунная система прекрасно работает до тех пор, пока доступны электроны для уравновешивания АФК и активных форм азота (РНС), используемых при борьбе с инфекциями и повреждениями тканей.Наш современный образ жизни застал организм и иммунную систему врасплох, внезапно лишив их изначального источника электронов. Это планетарное разделение стало ускоряться в начале 1950-х годов с появлением обуви с изоляционной подошвой вместо традиционной кожи. Вызовы образа жизни для нашей иммунной системы происходили быстрее, чем могла приспособиться эволюция.

    Отключение от Земли может быть важным, коварным и упускаемым из виду вкладом в физиологическую дисфункцию и вызывающий тревогу глобальный рост неинфекционных хронических заболеваний, связанных с воспалительными процессами.Недостаток электронов также может привести к ненасыщению цепей переноса электронов в митохондриях, что приведет к хронической усталости и замедлению клеточных миграций и других важных действий клеток иммунной системы. 64 На этом этапе даже легкая травма может привести к долгосрочным проблемам со здоровьем. Когда подвижные электроны недоступны, воспалительный процесс принимает ненормальное течение. Области с дефицитом электронов уязвимы для дальнейшего повреждения — они становятся положительно заряженными, и им будет сложно предотвратить инфекции.В результате иммунная система постоянно активируется и в конечном итоге истощается. Клетки иммунной системы могут не различать различные химические структуры организма (называемые «я») и молекулы паразитов, бактерий, грибков и раковых клеток (называемые «чужими»). Эта потеря иммунологической памяти может привести к атаке некоторых иммунных клеток на собственные ткани и органы тела. Примером может служить разрушение продуцирующих инсулин бета-клеток островков Лангерганса у больного диабетом.Другой пример — иммунная система, атакующая хрящи в суставах, вызывая ревматоидный артрит. Красная волчанка — это крайний пример аутоиммунного состояния, вызванного атакой иммунной системы организма на ткани и органы хозяина. Волчанка, например, может поражать множество различных систем организма, включая кожу, почки, клетки крови, суставы, сердце и легкие. Со временем иммунная система ослабевает, и человек становится более уязвимым для воспалений или инфекций, которые могут не зажить, как это часто бывает с ранами пациентов с диабетом.В частности, какая часть или части тела ослабленная иммунная система атакует первой, зависит от многих факторов, таких как генетика, привычки (сон, еда, напитки, упражнения и т. Д.), А также токсины в организме и в окружающей среде. 65 , 66 Повторное наблюдение показывает, что заземление уменьшает боль у пациентов с волчанкой и другими аутоиммунными заболеваниями. 1

    Заключение

    Накопленный опыт и исследования по заземлению указывают на появление простой, естественной и доступной стратегии здравоохранения против хронического воспаления, требующей серьезного внимания со стороны клиницистов и исследователей.Живая матрица (или наземная регуляция, или система тканевого тенсегрити-матрица), сама ткань тела, по-видимому, служит одной из наших основных систем антиоксидантной защиты. Как объясняется в этом отчете, для оптимальной эффективности этой системы требуется периодическая подзарядка за счет проводящего контакта с поверхностью Земли — «батареи» для всей планетарной жизни.

    Благодарности

    Авторы признательны Мартину Цукеру за очень ценные комментарии к рукописи. Клинтон Обер из EarthFx Inc.обеспечивает постоянную поддержку и поощрение исследований, которые были проведены для изучения науки о заземлении, с особым вниманием к иммунной системе.

    Сноски

    Раскрытие информации

    G Chevalier и JL Oschman являются независимыми подрядчиками EarthFx Inc., компании, спонсирующей исследования в области заземления, и владеют небольшой долей акций компании. Ричард Браун — независимый подрядчик EarthFx Inc., компании, спонсирующей исследования в области заземления.Авторы не сообщают о других конфликтах интересов.

