Схема электрическая структурная — Энциклопедия по машиностроению XXL
Рис. 2.19. Схема электрическая структурная устройства с цифровым обозначением функциональных частей |
Наименование схемы определяется ее видом и типом, например схема электрическая принципиальная, схема электрическая структурная. Это наименование вписывают в графу 1 основной надписи после наименования изделия, на которое выполнена схема. Наименование схемы вписывают шрифтом меньшего размера, чем шрифт, примененный для наименования изделия. [c.297]
На рис. 314 представлена схема электрическая структурная электросварочного поста. Функциональные части схемы показаны в виде прямоугольников. Наименование каждой функциональной части вписано внутрь прямоугольника. На схеме стрелками показан ход рабочего процесса и даны сведения о питании и режиме работы. [c.250]
Схема электрическая структурная
Схема электрическая структурная выпрямителей ВАК-6-28,5М1, ВАК-12-28,5 (упрощенная), ВАК на напряжение 115 В 95, 97 [c.282]
Разработку Схемы электрической структурной интерфейсных последовательных соединений устройств на основании спецификации и проведенных этапов логической компоновки. [c.272]
Составление схемы электрической общей комплекса на уровне соединения разъемов устройств кабелями и окончательных вариантов схемы электрической структурной, расположения устройств в стойках (см. рис. 5.1) и спецификации комплекса. [c.277]
При внешнем проектировании производят всесторонний анализ ТЗ и намечают основные направления последующих решений. При структурном проектировании уточняют основные функцио- альные части объекта, проводят распределение функций между узлами и блоками.На фиг. 83 показана электрическая структурная схема системы управления. Цена каждого импульса на магнитной ленте 0,03 мм по осям х н у н 0,025 мм по оси г. С магнитной ленты импульсы
На схемах показываются в виде условных изображений или обозначений составные части изделия и связи между ними. По ГОСТ 2.701—68 в зависимости от видов элементов и связей, входящих в состав изделия, схемы подразделяются на виды и типы с присвоением соответствующих шифров, состоящих из прописной буквы русского алфавита и арабской цифры. Предусмотрены следующие виды схем электрическая Э, гидравлическая Г, пневматическая П, кинематическая К, комбинированная С типы схем структурная 1, функциональная 2, принципиальная 3, соединений 4, подключения 5, общая б, расположения 7 (например, схема гидравлическая принципиальная получает шифр ГЗ).
Теперь можно составить структурную схему электрической модели (рис. 194), работа которой описывалась бы системой уравнений, идентичных уравнениям (132) и (133) [c.357]
Рис. 1. Структурная схема электрического моделирования процесса теплообмена. между твердыми частицами и потоком газа в теплообменнике |
ПРИНЯТЫЕ В ЭЛЕКТРИЧЕСКИХ СХЕМАХ И СТРУКТУРНЫХ ФОРМУЛАХ [c.12]
Рис. 1.36. Общий вид и электрическая структурная схема вертикально-фрезерного полуавтомата |
Рис. 43. Структурная схема электрического привода козлового крана |
Общая структурная схема электрического привода (ЭП) приведена на рис. 2.2.1. [c.170]
Рис. 2.2.1. Общая структурная схема электрического привода |
Рис. 7. Электрические структурные схемы балластных реостатов РБ-501 (а) |
Рис. 2.18, Схема электрическая структурная телевизора с надписями функциональных ча-l refi |
Типы схем. В зависимоети от основного назначения схемы подразделяются на следующие типы, которые обозначают цифрами структурные — I функциональные — 2 принципиальные (полные) — 3 соединений (монтажные) — 4 подключения — 5 общие — 6 расположения — 7 прочие — 8 объединенные — 0. Например, схема гидравлическая принципиальная — ГЗ, схема электрическая соединений — Э4.
Пример электрической структурной схемы телевизора приведен на рисунке 17.4. Прочитаем ее. Сигналы несущей изображения с частотой 49,75 МГц и сигналы несущей звука с частотой 56,25 МГц принимаются антенной, поступают в усилитель высокой частоты УВЧ и из него в смеситель, в который подаются также сигналы гетеродина. Из смесителя сигналы поступают в усилитель промежуточной частоты (УПЧ) звукового канала и в УПЧ канала изображения. В звуковом канале звуковой сигнал усиливается усилителем промежуточной частоты (УПЧ) на частоте 27,75 МГц, детектируется и преобразуется в сигнал низкой частоты с полосой 20… 10 000 Гц, усиливается в усилителе низкой частоты (УНЧ) и поступает на динамик. В канале изображения сигнал усиливается в УПЧ в полосе частот 29,5—34,25 МГц, детектируется видеодетектором, превращается в видеосигнал с полоской 0…4,75 МГц и поступает в видеоусилитель. Сигналы с видеоусилителя поступают на кинескоп в цепи синхронизации разверток электронного луча по строкам и по кадрам через селектор синхронизации импульсов. Выходя из селектора синхронизации импульсов, сигналы имеют прямоутольнучо форм импульса и частоту 15 625 Гц (частота развертки по строкам) и 50 Гц (частота развертки по кадрам). Импульсы пилообразной формы с указанными частотами поступают в обмотки отклоняющей системы кинескопа. Кроме того, сигнал развертки по строкам поступает на
Рис. 194. Структурная схема электрической модели и график учета знака функции sign(p — р ) |
Фиг. 370. Электрическая структурная схема вертикально-фрезерного полуавтомата модели 6Н13-ПР |
Рис. 80, Структурная схема электрического привода с учето1м сухого трения |
Рассмотрим электрическую структурную схему вертикально-фрезерного станка модели 6Н13-ПР (рис. 1.36). Запись с магнитной ленты считывает шестиканальная магнитная головка. Когда запись считывается с одной или с нескольких дорожек магнитной ленты, то в соответствующих катушках магнитной головки возникают импульсы [c.62]
Электрическая структурная схема цифрового программного управления. Блок-схема. Читающее устройство (фиг. 7) контактного типа предназначено для прощупывания отверстий, пробитых на перфокарте, и преобразования кода карты в элек- трические сигналы. После каждой операции считывания читающее устройство перемещает карту на шаг, а также обеспечивает автоматическую замену карты для продолжения программы и возврат карты при повторении программы. [c.52]
Поэтому к документации 1-го типа, разрабатываемой в данной подсистеме, относятся схема структурная (схема логических соединений), схема расположения, схема электрическая (подключений), спедификация. [c.299]Главные схемы электростанций и подстанций | Навчання
Страница 1 из 3
1. Виды схем и их назначение
Главная схема электрических соединений электростанции (подстанции) — это совокупность основного электрооборудования (генераторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями.
Выбор главной схемы является определяющим при проектировании электрической части электростанции (подстанции), так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собственных нужд, схем вторичных соединений, монтажных схем и т. д.
На чертеже главные схемы изображаются в однолинейном исполнении при отключенном положении всех элементов установки. В некоторых случаях допускается изображать отдельные элементы схемы в рабочем положении.
Рис. 1. Виды схем (на примере подстанции 110/10 кВ)
Все элементы схемы и связи между ними изображаются в соответствии со стандартами единой системы конструкторской документации (ЕСКД).
В условиях эксплуатации, наряду с принципиальной, главной схемой, применяются упрощенные оперативные схемы, в которых указывается только основное оборудование. Дежурный персонал каждой смены заполняет оперативную схему и вносит в нее необходимые изменения в части положения выключателей и разъединителей, происходящие во время дежурства.
При проектировании электроустановки до разработки главной схемы составляется структурная схема выдачи электроэнергии (мощности), на которой показываются основные функциональные части электроустановки (распределительные устройства, трансформаторы, генераторы) и связи между ними. Структурные схемы служат для дальнейшей разработки более подробных и полных принципиальных схем, а также для общего ознакомления с работой электроустановки.
На чертежах этих схем функциональные части изображаются в виде треугольников или условных графических изображений (рис. 1, а). Никакой аппаратуры (выключателей, разъединителей, трансформаторов тока и т.д.) на схеме не показывают.
На рис. 1,б показана главная схема этой же подстанции без некоторых аппаратов — трансформаторов тока, напряжения, разрядников. Такая схема является упрощенной принципиальной схемой электрических соединений. На полной принципиальной схеме (рис.1, в) указывают все аппараты первичной цепи, заземляющие ножи разъединителей и отделителей, указывают также типы применяемых аппаратов. В оперативной схеме (рис. 1, г) условно показаны разъединители и заземляющие ножи. Действительное положение этих аппаратов (включено, отключено) показывается на схеме дежурным персоналом каждой смены.
Согласно ГОСТ 2.710-81, буквенно-цифровое обозначение в электрических схемах состоит из трех частей: 1-я указывает вид элемента, 2-я — его порядковый номер, 3-я — его функцию. Вид и номер являются обязательной частью условного буквенно-цифрового обозначения и должны присваиваться всем элементам и устройствам объекта. Указание функции элемента (3-я часть обозначения) необязательно.
В 1-й части записывают одну или несколько букв латинского алфавита (буквенные коды для элементов электрических схем приведены в таблице приложения к лекции 1), во 2-й части — одну или несколько арабских цифр, характеризующих порядковый номер элемента. Например, QS1 — разъединитель №1, Q2 — выключатель № 2; QB — секционный выключатель. В ведущих проектных организациях используются более сложные обозначения проектных функциональных групп.
2. Основные требования к главным схемам электроустановок
При выборе схем электроустановок должны учитываться следующие факторы:
1) значение и роль электростанции или подстанции для энергосистемы.
Электростанции, работающие параллельно в энергосистеме, существенно различаются по своему назначению. Одни из них, базисные, несут основную нагрузку, другие, пиковые, работают неполные сутки во время максимальных нагрузок, третьи несут электрическую нагрузку, определяемую их тепловыми потребителями (ТЭЦ). Разное назначение электростанций определяет целесообразность применения разных схем электрических соединений даже в том случае, когда количество присоединений одно и то же.
Подстанции могут предназначаться для питания отдельных потребителей или крупного района, для связи частей энергосистемы или различных энергосистем. Роль подстанций определяет ее схему;
2) положение электростанции или подстанции в энергосистеме, схемы и напряжения прилегающих сетей. Шины высшего напряжения электростанций и подстанций могут быть узловыми точками энергосистемы, осуществляя объединение на параллельную работу нескольких электростанций. В этом случае через шины происходит переток мощности из одной части энергосистемы в другую — транзит мощности. При выборе схем таких электроустановок в первую очередь учитывается необходимость сохранения транзита мощности.
Подстанции могут быть тупиковыми, проходными, отпаечными; схемы таких подстанций будут различными даже при одном и том же числе трансформаторов одинаковой мощности.
Схемы распредустройств 6—10 кВ зависят от схем электроснабжения потребителей: питание по одиночным или параллельным линиям, наличие резервных вводов у потребителей и т. п.;
3) категория потребителей по степени надежности электроснабжения. Все потребители с точки зрения надежности электроснабжения разделяю на три категории.
Электроприемники I категории — электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.
Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего оборудования.
Электроприемники I категории должны обеспечиваться питанием от двух независимых источников питания, перерыв допускается лишь на время автоматического восстановления питания.
Для электроснабжения особой группы электроприемников I категории предусматривается дополнительное питание от третьего независимого источника питания. Независимыми источниками питания могут быть местные электростанции, электростанции энергосистем, специальные агрегаты бесперебойного питания, аккумуляторные батареи и т. п.
Электроприемники II категории — электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей. Эти электроприемники рекомендуется обеспечивать питанием от двух независимых источников, взаимно резервирующих друг друга, для них допустимы перерывы на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.
Допускается питание электроприемников II категории по одной воздушной линии, если обеспечена возможность проведения аварийного ремонта этой линии за время не более 1 суток. Допускается питание по одной кабельной линии, состоящей не менее чем из двух кабелей, присоединенных к одному общему аппарату. При наличии централизованного резерва трансформаторов и возможности замены повредившегося трансформатора за время не более 1 суток допускается питание от одного трансформатора.