    Ссылки

    1. Обер Калифорния, Синатра СТ, Цукер М. Заземление: самое важное открытие в области здравоохранения? 2-й. Лагуна-Бич: Основные публикации о здоровье; 2014. [Google Scholar] 3. Oschman JL. Могут ли электроны действовать как антиоксиданты? Обзор и комментарии. J Altern Complement Med. 2007. 13: 955–967. [PubMed] [Google Scholar] 4. Chevalier G, Sinatra ST, Oschman JL, Sokal K, Sokal P. Обзорная статья: Заземление: последствия для здоровья повторного соединения человеческого тела с электронами на поверхности Земли.J Environ Public Health. 2012; 2012: 291541. [Бесплатная статья PMC] [PubMed] [Google Scholar] 5. Гали М., Теплиц Д. Биологические эффекты заземления человеческого тела во время сна, измеренные по уровням кортизола и субъективным отчетам о сне, боли и стрессе. J Altern Complement Med. 2004. 10 (5): 767–776. [PubMed] [Google Scholar] 6. Коэн С., Яницки-Девертс Д., Дойл В. Дж. И др. Хронический стресс, резистентность к рецепторам глюкокортикоидов, воспаление и риск заболеваний. Proc Natl Acad Sci U S. A. 2012; 109 (16): 5995–5999.[Бесплатная статья PMC] [PubMed] [Google Scholar] 7. Браун Д., Шевалье Г., Хилл М. Пилотное исследование влияния заземления на болезненность мышц с отсроченным началом. J Altern Complement Med. 2010. 16 (3): 265–273. [Бесплатная статья PMC] [PubMed] [Google Scholar] 8. Баттерфилд ТА, Лучшая ТМ, Меррик Массачусетс. Двойная роль нейтрофилов и макрофагов в воспалении: критический баланс между повреждением и восстановлением тканей. J Athl Train. 2006. 41 (4): 457–465. [Бесплатная статья PMC] [PubMed] [Google Scholar] 9. Такмакидис С.П., Коккинидис Е.А., Симилиос И., Дуда Х.Влияние ибупрофена на отсроченную болезненность мышц и мышечную работоспособность после эксцентрических упражнений. J Strength Cond Res. 2003. 17 (1): 53–59. [PubMed] [Google Scholar] 10. Закройте Г.Л., Эштон Т., Кейбл Т., Доран Д., Макларен Д.П. Эксцентрические упражнения, изокинетический момент мышц и отсроченное начало болезненности мышц: роль активных форм кислорода. Eur J Appl Physiol. 2004. 91 (5–6): 615–621. [PubMed] [Google Scholar] 11. Макинтайр Д.Л., Рид В.Д., Листер Д.М., Сас И.Дж., Маккензи, округ Колумбия. Наличие лейкоцитов, снижение силы и отсроченная болезненность в мышцах после эксцентрических упражнений.J. Appl Physiol (1985) 1996; 80 (3): 1006–1013. [PubMed] [Google Scholar] 12. Франклин М.Э., Карриер Д., Франклин Р.С. Влияние одной тренировки мышечной болезненности, вызывающей поднятие тяжестей, на количество лейкоцитов, креатинкиназу сыворотки и объем плазмы. J Orthop Sports Phys Ther. 1991. 13 (6): 316–321. [PubMed] [Google Scholar] 13. Пик Дж, Носака К., Судзуки К. Характеристика воспалительных реакций на эксцентрические упражнения у людей. Exerc Immunol Rev.2005; 11: 64–85. [PubMed] [Google Scholar] 14. Макинтайр Д.Л., Рид В.Д., Маккензи, округ Колумбия.Отсроченная болезненность мышц: воспалительный ответ на мышечное повреждение и его клинические последствия. Sports Med. 1995. 20 (1): 24–40. [PubMed] [Google Scholar] 15. Смит Л.Л., Бонд Дж. А., Холберт Д. и др. Дифференциальное количество лейкоцитов после двух беговых тренировок. Int J Sports Med. 1998. 19 (6): 432–437. [PubMed] [Google Scholar] 16. Смит Л.Л. Цитокиновая гипотеза перетренированности: физиологическая адаптация к чрезмерному стрессу? Медико-спортивные упражнения 2000322317–331. [PubMed] [Google Scholar] 17. Ascensão A, Rebello A, Oliveira E, Marques F, Pereira L., Magalhães J.Биохимическое воздействие футбольного матча: анализ окислительного стресса и повреждения мышц на протяжении восстановления. Clin Biochem. 2008. 41 (10–11): 841–851. [PubMed] [Google Scholar] 18. Смит Л.Л., Маккаммон М., Смит С., Чамнесс М., Израиль Р.Г., О’Брайен К.Ф. Реакция лейкоцитов на ходьбу в гору и бег трусцой при одинаковых метаболических нагрузках. Eur J Appl Physiol. 1989. 58 (8): 833–837. [PubMed] [Google Scholar] 19. Бродбент С., Руссо Дж. Дж., Торп Р.М., Чоат С.Л., Джексон Ф.С., Роулендс Д.С. Вибрационная терапия снижает уровень IL6 в плазме и болезненность мышц после бега с горы.Br J Sports Med. 2010. 44 (12): 888–894. [PubMed] [Google Scholar] 20. Глисон М., Алми Дж., Брукс С., Кейв Р., Льюис А., Гриффитс Х. Гематологические и острофазовые реакции, связанные с отсроченной болезненностью мышц. Eur J Appl Physiol Occup Physiol. 1995. 71 (2–3): 137–142. [PubMed] [Google Scholar] 21. Tidball JG. Воспалительные процессы при повреждении и восстановлении мышц. Am J Physiol Regul Integr Comp Physiol. 2005; 288 (2): R345 – R353. [PubMed] [Google Scholar] 22. Чжан Дж., Клемент Д., Тонтон Дж. Эффективность Фараблока, электромагнитного щита, в ослаблении отсроченной мышечной болезненности.Clin J Sport Med. 2000. 10 (1): 15–21. [PubMed] [Google Scholar] 23. Oschman JL. Перенос заряда в живой матрице. J Bodyw Mov Ther. 2009. 13 (3): 215–228. [PubMed] [Google Scholar] 24. Бест ТМ, Хантер К.Д. Травма и восстановление мышц. Phys Med Rehabil Clin North Am. 2000. 11 (2): 251–266. [PubMed] [Google Scholar] 25. Селье Х. Жизненный стресс. Пересмотрено. Нью-Йорк: McGraw-Hill Companies, Inc .; 1984. [Google Scholar] 26. Мотояма Х. Измерения энергии ки: диагностика и лечение. Токио: Human Science Press; 1997 г.[Google Scholar] 27. Колберт А.П., Юн Дж., Ларсен А., Эдингер Т., Грегори В.Л., Тонг Т. Измерения импеданса кожи для исследования акупунктуры: разработка системы непрерывной записи. Evid Based Complement Altern Med. 2008. 5 (4): 443–450. [Бесплатная статья PMC] [PubMed] [Google Scholar] 28. Райхманис М, Марино А.А., Беккер РО. Электрические корреляты точек акупунктуры. IEEETrans Biomed Eng. 1975. 22 (6): 533–535. [PubMed] [Google Scholar] 29. Сокал К., Сокал П. Заземление организма человека влияет на биоэлектрические процессы.J Altern Complement Med. 2012. 18 (3): 229–234. [PubMed] [Google Scholar] 30. Селье Х. О механизме воздействия гидрокортизона на устойчивость тканей к травмам; экспериментальное исследование с использованием техники мешка гранулемы. ДЖАМА. 1953. 152 (13): 1207–1213. [PubMed] [Google Scholar] 31. Ошман Дж.Л., Ошман Н.Х. Материя, энергия и живая матрица. Рольф Лайнс. 1993. 