Электроприемники III категории — все остальные электроприемники, не подходящие под определения I и II категорий. Для этих электроприемников электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта и замены поврежденного элемента системы электроснабжения, не превышают 1 суток.
4) перспектива расширения и промежуточные этапы развития электростанции, подстанции и прилегающего участка сети. Схема и компоновка распределительного устройства должны выбираться с учетом возможного увеличения количества присоединений при развитии энергосистемы. Поскольку строительство крупных электростанций ведется очередями, то при выборе схемы электроустановки учитывается количество агрегатов и линий вводимых в первую, вторую, третью очереди и при окончательном развитии ее.
Для выбора схемы подстанции важно учесть количество линий высшего и среднего напряжения, степень их ответственности, а поэтому на различных этапах развития энергосистемы схема подстанции может быть разной.
Поэтапное развитие схемы распределительного устройства электростанции или подстанции не должно сопровождаться коренными переделками. Это возможно лишь в том случае, когда при выборе схемы учитываются перспективы ее развития.
При выборе схем электроустановок учитывается допустимый уровень токов КЗ. При необходимости решаются вопросы секционирования сетей, деления электроустановки на независимо работающие части, установки специальных токоограничивающих устройств. Из сложного комплекса предъявляемых условий, влияющих на выбор главной схемы электроустановки, можно выделить основные требования к схемам:
1) надежность электроснабжения потребителей;
2) приспособленность к проведению ремонтных работ;
3) оперативная гибкость электрической схемы;
4) экономическая целесообразность.
Надежность — свойство электроустановки, участка электрической сети или энергосистемы в целом обеспечить бесперебойное электроснабжение потребителей электроэнергией нормированного качества. Повреждение электрооборудования в любой части схемы по возможности не должно нарушать электроснабжение, выдачу электроэнергии в энергосистему, транзит мощности через шины. Надежность схемы должна соответствовать характеру (категории) потребителей, получающих питание от данной электроустановки.
Надежность можно оценить частотой и продолжительностью нарушения электроснабжения потребителей и относительным аварийным резервом, который необходим для обеспечения заданного уровня безаварийной работы энергосистемы и ее отдельных узлов.
Приспособленность электроустановки к проведению ремонтов определяется возможностью проведения ремонтов без нарушения или ограничения электроснабжения потребителей. Есть схемы, в которых для ремонта выключателя надо отключать данное присоединение на все время ремонта, в других схемах требуется лишь временное отключение отдельных присоединений для создания специальной ремонтной схемы; в-третьих, ремонт выключателя производится без нарушения электроснабжения даже на короткий срок. Таким образом, приспособленность для проведения ремонтов рассматриваемой схемы можно оценить количественно частотой и средней продолжительностью отключений потребителей и источников питания для ремонтов оборудования.
Оперативная гибкость электрической схемы определяется ее приспособленностью для создания необходимых эксплуатационных режимов и проведения оперативных переключений.
Наибольшая оперативная гибкость схемы обеспечивается, если оперативные переключения в ней производятся выключателями или другими коммутационными аппаратами с дистанционным приводом. Если все операции осуществляются дистанционно, а еще лучше средствами автоматики, то ликвидация аварийного состояния значительно ускоряется.
Оперативная гибкость оценивается количеством, сложностью и продолжительностью оперативных переключений.
Экономическая целесообразность схемы оценивается приведенными затратами, включающими в себя затраты на сооружение установки ~ капиталовложения, ее эксплуатацию и возможный ущерб от нарушения электроснабжения. Подробно методика подсчета приведенных затрат изложена ниже.
3. Структурные схемы электростанций и подстанций
Структурная электрическая схема зависит от состава оборудования (числа генераторов, трансформаторов), распределения генераторов и нагрузки между распределительными устройствами (РУ) разного напряжения и связи между этими РУ.
На рис. 2 показаны структурные схемы ТЭЦ. Если ТЭЦ сооружается вблизи потребителей электроэнергии U = 6 — 10 кВ, то необходимо иметь распределительное устройство генераторного напряжения (ГРУ). Количество генераторов, присоединяемых к ГРУ, зависит от нагрузки 6—10 кВ. На рис. (2, а) два генератора присоединены к ГРУ, а один, как правило, более мощный,—к распределительному устройству высокого напряжения (РУ ВН). Линии 110—220 кВ, присоединенные к этому РУ, осуществляют связь с энергосистемой.
Если вблизи ТЭЦ предусматривается сооружение энергоемких производств, то питание их может осуществляться по ВЛ 35—110 кВ. В этом случае на ТЭЦ предусматривается распределительное устройство среднего напряжения (РУ СН) (рис. 2, б). Связь между РУ разного напряжения осуществляется с помощью трехобмоточных трансформаторов или автотрансформаторов.
При незначительной нагрузке (6 —10 кВ) целесообразно блочное соединение генераторов с повышающими трансформаторами без поперечной связи на генераторном напряжении, что уменьшает токи КЗ и позволяет вместо дорогостоящего ГРУ применить комплектное РУ для присоединения потребителей 6—10 кВ (рис. 2, б). Мощные энергоблоки 100—250 МВт присоединяются к РУ ВН без отпайки для питания потребителей. Современные мощные ТЭЦ обычно имеют блочную схему.
На рис. 3 показаны структурные схемы электростанций с преимущественным распределением электроэнергии на повышенном напряжении (КЭС, ГЭС, АЭС). Отсутствие потребителей вблизи таких электростанций позволяет отказаться от ГРУ. Все генераторы соединяются в блоки с повышающими трансформаторами. Параллельная работа блоков осуществляется на высоком напряжении, где предусматривается распределительное устройство (рис. 3, а).
Рис. 2. Структурные схемы ТЭЦ
Рис. 3. Структурные схемы КЭС, ГЭС, АЭС
Рис. 4. Структурные схемы подстанций
Если электроэнергия выдается на высшем и среднем напряжении, то связь между РУ осуществляется автотрансформатором связи (рис. 3,6)
Виды схем и их назначение
ВИДЫ СХЕМ И ИХ НАЗНАЧЕНИЕ
Главная схема электрических соединений электростанции (подстанции) — это совокупность основного электрооборудования (генераторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями.
Выбор главной схемы является определяющим при проектировании электрической части электростанции (подстанции), так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собственных нужд, схем вторичных соединений, монтажных схем и т.д.
На чертеже главные схемы изображаются в однолинейном исполнении при отключенном положении всех элементов установки. В некоторых случаях допускается изображать отдельные элементы схемы в рабочем положении.
Все элементы схемы и связи между ними изображаются в соответствии со стандартами единой системы конструкторской документации (ЕСКД).
В условиях эксплуатации наряду с принципиальной, главной схемой, применяются упрощенные оперативные схемы, в которых указывается только основное оборудование. Дежурный персонал каждой смены заполняет оперативную схему и вносит в нее необходимые изменения в части положения выключателей и разъединителей, происходящие во время дежурства.
При проектировании электроустановки до разработки главной схемы составляется структурная схема выдачи электроэнергии (мощности), на которой показываются основные функциональные части электроустановки (распределительные устройства, трансформаторы, генераторы) и связи между ними. Структурные схемы служат для дальнейшей разработки более подробных и полных принципиальных схем, а также для общего ознакомления с работой электроустановки.
На чертежах лих схем функциональные части изображаются в виде прямоугольников или условных графических изображении (рис. 1, а). Никакой аппаратуры (выключателей, разъединителей, транс форматоров тока и т.д.) на схеме не показывают.
Рис. 1. Виды схем на примере подстанции 110/10 кВ: а – структурная; б – упрощенная принципиальная; в – полная принципиальная; г – оперативная.
На рис. 1, б показана главная схема этой же подстанции без некоторых аппаратов — трансформаторов тока, напряжения, разрядников. Такая схема является упрошенной принципиальной схемой электрических соединений. На полной принципиальной схеме (рис. 1, в) указывают все аппараты первичной цепи, заземляющие ножи разъединителей и отделителей, указывают также типы применяемых аппаратов. В оперативной схеме (рис. 1, г) условно показаны разъединители и заземляющие ножи. Действительное положение этих аппаратов (включено, отключено) показывается на схеме дежурным персоналом каждой смены.
Согласно ГОСТ 2.710—81 буквенно-цифровое обозначение в электрических схемах состоит из трех частей: 1-я указывает вид элемента, 2-я — его порядковый номер, 3-я — его функцию. Вид и номер являются обязательной частью условного буквенно-цифрового обозначения и должны присваиваться всем элементам и устройствам объекта. Указание функции элемента (3-я часть обозначения) необязательно.
В 1-й части записывают одну или несколько букв латинского алфавита, во 2-й части — одну или несколько арабских цифр, характеризующих порядковый номер элемента. Например, QS1 — разъединитель № 1; Q2— выключатель № 2; QK — секционный выключатель.
Классификация электрических схем лифтов сРЕЛЕЙНО-КОНТАКТОРНЫМИ НКУ
3.5.
Электрическая схема представляет собой графическое изображение электрических цепей, состоящих из электрических машин, аппаратов, соединительных проводов и других элементов. В зависимости от назначения электрические схемы электроприводов, в том числе лифтовых, подразделяются на структурные, функциональные, принципиальные, общие, схемы соединений, подключений и расположений.
В конструкторской документации на лифты используются в основном структурные, функциональные и принципиальные схемы, а также схемы соединений и подключений.
Структурные схемы определяют назначение отдельных функциональных частей (узлов) систем электропривода и автоматики лифтов, а также их основные взаимосвязи. Элементы схемы выполняют в виде прямоугольников, внутри которых указывают наименования функциональных частей и линий связи между ними.
Функциональные схемы разъясняют принцип действия или процессы, протекающие в отдельных функциональных частях (узлах) систем электропривода и автоматики лифтов. На такой схеме изображают функциональные части (узлы) системы, участвующие в определенном процессе, и связи между ними.
Структурные и функциональные схемы составляют на стадиях, предшествующих разработке. Они позволяют получить общее представление о принципах построения системы.
Схемы соединений (монтажные) показывают электрические соединения составных частей и отдельных элементов систем электропривода и автоматики лифтов. Такие схемы определяют провода, жгуты, кабели и шины, при помощи которых выполняются соединения, а также места ввода и присоединения (зажимы и клеммы).
Различают схемы внутренних и внешних соединений. Первые показывают соединения между элементами (деталями) отдельного устройства или аппарата (например, электронного реле времени, кнопочного поста управления и др.), вторые — между отдельными устройствами и элементами, входящими в изделие, т. е. между аппаратами, блоками и другими деталями, расположенными на панели или в шкафу управления (НКУ).
Элементы в схемах внутренних соединений изображают с помощью условных графических обозначений, а устройства и аппараты в схемах внешних соединений — в виде прямоугольников или очертаний разной формы с входными и выходными клеммами для присоединения проводов. Схемы соединений применяются при изготовлении и ремонте электрооборудования и электроаппаратов (НКУ, посты управления, различные платы и другое оборудование).
Схемы подключений показывают внешние соединения составных частей систем электропривода и автоматики лифта (НКУ, электродвигатели, вызывные и приказные аппараты, выключатели и другое электрооборудование). Кроме того, они определяют провода, жгуты и кабели, при помощи которых осуществляется подключение, а также входные и выходные зажимы и клеммы. Такие схемы используются при монтаже, ремонте и модернизации лифтов. Электрооборудование и электроаппараты на этих схемах изображают в виде прямоугольников с входными и выходными клеммами.
Принципиальные схемы лифтов определяют полный состав электрооборудования, электроаппаратов, устройств, функциональных частей и отдельных элементов систем электропривода и автоматики лифтов, а также связи между ними.
Принципиальной схемой пользуются при изучении работы системы электропривода и автоматики лифта, а также при его наладке, регулировке, устранении неисправностей и ремонте. Такие схемы разрабатывают также на отдельное электрооборудование лифта (НКУ, блоки и панели управления и др.). Элементы на принципиальной схеме изображают с помощью условных графических обозначений в соответствии с Единой системой конструкторской документации (ЕСКД). Для упрощения начертания схемы условные графические обозначения элементов допускается вычерчивать на схеме повернутыми на угол, кратный 90°, или в зеркальном изображении.
Каждому элементу принципиальной схемы присваивается буквенно-цифровое позиционное обозначение. Все элементы изображают для устройств, находящихся в отключенном состоянии, используя совмещенный и разнесенный способы. При совмещенном способе условные графические изображения каждого аппарата отображают его реальную конструкцию, причем все электрические детали (части) данного аппарата показаны в одном месте, а рядом с ними расположены буквенно-цифровые обозначения.
В принципиальных электрических схемах лифтов обычно применяют разнесенный способ, согласно которому элементы одного вида электрооборудования располагают в разных цепях схемы в соответствии с их электрическими соединениями; это упрощает начертание схемы, обеспечивает большую наглядность и облегчает чтение цепей, состоящих из большого числа электрических контактов и элементов разных аппаратов или устройств. При вычерчивании условного графического обозначения элемента разнесенным способом позиционное обозначение, присвоенное электрическому оборудованию, аппарату или устройству (реле, контактор, кнопка, переключатель и др.), проставляют около каждого его элемента сверху или слева от изображения. Участки цепи, разделенные контактами аппаратов, обмотками реле, контакторов, электрических машин и другими элементами, должны иметь разную маркировку, выполненную арабскими цифрами и буквами одного размера.
Условные графические и буквенно-цифровые обозначения, используемые в электрических схемах лифтов с релейно-контакторными НКУ, приведены в подразд. 3.6.
Контрольные вопросы
1. В чем состоит принципиальное отличие структурной электрической схемы от функциональной?
2. Какие бывают электрические схемы электроприводов?
3. Как изображают элементы на принципиальных электрических схемах?
4. Чем отличаются совмещенный и разнесенный способы изображения аппаратов и другого электрооборудования на принципиальных электрических схемах лифтов?
5. Как проставляются буквенно-цифровые условные обозначения элементов на принципиальных электрических схемах лифтов при совмещенном и разнесенном способах изображения?
6. В каких случаях участки цепи принципиальной электрической схемы должны иметь разную маркировку?
7. Каким способом на схеме соединений могут изображаться электрооборудование и электроаппараты?
8. На какой угол можно поворачивать условные графические изображения при вычерчивании электрической схемы?
классификации разновидностей чертежей – функциональные и структурные типы
Особенности расположения кабелей, жгутов и проводов в составных частях изделия определяет электрическая схема соединений. На ней также изображены места ввода и подключения зажимов, разъёмов и плат. Она даёт понятие об элементах и устройствах, входящих в состав прибора. Все обозначения определены стандартами ГОСТ, поэтому каждый электрик сможет прочитать схему.
Общая классификация
Классификация схем зависит от видов оборудования, приборов и автоматических средств, которые используются — гидравлические, электрические или пневматические агрегаты. По стандартам ГОСТ их все схемы разделяют на две группы — виды и типы.
К первой относят:
- пневматические;
- электрические;
- кинематические;
- гидравлические;
- комбинированные.
Под понятием схемы подразумевают упрощённое изображение соединений между элементами цепи. Чертёж выполняют с использованием стандартных графических условных обозначений, которые позволяют мастеру легко разобраться в принципах работы электрической установки.
Среди типов электрических схем выделяют такие:
- функциональные;
- структурные;
- подключений;
- соединений;
- принципиальные;
- расположения;
- общие.
Схемы соединений
На электрической схеме соединения изображают все детали устройства, а также зажимы, платы и разъёмы. На чертеже видны все входы и выходы, провода и кабели, соединяющие элементы. Сами устройства имеют вид прямоугольников или упрощённых фигур. Детали и соединения изображают в соответствии с ГОСТами. Рядом можно увидеть принципиальные, структурные и функциональные чертежи самого изделия.
Вместо наглядного изображения разрешается помещать в чертежах таблицы с описаниями цепей и адресами их подключений. Графическое размещение элементов обязательно должно соответствовать их реальному расположению в устройстве. Если эта информация неизвестна или чертёж растянулся на несколько листов, то можно не изображать составляющие детали. Не стоит обозначать места выводов элементов, которые уже нанесены на прибор. Кабели и жгуты нумеруют по порядку, проставляя числа по оба конца. Номер кабеля нужно заключать в окружность, которая разрывает провод в месте разветвления жил.
Если у нескольких элементов одинаковое внешнее подключение, то обозначения проставляют только для одного из них. Устройства с отдельными схемами присоединения не нуждаются в изображении мест стыков проводов и входных элементов. В сложных чертежах можно линии кабелей довести только до контурной черты элемента и не изображать их присоединение.
Функциональный чертёж
На функциональной электрической схеме показывают группы элементов и устройств, их связи. Если изделие сложное, то для него изготавливают несколько чертежей, которые изображают процессы в разных режимах работы. Разработчик устанавливает количество схем, детализацию и объем деталей, основываясь на особенностях прибора. На листе должна быть проиллюстрирована последовательность функциональных процессов.
Отдельные детали имеют форму прямоугольника, саму схему изготавливают по принципиальному типу, то есть делают чертёж с поэлементной детализацией. В документе указывают такую информацию:
- технические характеристики деталей;
- поясняющие надписи, диаграммы и таблицы;
- данные о документах, которые являются основной для использования функциональных частей;
- позиционные обозначения групп элементов, их наименования.
Вся информация помещается в прямоугольники, сокращения полностью расшифровывают на полях листа.
Структурный тип
На электрической структурной схеме изображают назначения и соединения функциональных групп. Чертёж даёт мастеру наглядное представление о взаимосвязях всех частей прибора. Группы имеют форму прямоугольников или обозначений, предусмотренных стандартами. Также указываются тип элемента и документ, который является основанием для его применения. Процессы в режиме работы изображают линиями и стрелками.
В случае множества функциональных частей можно вместо изображений их типов и наименований справа от них проставляют нумерацию. На листе должна быть расположена таблица с расшифровкой чисел. Но порядковые цифры ухудшают качество изображения, так как необходимо запоминать все обозначения. Технические характеристики можно узнать благодаря соответствующим диаграммам, таблицам и надписям.
Особенности внешнего подключения
Внешние связи устройства показывают на электрической схеме подключения. На листе изображают сам прибор, выходные и входные детали, концы кабелей и жгутов внешней установки. Дополнительно на листе размещают данные о внешних цепях и адресах проводов. Для сложных изделий допускается иллюстрация в виде упрощённых контуров.
Все входные детали должны быть изображены на местах их действительного размещения. Сверху указываются обозначения, которые присвоены им на принципиальном чертеже. Также необходимо проиллюстрировать все надписи элементов, которые нанесены на само изделие.
Если обозначений на приборе нет, то их присваивают на чертеже и расшифровывают на полях. Возле соединителей указывают наименования документов, кабели изображают линиями. Допускаются надписи расцветки, марки, количества и особенностей сечения проводов.
Школа схемотехнического проектирования устройств обработки сигналов. Занятие 16. Особенности разработки конструкторской документации РЭА в соответствии с ЕСКД — Компоненты и технологии
Пятый закон ненадежности: ошибаться человеку
свойственно, но окончательно все запутать может
только компьютер.
А. Блох. Закон Мерфи
Все статьи цикла:
Как известно, разработка любого сколько-нибудь серьезного изделия начинается и заканчивается выпуском конструкторской документации (КД). Я, конечно, не имею в виду «радиогубительскую» практику, сложившуюся в некоторых коллективах, когда вопрос о наличии необходимой проектной и эксплуатационной документации вызывает реакцию искреннего удивления и вместо нее предлагают посмотреть на несколько листиков мятой бумаги. При проектировании изделия решаются задачи не только грамотного оформления КД, но и, собственно говоря, разработки конструкции изделия, выполнения определенных расчетов — механических, тепловых, электромагнитной совместимости и т. п.
Опытный конструктор может смело пропустить этот выпуск «Школы», поскольку представленная в нем информация общеизвестна и определена действующими стандартами. Однако поскольку 70 % читателей цикла, наверное, составят студенты вузов, то, дабы избавить их от проблем при выполнении курсового и дипломного проектирования, связанных с поиском необходимой нормативной документации (ГОСТов, справочников и т. д.), автор считает необходимым посвятить очередное занятие общим правилам выполнения оформления конструкторской документации (КД), тем более что в последние пять-семь лет учебная литература по данной тематике массовыми тиражами практически не издавалась.
В этом занятии даются сведения по использованию действующих стандартов при разработке РЭА. Как известно, основой грамотного оформления конструкторской документации в России и СНГ является ЕСКД — единая система конструкторской документации, основные положения которой (действующая в настоящее время редакция) определены ГОСТ 2.001-93, введенным с 1 января 1995 года. Этот стандарт устанавливает назначение, область распространения, классификацию и правила обозначения межгосударственных стандартов, входящих в комплекс стандартов Единой системы конструкторской документации (ЕСКД), а также порядок их внедрения.
ЕСКД определяется как комплекс стандартов, устанавливающих взаимосвязанные нормы и правила по разработке, оформлению и обращению конструкторской документации, разрабатываемой и применяемой на всех стадиях жизненного цикла изделия. Следует заметить, что конструкторская документация является товаром, и на нее распространяются все нормативно-правовые акты, как на товарную продукцию. Основное назначение стандартов ЕСКД состоит в установлении единых оптимальных правил выполнения, оформления и обращения конструкторской документации.
Установленные в стандартах ЕСКД нормы и правила распространяются на документацию, разработанную предприятиями и предпринимателями стран СНГ, в том числе научно-техническими, инженерными обществами и другими общественными объединениями.
Виды конструкторских документов определяются ГОСТ 2.102-68. К конструкторским документам относят графические и текстовые документы, которые в отдельности или в совокупности определяют состав и устройство изделия и содержат необходимые данные для его разработки или изготовления, контроля, приемки, эксплуатации и ремонта. Документы в зависимости от стадии разработки подразделяются на проектные (техническое предложение, эскизный проект и технический проект) и рабочие (рабочая документация). Документы, предназначенные для разового использования в производстве, например, документы макетов, стендов для лабораторных испытаний и им подобные, допускается выполнять в виде эскизных конструкторских документов.
Основной конструкторский документ изделия в отдельности или в совокупности с другими записанными в нем конструкторскими документами полностью и однозначно определяет данное изделие и его состав. За основные конструкторские документы принимют для деталей — чертеж детали, а для сборочных единиц, комплексов и комплектов — спецификацию.
Полный комплект конструкторских документов изделия составляют в общем случае из основного комплекта конструкторских документов на данное изделие и основных комплектов конструкторских документов на все составные части данного изделия, примененные по своим основным конструкторским документам.
В основной комплект конструкторских документов изделия могут входить также групповые конструкторские документы, если эти документы распространяются и на данное изделие, например, групповые технические условия.
Рассмотрим пример построения полного комплекта конструкторских документов комплекса (рис. 1).
На рисунке основной конструкторский документ изделия показан в овале. Документы основного комплекта показаны в прямоугольниках. Документы, обведенные в двойные рамки, предусматриваются только для изделий, предназначенных для самостоятельной поставки. Число ступеней входимости для комплексов, сборочных единиц и комплектов, а также число входящих комплектов сборочных единиц, комплектов и деталей не ограничиваются.
Правила оформления текстовых документов определяет ГОСТ 2.105-95 «Общие требования к текстовым документам», этот стандарт устанавливает общие требования к выполнению текстовых документов на изделия машиностроения, приборостроения и строительства.
Текстовые документы выполняют на формах, установленных соответствующими стандартами ЕСКД. Требования, специфические для некоторых видов текстовых документов, приведены в соответствующих стандартах. При выполнении текстовых документов на ЭВМ (а по-другому сейчас представить сложно) следует помнить о применении печатающих и графических устройств вывода ЭВМ (в соответствии с ГОСТ 2.004) и магнитных носителей данных (в соответствии с ГОСТ 28388).
Копии текстовых документов выполняют одним из следующих способов:
- типографским — в соответствии с требованиями, предъявляемыми к изданиям, изготовляемым типографским способом;
- ксерокопированием — при этом рекомендуется размножать способом двустороннего копирования;
- светокопированием;
- микрофильмированием;
- на магнитных носителях данных.
Теперь совершенно очевидной становится необходимость использования современной техники на производстве — дабы удовлетворить требованиям ГОСТ. Заинтересованный читатель может показать своему руководству ГОСТ, где четко прописано ксерокопирование как способ изготовления копий, и требовать приобретения соответствующей техники.
Некоторые особенности использования средств вычислительной техники и САПР при оформлении КД определяются в ГОСТ 2.004-88 «Общие требования к выполнению конструкторских и технологических документов на печатающих и графических устройствах вывода ЭВМ». Этот стандарт распространяется
на конструкторские документы изделий всех отраслей промышленности, технологические документы изделий машиностроительной и приборостроительной промышленности и устанавливает требования к выполнению
конструкторских, технологических и проектных на бумажных носителях, получаемых с использованием устройств вывода ЭВМ. К сожалению, многие положения этого стандарта устарели — но во многом он позволяет облегчить жизнь разработчика при выполнении оформительских работ.
В документе, полученном при помощи устройств вывода ЭВМ, допускается часть информации (текст, таблицы, рисунки, чертежи) выполнять рукописным, машинописным и типографским способами, а также любым сочетанием этих способов.
Форматы документов, получаемых на графических устройствах, должны соответствовать размерам, установленным ГОСТ 2.301.
Допускается применять дополнительные форматы, образуемые увеличением сторон основных форматов соответственно на значение, кратное размеру высоты и ширины формата.
Рассмотрим на примере создание основной надписи и штампа с помощью современных САПР. Поскольку штатные форматки PCAD 2001 (ACCEL EDA) не соответствуют отечественным стандартам, необходимо создать форматку самостоятельно. Сделать это можно путем рисования линий командой Place/Line и текста командой Place/Text, а можно импортировать готовый файл форматки из P-CAD через формат PDF или из AutoCADa через формат DXF. Файл форматки имеет расширение TTL. На рис. 2 представлен фрагмент форматки для листа формата A1.
При выполнении форматки нужно помнить несколько маленьких хитростей. Во-первых, файл с расширением TTL получают путем переименования бинарного файла SCH. То есть необходимо сохранить файл форматки как бинарный файл схемы (Binary SCH). Только в этом случае команда Options/Sheet корректно выполнится. Во-вторых, в PCAD-2001 имеется удобный механизм размещения информационных полей с помощью команды Place/Field. Меню команды Place/Field представлено на рис. 3.
Конечно, в российских условиях большинство полей являются лишними, тем не менее, гораздо удобнее заполнить значения поля, начиная работу с новой схемой, чем делать это командой Place/Text. Имеются следующие возможные значения полей.
Title | Название схемы |
Author | Фамилия разработчика |
Time | Текущее время |
Date | Дата |
Revision | Номер редакции (версии) схемы, |
Drawing Number | Номер чертежа (можно использовать под децимальный номер) |
Approved By | «Утвердил» |
Checked By | «Проверил» |
Company Name | Название организации |
Drawn By | Чертежник (можно использовать как поле «копировал») |
Engineer | Инженер (можно использовать как поле Н.контр или Т.контр) |
Заполнение полей форматки выполняется по команде File/Design info/Fields. Помимо возможности заполнения полей форматки, PCAD2001 имеет замечательное встроенное средство создания различных таблиц, примечаний и т.п. — набор утилит Document ToolBox.
Практически в каждой схеме приходится давать пояснения по подключению питания микросхем, полярности сигналов и т. п. (рис. 3).
Конечно, можно поместить эту информацию, используя команду размещения текста Place/Text, однако несравненно удобнее воспользоваться средствами Document ToolBox.
Команды меню Doc Tool могут быть вызваны как из меню, так и нажатием соответствующих пиктограмм. Ввести примечания к проекту можно с помощью команды Doc Tool/Notes. В поле Field Set задается имя набора полей, используемого в проекте. В полях Note Text вводится текст примечания.
Текст примечания может быть импортирован из файла или экспортирован в текстовый файл путем нажатия кнопок Import и Export.
В графе Annotation задают стиль выделения примечаний (различные виды рамки вокруг номера).
Редактировать примечания можно и запустив команду File/Design Info/Notes, попадая в то же самое меню, что и по команде Doc Tool/Notes. Этот пример еще раз иллюстрирует, что в PCAD–2001 многие операции можно выполнять с одинаковым результатом различными способами, поэтому не следует воспринимать рекомендации автора как истину в последней инстанции.
Размеры информационного поля документа определяются типом печатающего устройства с максимальным использованием поля формата. При этом края информационного поля по высоте должны отстоять от линии насечки на бумажной ленте на расстоянии не менее одного межстрочного интервала, а по ширине — не менее 20 мм от левого края формата. В документах, получаемых на графических устройствах, следует применять линии в соответствии с ГОСТ 2.303 с учетом требования толщины сплошных тонкой и волнистой, штриховой и штрих-пунктирной линий — от S/3 до S/2.
Текстовые документы следует выполнять на одной стороне бумажного носителя через два или один интервал. Допускается выполнять перенос слов без соблюдения грамматических правил.
При использовании ЭВМ допускается при выполнении чертежей и схем технические требования, таблицы и другую текстовую информацию помещать на отдельных листах формата А3 и А4, которые нумеруются как первые и последующие листы чертежа или схемы.
Масштабы изображений на чертежах, выполняемых на графических устройствах, следует выбирать из ряда по ГОСТ 2.302. Допускается применять масштабы уменьшения 1:n и увеличения n:1, где n — рациональное число.
Рассмотрим особенности выполнения схем.
Схемы в зависимости от основного назначения подразделяют на структурные, функциональные, принципиальные (полные), соединений (монтажные), подключения, общие, расположения, объединенные. Схема структурная — схема, определяющая основные функциональные части изделия, их назначение и взаимосвязи. Схемы структурные разрабатывают при проектировании изделий на стадиях, предшествующих разработке схем других типов, и пользуются ими для общего ознакомления с изделием.
Схема функциональная —схема, разъясняющая определенные процессы, протекающие в отдельных функциональных цепях изделия или в изделии в целом. Схемами функциональными пользуются для изучения принципов работы изделий, а также при их накладке, контроле и ремонте.
Схема принципиальная (полная) — схема, определяющая полный состав элементов и связей между ними и, как правило, дающая детальное представление о принципах работы изделия. Схемами принципиальными пользуются для изучения принципов работы изделий, а также при их наладке, контроле и ремонте. Они служат основанием для разработки других конструкторских документов, например схем соединений (монтажных) и чертежей.
Схема соединений (монтажная) — схема, показывающая соединения составных частей изделия (установки) и определяющая провода, жгуты, кабели или трубопроводы, которыми осуществляются эти соединения, а также места их присоединений и ввода (разъемы, платы, зажимы и т. п.). Схемами соединений (монтажными) пользуются при разработке других конструкторских документов, в первую очередь, чертежей, определяющих прокладку и способы крепления проводов, жгутов, кабелей или трубопроводов в изделии, а также для осуществления присоединений и при контроле, эксплуатации и ремонте изделий.
Схема подключения — схема, показывающая внешние подключения изделия. Схемами подключения пользуются при разработке других конструкторских документов, а также для осуществления подключений изделий и при их эксплуатации.
Схема общая — схема, определяющая составные части комплекса и соединения их между собой на месте эксплуатации. Схемами общими пользуются при ознакомлении с комплексами, а также при их контроле и эксплуатации. Схему общую на сборочную единицу допускается разрабатывать при необходимости.
Схема расположения —схема, определяющая относительное расположение составных частей изделия, а при необходимости, также жгутов, проводов, кабелей и т. п. Схемами расположения пользуются при разработке других конструкторских документов, а также при эксплуатации и ремонте изделий.
Схема объединенная —схема, когда на одном конструкторском документе выполняют схемы двух или нескольких типов, выпущенных на одно изделие.
Номера действующих ГОСТов, определяющих правила выполнения схем, приведены в табл. 1.
Таблица 1
Номер ГОСТа | Название |
ГОСТ 2.701 | Схемы. Виды и типы. Общие требования к выполнению |
ГОСТ 2.702 | Правила выполнения электрических схем |
ГОСТ 2.705 | Правила выполнения электрических схем обмоток и изделий с обмотками |
ГОСТ 2.708 | Правила выполнения электрических схем цифровой вычислительной техники. |
ГОСТ 2.709 | Система обозначения цепей в электрических схемах |
ГОСТ 2.710 | Обозначения буквенно-цифровые в электрических схемах |
Для изделия, в состав которого входят элементы разных видов, разрабатывают несколько схем соответствующих видов одного типа, например, схема электрическая принципиальная и схема гидравлическая
принципиальная или одну комбинированную схему, содержащую элементы и связи разных видов. На схеме одного вида допускается изображать элементы схем другого вида, непосредственно влияющие на работу
схемы этого вида, а также элементы и устройства, не входящие в изделие, на которое составляют схему, но необходимые для разъяснения принципов работы изделия. Графические обозначения таких элементов и устройств отделяют на схеме штрих-пунктирными линиями, равными по толщине линиям связи, и помещают надписи, указывая в них местонахождение этих элементов, а также необходимые данные.
Схему деления изделия на составные части (схему деления) выпускают для определения состава изделия (а также ответственности разработчиков этих составных частей).
Наименование и код схем определяют их видом и типом. Код схемы должен состоять из буквенной части, определяющей вид схемы, и цифровой части, определяющей тип схемы. Виды схем обозначают буквами, а типы схем — цифрами. Например, схема электрическая принципиальная ЭЗ; схема деления структурная — E1; схема электрогидравлическая принципиальная — СЗ; схема электрическая соединений и подключения ЭО.
К схемам или взамен схем выпускают в виде самостоятельных документов таблицы, содержащие сведения о соединениях, местах подключения и другую информацию. Таким документам присваивают код, состоящий из буквы Т и кода соответствующей схемы. Например, код таблицы соединений к электрической схеме соединений — ТЭ4.
Номенклатура схем на изделие определяется в зависимости от его особенностей. Количество типов схем на изделие должно быть минимальным, но в совокупности они должны содержать сведения в объеме, достаточном для проектирования, изготовления, эксплуатации и ремонта изделия. Между схемами одного комплекта конструкторских документов на изделие должна быть установлена однозначная связь, которая обеспечила бы возможность быстрого отыскания одних и тех же элементов, связей или соединений на всех схемах данного комплекта.
Электрические схемы (обозначаются Э) подразделяются на схемы электрические принципиальные (Э3), схемы электрические структурные (Э1), схемы электрические функциональные (Э2), схемы электрические соединений (Э4), схемы электрические подключения (Э5) и схемы электрические общие (Э6). Кроме того, в редких случаях используют схемы электрические объединенные (Э0), на которых совмещаются различные типы схем одного вида, например схемы электрические подключений и соединений. Общие правила выполнения схем устанавливают ГОСТ 2.701-84 и ГОСТ 2.702 -75.
Схемы выполняют без соблюдения масштаба, действительное расположение составных частей (например, компонентов на плате) не учитывается или учитывается лишь приближенно. Электрические элементы и устройства на схеме изображают в состоянии, соответствующем обесточенному (например, нормально замкнутые или нормально разомкнутые контакты реле). Элементы, которые приводятся в действие путем механических перемещений (выключатели, кнопки и т. п.), изображаются на схемах в нулевом или отключенном положении. В противном случае требуется поместить текстовое примечание в поле схемы.
Форматы листов выбираются в соответствии с ГОСТ 2.301-68 и ГОСТ 2.004-79. При выборе форматов схемы следует учитывать объем и сложность схемы, условия ее хранения и обращения, возможность внесения изменений, особенности периферийного оборудования для вывода схем на бумажный носитель.
По мнению автора, наиболее удобно (но и, к сожалению, дорого) использовать струйные плоттеры фирмы Hewlett Packard, однако в ряде случаев хорошим выходом из положения является струйный принтер формата А3 той же фирмы Hewlett Packard или Epson. В этом случае можно либо пойти по пути склеивания схемы большого формата (А2 и А1) из нескольких листов, либо, что во многих случаях предпочтительнее, выполнять многолистовую схему. Выбранный формат должен обеспечивать компактное выполнение схемы, при этом не уменьшая наглядности представления и удобства пользования.
При выполнении многолистовой схемы рекомендуется на каждом из листов выполнять вполне законченную функциональную цепь (например схему аналогового тракта, схему узла цифровой обработки, узла питания), а не произвольно разбивать схему на листы без какой либо функциональной связи.
Линии на схемах всех типов выполняются в соответствии с ГОСТ 2.303-68. Толщина линии выбирается в пределах от 0,2 до 1 мм и выдерживается постоянной во всем комплекте схем на изделие. Как условные графические обозначения, так и линии соединений выполняются линиями одинаковой толщины. Как правило, утолщенными линиями изображают общие шины (жгуты). Тип линии зависит от изображаемого объекта. Так, электрические связи, условные графические обозначения элементов и т. п. изображаются сплошными линиями.
Электрические и магнитные экраны, механические связи (например, якорь и контакты реле) изображаются штриховыми линиями. Условные границы устройств, функциональных групп обозначаются штрих-пунктирной линией. Допускается выделять утолщенной линией отдельные электрические цепи, например силовые.
На электрической схеме любого типа изображают элементы и устройства (либо в виде условных графических обозначений, либо в виде прямоугольников), линии взаимосвязи, буквенно-цифровые обозначения, таблицы, текстовую информацию (например о питании интегральных микросхем) и помещают основную надпись.
Условные графические обозначения (УГО) элементов выполняются в соответствии с ЕСКД. Номера соответствующих ГОСТов приведены в табл. 2.
Таблица 2
ГОСТ 2.711 | Схема деления изделия на составные части |
ГОСТ 2.721 | Обозначения общего применения |
ГОСТ 2.722 | Машины электрические |
ГОСТ 2.723 | Катушки индуктивности, дроссели, трансформаторы, автотрансформаторы и магнитные усилители. |
ГОСТ 2.725 | Устройства коммутирующие |
ГОСТ 2.726 | Токосъемники |
ГОСТ 2.727 | Разрядники, предохранители |
ГОСТ 2.728 | Резисторы, конденсаторы |
ГОСТ 2.729 | Приборы измерительные |
ГОСТ 2.730 | Приборы полупроводниковые |
ГОСТ 2.731 | Приборы электровакуумные |
ГОСТ 2.732 | Источники света |
ГОСТ 2.733 | Обозначения условные детекторов ионизирующих излучений в схемах |
ГОСТ 2.734 | Линии сверхвысокой частоты и их элементы |
ГОСТ 2.735 | Антенны |
ГОСТ 2.736 | Элементы пьезоэлектрические и магнитострикционные. Линии задержки. |
При выполнении схемы устанавливается просвет между соседними линиями УГО не менее 1 мм, между отдельными УГО не менее 2 мм, между соседними линиями связи (цепями) не менее 3 мм. Очевидно, что линии соединений должны состоять из горизонтальных и вертикальных отрезков, в виде исключения для некоторых схем (мультивибраторы, триггеры и т. д.) допускается выполнение линий связи под углом 45°. Линии должны иметь минимальное количество изломов и взаимных пересечений.
Для уменьшения количества линий и повышения читаемости и наглядности схемы рекомендуется использовать слияние линий в групповые линии связи (шины, жгуты). При этом каждая линия в месте слияния должна быть помечена порядковым номером. Очень часто вместо порядкового номера используют обозначения, например D0, D1, RESET, CS и т.д. В большинстве случаев нормоконтроль воспринимает подобное обозначение. Линии групповой связи выполняются утолщенными. Подходящие линии могут быть изображены
либо под прямым углом, либо с изломом под углом 45 к групповой линии. В частности последний вариант используется в PCAD 2001.
При разработке современной аппаратуры часто приходится сталкиваться с ситуацией, когда схема электрическая принципиальная не может быть размещена на одном листе даже большого формата (A1). В этом случае приходиться прибегать к построению многолистовой схемы.
В САПР PCAD 2001 при размещении схемы на нескольких листах используются порты. Дополнительный лист в схему вводится с помощью команды конфигурации Options/Sheets.
Вновь введенному листу по умолчанию присваивается имя SheetX, где X = 1, 2, … Все листы схемы в этом случае находятся в одном файле, следовательно, формируется общий список цепей. Это гораздо удобнее, чем линкование нескольких списков цепей в PCAD 4.5. При переносе цепи на другой лист необходимо на каждом из листов, где размещена цепь, ввести порты с ее именем.
Современные САПР позволяют в этом случае применять так называемых иерархических структур. Это необходимо, если в схеме встречаются несколько одинаковых электронных узлов (модулей). Тогда представляется разумным выполнять схему с использованием иерархических модулей.
В этом случае удается сэкономить на количестве листов и, соответственно, объеме файла. Кроме того, модульная организация позволяет уменьшить количество ошибок за счет меньшего числа связей и большей наглядности схемы. При выполнении принципиальной схемы на нескольких листах следует при присвоении элементам позиционных обозначений соблюдать сквозную нумерацию в пределах изделия, выпускать общий перечень элементов.
Рассмотрим пример создания иерархического модуля в САПР PCAD 2001. Процесс начинается с выполнения команды Utils/Module Wizard. При этом запускается мастер создания иерархического модуля, окно которого приведено на рис. 4.
В поле Module name указывается имя модуля. Число входных контактов задается в поле Number of input pins, а выходных — в Number of оutput pins. Количество двунаправленных контактов определяется в поле Number of bidirect Pins. Входные контакты располагаются с левой стороны символа модуля, выходные и двунаправленные — с правой стороны. В поле Symbol width задается ширина символа. В поле Pin length вводится длина вывода, а в Pin Spacing — расстояние между соседними выводами. Отметка флажка Create Corresponding Link приводит к созданию связи символа модуля с соответствующей ему схемой. Имя схемы вводится в поле Link Name. Отметив флажок Save in Library и выбрав в графе Library соответствующую библиотеку, модуль можно сохранить в библиотеке. В поле Pin Designator отображается позиционное обозначение (номер) вывода, а в поле Pin Name можно изменить имя текущего вывода.
После выполнения назначения имени модуля следует нажать кнопку Next и приступить к созданию связей модуля.
Как уже отмечалось выше, в принципе, при создании модуля можно связать уже имеющуюся графику символа модуля. В этом случае в списке Library выбирается библиотека, в которой находится символ модуля, а в поле Module отображается список модулей, входящих в библиотеку.
Далее возможен либо выбор существующей схемы модуля, либо создание новой. Последующие действия аналогичны созданию нового модуля. На рис. 5 приведен фрагмент схемы многоканального цифрового фильтра с использованием иерархических модулей.
Принципиальная схема модуля располагается на отдельном листе схемы. Переход от общей схемы проекта к схеме отдельного модуля осуществляется по команде View /Descend при выделенном символе модуля. Обратный переход выполняется по команде View/Ascend.
Следует отметить, что модули можно создавать и редактировать, не только используя мастер создания модулей графического редактора Schematic, но и с помощью менеджера библиотек Library Executive. Кроме того, графику символа модуля можно редактировать в графическом редакторе символов компонентов Symbol Editor. Полностью информация о модуле хранится в двух компонентах — в одном находится графика модуля и описание выводов, он имеет тип Module, другой компонент имеет тип Link и представляет собой многосекционный неоднородный компонент, обеспечивающий связи модуля с его схемой. После создания символа модуля и его размещения на принципиальной схеме необходимо выполнить команду Utils/Resolve Hierarchy для того, чтобы обеспечить сквозную нумерацию позиционных обозначений всего проекта. Следует помнить об этой команде до того, как создан список цепей, во избежание появления ошибок при упаковке на плату.
При выполнении схем применяют условные графические обозначения, установленные в стандартах ЕСКД, а также построенные на их основе, прямоугольники, упрощенные внешние очертания, в том числе аксонометрические. При необходимости применяют нестандартизованные условные графические обозначения. При применении нестандартизованных условных графических обозначений и упрощенных внешних очертаний на схеме приводят соответствующие пояснения. Разумное использование таких приемов позволяет во многом повысить наглядность схемы
Условные графические обозначения, для которых установлено несколько допустимых альтернативных вариантов выполнения, различающихся геометрической формой или степенью детализации, следует применять, исходя из вида и типа разрабатываемой схемы в зависимости от информации, которую необходимо передать на схеме графическими средствами. При этом на всех схемах одного типа, входящих в комплект документации, должен быть применен один выбранный вариант обозначения. Особенно часто ошибаются в изображении УГО транзисторов и диодов на принципиальных электрических схемах. Это тот самый случай, когда «лучше меньше, да лучше».
Графические обозначения на схемах следует выполнять линиями той же толщины, что и линии связи. Условные графические обозначения элементов изображают на схеме в положении, в котором они приведены в соответствующих стандартах, или повернутыми на угол, кратный 90°, если в соответствующих стандартах отсутствуют специальные указания. Допускается условные графические обозначения поворачивать на угол, кратный 45°, или изображать зеркально повернутыми. Делать это следует только в необходимых случаях — например, изображение дифференциального каскада, мостового выпрямителя и т.п. Если при повороте или зеркальном изображении условных графических обозначений может нарушиться смысл или удобочитаемость обозначения, то такие обозначения должны быть изображены в положении, в котором они приведены в соответствующих стандартах. Условные графические обозначения, содержащие цифровые или буквенно-цифровые обозначения, допускается поворачивать против часовой стрелки только на угол 90 или 45°.
Линии связи выполняют толщиной от 0,2 до 1,0 мм в зависимости от форматов схемы и размеров графических обозначений. Рекомендуемая толщина линий — от 0,3 до 0,4 мм. Линии связи должны состоять из горизонтальных и вертикальных отрезков и иметь наименьшее количество изломов и взаимных пересечений. Этим очень часто грешат начинающие пользователи САПР, следует стараться разумно использовать линии групповой связи. В отдельных случаях допускается применять наклонные отрезки линии связи, длину которых следует по возможности ограничивать. Линии связи, переходящие с одного листа или одного документа на другой, следует обрывать за пределами изображения схемы без стрелок. Рядом с обрывом линии связи должно быть указано обозначение или наименование, присвоенное этой линии, или обозначение документа, при выполнении схем самостоятельными документами, на который переходит линия связи. Линии связи должны быть показаны, как правило, полностью. Линии связи в пределах одного листа, если они затрудняют чтение схемы, допускается обрывать. Обрывы линий связи заканчивают стрелками. Около стрелок указывают места обозначений прерванных линий, например, подключения, и необходимые характеристики цепей, например, полярность, потенциал и т. п. Элементы, входящие в изделие и изображенные на схеме, должны иметь обозначения в соответствии со стандартами на правила выполнения конкретных видов схем. Обозначения могут быть буквенные, буквенно-цифровые и цифровые. Обозначения элементов, специфических для определенных отраслей техники, должны выполняться в соответствии с отраслевыми стандартами.
При вводе электрических цепей в схему с использованием САПР наиболее часто делают две ошибки. Во-первых, очень часто пытаются ввести электрическую связь с помощью команды Place/Line (или Draw Line). Казалось бы, что так сделать невозможно, однако автору неоднократно доводилось наблюдать схемы, в которых проводники вводились таким образом. Ясно, что извлечь из такой схемы список цепей невозможно.
Во-вторых, очень часто пытаются уйти от разумного использования жгутов и впадают в две крайности — либо вся схема представляет собой один очень сложный жгут, либо наоборот, паутину отдельных проводников. Необходимо соблюдать золотую середину.
Каждой схеме соответствует перечень элементов, который помещают на первом листе схемы или выполняют в виде самостоятельного документа. Перечень элементов удобно создавать средствами редактора типа Microsoft Word и сохранять в виде соответствующего шаблона. Безусловно, имеет смысл написание утилит, позволяющих перевести данные из САПР типа P-CAD, OrCAD и т. п. в соответствующий ГОСТ формат.
При выполнении перечня элементов на первом листе схемы его располагают, как правило, над основной надписью. Расстояние между перечнем элементов и основной надписью должно быть не менее 12 мм. Продолжение перечня элементов помещают слева от основной надписи, повторяя головку таблицы. При выпуске перечня элементов в виде самостоятельного документа его код должен состоять из буквы «П» и кода схемы, к которой выпускают перечень, например, код перечня элементов к электрической принципиальной схеме — ПЭЗ. Перечень элементов записывают в спецификацию после схемы, к которой он выпущен. Перечень элементов в виде самостоятельного документа выполняют на формате А4. Основную надпись и дополнительные графы к ней выполняют по ГОСТ 2.104-68
На схемах допускается помещать различные технические данные, характер которых определяется назначением схемы. Такие сведения указывают либо около графических обозначений, по возможности справа или сверху, либо на свободном поле схемы. Обычно показывают диаграммы последовательности временных процессов, циклограммы, таблицы замыкания контактов коммутирующих устройств, указания о специфических требованиях к монтажу и т. п. Текстовые данные приводят на схеме в тех случаях, когда содержащиеся в них сведения нецелесообразно или невозможно выразить графически или условными обозначениями. Содержание текста должно быть кратким и точным. В надписях на схемах не должны применяться сокращения слов, за исключением общепринятых или установленных в стандартах.
Текстовые данные в зависимости от их содержания и назначения могут быть расположены рядом с графическими обозначениями; внутри графических обозначений, над линиями связи, в разрыве линий связи; рядом с концами линий связи; на свободном поле схемы. Текстовые данные, относящиеся к линиям,
ориентируют параллельно горизонтальным участкам соответствующих линий. При большой плотности схемы допускается вертикальная ориентация данных.
На поле схемы над основной надписью допускается помещать необходимые технические указания, например, требования о недопустимости совместной прокладки некоторых проводов, жгутов, кабелей, величины минимально допустимых расстояний между проводами, жгутами, жгутами и кабелями, данные о специфичности прокладки и защиты проводов, жгутов, кабелей.
Одним из животрепещущих вопросов при разработке изделия является правильность оформления документации на печатные платы, особенно с учетом современного уровня технологии проектирования и изготовления. Довольно новый ГОСТ 2.123-93 «Комплектность конструкторских документов на печатные платы при автоматизированном проектировании» введен в действие с 1 января 1995 года взамен ГОСТ 2.123-83. Этот стандарт устанавливает комплектность конструкторских документов (КД) на односторонние (ОПП), двусторонние (ДПП) и многослойные (МПП) печатные платы, а также требования по их выполнению при
автоматизированном проектировании и изготовлении.
Документы на носителях, включаемые в комплект конструкторских документов на ПП, предназначены для получения конструкторских документов в традиционной форме, механической обработки, контроля ПП и изготовителя фотошаблона, а также передачи информации о результатах проектирования в систему автоматизированного изготовления ПП. В каждом конкретном случае состав конструкторских документов, передаваемых для изготовления ПП, определяется разработчиком совместно с изготовителем в соответствии с комплектностью, установленной ГОСТ 2.123. По согласованию с предприятием-изготовителем допускается изготовление ПП производить по аттестованным документам на носителях данных. Номенклатура конструкторских документов на ПП, выполненных базовым способом, приведена в табл. 3.
Таблица 3
Код документа | Наименование документа | Основное содержание документа | Указания по выполнению документа | |
ОПП и ДПП | МПП | |||
– | Чертеж детали (заготовки) | Изображение ПП, материалы, габаритные размеры отверстий и т. д. | Выполняется на каждый типоразмер согласно ГОСТ 2.106 | Может оформляться по правилам ГОСТ 2.109 для деталей, на которые не выпущены чертежи |
При оформлении чертежа детали базовым способом чертеж заготовки не выполняется | ||||
– | Чертеж детали (прокладки) | Изображение прокладки, материал, габаритные размеры | Не выполняется | Может оформляться по правилам ГОСТ 2.106, ГОСТ 2.109 для деталей, на которые не выпущены чертежи |
– | Базовый чертеж детали | Постоянные данные для всех исполнений типоразмера | Выполняется на каждый типоразмер для ОПП и ДПП | Выполняется на печатную плату как составную часть МПП |
– | Чертеж исполнения детали | Переменные данные, относящиеся к конкретному исполнению | Для ДПП выполняется на каждое исполнение проводящего слоя | Выполняется на каждое исполнение проводящего слоя печатной платы |
СБ | Базовый сборочный чертеж | Постоянные данные, общие для всех исполнений типоразмера | Не выполняется | Выполняется на каждый типоразмер |
СБ | Сборочный чертеж исполнения | Переменные данные, относящиеся к конкретному исполнению | То же | Выполняется на каждое исполнение |
– | Базовая спецификация | По ГОСТ 2.113, ГОСТ 2.108, ГОСТ 2.417 | Не выполняется | Выполняется на каждое исполнение |
– | Спецификация исполнения | По ГОСТ 2.113, ГОСТ 2.108, ГОСТ 2.417 | То же | То же |
Д… | Технические требования | Одинаковые технические требования для МПП | Выполняется согласно ГОСТ 2.417 | |
ТБ | Таблица проверки монтажа | Данные для контроля электрических соединений | Выполняется на каждое исполнение. При автоматизированном контроле печатных плат допускается таблицы не выполнять | |
ТБ | Таблица координат отверстий | Принятые условные обозначения отверстий, соответствующее количество отверстий, координаты расположения отверстий всех слоев ПП | ||
Т1М | Данные фотошаблона | Информация о рисунке слоя ПП | Выполняется на каждый слой | |
Т2М | Данные сверления | Информация о координатах расположения диаметра и количества отверстий ПП | Выполняется на каждое исполнение с учетом конструктивно-технологических вариантов | |
Т3М | Данные для обработки контура | Информация о контуре ПП | Выполняется на каждый типоразмер | |
Т4М | Данные контроля | Информация о координатах контактов или контактных площадок, электрически соединенных между собой, слоя ПП | Выполняется на каждое исполнение или слой | |
ВН | Ведомость документов на носителях данных | По ГОСТ 28388 | Выполняется на каждое исполнение. Допускается выполнять в соответствии с отраслевыми нормативно–техническими документами | |
По действующей НТД | Данные о результатах проектирования печатных плат | Выполняется на магнитном носителе данных в соответствии с ГОСТ 28388. Допускается выполнять в соответствии с отраслевыми нормативно-техническими документами |
Установленная ГОСТ 2.123 номенклатура конструкторских документов может дополняться в зависимости от характера, назначения и конструктивно-технологического варианта изготовления, а также от технического оснащения автоматизированных систем проектирования и изготовления ПП. В состав комплекта конструкторских документов на ПП допускается (!!!) включать программные документы, полученные в результате автоматизированного проектирования и необходимые для производства ПП. В настоящее время все более популярен формат Gerber. По согласованию с изготовителем и заказчиком допускается вместо
таблиц, указанных в номенклатуре, включать в комплект КД на ПП программы автоматизированного контроля ПП.
Программы на носителях данных записывают в «Ведомость документов на носителях данных» (ВН). При выполнении трех и менее документов на носителях данных ВН допускается не выпускать. При этом ВН записывают в спецификацию ПП в раздел «Документация» после документов, предусмотренных ГОСТ 2.102, в таком же порядке записывают в спецификацию ПП программы на носителях данных в случае, когда ВН выпускается.
Программные документы и программы, выполненные на носителях данных, записывают в конце раздела «Комплекты» спецификации.
В состав постоянных данных, помещаемых на базовом чертеже, включают изображение ПП, размеры и прочие указания для механической обработки, указания о материале, разметку для установки электрического соединителя, крепежные отверстия для установки ПП в сборочной единице, контрольные элементы, технические требования, проводящий рисунок, маркировку позиционных обозначений электрорадиоизделий и конструкторский адрес, место обозначения ПП, место обозначения сборочной единицы, место порядкового номера изменения, номера позиции для МПП и т. д.
В состав переменных данных, помещаемых на чертеже исполнения, обычно включают упрощенное изображение ПП, проводящий рисунок ПП, маркировку позиционных обозначений электрорадиоизделий и (или) конструктивный адрес, обозначение ПП, обозначение сборочной единицы, порядковый номер изменения, таблицу переходных и монтажных отверстий, технические требования, номера позиций для МПП и т. д.
При выполнении чертежа исполнения ПП автоматизированным способом на двух или более листах технические требования помещают на первом листе, проводящий рисунок может быть выполнен на последующих листах. Следует заметить, что это положение стандарта очень часто нарушают начинающие конструкторы
В соответствии с ГОСТ 2.123 базовый чертеж ПП (деталь) записывают в спецификацию аналогично составной части изделия в начале раздела «Детали» той отборочной единицы, в которой применяется конкретное исполнение, при этом графу «Поз.» прочеркивают, а в графе «Кол.» записывают 1. Если документация сборочной единицы выполнена базовым способом, то базовый чертеж детали и чертеж исполнения детали вносят в спецификацию сборочной единицы. Допускается вместо нескольких базовых документов выпускать один базовый документ групповым способом. Построение комплекта конструкторских документов для МПП приведено на рис. 6.
В последние годы довольно распространенным явлением стала разработка изделий для зарубежного заказчика. Особенности оформления КД в этом случае определены в ГОСТ Р.901-99 «Документация, отправляемая за границу. Общие требования». Этот стандарт распространяется на конструкторскую документацию изделий всех отраслей промышленности, отправляемых за границу РФ, и устанавливает общие требования к оформлению. Необходимо помнить, что выполнение КД для зарубежного заказчика — песня длинная и веселая. Во многих случаях работа выполняется полностью по зарубежным стандартам.
Завершающий этап разработки КД — нормоконтроль. Увы, последнее время его функции слегка нивелировались «де-факто», но «деюре» они совершенно четко определяются ГОСТ 2.111-68, который однозначно устанавливает порядок контроля в конструкторской документации норм и требований, установленных стандартами и другими нормативно-техническими документами.
Нормоконтролю подлежит конструкторская документация на изделия основного и вспомогательного производства независимо от подчиненности и служебных функций подразделений, выпустивших указанную документацию.
Комплект всех перечней замечаний и предложений нормоконтролера по проекту служит исходным материалом для оценки качества выполнения проекта.
На этом экскурс в правила выполнения конструкторской документации закончим, заинтересованному читателю рекомендуется обратиться к работам [1–4] для получения более полной информации. Вообще же совет здесь только один — не забывайте о ГОСТах и следите за новыми изменениями в них.
Литература
- Справочник по конструированию радиоэлектронной аппаратуры (печатные узлы). Кiiв: Технiка, 1985.
- Александров К. К., Кузьмина Е. Г. Электротехнические чертежи и схемы. М.: Энергоатомиздат, 1990.
- Разработка и оформление конструкторской документации РЭА / Под. ред. Э. Т. Романычевой. М.: Радио и связь, 1989.
- Стешенко В. Б. ACCEL EDA: технология проектирования печатных плат. М.: Нолидж, 2000.
— узнайте о блок-схемах, см. Примеры
Что такое блок-схема?
Блок-схема — это специализированная блок-схема высокого уровня, используемая в инженерии. Он используется для разработки новых систем или для описания и улучшения существующих. Его структура обеспечивает общий обзор основных компонентов системы, ключевых участников процесса и важных рабочих отношений.
Типы и использование блок-схем
Блок-схема обеспечивает быстрое общее представление системы для быстрого определения точек интереса или проблемных мест.Из-за своей высокоуровневой перспективы он может не предлагать уровень детализации, необходимый для более всестороннего планирования или реализации. Блок-схема не покажет подробно каждый провод и переключатель, это работа принципиальной схемы.
Блок-схема особенно ориентирована на ввод и вывод системы. Его меньше волнует, что происходит при переходе от ввода к выводу. В инженерии этот принцип называют черным ящиком. Либо части, которые ведут нас от входа к выходу, неизвестны, либо они не важны.
Как сделать блок-схему
Блок-схемы выполнены аналогично блок-схемам. Вы захотите создать блоки, часто представленные прямоугольными формами, которые представляют важные точки интереса в системе от ввода до вывода. Линии, соединяющие блоки, покажут взаимосвязь между этими компонентами.
В SmartDraw вы захотите начать с шаблона блок-схемы, к которому уже пристыкована соответствующая библиотека форм блок-схемы. Добавление, перемещение и удаление фигур выполняется всего несколькими нажатиями клавиш или перетаскиванием.Инструмент блок-диаграммы SmartDraw поможет построить вашу диаграмму автоматически.
Символы, используемые в блок-схемах
В блок-схемах используются очень простые геометрические формы: квадраты и круги. Основные части и функции представлены блоками, соединенными прямыми и сегментированными линиями, иллюстрирующими отношения.
Когда блок-схемы используются в электротехнике, стрелки, соединяющие компоненты, представляют направление потока сигнала через систему.
Все, что представляет какой-либо конкретный блок, должно быть написано внутри этого блока.
Блок-схема также может быть нарисована более детально, если этого требует анализ. Не стесняйтесь добавлять столько деталей, сколько хотите, используя более конкретные символы электрических схем.
Блок-схема: передовой опыт
- Определите систему. Определите систему, которую нужно проиллюстрировать. Определите компоненты, входы и выходы.
- Создайте диаграмму и пометьте ее. Добавьте символ для каждого компонента системы, соединив их стрелками, чтобы указать поток. Кроме того, пометьте каждый блок, чтобы его было легко идентифицировать.
- Укажите ввод и вывод. Обозначьте вход, который активирует блок, и отметьте выход, который завершает блок.
- Проверить точность. Проконсультируйтесь со всеми заинтересованными сторонами для проверки точности.
Примеры блок-схем
Лучший способ понять блок-схемы — это посмотреть на некоторые примеры блок-схем.
Щелкните любую из этих блок-схем, включенных в SmartDraw, и отредактируйте их:
Просмотрите всю коллекцию примеров и шаблонов блок-схем SmartDraw
Блок-схема— узнайте о блок-схемах, см. Примеры
Что такое блок-схема?
Блок-схема — это специализированная блок-схема высокого уровня, используемая в инженерии. Он используется для разработки новых систем или для описания и улучшения существующих. Его структура обеспечивает общий обзор основных компонентов системы, ключевых участников процесса и важных рабочих отношений.
Типы и использование блок-схем
Блок-схема обеспечивает быстрое общее представление системы для быстрого определения точек интереса или проблемных мест. Из-за своей высокоуровневой перспективы он может не предлагать уровень детализации, необходимый для более всестороннего планирования или реализации. Блок-схема не покажет подробно каждый провод и переключатель, это работа принципиальной схемы.
Блок-схема особенно ориентирована на ввод и вывод системы.Его меньше волнует, что происходит при переходе от ввода к выводу. В инженерии этот принцип называют черным ящиком. Либо части, которые ведут нас от входа к выходу, неизвестны, либо они не важны.
Как сделать блок-схему
Блок-схемы выполнены аналогично блок-схемам. Вы захотите создать блоки, часто представленные прямоугольными формами, которые представляют важные точки интереса в системе от ввода до вывода. Линии, соединяющие блоки, покажут взаимосвязь между этими компонентами.
В SmartDraw вы захотите начать с шаблона блок-схемы, к которому уже пристыкована соответствующая библиотека форм блок-схемы. Добавление, перемещение и удаление фигур выполняется всего несколькими нажатиями клавиш или перетаскиванием. Инструмент блок-диаграммы SmartDraw поможет построить вашу диаграмму автоматически.
Символы, используемые в блок-схемах
В блок-схемах используются очень простые геометрические формы: квадраты и круги. Основные части и функции представлены блоками, соединенными прямыми и сегментированными линиями, иллюстрирующими отношения.
Когда блок-схемы используются в электротехнике, стрелки, соединяющие компоненты, представляют направление потока сигнала через систему.
Все, что представляет какой-либо конкретный блок, должно быть написано внутри этого блока.
Блок-схема также может быть нарисована более детально, если этого требует анализ. Не стесняйтесь добавлять столько деталей, сколько хотите, используя более конкретные символы электрических схем.
Блок-схема: передовой опыт
- Определите систему. Определите систему, которую нужно проиллюстрировать. Определите компоненты, входы и выходы.
- Создайте диаграмму и пометьте ее. Добавьте символ для каждого компонента системы, соединив их стрелками, чтобы указать поток. Кроме того, пометьте каждый блок, чтобы его было легко идентифицировать.
- Укажите ввод и вывод. Обозначьте вход, который активирует блок, и отметьте выход, который завершает блок.
- Проверить точность. Проконсультируйтесь со всеми заинтересованными сторонами для проверки точности.
Примеры блок-схем
Лучший способ понять блок-схемы — это посмотреть на некоторые примеры блок-схем.
Щелкните любую из этих блок-схем, включенных в SmartDraw, и отредактируйте их:
Просмотрите всю коллекцию примеров и шаблонов блок-схем SmartDraw
Блок-схема— узнайте о блок-схемах, см. Примеры
Что такое блок-схема?
Блок-схема — это специализированная блок-схема высокого уровня, используемая в инженерии.Он используется для разработки новых систем или для описания и улучшения существующих. Его структура обеспечивает общий обзор основных компонентов системы, ключевых участников процесса и важных рабочих отношений.
Типы и использование блок-схем
Блок-схема обеспечивает быстрое общее представление системы для быстрого определения точек интереса или проблемных мест. Из-за своей высокоуровневой перспективы он может не предлагать уровень детализации, необходимый для более всестороннего планирования или реализации.Блок-схема не покажет подробно каждый провод и переключатель, это работа принципиальной схемы.
Блок-схема особенно ориентирована на ввод и вывод системы. Его меньше волнует, что происходит при переходе от ввода к выводу. В инженерии этот принцип называют черным ящиком. Либо части, которые ведут нас от входа к выходу, неизвестны, либо они не важны.
Как сделать блок-схему
Блок-схемы выполнены аналогично блок-схемам.Вы захотите создать блоки, часто представленные прямоугольными формами, которые представляют важные точки интереса в системе от ввода до вывода. Линии, соединяющие блоки, покажут взаимосвязь между этими компонентами.
В SmartDraw вы захотите начать с шаблона блок-схемы, к которому уже пристыкована соответствующая библиотека форм блок-схемы. Добавление, перемещение и удаление фигур выполняется всего несколькими нажатиями клавиш или перетаскиванием. Инструмент блок-диаграммы SmartDraw поможет построить вашу диаграмму автоматически.
Символы, используемые в блок-схемах
В блок-схемах используются очень простые геометрические формы: квадраты и круги. Основные части и функции представлены блоками, соединенными прямыми и сегментированными линиями, иллюстрирующими отношения.
Когда блок-схемы используются в электротехнике, стрелки, соединяющие компоненты, представляют направление потока сигнала через систему.
Все, что представляет какой-либо конкретный блок, должно быть написано внутри этого блока.
Блок-схема также может быть нарисована более детально, если этого требует анализ. Не стесняйтесь добавлять столько деталей, сколько хотите, используя более конкретные символы электрических схем.
Блок-схема: передовой опыт
- Определите систему. Определите систему, которую нужно проиллюстрировать. Определите компоненты, входы и выходы.
- Создайте диаграмму и пометьте ее. Добавьте символ для каждого компонента системы, соединив их стрелками, чтобы указать поток.Кроме того, пометьте каждый блок, чтобы его было легко идентифицировать.
- Укажите ввод и вывод. Обозначьте вход, который активирует блок, и отметьте выход, который завершает блок.
- Проверить точность. Проконсультируйтесь со всеми заинтересованными сторонами для проверки точности.
Примеры блок-схем
Лучший способ понять блок-схемы — это посмотреть на некоторые примеры блок-схем.
Щелкните любую из этих блок-схем, включенных в SmartDraw, и отредактируйте их:
Просмотрите всю коллекцию примеров и шаблонов блок-схем SmartDraw
Что такое блок-схема — все, что вам нужно знать
Что такое блок-схема?
Вы озадачены названием? Если нет, то вы должны быть пользователем / энтузиастом академических / профессиональных диаграмм, таких как электрические схемы, принципиальные схемы, блок-схемы , назовите их.Если вам интересно, , что такое блок-схема , пора надеть очки для чтения. Как следует из названия, блок-схема — это графическая иллюстрация системы, основные части или компоненты которой представлены блоками. Эти блоки соединены линиями для отображения взаимосвязи между последующими блоками.
Итак, блок на блок-схеме Блок-схема — это представление нескольких известных свойств, так что в сумме они составляют центральную блок-схему.Блоки изображают систему как совокупность компонентов, отвечающих за определенные задачи в определенных условиях.
Источник изображения : smartdraw.com
Почему так важны блок-схемы?
Какую важную роль играют блок-схемы ? Что ж, блок-схема — это фундаментальный способ, который разработчики оборудования и программного обеспечения используют для описания этих систем, одновременно демонстрируя свои рабочие процессы и процессы.Электрики, с другой стороны, нуждаются в них для представления систем и их переключения, например, мехатронных систем в автотранспортной отрасли.
Чаще всего блок-схемы очень помогают, когда требуется четкое представление информации или потоков управления, а также когда в проекте есть множество процессов. Они упрощают представление сложных алгоритмов или потоков деталей или обмена данными между точными компонентами, например, на предприятии массового производства.Графически представленные процессы проекта менее сложны для понимания, чем когда они представлены в текстовой форме.
Когда вы войдете в комнату с блок-схемой , вы сможете легко расшифровать детали системы, интерфейс и, например, аспекты структуры. Все благодаря тому, как блоки интеллектуально связаны друг с другом линиями. Блоки удобны при разработке новых процессов и обновлении уже существующих.
Каковы основные компоненты блок-схемы?
Чтобы достаточно и эффективно представить значимые процессы и показать, как определенные строительные блоки взаимосвязаны, вам нужна внутренняя блок-схема, чтобы изучить, как интегрируются свойства и компоненты блоков.
На внутренних блок-схемах структура и потоки внутри блоков описаны с использованием языка моделирования систем OMG (SysML). Они предоставляют нам упрощенное объяснение того, как компоненты блока связаны друг с другом, какого типа данные, детали, сигналы или поток материалов между элементами и в каком направлении они текут.
Эти компоненты блока в основном пять и включают:
Блок : он представляет логические и физические компоненты системы.
Part: он включает в себя все аспекты, смоделированные с использованием агрегирования и ассоциации.
Ссылка : в нем есть все части, которые были разработаны с использованием агрегирования и ассоциации.
Стандартный порт : это точка взаимодействия между системным блоком и соответствующей средой.
Порт потока : это точка взаимодействия, из которой или в которую может выходить блок.
Важно понимать термины, используемые при описании отношений в пределах блок-схемы . Это:
Ассоциация : объясняет связь между блоками.
Агрегация : этот термин описывает, как устройство состоит из частей.
Состав : это надлежащая форма агрегирования, в которой существование объекта, который является частью единицы, зависит от присутствия группы.
Обобщение : это ведущее отношение между блоками, в котором назначенный блок содержит все свойства всей блок-схемы .
Использование блок-схем
Простые и понятные блок-схемы используются в большинстве отраслей для иллюстрации функциональных процессов в соответствующих областях. Далее мы рассмотрим три области, в которых используются блок-схемы.
4.1. Блок-схемы для разработки программного обеспечения
Блок-схема дает очень эффективное представление общей работы компьютерной системы.Он отображает необходимые процессы, необходимые для получения желаемого вывода с компьютера из ввода, который вы вводите в начале.
На схеме ниже блок управления (CU) и арифметико-логический блок (ALU) составляют центральный процессор (CPU) в компьютере. Это мозг и сердце компьютерной системы. Промежуточные данные и результаты содержатся в блоке памяти, ожидая обработки. А дисковый накопитель содержит данные и инструкции, вводимые в компьютерную систему с помощью устройства ввода.
Источник изображения : pdffiles.in
4.2. Блок-схемы для электротехники
На приведенной ниже схеме показан инструментальный канал, предназначенный для измерения нейтронного потока, отображения измеренного потока и генерации выходных сигналов для использования другими системами. Каждый отдельный блок отмечает этап в развитии сигнала, используемого для отображения на нижнем конце счетчика.Или отправить в системы за границами диаграмм. Блоки имеют разные размеры и представляют собой либо несколько функций, либо простой каскад, либо одну бистабильную схему в более заметном компоненте.
Источник изображения : myodesie.com
4.3. Блок-схемы для управления процессами
Третий пример блок-схемы представляет собой систему управления с обратной связью.Он используется для отображения основных элементов системы посредством простой и понятной взаимосвязи. При изучении одного из них очень важно иметь в виду, что блок-схема представляет только пути потока управляющих сигналов. Не заблуждайтесь, полагая, что это также показывает, как энергия передается по системе или процессу.
Источник изображения : akkordeon-frankfurt.de
Как создать блок-схему
Рассмотрев влечет за собой блок-схему и насколько она может быть полезной, мы покажем вам, как сделать ее с помощью фантастической программы для рисования под названием Edraw Max Online.Он «онлайн», потому что не требует установки перед использованием.
Вы входите на его веб-страницу по адресу https://www.edrawmax.com/online/ . И приступаете к работе.
Рисование блок-схемы в онлайн-версии Edraw Max стало менее напряженным благодаря 2D и 3D формам и символам, запрограммированным в программном обеспечении. В приложении также есть готовые шаблоны.
Для начала вам нужно дважды щелкнуть миниатюру шаблона Block 2D или Block 3D.Это действие открывает соответствующие фигуры рисования блок-диаграммы на панели символов. Вам понравится интуитивно понятная и удобная для новичков платформа приложения.
Итак, давайте посмотрим, как мы можем использовать эту концепцию, чтобы нарисовать гистограмму с Edraw Max Online:
Шаг 1: После регистрации и проверки войдите на сайт и выберите «Базовая диаграмма» в разделе «Доступные шаблоны». Выберите либо 2D-блок, либо 3D-блок по желанию и продолжайте.
Шаг 2: Найдите панель библиотеки в левой части интерфейса, затем нажмите и удерживайте фигуру блока. Осторожно перетащите его на холст, отображаемый в правой части экрана. Чтобы отрегулировать размер фигуры, используйте зеленые маркеры выделения.
Шаг 3: Теперь, если вам нужно написать внутри блока, дважды щелкните по нему.Добавьте еще одну форму блока рядом с существующей путем перетаскивания, как вы это делали на шаге 2 выше.
Шаг 4: Чтобы выбрать соединяющую конструкцию, нажмите значок соединителя в верхней части экрана, чтобы отобразить раскрывающееся меню. Затем нажмите на первую форму блока и проведите линию от края этой формы до следующей формы. Конец соединения становится красным, указывая на успешное соединение блоков.
Делайте это до тех пор, пока блок-диаграмма не будет полностью соединена.
Шаг 5: доработайте блок-схему, выровняв и распределив формы и используя предпочтительные цвета или узоры для идентификации определенных частей блока. Вы должны соответствующим образом пометить блоки, чтобы у вас была упорядоченная и четкая блок-схема.
Шаг 6: Наконец, выберите, сохранить или экспортировать готовую блок-схему .
Советы по созданию блок-схемыНезависимо от того, новичок вы или профессионал, у нас есть несколько советов, которые помогут вам создать идеальную блок-схему .
- Изучите и разберитесь в системе из первых рук. Найдите метод, который вы будете использовать для построения блок-схемы.Определите его компоненты, входы и выходы.
- Составьте и отметьте схему. Используйте символы интеллектуально для обозначения определенных частей системы. Всегда соединяйте блоки, используя стрелки, чтобы показать ход процесса. Присвоение имен блокам очень важно для облегчения идентификации.
- Показать ввод и вывод. Убедитесь, что вы точно отметили вход, который указывает начало, и выход, который указывает конец процесса, на блок-диаграмме.
- Проверка точности. Перед тем, как выложить диаграмму для использования, подтвердите ее точность у заинтересованной и вовлеченной команды. Вы все должны быть на одной странице относительно правильности блок-схемы.
Статьи по теме
Блок-схемы| Блок-схемы Electronics Club
| Клуб электроникиАудио | Радио | Электропитание | Контроль
Следующая страница: Принципиальные схемы
Блок-схемы используются для понимания (и проектирования) полных схем путем их разрушения. вниз на более мелкие разделы или блоки.Каждый блок выполняет определенную функцию, и блок-схема показывает, как они связаны между собой. Никаких попыток показать компоненты, используемые в блоке, отображаются только входы и выходы. Такой взгляд на схемы называется подходом систем .
Подключения источника питания (или аккумулятора) редко отображаются на блок-схемах.
Система усилителя звука
Источник питания (не показан) подключен к блокам предварительного усилителя и усилителя мощности.
Микрофон — преобразователь, преобразующий звук в напряжение.
Предварительный усилитель — усиливает слабый звуковой сигнал (напряжение) с микрофона.
Регуляторы тона и громкости — регулируют характер аудиосигнала.
Регулятор тембра регулирует баланс высоких и низких частот.
Регулятор громкости регулирует силу сигнала.
Power Amplifier — увеличивает силу (мощность) звукового сигнала.
Громкоговоритель — преобразователь, преобразующий звуковой сигнал в звук.
Радиоприемник
Источник питания (не показан) подключен к блоку звукового усилителя.
Антенна — принимает радиосигналы от многих станций.
Тюнер — выбирает сигнал только с одной радиостанции.
Детектор — извлекает звуковой сигнал, передаваемый радиосигналом.
Audio Amplifier — увеличивает силу (мощность) звукового сигнала.
Это может быть разбито на блоки, такие как система аудиоусилителя, показанная выше.
Громкоговоритель — преобразователь, преобразующий звуковой сигнал в звук.
Регулируемая система электроснабжения
Трансформатор — понижает напряжение сети переменного тока 230 В до переменного тока низкого напряжения.
Выпрямитель — преобразует переменный ток в постоянный, но выходной постоянный ток меняется.
Smoothing — сглаживает постоянный ток от сильного колебания до небольшого.
Регулятор — устраняет пульсации, устанавливая на выходе постоянного тока фиксированное напряжение.
Для получения дополнительной информации см. Страницу «Источники питания».
Система управления с обратной связью
Источник питания (не показан) подключен к блоку схемы управления.
Датчик — преобразователь, преобразующий состояние контролируемой величины. к электрическому сигналу.
Селектор (управляющий вход) — выбирает желаемое состояние выхода. Обычно это переменный резистор.
Цепь управления — сравнивает желаемое состояние (управляющий вход) с фактическим состоянием (датчик) контролируемой величины и посылает соответствующий сигнал на выходной преобразователь.
Выходной преобразователь — преобразует электрический сигнал в контролируемую величину.
Контролируемое количество — обычно не электрическая величина, т.е.грамм. скорость двигателя.
Обратная связь — обычно не электрическая, датчик определяет состояние контролируемое количество.
Следующая страница: Принципиальные схемы | Исследование
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.
клуб электроники.инфо © Джон Хьюс 2021
Понимание блок-схем электроники на примере
На первом этапе, как понять, что электроника работает легко? Если в электронных схемах используется много устройств, И очень сложно. У нас меньше возможностей понять его работу.
Давайте воспользуемся блок-схемами электроники.
Используется для демонстрации, чтобы мы могли легко понять (дизайн) полные схемы.
Затем мы разделим их на секции или блоки.Каждый блок имеет определенную функцию. Каждый блок связан.
В большинстве случаев мы не будем отображать компоненты, используемые в блоке. Видны только вход и выход.
Итак, глядя на это, можно легко понять или спроектировать всю систему.
Чуть не забыл! Обычно мы не показываем на принципиальной схеме источник питания или аккумулятор.
Читать обратно: Изучение электроники для начинающих с легкостью
Если вы не можете себе этого представить.Позвольте мне показать вам пример блок-схемы многих схем.
Система аудиоусилителя
- Микрофон преобразует звуковые сигналы в электрические сигналы (напряжение)
- Предварительный усилитель повысит сигнал низкого уровня (напряжения) от микрофона до более высокого уровня.
- Регуляторы тона и громкости
мы настроим это, чтобы управлять этим звуком. Регуляторы тона регулируют высокие частоты (Treble) и низкие частоты (Bass).Громкость регулирует уровень громкости звука. - Усилитель мощности увеличивает мощность аудиосигнала.
- Громкоговоритель преобразует электрические сигналы в звуковые.
Система радиоприемника
- Антенна: служит для приема радиосигналов от различных станций.
- Тюнер: Выберите только одну радиостанцию.
- Детектор: извлекает звуковой сигнал из несущей волны, которая идет с радиосигналом.
- Усилитель звука: он усиливает звуковой сигнал до высокой мощности.
(Эта часть может быть разделена на несколько блоков, как и система усилителя выше.) - Громкоговоритель: преобразует электрические сигналы в звук
Регулируемая система электропитания
- Трансформатор снижает напряжение с 220 вольт переменного тока до низковольтный переменный ток.
- Выпрямитель преобразует переменное напряжение в постоянное. Но именно постоянное напряжение не является плавным, имеет сильную пульсацию.
- Сглаживание : фильтрует мощность постоянного тока для сглаживания, чтобы уменьшить пульсации до минимума.
- Регулятор : устранение пульсаций сигнала, стабилизация выхода постоянного тока
Система управления с обратной связью
- Датчик: Преобразователь, преобразующий управляемое состояние в электрические сигналы.
- Селектор (управляющий вход) : Выберите желаемое состояние выхода. Обычно это переменный резистор.
- Цепь управления: — Сравните желаемые условия с управляющего входа и датчика контролируемой величины и отправьте соответствующий сигнал на выходной преобразователь.
- Выходной преобразователь: преобразует электрические сигналы в контрольный объем.
- Контролируемое количество: Обычно не электрическая величина, например скорость двигателя.
- Обратная связь — Нормальный, не электрический ток. Датчик определит состояние контролируемого количества.
Источник благодарности: блок-схемы Джона Хьюеса
Как дела? Вы больше разбираетесь в блок-схемах электроники? Я определенно хочу вам помочь.Вы можете узнать больше.
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
Создать электрическую схему
На вкладке Файл щелкните Новый , а затем выполните поиск шаблонов Engineering .
Щелкните одно из следующего:
Базовая электрическая часть
Схемы и логика
Fluid Power
Промышленные системы управления
Детали и сборочный чертеж
Проектирование трубопроводов и КИП
План водопровода и водопровода
Блок-схема
Системы
Диаграмма TQM
Схема рабочего процесса
Выберите метрических единиц или единиц США , а затем нажмите Создать .
Шаблон открывает немасштабированную страницу документа в книжной ориентации. . Вы можете изменить эти настройки в любое время.
Перетащите фигуры электрических компонентов на страницу документа. Фигуры могут иметь данные. Вы можете вводить данные фигуры и добавлять новые данные в фигуру.
Введите данные формы
Выберите фигуру, щелкните правой кнопкой мыши, щелкните Данные , а затем щелкните Определить данные формы .
В диалоговом окне «Определить данные формы» щелкните каждый элемент и введите или выберите значение.
Используйте инструмент Connector для соединения электрических компонентов или соединителей.
Используйте Connector tool
Щелкните инструмент Connector .
Перетащите из точки соединения на первой фигуре к точке соединения на второй фигуре. Конечные точки соединителя становятся красными, когда фигуры соединяются.
Используйте соединительные формы
Перетащите фигуру соединителя на страницу документа.
Поместите начальную точку соединителя на родительской фигуре (фигуре, из которой вы соединяетесь).
Поместите конечную точку соединителя на дочерней фигуре (фигуре, к которой вы подключаетесь).
Когда соединитель приклеивается к фигурам, конечные точки становятся красными.
Обозначьте формы отдельных электрических компонентов, выбрав форму и введя текст.
Хотите больше?
Найдите образцы шаблонов и схем Visio для электротехники
.