21 (3): 55–64. [Google Scholar] 32. Пишингер А. Внеклеточный матрикс и основная регуляция: основа целостной биологической медицины.Беркли: Североатлантические книги; 2007. [Google Scholar] 33. Heine H. Lehrbuch der biologischen Medizin. Grundregulation und Extrazellulare Matrix. [Справочник по биологической медицине. Внеклеточный матрикс и наземная регуляция] Штутгарт: Hippokrates Verlag; 2007. Немецкий. [Google Scholar] 34. Пиента К.Дж., Коффи Д.С. Передача клеточной гармонической информации через систему тканевого тенсегрити-матрикса. Мед-гипотезы. 1991. 34 (1): 88–95. [PubMed] [Google Scholar] 35. Сент-Дьёрдьи А. К новой биохимии? Наука.1941; 93: 609–611. [PubMed] [Google Scholar] 36. Сент-Дьёрдьи А. Исследование уровней энергии в биохимии. Природа. 1941; 148 (3745): 157–159. [Google Scholar] 38. Сарпешкар Р. Биоэлектроника со сверхнизким энергопотреблением. Основы, биомедицинские приложения и биологические системы. Кембридж: Издательство Кембриджского университета; 2010. [Google Scholar] 39. Тише NS. Обзор молекулярной электроники за первые полвека. Ann N Y Acad Sci. 2003; 1006: 1–20. [PubMed] [Google Scholar] 40. Ментович Э., Белгородский Б, Гозин М, Рихтер С, Коэн Х.Легированные биомолекулы в миниатюрных электрических переходах. J Am Chem Soc. 2012. 134 (20): 8468–8473. [PubMed] [Google Scholar] 41. Куэвас Дж. К., Шеер Э. Молекулярная электроника: Введение в теорию и эксперимент. Vol. 1. World Scientific Publishing Co; Сингапур: 2010. (Сингапур; World Scientific Series in Nanoscience and Nanotechnology). [Google Scholar] 42. Реймерс-младший, United Engineering Foundation (США) и др. Молекулярная электроника III. Vol. 1006. Нью-Йорк, штат Нью-Йорк: Анналы Нью-Йоркской академии наук; 2003 г.[Google Scholar] 43. Иоахим C, Ратнер MA. Молекулярная электроника: некоторые взгляды на транспортные соединения и не только. Proc Natl Acad Sci USA. 2005. 102 (25): 8801–8808. [Бесплатная статья PMC] [PubMed] [Google Scholar] 44. Heine H. Система гомотоксикологии и наземной регуляции (GRS) Баден-Баден: Aurelia-Verlag; 2000. [Google Scholar] 45. Chevalier G. Изменения частоты пульса, частоты дыхания, оксигенации крови, индекса перфузии, проводимости кожи и их изменчивость, вызванные во время и после заземления людей в течение 40 минут.J Altern Complement Med. 2010. 16 (1): 81–87. [PubMed] [Google Scholar] 46. Мива С., Бекман КБ, Мюллер Флорида, редакторы. Окислительный стресс при старении: от модельных систем к болезням человека. Тотова: Humana Press; 2008. [Google Scholar] 47. Oschman JL. Митохондрии и клеточное старение. В: Клац Р., Голдман Р., редакторы. Антивозрастная терапия. XI. Чикаго: Американская академия антивозрастной медицины; 2008. 2009. С. 275–287. [Google Scholar] 48. Кесслер WD, Oschman JL. Противодействие старению с помощью основ физики. В: Клац Р., Голдман Р., редакторы.Антивозрастная терапия. XI. Чикаго: Американская академия антивозрастной медицины; 2009. С. 185–194. [Google Scholar] 49. Штокер Р. Антиоксидантная активность желчных пигментов. Сигнал антиоксидантного окислительно-восстановительного потенциала. 2004. 6 (5): 841–849. [PubMed] [Google Scholar] 50. Paschalis V, Nikolaidis MG, Fatouros IG, et al. Равномерные и продолжительные изменения окислительного стресса в крови после мышечных нагрузок. In Vivo. 2007. 21 (5): 877–883. [PubMed] [Google Scholar] 51. Николаидис М.Г., Пасхалис В., Гиакас Г. и др. Снижение окислительного стресса в крови после повторяющихся упражнений, повреждающих мышцы.Медико-спортивные упражнения. 2007. 39 (7): 1080–1089. [PubMed] [Google Scholar] 52. Флорчик У. М., Йожкович А., Дулак Дж. Биливердин-редуктаза: новые свойства старого фермента и его потенциальное терапевтическое значение. Pharmacol Rep. 2008; 60 (1): 38–48. [Бесплатная статья PMC] [PubMed] [Google Scholar] 53. Sedlak TW, Salehb M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Билирубин и глутатион выполняют взаимодополняющие антиоксидантные и цитопротекторные функции. Proc Natl Acad Sci U S. A. 2009; 106 (13): 5171–5176. [Бесплатная статья PMC] [PubMed] [Google Scholar] 54.Close GL, Ashton T., McArdle A, MacLaren DP. Растущая роль свободных радикалов в отсроченном возникновении мышечной болезненности и мышечных повреждений, вызванных сокращениями. Comp Biochem Physiol A Mol Integr Physiol. 2005. 142 (3): 257–266. [PubMed] [Google Scholar] 55. Хиросе Л., Носака К., Ньютон М. и др. Изменения медиаторов воспаления после эксцентрической нагрузки сгибателей локтя. Exerc Immunol Rev.2004; 10: 75–90. [PubMed] [Google Scholar] 56. Hartmann U, Mester J. Маркеры тренировок и перетренированности в отдельных спортивных соревнованиях.Медико-спортивные упражнения. 2000. 32 (1): 209–215. [PubMed] [Google Scholar] 57. Маккалли К.К., Аргов З., Боден Б.П., Браун Р.Л., Банк В.Дж., Шанс Б. Обнаружение мышечных травм у людей с помощью магнитно-резонансной спектроскопии 31-Р. Мышечный нерв. 1988. 11 (3): 212–216. [PubMed] [Google Scholar] 58. Маккалли К.К., Познер Дж. Измерение адаптации и травм, вызванных физической нагрузкой, с помощью магнитно-резонансной спектроскопии. Int J Sports Med. 1992; 13 (S1): S147 – S149. [PubMed] [Google Scholar] 59. Маккалли К.К., Шеллок Ф.Г., Банк В.Дж., Познер Д.Д. Использование ядерного магнитного резонанса для оценки мышечных травм.Медико-спортивные упражнения. 1992. 24 (5): 537–542. [PubMed] [Google Scholar] 60. Zehnder M, Muelli M, Buchli R, Kuehne G, Boutellier U. Дальнейшее снижение гликогена во время раннего восстановления после эксцентрических упражнений, несмотря на высокое потребление углеводов. Eur J Nutr. 2004. 43 (3): 148–159. [PubMed] [Google Scholar] 63. Мак Кензи WF, Гарнер FM. Сравнение новообразований в шести источниках крыс. J Natl Cancer Inst. 1973; 50 (5): 1243–1257. [PubMed] [Google Scholar] 64. Oschman JL. В кн .: Митохондрии и клеточное старение. Антивозрастная терапия, том XI.Клац Р., Гольдман Р., редакторы. Чикаго, штат Иллинойс: Американская академия антивозрастной медицины; 2008. С. 285–287. [Google Scholar] 65. Биаги Э., Кандела М., Фэйрвезер-Тейт С., Франчески С., Бриджиди П. Старение человеческого метаорганизма: микробный аналог. Возраст (Дордр) 2012; 34 (1): 247–267.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *