Максимально допустимая нагрузка на плиту перекрытия: Сколько выдерживает плита перекрытия на 1м2: допустимая нагрузка

Содержание

Расчет нагрузки плит перекрытий

Железобетонные монолитные плиты перекрытия являются популярными и по сей день. И определенную сложность для тех, кто затеял бетонирование перекрытия, представляет проведение расчетов, определяющих, какой заказать бетон и какую арматуру. Такие расчеты состоят из нескольких этапов. Их суть – подобрать класс арматуры, класс бетона и такие геометрические параметры, которые бы исключили разрушение плиты при воздействии на неё максимально допустимых нагрузок.

Рассмотрим основные этапы расчетов:

  1. Определяем расчетную длину плиты. Расчетная длина – это расстояние между несущими стенами. Таким образом, для определения необходимых параметров, вам необходимо измерить расстояние от стены до стены, что несложно сделать при помощи рулетки. Проще всего рассчитать однопролетную плиту перекрытия, опирающуюся на две несущих стены. 
  2. Определение класса бетона, арматуры и геометрических параметров плиты. Здесь нужно произвести расчет, учитывая размеры здания и допустимую нагрузку, оказываемую на плиту. Например, для жилых зданий средних размеров принимаются такие значения: высота – 10 см ширина – 100 см, класс арматуры – А400, а бетона – В20.
  3. Определяем нагрузку на плиту. Нагрузки на плиту могут иметь самый разнообразный характер. Если говорить о строительной механике, то все, что установлено на балке неподвижно, подвешено или приклеено на ней, относится к постоянным нагрузкам. А все, что ходит, ездит или как-то двигается создает нагрузку динамическую. И динамические нагрузки, как правило – явление временное, но его также следует учитывать при проектировании.

Чаще всего, перекрытия, установленные в жилых домах, рассчитываются на нагрузку, равную 400 кг/м2. Если плита имеет высоту в 10 см, то её собственный вес добавит к данной нагрузке ещё 250 кг/м2, а стяжка с уложенной на неё керамической плиткой могут добавить ещё порядка 100 кг/м2.

Таким образом, чтобы рассчитать максимально допустимую нагрузку на перекрытие, необходимо умножить полученные значения на коэффициент надежности, равный 1.2. Таким образом, допустимая нагрузка на плиту составляет: q = 1.2 (400 + 100 + 250) = 900 кг/м2.

Это лишь основные расчеты, проводимые профессиональными проектировщиками. Но они дают возможность понять саму суть процесса проектирования перекрытий.

Допустимая нагрузка на плиты перекрытия: ее размеры и виды

Приобретая плиты перекрытия для строительства собственного дома, нужно учитывать не только их размеры, но и нагрузку, под которую рассчитаны данные изделия. Чтобы понять, что такое допустимая нагрузка на плиту перекрытия, нужно привести несколько определений. При расчете конструкций учитывается несколько видов нагрузок. Это постоянные, от веса всех вышележащих элементов (стен, перекрытий и т.д.) и собственного веса плиты, длительные (временные перегородки, оборудование, конструкции пола) и временные, к которым в жилье относятся вес мебели и людей. Какая нагрузка на плиту перекрытия должна интересовать вас?

Первый вид нагрузок учитывается специалистами при разработке проекта. Длительная плюс временная, это и есть нормативная или максимальная нагрузка на плиту перекрытия, превышать которую не рекомендуется. Для многопустотных плит в жилых помещениях она всего 150 кГ/кВ.м. Чем тяжелее конструкция пола, тем меньше запаса остается на мебельные гарнитуры и вес жильцов.

Выбор плиты по допустимой нагрузке

Зная величину нормативной временной нагрузки на плиту перекрытия и технические характеристики материалов остальных конструкций, можно подсчитать изделия с нужными вам параметрами. В маркировке, наносимой на железобетонные многопустотные плиты перекрытия, указана величина несущей способности.

Если нормативный вес временных нагрузок узнать не сложно, то с расчетом постоянных дело обстоит по-другому. Расчеты сложны и учитывается множество параметров, даже таких как ветровые нагрузки и климатические условия. Поэтому, если вы не хотите переплатить за излишний запас прочности, покупая ЖБИ, то за расчетом следует обратиться к специалистам.

Какую нагрузку выдерживают плиты перекрытия сплошного сечения или ребристые определяется аналогично. Только следует знать, что ребристые плиты для частного домостроения не используются.

По значениям, регламентируемым действующим сегодня ГОСТ максимальная расчетная величина нагрузки выпускаемых плит 800 кПа. Для зданий с перекрытиями нестандартных размеров или под заданные технические параметры прочности, плиты рассчитываются индивидуально. Стоимость их соответственно намного больше, чем у стандартных изделий.

какой вес выдерживает, сколько на 1м2

Автор Darya На чтение 7 мин Просмотров 138 Опубликовано Обновлено

Проектирование строений должно учитывать нагрузку на плиты перекрытия (ПП), которая отличается по величине и направлению действия. Для этого проводятся расчеты, помогающие подобрать железобетонное изделие для строительства.

Максимальная нагрузка на ПП: для чего ее надо знать

Для любого проектировщика неизменно встает вопрос, какая должна быть допустимая нагрузка на плиту перекрытия. Точно определить вес, который она способна выдержать, значит избежать разрушения строения.

Внимание! Использование онлайн калькулятора – не гарантирует точных расчетов. При проектировании объекта обращайтесь только к профессионалам!

Виды панелей перекрытия

На возведении жилых и промышленных комплексов используются такие плиты перекрытия:

  • Полнотелая. Отличительная особенность – более надежно предохраняет сооружения, дома от деформаций и трещин. Кроме этого, обладает превосходными звукоизоляционными качествами. Толщина панелей – от 16 см.
  • Пустотная. Эта разновидность панелей широко применяется на монтаже кирпичного или бетонного строения. А также на тех зданиях, где используются стеновые блоки; как правило, идут они на междуэтажные перекрытия. Поскольку в основе это не монолитная конструкция, то имеет повышенную тепло- и звукоизоляционную степень.
  • Ребристая. Наиболее популярна при монтаже кровель различных сооружений промышленного типа. Часто используют для возведения складских помещений, удобна при гаражном либо ангарном строительстве – неотапливаемых и крупногабаритных объектов.
  • Монолитная. Данная разновидность перекрытий тоже относится к разряду прочных, поскольку отличается способностью вынести очень высокую силовую нагрузку. Для производства используются железобетонные (сплошное армирование) конструкции. Популярны на возведении многоэтажных строений.
  • Сплошная доборная. На производство таких плит идет бетон более высокого типа прочности. Повышенная плотность панелей позволяет им выдерживать значительные нагрузки. Они, как правило, применяются в качестве несущих.
  • Облегченная. Эта разновидность перекрытия отличается от других сравнительно небольшим весом. Обладает многопустотной структурой. Рекомендуется применять, когда фундамент не очень прочный, так как другие виды перекрытий будут оказывать более значительную дополнительную нагрузку. В качестве примера можно назвать полистиролбетонные плиты.

Кроме названных видовых разновидностей, существуют подразделения плит перекрытия по пустотной составляющей или ее отсутствии, толщине и т. п.

Для выпуска плит используется бетон разных марок, например, тяжелый, который предполагает большую нагрузку (с маркировкой «т»), идет на плиты многоэтажек. Также разделяется по классу арматура. Производство плит в РФ нормируется ГОСТом и другой документацией.

Преимущества и недостатки плит с полостями

При одинаковых с другими панелями габаритах у пустотелых есть масса положительных отличий:

  • Малая масса. При таких показателях они, тем не менее, считаются высокопрочными и без проблем соперничают с цельной разновидностью плит, которые, благодаря большей своей массе сильнее воздействуют на стены и фундамент объекта.
  • Низкая стоимость. В сравнение с аналогичными плитами цельного типа производство пустотелого перекрытия требует намного меньше бетонной смеси. Это позволяет снизить расценки при составлении сметы.
  • Высокая звуко-теплоизоляция помещения. Это становится возможным благодаря конструктивным отличиям, которые заключаются в присутствии продольных каналов в бетонной массе.
  • Особенности технологии производства. Возможно только промышленное изготовление плит, так как конструкторские и технические решения исключают кустарное.
  • Быстрый монтаж. Установка в отличие от цельной конструкции занимает меньше времени.
  • Габаритное разнообразие. Это дает возможность применения стандартизированных плит на строительстве усложненных перекрытий.

Важно! Плиты сейсмостойкие, их можно устанавливать даже в регионах до девяти бальной сейсмоактивностью!

Кроме этого, популярности продукции придает то, что конструктивные особенности позволяют прокладывать различные инженерные коммуникации в полостном пространстве. Они хороши для отделки, так как имеют ровную поверхность. Плиты вибростойки, не боятся температурных перепадов и сильной влажности.

На заметку! Изделия не усаживаются, коррозиеустойчивые, минимально отклоняются в размерах.

Недостатки тоже есть. Для установки понадобятся грузоподъемники или краны и соответственно – место для их размещения. А значит возрастут затраты. Помимо этого, такие плиты требуют точных расчетов по прочности и выдерживанию статических и динамических нагрузок.

Чтобы установить плиты, нужна формировка армопояса по верхнему стеновому уровню.

Какие виды нагрузок воздействуют на конструкцию

Основной нагрузкой на плиты является масса стройматериалов, включая отделочные, которые применяются при строительстве объекта. Воздействие ветров, осадков и других внешних факторов также бывают значительными для конструкции. Среди общих разновидностей нагрузок на плиту перекрытия выделяются две:

  1. Постоянная. В нее включаются находящиеся выше инженерные коммуникации, стройматериалы, строительные конструкции.
  2. Временная. К ней относят воздействия осадков и ветров, передвижка мебели и т. п. внутри помещения.

Временная подразделяется на кратковременную и длительную.

По характеру нагрузки, которая накладывается на плиту, выделяют:

  1. Статическую. Она обусловлена воздействием отделки на верх и низ панели. К ней же относятся: подвесная система потолка, перегородки из кирпича и иные массивные конструкции.
  2. Динамическую. Образуется при перемещениях по горизонтали весомых предметов. Данное усилие создается как человеком, так и пушистыми членами семьи (кошка, собака). Или какими-нибудь другими экзотическими питомцами.

Кроме указанных выше разновидностей нагрузок, есть еще:

  • точечная;
  • распределенная.

Каждой присущ свой порядок приложения нагрузки на панели перекрытия. При множественных локализациях это будет считаться распределенной нагрузкой. Сюда причисляют натяжные потолки с располагающимися шагами крепежей 50 см. При размещении объекта в одном месте – сосредоточенной (точечной). Как пример – боксерская груша, весом 0,2 тонны.

Вкупе с двумя названными выше видами нагрузки существует еще один – комбинированный, который встречается довольно часто. Как пример – предмет на ножках. Здесь учитывается вес объекта и точечное усилие, создаваемое всеми ножками по отдельности.

Как рассчитать предельные нагрузки

Допустимая нагрузка на плиту перекрытия для пустотного типа одна, для монолитного – другая. Для вычисления предельного значения пустотелой продукции исходными показателями служит масса модели. Затем производится расчет площади несущей поверхности. У типовых панелей форма, как правило, прямоугольная. Для нахождения искомой квадратуры ширина умножается на длину.

Чтобы определить предельный показатель допустимой нагрузки, умножается максимально допустимая нагрузка на 1 кв. метр на S-площадь плиты. Результат выражается единицей массы. От этого показателя минусуется вес непосредственно панели. Плюс к этому уменьшается результат на массу:

  • теплоизоляционного материала;
  • стяжки;
  • напольного покрытия.

Суммарный показатель может разниться. Чтобы обеспечить необходимую прочность и долгий срок службы, нужно добиться в итоге суммарной массы данных элементов на 1 кв. м. не более 1,5 ц или 150 кг.

Это и будет являться показателем допустимой нагрузки плиты железобетонной, которую рассчитывали. Как правило, он равен сотням килограммов. Из него вычитаем 150 кг/м2, приходящийся на статическую и динамическую нагрузку, минимум. Оставшийся вес не ограничен по применению – либо на перегородки, либо – на монтаж какого-то декора.

На заметку! Если не получается соблюсти рамки нужного показателя, необходимо перераспределить плиточную нагрузку, используя меньшие по весу теплоизолятор или покрытие пола.

Способ пересчета нагрузок на квадратный метр

По этой методике находится нагрузочная выдержка ПП стандартного типа. Зная габариты плиты и сколько она весит, производятся:

  • Расчеты площади. ЖБИ квадратной формы – длина умножается на ширину. В других ситуациях – производится разделение на простые составляющие, вычисляются квадраты каждой и затем суммируются (в м2).
  • Определение загрузочной способности (макс.). Умножается полученный результат на коэффициент, который соответствует загрузке по максиму. Размерность полученного значения – т. От загрузочной способности вычитается вес изделия.
  • Определение нормативного значения массы заливаемой стяжки и декор-покрытия. Средний (для индивидуального строительства жилья) показатель нагрузки на ПП от стяжки и покрытия принимается как 0,20 – 0,25 т/м2.
  • Расчеты суммарного веса будущего пола. Умножается нормативный показатель на площадь.
  • Расчеты запаса прочности. Вычитается от разности загрузочной способности и веса плиты вес пола.

И, наконец, делится полученный результат на общую напольную площадь в кг и сравнивается с расчетными цифрами. При полученной нагрузке на ПП менее 800 кг/м2 – прочность хорошая.

Максимальная нагрузка на плиту перекрытия в точке приложения усилий

Максимум приложения статической нагрузки в одной точке определяется с помощью коэффициента запаса 1.3. Его следует умножить на норматив 0,8 т/м2. Получается в итоге – 0.8х1.3=1.04 т. При динамических нагрузках, действующих в одной точке, коэффициент запаса рекомендуется поднять до 1.5.

Предельная нагрузка на плиту перекрытия. Пустотные плиты перекрытия: ГОСТ, размеры, нагрузка

[REQ_ERR: SSL] [KTrafficClient] Something is wrong. Enable debug mode to see the reason.

Сергей южанин , Бобер Живу здесь.

Бобер Сравниваю маркировку различных поставщиков ЖБ и не понимаю. И еще вопрос. Бобер , Torpedaa Новичок.

Максимальная нагрузка на плиту перекрытия

ПБ- Плиты перекрытия без опалубочного формирования. Бывают облегченные с толщиной мм и стандартная мм. Выдерживают точно такие же нагрузки как и плиты серии ПК только по приятней выглядят.

Площадь квартиры — 44 м 2 , планируется стяжка, цементно-песчаная, чтобы всё было по уровню необходимо 10 см стяжки. Скажите, с точки зрения нагрузки на плиты это безопасно? То есть нагрузка допустима, даже если у нас лежит плита с минимальной несущей способностью. Тем более что при выравнивании такая толщина стяжки видимо, будет не по всей площади? Где-то 10 см, а где-то ноль или около того.

Torpedaa , Lexxal Участник. Добрый день!

Максимально допустимая нагрузка на плиту перекрытия

Далее где плитка где ламинат. Какой запас по нагрузке на плиты останется?

Плиты пкт,пкт,пкт,пк АтVт. Lexxal , Armarb Живу здесь.

Lexxal , вам самому по силам ответить на этот простой вопрос, достаточно взять калькулятор, просуммировать все материалы пирога пола и отнять от кг. Armarb , А вес 1 кв.

Характеристики пустотных плит перекрытий

Макс Живу здесь. Макс , Rolandspb Живу здесь. Rolandspb , При всем к вам уважении, если я бы мог посчитать нагрузки, вопрос задавать было бы не нужно. Почти копирую из соседней темы: дом со стенами кирпич-блок-кирпич шириной 13м50см. В длину 1 этажа дом разбит поровну поперечной стеной той же толщины.

Подписывайтесь на группу ВКонтакте! У нас много полезных советов по хозяйству и обустройству!

Добавляется вес плиты, около двух с половиной центнеров, а также стяжки и керамика могут добавить еще около ста кг. Общий вес в кг умножают на коэффициент надежности, который составляет 1.

Все нормы расчета строго нормированы. Если надо качественно и в кратчайшие сроки построить автодорогу, которая выдержит достаточно насыщенный поток грузовой техники большого веса, то лучшего стройматериала, чем плиты железобетонные дорожные, вам не найти.

Размеры и вес

Если к тому же учесть, что плитам. Железобетонные плиты перекрытия называемые также панелями перекрытия сейчас изготавливаются как монолиты из обычного бетона тяжелого или из керамзитобетона, который более легок, с установленной внутри стальной арматурой. Ни один разумный человек не начнет строить дом, не приготовив для него крепкий, добротный фундамент.

В наше время чаще всего практически для любого мало-мальски солидного сооружения, не говоря уж о жилом доме, фундамент делается бетонный.

Ребрестые плиты — это плита покрытия и перегородки на них не опираются. Есть и ребрестые плиты перекрытия но для пром зданий и высота этих плит мм.

Что выбрать для кровли — сэндвич-панели или кровельный профлист?

Эта статья даст на Ваш вопрос — мы рассмотрим все характеристики данных материалов, способы их укладки на крышу и покажем примеры. Обычно слово бетон используют как синоним прочности, но и этот долговечный широко используемый материал время от времени нуждается в ремонте.

Если вы хотя бы раз сталкивались с процессом строительства или осуществляли ремонт квартиры, то вам должно быть известно, что собой представляют пустотные плиты перекрытия. Их значение сложно переоценить. Особенности конструкции, ее основные характеристики и маркировки учитываются в процессе работ. Эти знания позволяют определить, каков предел полезной и декоративной нагрузок способна выдержать плита.

Чаще всего для этого используется ремонтная смесь для бетона Ceresit. Этот материал давно стал самым популярным на строительном рынке. Вопрос от читателя: Больше двух лет я живу в новом доме.

В связи с необходимостью быстрого переезда сначала были сделаны ванная комната и кухня. Стены в ванной комнате, а также пояс рабочей зоны над столешницей в кухне были обложены керамической.

Тема в разделе » Перекрытия «, создана пользователем SystemSpirit , Искать только в заголовках Сообщения пользователя: Имена участников разделяйте запятой.

Создание стильного и оригинального интерьера собственного дома зависит не только от правильно подобранной мебели и отделки стен. Для того чтобы сделать свое жилье уютным и придать ему более экстравагантный вид, стоит правильно подобрать осветительные приборы. Смотрите также в этой категории: Железобетонные дорожные плиты Если надо качественно и в кратчайшие сроки построить автодорогу, которая выдержит достаточно насыщенный поток грузовой техники большого веса, то лучшего стройматериала, чем плиты железобетонные дорожные, вам не найти.

Если к тому же учесть, что плитам Железобетонные пустотные плиты перекрытия Железобетонные плиты перекрытия называемые также панелями перекрытия сейчас изготавливаются как монолиты из обычного бетона тяжелого или из керамзитобетона, который более легок, с установленной внутри стальной арматурой.

Максимально допустимая нагрузка на плиту перекрытия

Максимально допустимая нагрузка на плиту перекрытия

Для обустройства перекрытий между этажами, а также при строительстве частных объектов применяются железобетонные панели с полостями. Они являются связующим элементом в сборных и сборно-монолитных строениях, обеспечивая их устойчивость. Главная характеристика – нагрузка на плиту перекрытия. Она определяется на этапе проектирования здания. До начала строительных работ следует выполнить расчеты и оценить нагрузочную способность основы. Ошибка в расчетах отрицательно повлияет на прочностные характеристики строения.

Нагрузка на пустотную пелиту перекрытия

Виды пустотных панелей перекрытия

Панели с продольными полостями применяют при сооружении перекрытий в жилых зданиях, а также строениях промышленного назначения.

Железобетонные панели отличаются по следующим признакам:

  • размерам пустот;
  • форме полостей;
  • наружным габаритам.

В зависимости от размера поперечного сечения пустот железобетонная продукция классифицируется следующим образом:

  • изделия с каналами цилиндрической формы диаметром 15,9 см. Панели маркируются обозначением 1ПК, 1 ПКТ, 1 ПКК, 4ПК, ПБ;
  • продукция с кругами полостями диаметром 14 см, произведенная из тяжелых марок бетонной смеси, обозначается 2ПК, 2ПКТ, 2ПКК;
  • пустотелые панели с каналами диаметром 12,7 см. Они маркируются обозначением 3ПК, 3ПКТ и 3ПКК;
  • круглопустотные панели с уменьшенным до 11,4 см диаметром полости. Применяются для малоэтажного строительства и обозначаются 7ПК.

Виды плит и конструкция перекрытия

Панели для межэтажных оснований отличаются формой продольных отверстий, которая может быть выполнены в виде различных фигур:

  • круга;
  • эллипса;
  • восьмигранника.

По согласованию с заказчиком стандарт допускает выпуск продукции с отверстиями, форма которых отличается от указанных. Каналы могут иметь вытянутую или грушеобразную форму.

Круглопустотная продукция отличается также габаритами:

  • длиной, которая составляет 2,4–12 м;
  • шириной, находящейся в интервале 1м3,6 м;
  • толщиной, составляющей 16–30 см.

По требованию потребителя предприятие-изготовитель может выпускать нестандартную продукцию, отличающуюся размерами.

Подбирая изделия, нужно учитывать их вес, который должен соответствовать прочностным характеристикам фундамента.

При выполнении проектных работ следует обращать внимание на индекс в маркировке изделий, чтобы избежать ошибок. Подбирать изделия необходимо по размеру, уровню максимальной нагрузки и конструктивным особенностям.

Максимально допустимая нагрузка на плиту перекрытия

Для обустройства перекрытий между этажами, а также при строительстве частных объектов применяются железобетонные панели с полостями. Они являются связующим элементом в сборных и сборно-монолитных строениях, обеспечивая их устойчивость. Главная характеристика – нагрузка на плиту перекрытия. Она определяется на этапе проектирования здания. До начала строительных работ следует выполнить расчеты и оценить нагрузочную способность основы. Ошибка в расчетах отрицательно повлияет на прочностные характеристики строения.

Нагрузка на пустотную пелиту перекрытия

Толщина перекрытия дома: оптимальные размеры

Определение понятия

Перед тем как выпустить плиту перекрытия в масштабное производство изделие проходит ряд испытаний, в ходе которых:

  • проверяют допустимую нагрузку на изделие;
  • определяют, какой вес выдерживает конструкция без прогибов;
  • устанавливают несущую способность панели.

По данным параметрам строители выбирают изделие нужной формы, с оптимальными размерами и прочностью. Основные технические характеристики зашифрованы в маркировке:

  • тип;
  • размеры по длине и ширине;
  • предельная нагрузка, этот показатель указывает на сколько килограммов разрешено загрузить, учитывая собственный вес, площадь в 1 м2.

С помощью несущей способности устанавливают, как поведет себя плита при эксплуатации, если на нее будут действовать динамические и статистические нагрузки. Технические способности плит отражают в сопроводительной документации.

Данные берут из расчетов, подтвержденных испытаниями на прочность, где учитывается сумма грузов, которые теоретически могут находиться на этаже:

  • стяжка с напольным покрытием;
  • перегородки;
  • меблировка с оборудованием;
  • техника с вещами;
  • люди, животные.

Под нагрузками на железобетонные панели перекрытия, следует понимать воздействие собранных всех возможных усилий на общую поверхность изделий. При расчете проектировщики учитывают особенности здания, коэффициенты кратковременных и длительных, действующих сил.

Зачем нужно делать?

Застройщик, перед тем как устанавливать перекрытие, должен выполнить расчет этой ответственной конструкции. Поскольку эти вычисления относятся к разряду сложных, лучше поручить их выполнение специалистам.

Необходимость такого расчета объясняется особой ролью плиты в обеспечении прочности и долговечности домостроения. Она принимает на себя нагрузки от расположенных выше конструкций и передает их через стенки на основание дома. Поэтому правильно выполненный расчет МПП имеет важное значение для дома в целом.

Если конструкция будет установлена без применения предварительных расчетов, она может не выдержать фактическую весовую нагрузку, что приведет к массовому процессу трещинообразования и даже вызвать более серьезные дефекты в конструкции, вплоть до полного ее разрушения.

Поэтому главной задачей такого расчета является гарантия требуемого запаса прочности. Для этой цели нужно рассчитать габариты плиты, планируемые нагрузки на МПП и профессионально выбрать диаметры поперечной и продольной арматуры.

Расчет выполняется с использованием нормативов и предельных нагрузок, установленных СНиП 2.01.07, изданного в 1985 году.

Расчет пошагово:

  1. Определяют геометрические характеристики МПП, класс арматуры и марку бетона. В момент выбора марки бетона необходимо принять во внимание, что данный стройматериал неоднородный, в связи, с чем его физико-механические характеристики проявляют себя неравномерно.Сопротивление бетонного слоя на сжатие должно приниматься не выше, чем соответствующий показатель у арматуры, поскольку на растяжение фактически работает только армокаркас. Чаще всего, при возведении таких конструкций в домах применяют бетон марок м250/350 (В 20/25). Для армокаркаса применяют арматура А400/500.
  2. Высчитывают все нагрузки на МПП. С этой целью необходимо суммировать вес плиты и вертикальные нагрузки. Толщину ее определяют в зависимости от пролета, а массу, учитывая плотность определенной марки бетона. Согласно СНиП нормативные нагрузки от расположенных выше стройконструкций на проектируемое МПП для жилых помещений принимают в диапазоне 250-800 кг/м2.
  3. Определяют предельно допустимый изгибающий момент. Наибольший показатель такого напряжения, всегда воздействует на центр конструкции, при полном опирании ее по периметру на стенки.
  4. Подбирают минимально допустимое сечение рифленой арматуры. Класс ее подбирается по значению ξR, определяющему дистанция от центра сечения прутьев армокаркаса до нижнего среза перекрытия. Его наименьший показатель должен быть не менее Д арматуры, не ниже 10 мм. Увеличение этого расстояния приводит к повышению прочности сцепления арматуры в бетонной массе.

Справка. Нормативами определены предельные минимальные диаметры: не менее 10 мм для 2-х рядного каркаса и 12 мм для однорядного, тип вязки каркаса определяется длиной перекрытия.

Виды и краткая классификация плит

Разумеется, в первую очередь различают эти элементы по типу назначения, используемому материалу и конфигурации. Краткий обзор каждого показателя и основные критерии выбора подходящих перекрытий рассмотрены далее.

Как использовать плиты перекрытия Сортамент размеры и другие данные строительного материала можно узнать из данной статьи.

По виду назначения:

  • Межэтажные используются в многоэтажном строительстве.
  • Подвальные расположены между подвалом здания и первым этажом.
  • Цокольные отделяют этаж от подолья.
  • Чердачные могут использоваться даже для одноэтажных домов, отделяя чердак.

В зависимости от предназначения несущего элемента необходимо просчитать его габариты и необходимую нагрузку. Бывают перекрытия с использованием балочных конструкций, а есть просто однородные монолитные элементы. Прежде всего также следует определиться и с видом используемого материала: дерево, металл или железобетон.

Железобетонные балки

Бетонные конструкции способны перекрыть пролеты от 3 до 7,5 метра. Частота укладки не менее 60 сантиметров. Расстояние между балками заполняют бетонными растворами и пустотелыми блоками.

Положительных моментов два:

  1. Перекрывается более широкое расстояние, нежели способны металлические и деревянные перекрытия.
  2. Не требуется дополнительная звукоизоляция и защита от вредителей.

Негативная сторона: самостоятельно такую балку установить сложно, требуется привлечение специализированной техники, а значит увеличение затрат.

Обычно это монолитные плиты, в которых нет четко выраженных конфигураций, иначе их еще называют безбалочными. Чаще всего используются железобетонные пустотелые панели или сплошные плиты из легких бетонов.

Многопустотные плиты перекрытия серия 1.141 1 используется именно так как указано в статье.

Преимущества

  • Высокая прочность.
  • Выдерживают нагрузку более 200 кг/м².
  • Не подвержены гниению и порче вредителями.

Недостатками станет необходимость привлечения специальной техники для установки, а также учет стандартных габаритов плит при планировании дома. Некоторые предприятия могут сделать плиты под заказ, но это также дополнительные затраты. Также для установки плит необходим достаточно прочный фундамент и толщина стен не менее 25 см. Щели между плитами необходимо заделать цементом. Огромным преимуществом становится именно показатель выдержки нагрузки на пустотные плиты перекрытия.

Деревянные

Самый распространенный и доступный материала, причем используются деревянные балки для разных домов, не только из дерева. На несущие балки, установленные поперек самой узкой стены, существуют некоторые ограничения:

  • Межэтажные перекрытия: можно перекрывать не более пяти метров.
  • Чердачное перекрытие: максимальная длина балки не должна превышать шести метров.

Эти цифры не просто прихоть, а тщательно просчитанные величины. Размер сечения деревянных балок также будет влиять на способность несущей конструкции выдерживать заданные нагрузки. Основные показатели сведены к таблице.

Железобетонные плиты перекрытия размеры и другие данные указаны в статье.

Расчет деревянной балки для перекрытия жилых домов:

№№ п/п: Сечение несущей балки перекрытия: Шаг установки несущих балок для разных перекрываемых расстояний, см:
3 метра: 3,5 метра: 4 метра: 4,5 метра: 5 метров:
МП ЧП МП ЧП МП ЧП МП ЧП МП ЧП
1. 5×16. 80 120 60 90 45 65 50 40
2. 6×20. 125 185 80 135 70 105 55 80 45 65
3. 10×10. 60 90 45 70 35 50 40

МП — это условное обозначение межэтажного перекрытия. ЧП соответственно — чердачное перекрытие. Если в графе стоит «-», использование такой балки для приведенного расстояния небезопасно. Половая доска также должна быть достаточно прочная, толщиной не менее 3 см.

Двутавровая деревянная балка перекрытия цена, а так же остальные характеристики строительного материала указаны в этой статье.

По таким параметрам можно ориентироваться при создании проекта строительства. При этом следует учитывать характерные особенности используемого материала. Обычно для балок используется древесина хвойных пород деревьев, следовательно, даже, несмотря на специальные пропитки и технологию просушки, материал не лишен некоторых нюансов натурального сырья.

Деревянные балки перекрытия размеры цена и другие данные описаны в этой статье.

Преимущества

  • Доступная стоимость.
  • Относительно легкий вес.
  • Возможность самостоятельного монтажа без привлечения спецтехники и дополнительных работников.
  • Быстрая установка.
  • Широкий выбор и возможность изготовления под заказ.

Среди недостатков наиболее характерные для древесины: гниение, разрушение под воздействием грибка, насекомых – вредителей, пожароопасность и старение. Именно поэтому перед установкой используются различные составы для обработки. Они придадут дереву дополнительную прочность, огнеупорность и стойкость к бактериологическим атакам. Дополнительно места соприкосновения с каменными и металлическими поверхностями лучше обернуть рубероидом для создания необходимой гидроизоляции. Для этих же целей можно использовать монтажную пену.

Монолитная

Если конфигурация здания не позволяет использовать стандартные готовые плиты, можно выбрать следующий вариант — заливка железобетонной конструкции своими силами. Процесс этот трудоемкий и продолжительный, но усилия сторицей окупятся благодаря долгому сроку службы и прочностным характеристикам.

Для этого необходимо установить несущие балки, опалубку и систему армирования. Вся конструкция заливается бетоном, для которого использовался цемент марки не ниже 200. Выдерживается плита не менее 28 дней до полного застывания. Заливка осуществляется сразу, для этого необходима как минимум бетономешалка приличного объема, в идеале лучше приобрести готовый раствор в необходимом количестве. Как правило, для несущей способности вполне буде достаточно слоя бетона от 10 до 30 см.

Металлические

Бывают разных по конфигурации видов: уголок, швеллер и двутавр. Все они рассчитаны на различную нагрузку, но в отличие от деревянных занимают меньше места, экономнее и долговечнее. Перекрываемый пролет может быть до шести метров. Достоинства: пожаростойкость, не страшны вредители и гниение. Из недостатков можно отметить отсутствие тепло и звукоизоляции. Чтобы это исправить, можно обмотать концы балок войлоком, но обычно это малоэффективно.

В качестве плит перекрытия для металлических балок используются деревянные доски или облегченный бетон, который заливают в опалубку. Второй метод слишком трудоемкий и применяется в особо исключительных случаях. А про то, где используют двутаровые балки, их вес и габариты.

Сборно – монолитное

Улучшенная версия предыдущего варианта, где место плит перекрытия используются пустотелые блоки, сверху они заливаются слоев бетона. Преимуществами станут более легкий монтаж и хорошее качество покрытия. Благодаря таким конструкциям можно воплощать любые возможные архитектурные проекты. Недостатком будет трудоемкой процесс укладки и транспортирования блоков.

Конструктив и параметры плит

Плитой перекрытия называется плоский (как минимум одна поверхность) элемент, укладываемый горизонтально для разделения этажей, и несущий определённые нагрузки. Номинальные размеры плит соответствуют пролёту между координационными осями здания, но фактически параметры отличаются. Разницу составляют технологические зазоры, необходимые для производства монтажа.

Сплошные

Такое изделие представляет собой плоскую плиту с постоянным сечением. Его нижняя поверхность уже готова под покраску, а на верхней очень удобно обустраивать пол. Толщина плиты перекрытия в этом случае имеет всего 2 варианта: 120 мм (марка 1П) и 160 мм (марка 2П). Могут опираться не только по двум сторонам, но и по всему контуру.

Многопустотные

Пустотные плиты перекрытия пк придуманы для того, чтобы уменьшить вес конструкций и при этом снизить их звукопроницаемость. Если в старом стандарте был предусмотрен только один вариант толщины (220 мм) и два варианта диаметра отверстий (159 и 140 мм), то в новом документе список типоразмеров сильно расширился.

  • 1ПК: 220/159 – опираются на 2, 3 или 4 стороны;
  • 2ПК: 220/140 – так же три варианта опирания;
  • 3ПК: 220/127 – варианты опирания те же;
  • 4ПК: 260/159 – опираются только по двум сторонам;
  • 5ПК: 260/180 – опора на 2 стороны;
  • 6ПК: 300/203 – тоже с двухсторонней опорой;
  • 7ПК: 160/114 – 2 опоры;
  • ПГ: 260 мм, пустоты грушевидные;

Ширина плит 1ПК-4ПК варьируется от 1000 до 3600 мм, длина – от 2400 до 7500 мм. У 5ПК и ПГ типоразмеров три: 1000*6000 мм; 1200*9000 мм; и 1500*12000 мм. 6ПК бывают только 6-метровой длины. 7ПК имеют 4 варианта ширины в пределах 1000-1800 мм, длина варьируется от 3600 до 6300 с интервалами в 300 мм.

На заметку! У плит, предназначенных для опирания на две или три стороны, за длину принимается то ребро, которое не опирается на стены или полки ригелей. Для изделий, опирающихся по всему контуру, длиной будет являться меньшая сторона в плане.

Плиты ПБ толщиной 220 мм изготовляются на стендах, с применением метода непрерывного формования. Форма и размеры пустот на них могут устанавливаться техническими условиями.

Ребристые

Плиты, имеющие рёбра жёсткости и толщину 300 мм, могут выдерживать гораздо большие нагрузки, чем сплошные или пустотные, для чего их внутренняя арматура подвергается предварительному напряжению. Поэтому их применяют не в жилищном строительстве, а при возведении общественных или производственных зданий, проектируемых по каркасным технологиям. Стандарт у этих изделий свой – 21506, последние изменения в него были внесены в 2018 году, хотя первое издание датируется 1987 годом.Размерный ряд этих плит не столь внушителен, как в случае с многопустотными. Существует всего три типоразмера:

  • П1 – 5650*2985 мм;
  • П2 – 5650*1485 мм;
  • П3 – 5650*935 мм.

Вес зависит не только от размера, но и от вида применяемого бетона и его плотности. К примеру, плита 3-х метровой ширины из бетона плотности 2500 кг/м3 будет весить 3,85 тн, а если плотность бетона 2000 кг/м3 – то вес окажется почти на 800 кг меньше – 3,08 тн.

По указанному выше ГОСТу изготавливаются только плиты толщиной 300 мм. Техусловия на изготовление плит с толщиной 400 мм, используемых исключительно в строительстве промышленных зданий, изложены в другом документе (27215). Все прочие типоразмеры изготавливаются либо по сериям, либо по проектам конкретных объектов.

Примечание! В отличие от пустотных плит, которые бывают только сборными, сплошные и ребристые плиты могут быть выполнены и в монолите.

Преимущества применения плит перекрытий

Технология возведения перекрытий в виде армированных бетонных плит обладает целым рядом преимуществ, среди которых:

  • возможность сооружения перекрытий для зданий и сооружений с практически любыми габаритами, независимо от линейных размеров. Единственным нюансом являются конструктивные особенности зданий. При слишком большой площади покрытия для устойчивости перекрытий, отсутствия провисаний устанавливаются дополнительные опоры. Для домов и сооружений, стены которых выполнены на основе газобетона для установки плиты железобетонного перекрытия осуществляют монтаж дополнительных опор, изготовленных из стали или бетона;
  • отсутствие необходимости масштабных отделочных работ на внутренней части поверхности, которая, как правило, благодаря технологии монолитного литья имеет гладкую и ровную форму;
  • высокая степень звукоизолирующих свойств. Принято считать, что плита перекрытия толщиной 140 мм обладает высокой степенью шумоподавления, обеспечивающего комфортность проживания в доме для человека;
  • конструктивно данная технология обладает гибкими инструментами для строительства различных архитектурных форм и объектов. Так, например, загородный дом можно с легкостью оборудовать балконом на втором этаже, который будет иметь необходимые размеры и конфигурацию;
  • высокий уровень прочности и долговечности строительной конструкции перекрытии в целом, который обусловлен набором прочностных характеристик армированного бетона.

Различные виды нагрузок

Всякое перекрытие состоит из трех частей:

  • верхняя часть, куда входят напольное покрытие, стяжки и утепление, если сверху расположен жилой этаж;
  • нижняя часть, состоящая из отделки потолка и подвесных элементов, если снизу тоже жилое помещение;
  • конструкционная часть, которая все это держит в воздухе.


Плиты перекрытия весят очень много, поэтому их нужно устанавливать только с помощью крана.

Плита перекрытия является конструкционной частью. Верхняя и нижняя часть, то есть отделка пола и потолка создает нагрузку, которую называют постоянной статической. К этой нагрузке относятся все подвешенные к перекрытию элементы – подвесные потолки, люстры, боксерские груши, качели. Сюда же относится то, что встанет на перекрытии – перегородки, колонны, ванны и джакузи.

Есть еще так называемая динамическая нагрузка, то есть нагрузка от перемещающихся по перекрытию объектов. Это не только люди, но и их питомцы, ведь сегодня некоторые люди обзаводятся экзотическими домашними любимцами, например, хряками, рысями или даже оленями. Поэтому вопрос о динамической нагрузке важен как никогда.

Помимо этого, нагрузки бывают распределенные и точечные. Например, если к перекрытию подвесить боксерскую грушу в 200 кг, то это будет точечная нагрузка. А если смонтировать подвесной потолок, каркас которого через каждые 50 см крепится подвесами к перекрытию, то это уже распределенная нагрузка.

При расчете точечной и распределенной нагрузки встречаются и более сложные случаи. К примеру, при установке ванны емкостью 500 л нужно учитывать не только распределенную нагрузку, которую создаст вес наполненной ванны на всю площадь опоры (то есть площадь между ножками ванны), но и точечную нагрузку, которую создаст каждая ножка на перекрытие.

Расчет точечной нагрузки

Данный параметр должен выполняться очень грамотно и расчетливо. Если нагрузка будет приходиться в одну точку, то это будет сильно влиять на срок службы перекрытия.

Справочники по строительству приводят формулу:

800 кг/кв.см × 2 = 1600 кг.

Следовательно, одна индивидуальная точка способна выдержать 1600 кг.

Однако при более точном расчете необходимо учесть коэффициент надежности. Его значение для жилого здания берется 1,3. В результате:

800 кг/кв.см × 1,3 = 1040 кг.

Но, даже имея данный безопасный размер, желательно точечную нагрузку располагать рядом с несущей конструкцией.

Расчет предельно допустимых нагрузок

Плиты перекрытия могут иметь разные размеры и разную толщину, что влияет на их устойчивость к нагрузкам.

Чтобы узнать, сколько может вынести плита перекрытия, нужно сначала изготовить подробный чертеж дома (или квартиры). Затем следует высчитать общий вес всего, что понесет перекрытие. Сюда входят перегородки из гипсобетона, песочные и керамзитовые утепления полов, цементные стяжки, вес напольных плит или паркетного покрытия. Затем общий вес нагрузки следует поделить на количество плит, которые понесут все это на себе.

Несущие стены и опоры для крыши должны располагаться исключительно по торцам. Надо отметить, что внутренние части армируются так, чтобы нагрузка передавалась на торцы.

Середина плиты не может принять на себя вес серьезных конструкций, даже если снизу будут подведены опорные колонны или капитальные стены.

Теперь приступаем к общему расчету нагрузки, которую может выдержать плита. Для этого нужно знать ее вес. Возьмем, к примеру, плиту ПК-60-15-8, столь любимую нашими строителями. Согласно ГОСТ 9561-91, вес ее равен 2850 кг.

Для начала высчитаем площадь несущей поверхности плиты: 6 м × 1,5 м = 9 кв.м. Теперь нужно узнать, сколько килограммов нагрузки эта поверхность может вынести. Для этого площадь умножаем на максимально допустимую нагрузку, приходящуюся на 1 кв.м поверхности: 9 кв.м × 800 кг/кв.м = 7200 кг. Вычитаем отсюда вес самой плиты: 7200 кг – 2850 кг = 4350 кг.

После этого подсчитываем, сколько килограммов “съест” утепление полов, стяжка и укладка напольного покрытия. Обычно стараются уложить такое количество утеплителя или цементной стяжки, чтобы оно вместе с напольным покрытием весило не больше 150 кг/кв.м.

Таким образом, при 9 кв.м поверхности плиты она понесет: 9 кв.м × 150 кг/кв.м = 1350 кг. Вычитаем это число из получившейся ранее цифры и получаем: 4350 кг – 1350 кг = 3000 кг , что в пересчете на 1 кв.м дает 333 кг/кв.м.

Что означают эти 333 кг? Поскольку вес самой плиты и напольных покрытий уже вычтен, 333 кг на 1 кв.м – это та полезная нагрузка, которую можно на ней разместить. Согласно СНиП от 1962 года, не менее 150 кг/кв. м из этих 333 кг/кв.м должно быть отведено под будущие привнесенные нагрузки: статическую (мебель и бытовые приборы), и динамическую (люди, их питомцы).

Оставшиеся 183 кг/кв.м могут быть использованы для установки перегородок или каких-либо декоративных элементов. Если вес перегородок превышает рассчитанное значение, следует выбрать более легкое напольное покрытие.

Программы для архитекторов

Профессиональная работа по проектированию зданий и сооружений невозможна без использования технических программ для расчета перекрытия. Если строительство домов является основным занятием, стоит приложить усилия и изучить инструменты по проектированию.

Интерфейс программы ArchiCad для расчета перекрытия

Самыми распространенными техническими инженерными программами в проектных организациях являются ArchiCad, AutoCad, Лира, NormCAD и SCAD.

Плюсы инженерных программ по проектированию:

  1. Универсальность. Любая из программ может быть использована для построения и расчета всех видов перекрытий.
  2. Точность. При подсчете учитывается большое количество факторов, способных повлиять на нагрузку и прочность конструкции. Такая детальность в подсчетах позволяет получить максимально точные данные.
  3. Визуализация. Получив результат, строитель наглядно видит, что и как он должен смонтировать, чтобы получить гарантированный результат.
  4. Подготовка проектной документации. Для профессиональных застройщиков с помощью инженерных программ можно подготовить документацию, которая принимается всеми проверяющими органами.

Недостатки инженерных программ по проектированию:

  1. Утверждение, что подобные инструменты легко освоить — неверно. Зачастую для их использования необходимо специальное техническое образование, знание сопромата и унифицированных строительных норм.
  2. Объем информации: для работы с инженерными программами требуется обладать большим количеством данных, в противном случае можно получить неожиданный результат вычислений.
  3. Ограничение доступа: программы лицензированные, для использования необходима покупка прав на использование.

Данные и показатели для сбора и расчета

Марка изделия позволит определить:

  • вид плиты с габаритами и несущей способностью;
  • бетон, который применялся при изготовлении;
  • есть или нет монтажные петли;
  • армирующий каркас.

От вида изделия зависит его вес, который учитывают при расчете допустимых грузов на данную панель, определяя массу:

  • напольных и потолочных отделочных материалов;
  • всех перегородок;
  • мебели;
  • вещей.

При самостоятельном расчете можно вычислить усилия на общую площадь перекрытия. Для этого нужно сложить все нагрузки на этаже, а сумму разделить на количество смонтированных плит.

Калькуляторы и бесплатные программы для проектирования

Для постройки собственного дома тратить время на изучение сложных программ для расчета перекрытия излишне. Специально для тех, кто строит дом своими руками, разработаны несложные инструменты.

Чертеж плиты перекрытия созданный в специальной программе

Среди подобного софта есть платный и бесплатный, предназначенный для скачивания, и работающий on-line. Программы для расчета деревянных перекрытий. Если дом, который предстоит построить, деревянный, то для расчета перекрытия удобнее воспользоваться простым софтом.

Ultralam

Инструмент для подсчета нагрузки балок из клееного и профилированного бруса. Основное направление – многопролетные элементы.

СИТИС: Форт

Форт — российская разработка ООО «Ситис», предназначенная для подсчета ж/б перекрытия плитами свободной геометрии.
Особенности программы:

  • удобный интерфейс, простой в освоении;
  • конструкция, не требуется самостоятельного построения схемы — вычисление производится автоматически, на основании запрошенных у пользователя данных;
  • удобная цветовая визуализация результата;
  • возможность выбирать уровень точности расчетов;
  • учет характеристик бетона и возможность пополнения библиотеки материалов.

Способ основан на требованиях актуальных СНиП, сертифицирован ГОССТРОЕМ РОССИИ. Предоставляется этот софт на платной основе.

Beam

Инструмент для расчета нагрузки на металлические многопролетные балки:

  • определяет прочность несущей конструкции;
  • позволяет подобрать верное сечение элемента;
  • задает параметры максимальных и минимальных напряжений, углов поворота и прогибов.

Программа является частной разработкой, не сертифицирована. Человек, скачавший её, имеет право бесплатного ознакомления в течение 5 дней.

Интерфейс программы Beam для расчета балок перекрытия

В дальнейшем пользование полным функционалом платное.

Пример расчета монолитной плиты перекрытия в виде прямоугольника ↑

Очевидно, что в подобных конструкциях момент, действующий по отношению к оси абсцисс, не может равняться его значению, относительно оси аппликат. Причем чем больше разброс между ее линейными размерами, тем больше она будет похожа на балку с шарнирными опорами. Иначе говоря, начиная с какого-то момента, величина воздействия поперечной арматуры станет постоянной.

На практике неоднократно была показана зависимость поперечного и продольного моментов от значения λ = l2 / l1:

  • при λ > 3, продольный больше поперечного в пять раз;
  • при λ ≤ 3 эту зависимость определяют по графику.

Допустим, требуется рассчитать прямоугольную плиту 8х5 м. Учитывая, что расчетные пролеты это и есть линейные размеры помещения, получаем, что их отношение λ равно 1.6. Следуя кривой 1 на графике, найдем соотношение моментов. Оно будет равно 0.49, откуда получаем, что m2 = 0.49*m1.

Далее, для нахождения общего момента значения m1 и m2 необходимо сложить. В итоге получаем, что M = 1.49*m1. Продолжим: подсчитаем два изгибающих момента – для бетона и арматуры, затем с их помощью и расчетный момент.

Теперь вновь обратимся к вспомогательной таблице, откуда находим значения η1, η2 и ξ1, ξ2. Далее, подставив найденные значения в формулу, по которой вычисляют площадь сечения арматуры, получаем:

  • Fa1 = 3.845 кв. см;
  • Fa2 = 2 кв. см.

В итоге получаем, что для армирования 1 пог. м. плиты необходимо:

  • продольная арматура:пять 10-миллиметровых стержней, длина 520 -540 см, Sсеч. – 3.93 кв. см;
  • поперечная арматура: четыре 8-миллиметровых стержня, длина 820-840 см, Sсеч. – 2.01 кв.см.

Чертежи и схемы армирования монолитной плиты перекрытия

Чертеж плит выполняет важную функцию – позволяет все заранее просчитать, спланировать и сделать правильно. По схеме и чертежу рассчитывают расход материалов, решают, какую арматуру использовать для перекрытия, определяют все значения и показатели, планируют смету.

Этапы составления чертежа:

Выполнение замеров всех помещений, внешнего периметра дома (если есть проект, перенесение данных из него) Фиксирование на схеме всех отверстий, которые не планируется заливать Перенос контуров всех несущих стен, части промежуточных, выполнение детальной схемы обвязки, сетки, упрочнения с параметрами толщины стержня, мест увязки и стыковки Определение размера ячеек, мест установки продольного крайнего прута до края заливки Расчет габаритов профлиста для нижней плоскости плиты Когда планируются плиты перекрытия на чертеже, сразу распределяют ячейки: обычно их количество не имеет целого числа. И арматуру смещают таким образом, чтобы получить одинаковые размеры уменьшенных ячеек у стен.

Расчет расхода и характеристик материалов: умножение длины стержня на количество, добавление запаса на стыки (около 2%), округление в большую сторону. Просчет нужного диаметра для обустройства нижнего и верхнего слоев Расчет пластиковых фиксаторов и проката на выполнение вставок между сетками Определение объема цементного состава – исходя из площади помещения и толщины перекрытия: сверху и снизу арматура для плиты перекрытия должна покрываться минимум 20 миллиметрами раствора, чтобы полностью защитить металл от внешних воздействий и коррозии. Если общая толщина перекрытия составляет больше 15 сантиметров, арматура для перекрытия уложена в 2 слоя, сверху располагают большую часть раствора В чертеже также указывается количество опорных колонн, опалубки, деревянных балок для платформы под заливку перекрытия и т.д.

Самостоятельный расчет плиты перекрытия: считаем нагрузку и подбираем параметры будущей плиты

Монолитная плита перекрытия всегда была хороша тем, что изготавливается без применения подъемных кранов – все работы ведутся прямо на месте. Но при всех очевидных преимуществах сегодня многие отказываются от такого варианта из-за того, что без специальных навыков и онлайн-программ достаточно сложно точно определить такие важные параметры, как сечение арматуры и площадь нагрузки.

В этой статье мы поможем вам изучить расчет плиты перекрытия и его нюансы, а также познакомим с основными данными и документами. Современные онлайн-калькуляторы – дело хорошее, но если речь идет о таком ответственном моменте, как перекрытие жилого дома, советуем вам перестраховаться и лично все пересчитать!

Составляем схему перекрытия

Давайте начнем с того, что монолитная железобетонная плита перекрытия – это конструкция, которая лежит на четырех несущих стенах, т.е. опирается по своему контуру.

И не всегда плита перекрытия представляет собой правильный четырехугольник. Тем более, что сегодня проекты жилых домов отличаются вычурностью и многообразием сложных форм.

В этой статье мы научим вас рассчитывать нагрузку на 1 кв. метр плиты, а общую нагрузку вам нужно будет вычислять по математическим формулам. Если сложно – разбейте площадь плиты на отдельные геометрические фигуры, рассчитайте нагрузку каждой, затем просто суммируйте.

Проектируем геометрию плиты

Теперь рассмотрим такие основные понятия, как физическая и проектная длина плиты. Т.е. физическая длина перекрытия может быть любой, а вот расчетная длина балки уже имеет другое значение. Ею называют минимальное расстояние между наиболее удаленными соседними стенами. По факту физическая длина плиты всегда длиннее, чем проектная длина.

Важный момент: несущий элемент плиты может быть как шарнирная бесконсольная балка, так и балка жесткого защемления на опорах. Мы будем приводить пример расчета плиты на бесконсольную балку, т.к. такая встречается чаще.

Чтобы рассчитать всю плиту перекрытия, нужно рассчитать один ее метр для начала. Профессиональные строители используют для этого специальную формулу. Так, высота плиты всегда значится как h, а ширина как b. Давайте рассчитаем плиту с такими параметрами: h=10 см, b=100 см. Для этого вам нужно будет познакомиться с такими формулами:

Рассчитываем нагрузку

Плиту перекрытия легче всего рассчитать, если она имеет квадратную форму и если вы знаете, какая нагрузка запланирована. При этом какая-то часть нагрузки будет считаться длительной, которую определяет количество мебели, техники и этажности, а другая – кратковременной, как строительное оборудование во время стройки.

Кроме того, плита перекрытия должна выдерживать и другого рода нагрузки, как статистические и динамические, при этом сосредоточенная нагрузка всегда измеряется в килограммах или в ньютонах (например, нужно будет ставить тяжелую мебель) и распределительная нагрузка, измеряемая в килограммах и силе. Конкретно сам расчет плиты перекрытия всегда нацелен на определение распределительный нагрузки.

Вот ценные рекомендации, какой должна быть нагрузка на плиту перекрытия в плане расчета на изгиб:

Еще один немаловажный момент, который тоже нужно учитывать: на какие стены будет опираться монолитная плита перекрытия? На кирпичные, каменные, бетонные, пенобетонные, газобетонные или из шлакоблока? Вот почему так важно рассчитать плиту не только с позиции нагрузки на нее, но и с точки зрения ее собственного веса. Особенно если ее устанавливают на недостаточно прочные материалы.

Сам расчет плиты перекрытия, если мы говорим о жилом доме, всегда нацелен на нахождение распределительной нагрузки. Она рассчитывается по формуле: q1=400 кг/м². Но к этому значению добавьте вес самой плиты перекрытия, а это обычно 250 кг/м², а бетонная стяжка и чистовой пол дадут еще дополнительные 100 кг/м². Итого имеем 750 кг/м².

Учитывайте при этом, что изгибающее напряжение плиты, которая по своему контуру опирается на стены, всегда приходится на ее центр.

Подбираем класс бетона

Именно монолитную плиту перекрытия, в отличие от деревянных или металлических балок, рассчитывают по поперечному сечению. Ведь бетон само по себе – неоднородный материал, и его предел прочности, текучести и других механических характеристик имеет значительный разброс.

Что удивительно, даже при изготовлении образцов из бетона, даже из одного замеса получаются разные результаты. Ведь здесь много зависит от таких факторов, как загрязненность и плотности замеса, способов уплотнения и других технологических факторов, даже так называемой активности цемента.

При расчете монолитной плиты перекрытия всегда учитывается и класс бетона, и класс арматуры. Само сопротивление бетона принимается всегда на значение, на какое идет сопротивление арматуры. Т.е., по сути, на растяжение работает именно арматура. Сразу оговоримся, что здесь существует несколько расчетных схем, которые учитывают разные факторы. Например, силы, которые определяют основные параметры поперечного сечения по формулам, или расчет относительно центра тяжести сечения.

Подбираем сечение арматуры

Разрушение в плитах перекрытия происходит тогда, когда арматура достигает своего предела прочности при растяжении или текучести. Т.е. почти все зависит от нее. Второй момент, если прочность бетона уменьшается в 2 раза, тогда и несущая способность армирования плиты уменьшается с 90 на 82%.

Происходит армирование при помощи обвязки арматуры из сварной сетки. Ваша главная задача – рассчитать процент армирования поперечного профиля продольными стержнями арматуры.

Как вы наверняка не раз замечали, самые распространенные ее виды сечения – это геометрические фигуры: форма круга, прямоугольника, трапеции. А расчет самой площади сечения происходит по двум противоположным углам, т.е. по диагонали. Кроме того, учитывайте, что определенную прочность плите перекрытия придает также дополнительное армирование:

Если рассчитывать арматуру по контуру, тогда вы должны выбрать определенную площадь и просчитывать ее последовательно. Далее, на самом объекте проще рассчитывать сечение, если взять ограниченной замкнутой объект, как прямоугольник, круг или эллипс и производить расчет в два этапа: с использованием формирования внешнего и внутреннего контура.

Например, если вы рассчитываете армирование прямоугольного монолитного перекрытия в форме прямоугольника, тогда нужно отметить первую точку в вершине одного из углов, затем отметить вторую и произвести расчет всей площади.

Согласно СНиПам 2.03.01-84 «Бетонные и железобетонные конструкции» сопротивление растягивающим усилиям в отношении арматуры А400 составляет Rs=3600 кгс/см², или 355 МПа, а вот для бетона класса B20 значение Rb=117кгс/см² или 11.5 МПа:

Согласно нашим вычислениям, для армирования 1 погонного метра понадобится 5 стержней с сечением 14 мм и с ячейкой 200 мм. Тогда площадь сечения арматуры будет равняться 7.69 см². Чтобы обеспечить надежность по поводу прогиба, высоту плиты завышают до 130-140 мм, тогда сечение арматуры составляет 4-5 стержней по 16 мм.

Итак, зная такие параметры, как необходимая марка бетона, тип и сечение арматуры, которые нужны для плиты перекрытия, вы можете быть уверены в ее надежности и качестве.

Ошибки и сложности, их последствия

Расчет монолитной плиты, практически никто не делает самостоятельно, он выполняется при проектировании дома с применением программного комплекса. Это вызвано тем, что расчет является довольно сложным даже для многих инженеров, а ошибки, допущенные в ходе выполнения расчетов, имеют высокую цену, а порой становятся катастрофическими для всего здания.

Наиболее часто ошибки допускаются в следующих случаях:

  1. Неправильно принята схема расчета балки и ошибки в определении опор.
  2. Неточные замеры фактического пролета.
  3. Неправильно рассчитана толщина монолитной плиты с превышением соотношения 1/30.
  4. Нарушения расчетов по изгибающим моментам.
  5. Неправильно определены показатели по армокаркасу.

В момент доставки мало кто задумывается о несущей возможности плиты перекрытия, а зря.

Все дома имеют запас прочности — он зависит от типа дома, конструктивного решения и возраста постройки. Ниже я привожу виды несущих плит.

В каждом случае нужно делать просчет допустимой нагрузки на плиту перекрытия. Важно просчитать все по формуле и учесть индивидуальные характеристики (возможные прогибы, целостность арматуры, износ и т.д.).

Чтобы не вдаваться в сложные расчеты привожу усредненные данные для типовых домов.

Для типового домостроения применяют плиты перекрытия с нагрузкой до 400 кг/кв.м. В крупнопанельных домах (поздние версии) допустимая нагрузка — 600 кг/кв.м.

Эти величины включают в себя как постоянные (перегородки, стяжка), так и временные (мебель, человек) нагрузки. Нельзя допускать перегруз — это приведет к обрушению. 18 мешков наливного пола — это уже 800 кг.Конструкции дома не должны работать на износ, поэтому не нагружайте плиту перекрытия своего дома.Горе-строители могут настаивать и спорить — им удобно сразу завести все черновые материалы. На первый взгляд это кажется логичным — происходит экономия на доставках, но экономия должна быть рациональной.

[spoiler title=»Источники»]

  • https://stroim-domik.org/stroitelstvo/perekrytiya/vidy-pk/betonnye-i-zhb-pk/harakteristiki-plit/nagruzka
  • https://stroim-domik.org/stroitelstvo/perekrytiya/vidy-pk/betonnye-i-zhb-pk/raznovidnosti-b-i-zhb/monolitnye-b-i-zhb/ustrojstvo-m-b-i-zhb/kak-sdelat-raschet
  • https://bulze.ru/tehnologii/tolshchina-mezhetazhnogo-perekrytiya.html
  • https://nedrabuild.com/tolschina-plity-mezhetazhnogo-perekrytiya/
  • https://m-strana.ru/articles/plity-perekrytiya-razmery/
  • https://oz-gbi.ru/stati/raschet-plity-perekrytiya/
  • https://sib-bastion.ru/konstrukcii/dopustimaya-nagruzka-na-plitu-perekrytiya.html
  • https://sombuka.ru/raschet/maksimal-no-dopustimaya-nagruzka-na-plitu-perekrytiya.html
  • https://Proekt-sam.ru/proektprogramms/programma-dlya-rascheta-perekrytiya.html
  • https://stylekrov.ru/raschet-monolitnoj-plity-perekrytiya.html
  • https://nordtool.ru/rabota/raschet-tolshchiny-plity-perekrytiya.html
  • https://krovlyaikrysha.ru/kak-rasschitat-plitu-perekrytiya.html
  • https://buildandesign.com/normativnaya-nagruzka-na-perekrytie-zhilogo-zdaniya/

[/spoiler]

Как провести расчет предельно допустимых нагрузок на плиту перекрытия

Чтобы избежать разрушения строительных конструкций очень важно правильно рассчитать и знать, какая должна быть допустимая нагрузка на плиту перекрытия. Как уже было отмечено, нагрузки на плиты перекрытия рассчитываются исходя из динамических и статических нагрузок. Чтобы произвести необходимые расчеты потребуется: строительный уровень, рулетка, калькулятор и длинная линейка.

 

 

 

Перед тем как производить расчеты, нужно составить план-схему, проект будущего строения или подробный чертеж. Также необходимо рассчитать приблизительный вес, который будет нести само строение, а именно: гипсобетонные перегородки, плиточное или любой другой вид напольных и настенных покрытий, цементные стяжки, утепления полов. После этого общий вес допустимых нагрузок делят на количество плит, которые должны понести этот вес.

 

Чтобы максимально точно произвести все расчеты и узнать, какую максимальную нагрузку способна выдержать плита перекрытия, важно знать ее вес. Рассмотрим на наглядном примере пустотную плиту ПК-60-15-8, масса которой составляет 2850 кг.

 

Первым делом нужно рассчитать площадь несущей поверхности, которая в нашем случае будет составлять 9 м2 (6 м × 1,5 м = 9 кв.м). На следующем этапе необходимо рассчитать какую предельную нагрузку в килограммах может вынести одна плита. Умножаем полученное значение площади на индекс допустимой нагрузки на 1 м2. Теперь нужно узнать, сколько килограммов нагрузки эта поверхность может вынести: 9 м2 × 800 кг/кв.м = 7200 кг, после чего отнимаем массу плиты. Таким образом, получаем значение 4350 кг, которое и указывает на то, сколько кг выдерживает плита перекрытия.

 

Теперь необходимо произвести расчет, сколько кг заберет утепление полов, бетонная стяжка и напольное покрытие. Как правило, мастера стараются уложить напольный «пирог» чесом не более 150 кг/м2. Умножаем площадь плиты на это значение (9 кв.м × 150 кг/кв.м = 1350 кг) и вычитаем полученное число из значения, которое мы получили ранее, при расчете нагрузки (4350 кг – 1350 кг = 3000 кг). Таким образом на 1 кв.м получается 333 кг/кв.м, что обозначает полезную нагрузку, которую можно разместить на плите перекрытия. Это значение должно включать как статические, так и динамические нагрузки. Оставшееся значение – 183 м2 можно будет использовать для монтажа перегородок или установки декоративных элементов (333 кг/м2 -150 кг/м2 = 183 кг/м2). Если предельный вес устанавливаемых перегородок будет превышать полученное значение, в этом случае нужно выбрать более легкий тип напольного покрытия.

 

При проведении ремонтных работ в домах старых конструкций, в обязательном порядке демонтировать старый слой утепления полов. стяжку, напольное покрытие и примерно оценить их массу в кг. Подбирая новые облицовочные материалы и перегородки нужно учитывать, чтобы их вес и допустимая нагрузка на пол не превышала массы старого, демонтированного покрытия. Не стоит устанавливать в старых домах слишком массивную сантехнику или другие предметы, которые приведут к утяжелению конструкции. Помимо этого статические нагрузки со временем могут накапливаться, что в свою очередь может привести к прогибам и провисанию плит перекрытия. Чтобы не ошибиться в измерениях, рекомендуется пригласить специалиста для проведения детальных расчетов. Расчеты должны соответствовать установленным нормам (СНиПу).

со своего сайта.

Нагрузка на колонну, балку и плиту | Расчеты конструкции колонны Pdf | Как рассчитать размер колонны для здания

Как рассчитать нагрузку на колонну, балку и плиту

Общее Расчет нагрузки на колонны, балки, перекрытия , мы должны знать о различных нагрузках , приходящих на колонну . Обычно , Column , Beam и Slab компоновка — это , видимый в типе рамы структуры .В каркасной конструкции нагрузка составляет , переданная плита на балку , балка на колонну и , в конечном итоге , достигла фундамента здания .

Для расчета нагрузки здания , нагрузки на следующие элементов должны быть рассчитаны на ,


Что такое столбец

Длина колонны обычно составляет в 3 раза больше их наименьшего поперечного размера . Strength любого столбца в основном зависит от от его формы и размера из поперечного раздела , длины , положения и положения столбца .

Колонна — это вертикальный компонент в конструкции здания , который в основном спроектирован , чтобы выдерживать сжимающую и нагрузку продольного изгиба . Столбец является одним из важных структурных элементов строительной конструкции .Согласно Load , поступающему в столбец , размер увеличен или уменьшен .

Расчет нагрузки на колонну


Что такое луч

Балка представляет собой горизонтальный структурный элемент в конструкции здания , который рассчитан на , чтобы выдерживать сдвигающее усилие , изгиб момент и передает нагрузку на колонны на обоих концах из этого. Нижняя часть балки испытывает силу растяжения и силу сжатия верхней части . Следовательно, стальная арматура составляет при условии внизу по сравнению с на наверху балки .


Что такое плита

Плита является структурным элементом уровня здания , который предоставил для создания плоской твердой поверхности .Эти плоских поверхностей из плит , используются для , составляя этажей , крыш и потолков . Это горизонтальный структурный элемент , размер которого может изменяться в зависимости от размера конструкции и площади , а его толщина также может варьироваться.

Но минимальная толщина плиты — это указано для нормальной конструкции около 125 мм . Обычно , каждая плита поддерживается балкой , колонной и стеной вокруг ее.


Нагрузка на колонну, балку и плиту

1) Собственная масса колонны X Количество этажей

2) Собственная масса балок на погонный метр

3) Нагрузка стен на погонный метр

4) Общая нагрузка на плиту (статическая нагрузка + динамическая нагрузка + собственный вес)

Помимо , приведенного выше , нагружающего , колонны также подвергаются изгибающим моментам от до , из которых должно быть , которое считается в окончательном проекте .

Самый эффективный метод для проектирования конструкции — это использование расширенного программного обеспечения для проектирования конструкций , такого как ETABS или STAAD Pro.

Эти инструменты — это сокращенные трудоемкие методы и , требующие ручных расчетов для структурного проектирования , это настоятельно рекомендуется в настоящее время в поле .

для профессиональных структурного проектирования практики, есть несколько базовых допущений , которые мы используем для расчетов структурных нагрузок .

Подробнее : Таблица Excel для расчета количества стали


Расчет конструкции колонны

1. Расчет нагрузки на колонну

мы знаем , что Self вес из Concrete составляет около 2400 кг / м3, , что эквивалентно от до 240 кН и Self вес из Steel составляет около 8000 кг / м3.

Итак, если мы предположим , размер колонки 230 мм x 600 мм с 1% стали и 3 метра стандартная высота , self вес колонки составляет около 1000 кг на этаж, этот id равен от до 10 кН.

  • Объем бетона = 0,23 x 0,60 x 3 = 0,414 м³
  • Вес бетона = 0,414 x 2400 = 993.6 кг
  • Вес стали (1%) в бетоне = 0,414x 0,01 x 8000 = 33 кг
  • Общий вес колонны = 994 + 33 = 1026 кг = 10KN

При выполнении column design расчетов , мы предполагаем, что self вес из колонн находится в диапазоне от от 10 до 15 кН на этаж.


2. Расчет балочной нагрузки

Мы, , применяем тот же метод расчетов также для балок .

мы предполагаем, что каждый метр балки имеет размеров из 230 мм x 450 мм за исключением толщины плиты .

Предположим, что каждый (1 м) метр балки имеет размер

  • 230 мм x 450 мм без плиты.
  • Объем бетона = 0,23 x 0,60 x 1 = 0,138 м³
  • Вес бетона = 0,138 x 2400 = 333 кг
  • Вес стали (2%) в бетоне = 0 .138 x 0,02 x 8000 = 22 кг
  • Общий вес колонны = 333 + 22 = 355 кг / м = 3,5 кН / м

Таким образом, вес self- будет около 3,5 кН на погонный метр .


3. Расчет нагрузки на стену

мы знаем, что Плотность из кирпичей варьируется от от 1500 до 2000 кг на кубический метр.

Для кирпичной стены толщиной 6 дюймов 3 метров высотой и длиной 1 метр ,

счетчик нагрузки / хода должен быть равен 0.150 x 1 x 3 x 2000 = 900 кг,

, что эквивалентно от до 9 кН / м.

Этот метод может быть принят для нагрузки расчетов кирпича на погонных метров для любого кирпича типа с использованием этого метода .

Для газобетона и автоклавного бетона блоков , например Aerocon или Siporex , вес на кубический метр составляет от 550 до кг на кубический метр.

, если , ваши — это с использованием этих блоков для строительства , нагрузки на стену на погонный метр могут составлять всего 4 кН / метр , использование этого блока может значительно снизить стоимость из пр..


4.

Расчет нагрузки на перекрытие

Допустим, плита имеет толщину 125 мм.

Итак, Self вес из каждых квадратных метров плиты будет

= 0.125 x 1 x 2400 = 300 кг, что эквивалентно 3 кН.

Теперь, если мы рассматриваем , конечная нагрузка будет составлять 1 кН на метр, а наложенная нагрузка будет составлять 2 кН на метр.

Итак, из выше данных, мы можем оценить нагрузку на плиту как около от 6 до 7 кН на квадратный метр.


5. Фактор безопасности

В конце концов, после вычисления для всей нагрузки на столбце , не забудьте , чтобы к прибавил к коэффициенту безопасности , который является наиболее важным для любого проекта здания для сейф и удобное исполнение здания в течение расчетного срока службы продолжительность .

Это важный , когда выполняется расчет нагрузки на столбец .

Согласно стандарту IS 456: 2000 коэффициент запаса прочности равен 1,5.

как рассчитать нагрузку на здание pdf скачать

Как рассчитать размер колонны для здания

Столбец является одним из важных элементов любой строительной конструкции . Размер колонны для здания равен , рассчитанному в соответствии с нагрузкой , приходящей на колонну от надстройки .

Для зданий с условиями тяжелой нагрузки , размер колонны равен увеличенному . Размер столбца является важным фактором , тогда как проектирует для любой конструкции здания .

Разница размеров колонн, используемых при проектировании зданий ,

  • 9 ″ x 9 ″
  • 9 ″ x 12 ″
  • 12 ″ x 12 ″
  • 12 ″ x 15 ″
  • 15 ″ x 18 ″
  • 18 ″ x 18 ″
  • 20 ″ x 24 ″
  • Согласно Структурная нагрузка Можно использовать более типоразмера .

Для расчета размера столбца нам требуется следующие данные ,

  • Марка стали
  • Марка бетона
  • Факторизованная нагрузка на колонну

(Примечание: Минимальный размер колонны не должен быть меньше x 9 дюймов. (230 мм x 230 мм)

, следующие за , представляют собой столбец расчетов проекта шагов для определения размера из столбца для здания .

Pu = 0,4 f ck A c + 0,67 f y A sc (Номер статьи: 39,3 Номер страницы: 71 IS 456: 2000)

Pu = осевая нагрузка на колонну

f ck = Характеристики прочности бетона на сжатие

A c = Площадь бетона

f y = Характеристики Прочность бетона на растяжение

A sc = Площадь стальной арматуры

A c = A g — A sc

A sc = 0.01 A г

A c = 0,99 A г

Где A г = Общая площадь колонны

Учитывать 1% стали в колонне,

A c = A g — A sc

Пример: Конструкция квадратная короткая колонна RCC подвергала осевой сжимающей нагрузке в 600 кН . Марка бетона составляет M -20 , а марка стали Fe-500 .Возьмем Steel 1% и Коэффициент надежности = 1,5.

Pu = 600 кН, f ck = 20 Н / мм 2 , f y = 500 Н / мм 2 , сталь = 1%, коэффициент безопасности = 1,5

Колонна RCC

Pu = осевая сжимающая нагрузка на колонну = 600 кН

Факторная нагрузка на колонну = Pu = 600 x 1,5 = 900 кН

P u = 0,4 f ck A c + 0,67 f y A sc

900 x 10 3 = 0.4 x 20 x (0,99 A г ) + 0,67 x 500 x (0,01 A г )

900 x 10 3 = 7,92 A г + 3,35 A г

900 x 10 3 = 11,27 A г

A г = 79858 мм 2

Для квадратной колонны ,

Размер столбца = √79858

Размер колонны = 282,59 мм

Обеспечьте квадратную колонку размером 285 мм x 285 мм

A г = Прилагается = 81225 мм 2

A sc = 0.01 A г = 0,01 x 81225

A sc = 812,25 мм 2

Секция проектирования колонн RCC

Обеспечьте 8 номеров стали диаметром 12 мм с площадью стали = 905 мм 2

Размер колонны для нагрузки 600 кН составляет 285 мм x 285 мм (12 ″ x 12 ″)


Посмотреть видео: Расчет нагрузки на колонну

Часто задаваемые вопросы

Как рассчитать нагрузку на балку?

Факторами, влияющими на общую нагрузку на балку, являются Вес бетона и Вес стали (2%) в бетоне.
Следовательно, Общий вес балки = Вес бетона + Вес стали .
Приблизительная нагрузка на балку размером 230 мм x 450 мм составляет около 3,5 кН / м.

Как рассчитать нагрузку плиты на балку?

Обычно плита имеет толщину 125 мм. Таким образом, собственный вес каждого квадратного метра плиты будет равен произведению толщины плиты и нагрузки на квадратный метр бетона , которая оценивается примерно в 3 кН .
Учитывайте чистовую нагрузку и наложенную временную нагрузку,
Общая нагрузка на плиту будет составлять около от 6 до 7 кН на квадратный метр .

Как продолжить расчет нагрузки на стену?

Расчет нагрузки на стену:
1. Плотность кирпичной стены с раствором находится в диапазоне 1600-2200 кг / м3 . Таким образом, мы будем считать собственный вес кирпичной стены равным 2200 кг / м3
2. Мы будем рассматривать размеры кирпичной стены как Длина = 1 метр, Ширина = 0.152 мм, а высота = 2,5 метра, следовательно, объем стены = 1 м × 0,152 м × 2,5 м = 0,38 м3
3. Рассчитайте статическую нагрузку кирпичной стены, которая будет равна: Вес = объем × плотность, Собственная нагрузка = 0,38 м3 × 2200 кг / м3 = 836 кг / м
4, что равно 8,36 кН / м — это мертвая часть кирпичной стены.

Что такое столбец?

A Колонна — это вертикальный компонент строительной конструкции, который в основном предназначен для выдерживания сжимающей и продольной нагрузки .Колонна — один из важных конструктивных элементов строительной конструкции. В зависимости от нагрузки, поступающей на столбец, размер увеличивается или уменьшается.

Как рассчитать статическую нагрузку на здание

Расчет Статическая нагрузка для здания = Объем элемента x Удельный вес материалов.
Это делается путем простого вычисления точного объема каждого элемента и умножения на удельного веса соответствующих материалов , из которых он состоит, и статическая нагрузка может быть определена для каждого компонента.

Расчет нагрузки на колонну

Объем бетона = 0,23 x 0,60 x 3 = 0,414 м³
Вес бетона = 0,414 x 2400 = 993,6 кг
Вес стали (1%) в бетоне = 0,414x 0,01 x 8000 = 33 кг
Общий вес колонны = 994 + 33 = 1026 кг = 10 кН

Расчет балочной нагрузки

300 мм x 600 мм без учета толщины плиты.
Объем бетона = 0.30 x 0,60 x 1 = 0,18 м³
Вес бетона = 0,18 x 2400 = 432 кг
Вес стали (2%) в бетоне = 0,18 x 2% x 7850 = 28,26 кг
Общий вес колонны = 432 + 28,26 = 460,26 кг / м = 4,51 кН / м

Нагрузка на колонну

Колонна — это вертикальный элемент строительной конструкции, который в основном предназначен для восприятия сжимающей и продольной нагрузки. Длина колонны обычно в 3 раза больше их наименьшего поперечного размера в поперечном сечении.Прочность любой колонны в основном зависит от ее формы и размеров поперечного сечения, длины, расположения и положения колонны.

Расчет статической нагрузки для здания

Собственная нагрузка = объем элемента x удельный вес материалов.
Путем вычисления объема каждого элемента и умножения его на удельный вес материалов, из которых он состоит, можно определить точную статическую нагрузку для каждого компонента.

Расчет динамической нагрузки

Для расчета динамической нагрузки необходимо соблюдать допустимые значения динамической нагрузки в IS-875.Обычно для жилых домов мы принимаем 3 кН / м2. Значение ЖИВОЙ НАГРУЗКИ изменяется в зависимости от типа конструкции, и для этого вы должны увидеть IS-875

.

Расчет нагрузки здания

Строительная нагрузка — это сумма статической, временной, ветровой и снеговой нагрузки, если здание находится в зоне снегопада. Постоянные нагрузки — это статические силы, которые остаются неизменными в течение длительного времени. Они могут находиться в состоянии растяжения или сжатия. Динамические нагрузки в основном переменные или подвижные нагрузки .Эти нагрузки могут иметь значительный динамический элемент и могут включать такие факторы, как удар, импульс, вибрация, динамика всплесков жидкости и т. Д.


Вам также может понравиться:

Пределы спецификаций

на размер укладки плиты на грунте

Графики строительства и экономика подрядчика обычно требуют укладки бетона площадью от 10 000 до 20 000 квадратных футов или от 30 000 до 50 000 квадратных футов при использовании лазерной стяжки. На этом рисунке показана заливка площадью 300 000 квадратных футов, которая была завершена в течение 24 часов при единственном укладке бетона.

Некоторые разработчики ограничивают площадь единственного размещения бетонных плит на земле от 2 000 до 5 000 квадратных футов, но спецификации иногда устанавливают очень строгий предел одиночного размещения в 900 квадратных футов (панель размером 30 x 30 футов). Основное обоснование этих ограничений — вера в то, что они уменьшают растрескивание при усадке, позволяя некоторой усадке произойти перед следующим размещением. Однако нет никаких документов ACI, подтверждающих это рассуждение. Фактически, ACI 302 заявлял с 1980 года, что эта концепция ограниченного размера размещения не дала никаких лучших результатов по усадке, является более дорогостоящей и добавляет время к графику.Документы ACI обсуждаются ниже.

ACI Concrete Craftsman, серия: плиты на земле

ACI использует CCS-1 (10) «Серия мастеров по бетону: плиты на земле» в качестве учебного пособия для сертификации специалистов по отделке плоских работ. В этом руководстве говорится, что «размещение плит на земле может варьироваться от очень маленьких до более 50 000 квадратных футов в одном месте. Графики строительства и экономика подрядчика обычно диктуют ежедневную укладку бетона площадью 10 000–20 000 квадратных футов, если только колесо с лазерным наведением. -монтированная стяжка, в этом случае возможны ежедневные укладки от 30 000 до 50 000 квадратных футов.В руководстве также перечислены «Факторы, которые следует учитывать при определении подходящего размера размещения». Уменьшение усадки или растрескивания при усадке не указано как фактор, который следует учитывать при определении подходящего размера размещения.

ACI 302 Руководство для бетонных перекрытий и перекрытий

ACI 302 заявил о своем возражении против размещения небольших плит как способа минимизировать усадку стыков в 1980 году. Те же самые положения и возражения были высказаны снова в изданиях 1989, 1996 и 2004 годов. ACI 302 придерживался этого возражения против небольших размеров размещения более 30 лет.И хотя разработчики часто ссылаются на ACI 302 в контрактных документах, они не используют часть документа для разработки спецификаций. См. Врезку «Рекомендации по последовательности размещения» для получения информации о положениях ACI 302.1R-04.

ACI 302 также включает 11 различных рекомендаций как передовых методов, которые помогают ограничить растрескивание при усадке. Обратите внимание, что ограничения размера места размещения нет в списке.

«Таким образом, усадка при высыхании бетона, содержащего водоредукторы, все еще может вызвать неприглядное растрескивание, если не используются следующие передовые методы:

  1. Суженные суставы не слишком далеко друг от друга;
  2. Достаточно глубокие суженные суставы;
  3. Усадочные швы, распиленные достаточно рано;
  4. Плиты, не имеющие прочного закрепления по периметру путем прикрепления бетонных перекрытий или плит к фундаментным стенам или другим сооружениям или путем привязки арматуры к фундаментам, причалам и откидным стенам;
  5. Изоляционные швы вокруг колонн;
  6. Соединение или дополнительная армирующая сталь, расположенная по диагонали к входящим углам;
  7. Бетонные смеси необходимой прочности с соответствующим количеством цемента и воды, а также смеси, не содержащие каких-либо ингредиентов, таких как заполнители или добавки, с высокими усадочными характеристиками;
  8. Правильное отверждение;
  9. Плиты, не ограниченные колеями или неровностями основания и изменениями толщины плиты;
  10. Прекращено усиление швов, что способствует раскрытию швов; и
  11. Плиты, отлитые на основе с низким коэффициентом трения, например, мелкозернистый щебень.Это обеспечит гладкую поверхность, по которой плита может скользить.

ACI 360R-10 Руководство по проектированию перекрытий на земле

ACI 360R-10 обсуждает конструкцию неармированных бетонных плит и желание контролировать растрескивание при усадке. Обратите внимание, как показано ниже и выделено подчеркиванием, потенциал усадки, а не размер размещения, определяет расстояние между стыками.

«Контроль эффектов усадки при высыхании имеет решающее значение для характеристик неармированных бетонных плит.Две основные цели конструкции неармированной плиты на земле — избежать образования случайных трещин вне стыков и поддержать адекватную стабильность стыков. Ожидаемая динамическая нагрузка плиты определяет ее толщину и требования к переносу поперечного сдвига в стыках, тогда как соображения усадки определяют максимальное расстояние между стыками «.

Подобно ACI 302, ACI 360 также предоставляет рекомендации по снижению эффекта усадки и скручивания плит. Обратите внимание, что нет рекомендаций по ограничению размера места размещения.

«Соответствующие положения о конструкции и технических характеристиках могут уменьшить растрескивание и скручивание при усадке. Такие положения должны включать:

  • Относительная усадка различных бетонных смесей;
  • Тип и расположение арматуры;
  • Трение основания;
  • Плоскостность бетона;
  • проницаемость;
  • Толщина плиты;
  • Ограничители усадки;
  • Местоположение усадочных швов пропила; и
  • Правильно спроектированные системы пароизоляции / барьера и заполнителя «.

ACI 301-10 Технические условия на конструкционный бетон

ACI 301-10 «Спецификации для конструкционного бетона» добавил новый раздел, посвященный промышленным перекрытиям. В этот раздел включены минимальные стандартные технические условия для плит перекрытий промышленного назначения с опорой на землю. Несмотря на то, что включены положения об усадке бетона, максимальном расстоянии между стыками, а также подробные сведения об изоляции, конструкции и усадочных стыках, в спецификации не ограничивается размер укладки. Для спецификации требуется только представление, показывающее степень каждого размещения, последовательность размещения и график для каждого размещения.

Не допускайте ограничений по размеру места размещения

Если спецификации включают ограничения на размер места размещения, исключите их из ставки. В качестве альтернативы ставки укажите цену для указанных небольших размеров размещения и учитывайте влияние на график. Тогда Владелец четко увидит увеличенную стоимость и расширенный график в результате этого пункта спецификации. И без компенсационных выплат.

Железобетонная плита — обзор

10.4.1.3 Расчет конструкций и проектирование железобетонной плиты перекрытия

Расчет конструкций был выполнен с помощью программного обеспечения TOWER 7 на основе конечных элементов (Radimpex Software, 2012).

Критерии проектирования для бетонных смесей NAC и RAC были приняты в соответствии с Еврокодом 2 — Часть 1 и EN 1992-1-2 (CEN / TC250, 2004b). В дальнейшем EN 1992-1-2 упоминается как Еврокод 2 — Часть 2.

Расчетные значения предельного момента и сопротивления сдвигу больше или, по крайней мере, равны расчетным значениям изгибающего момента и сдвига. силу соответственно.

Предельное значение ширины трещины:

wmax = 0.4 мм для XC1

wmax = 0,3 мм для XC3

Предельное значение прогиба для квазипостоянной нагрузки составляет:

vmax = l250

, где l — пролет перекрытия;

Был принят расчетный срок службы 50 лет («нормальный» надзор во время выполнения и «нормальный» осмотр и техническое обслуживание во время использования).

Нормой огнестойкости REI 60 учитывалось из-за ограниченных размеров здания; следовательно, согласно Еврокоду 2 — Часть 2 для непрерывных сплошных плит:

hs, min = 80 мм

amin = 10 мм

, где h s — толщина плиты, а a — расстояние между осями армирования. сталь к ближайшей открытой поверхности.

Все свойства и уравнения, использованные при проектировании плит перекрытия, сведены в Таблицу 10.5. Обозначения и значения параметров в Таблице 10.5 полностью соответствуют обозначениям и уравнениям, используемым в Еврокоде 2 — Части 1 и 2.

Таблица 10.5. Положения Еврокода, использованные при проектировании железобетонной плиты перекрытия

99 Связка
NAC RAC
Свойства f ck, 28 дней fck = fcm − 8.0 (МПа)
f ctm, 28 дней 0,3 · fck2 / 3 (МПа)
E см, 28 дней 22 (fcm / 10) 0,3 ГПа) Ур. (10.7), Лай и др. (2016)
φ ( t , t 0 ) Приложение B, Еврокод 2 — Часть 1 Ур. (10.8) и (10.9), Lye et al. (2016)
Расчетные уравнения Прочность Изгиб:
MEd≤MRd = 0.810 · b · x · fcd · z; z = d − 0,416 · x
As = (0,810 · b · x · fcd) / fyd
Сдвиг (без усиления сдвига):
VEd≤VRd, c = CRd, c · k · (100 · ρl · fck) 1/3 · b · d
VRd, c, min = 0,035 · k3 / 2 · fck1 / 2 · b · d
Удобство обслуживания Ширина трещины:
wd≤wmax = 0,3 (0,4) мм
wd = sr, max (εsm − εcm)
sr, max = k3 · c + k1 · k2 · k4 · ϕ / ρp, eff
εsm − εcm = ((σs − kt (fct, eff / ρp, eff) (1 + αe · ρp, eff)) / Es)
Прогибы:
vd (t) ≤vmax ( t) = l / 250 = 570/250 = 2.28 см
Ec, eff = 1,05 · Ecm1 + φ (t, t0)
ζ = 1 − β (Mcr / (Mcr · Mmax)) 2
vd (t) = (1− ζ) · vI, d (t) + ζ · vII, d (t)
Долговечность Расчетный срок службы 50 лет, плита ⇒ Структурный класс S3:
cnom = cmin + Δcdev; cmin = max {cmin, b; cmin, dur}; Δcdev = 10 мм
Низ Верх Низ Верх
Связка: Связка: Связка: cmin, b = ϕ = 10 мм cmin, b = ϕ = 10 мм cmin, b = ϕ = 10 мм
Долговечность: Долговечность (XC1 и XC3):
XC1 : cmin, dur = 10 мм cmin, dur = cmin, dur, NAC (fcm, NAC / fcm, RAC) 2.7
XC3: cmin, dur = 20 мм
Огнестойкость hs≥hs, мин; cnom = cmin + Δcdev; cmin≥a − ϕ / 2; Δcdev = 10 мм
REI 60 ⇒ hs, min = 80 мм; a = 10 мм, Еврокод 2 — Часть 2

NAC , Бетон на натуральном заполнителе; RAC , Бетон из переработанного заполнителя.

Измеренная прочность бетона в выбранных испытаниях была принята как средняя прочность бетона на сжатие f см .Для смесей NAC характерная прочность на сжатие за 28 дней f ck , прочность на разрыв f ctm , модуль упругости E см и коэффициент ползучести φ ( t , t 0 ) рассчитывались в соответствии с положениями части 1 Еврокода 2, таблица 10.5. Для смесей RAC, 28-дневная нормативная прочность на сжатие f ck и прочность на разрыв f ctm также были рассчитаны в соответствии с положениями Еврокода 2 — Часть 1.В предыдущих обширных исследованиях было показано, что взаимосвязь между прочностью на сжатие и растяжение, указанная в этом стандарте, действительна с таким же уровнем надежности для смесей RAC (Silva et al., 2015).

Однако сейчас хорошо известно, что смеси RAC имеют более низкий модуль упругости и большую ползучесть по сравнению с сопутствующими смесями NAC. Различные предложения по моделям прогнозирования были опубликованы в литературе, а модели прогнозирования представлены в Lye et al. (2016) для модуля упругости RAC и коэффициента ползучести RAC.Так, для модуля упругости было получено следующее соотношение (Lye et al., 2016):

(10,7) Ecm, RAC1,2 = 0,82Ecm, NAC1,2

, а для коэффициента ползучести (Lye et al., 2016):

(10,8) φ (∝, 28) RAC1 = 1,37φ (∝, 28) NAC1

(10,9) φ (∝, 28) RAC2 = 1,39φ (∝, 28) NAC2

где E см , NAC1, 2 и φ (∞, 28) NAC1, 2 — модуль упругости и коэффициент ползучести смесей NAC с одинаковой характеристической 28-дневной кубической прочностью, соответственно.

На основе статистического анализа обширной базы данных прочности на изгиб и сдвиг балок RAC и сопутствующих балок NAC (Tošić et al., 2016) был сделан вывод, что прочность на изгиб и сдвиг (без скоб) балок RAC можно рассчитать с использованием действующие положения Еврокода 2 — Часть 1 без изменений. Такое же предположение было принято для расчета плит RAC в этой работе, Таблица 10.5.

Для расчета ширины трещины и долговременного прогиба положения Еврокода 2 — Часть 1 были использованы для смесей NAC и RAC с учетом их различных свойств, Таблица 10.5. Другими словами, предполагалось, что могут использоваться одни и те же модели прогнозирования, то есть различное поведение плиты перекрытия NAC и RAC было вызвано только разными свойствами бетона, а не различным поведением конструкции. Это предположение было подтверждено экспериментальными результатами по прочности сцепления и упрочнению при растяжении смесей RAC, опубликованными в литературе. Большинство исследований, проведенных в отношении прочности связи RAC, показали, что относительная прочность связи (соотношение прочности связи и прочности на сжатие) RAC со 100% -ным профилем RCA была больше или, по крайней мере, очень похожа на NAC (Xiao and Falkner, 2007; Malešev и другие., 2010; Ким и Юн, 2013; Принс и Сингх, 2013 г.). Однако были также исследования, в которых сообщалось о более низкой относительной прочности связи RAC, как, например, в Butler et al. (2011). Недавние экспериментальные исследования жесткости RAC при растяжении, хотя и с 50% -ным содержанием RCA, показали, что использование RCA не повлияло на итоговые характеристики бетона, в результате на поведение при растяжении и взаимодействие стали с бетоном (Rangel et al., 2017).

Что касается прочности, были проанализированы два XC для бетона внутри зданий: XC1 и XC3.Плиты 1–4 этажа проектировались для класса XC1 (жилища, низкая влажность воздуха), а плита первого этажа — для класса XC3 (умеренная или высокая влажность воздуха, так как парковочное место располагалось под цокольным этажом). ). Оба XC связаны с коррозией арматуры, вызванной карбонизацией.

Устойчивость RAC к карбонизации широко исследовалась. Результаты исследований (Silva et al., 2015) показали, что можно коррелировать сопротивление карбонизации с прочностью на сжатие, и что на эту взаимосвязь незначительно влияет уровень замены, тип и размер переработанных заполнителей.Взаимосвязь между глубиной карбонизации RAC и NAC при аналогичных смесях может быть рассчитана с использованием следующего уравнения (Silva et al., 2016):

(10,10) xc, RACxc, NAC = (fcm, NACfcm, RAC) 2,7

, где x c, RAC и x c, NAC — это глубина карбонизации RAC и NAC, соответственно. Отношения [Ур. (10.10)] справедливо только для бетонных смесей с цементом CEM I, что и было в данной работе. Это соотношение использовалось для соотнесения требуемой глубины покрытия RAC и смеси NAC, чтобы обеспечить равную долговечность, Таблица 10.5.

Что касается огнестойкости, предыдущие исследования показали, что бетон с заполнителем, полностью или частично замененным на крупнозернистый RCA, показал хорошие характеристики при повышенных температурах, а также механические свойства и долговечность после пожара, которые были сопоставимы или даже лучше, чем у обычного бетона. (Vieira et al., 2011; Sarhat, Sherwood, 2013; Xiao et al., 2013; Kou et al., 2014). Следовательно, не должно быть различий в конструктивном противопожарном расчете между смесями RAC и NAC, и к обеим бетонным смесям применялись одинаковые требования Еврокода 2 — Часть 2, Таблица 10.5.

При определении глубины бетонного покрытия было принято, что коэффициент скорости карбонизации (коэффициент k ) равен 0 на верхней поверхности плиты в соответствии с рекомендациями CEN / TC229 / WG5-N012. (2016) для элементов внутри зданий в сухом климате и покрытых плиткой, паркетом и ламинатом. Таким образом, минимальное верхнее покрытие было определено для удовлетворения требований к сцеплению ( c мин, b ) и огнестойкости, которые предполагались одинаковыми как для NAC, так и для RAC.Предполагалось, что нижняя поверхность плиты не имеет дополнительного покрытия, поэтому минимальное нижнее покрытие было определено для обеспечения сцепления ( c мин, b ), прочности ( c мин, dur ) и огнестойкости. требования см. в таблице 10.5. Значение c мин, dur для RAC было рассчитано на основе c min, dur для NAC в соответствии с требованиями Еврокода 2 — Часть 1 и уравнением [Ур. (10.10)]. Во всех случаях минимальное покрытие было увеличено, чтобы учесть отклонение со значением Δ c dev = 10 мм.

Согласно Еврокоду 2 — Часть 1, минимальная 28-дневная нормативная прочность на сжатие для классов XC1 и XC3 составляет 25 и 30 МПа соответственно. Требование XC3 не было выполнено в случаях NAC1 и RAC2. Немного более низкая характеристическая прочность (менее 10%) в этих случаях считалась незначительной.

Результаты расчетных значений представлены в таблице 10.6, где обозначение конкретной плиты (S) включает тип бетонной смеси и качество заполнителя (NAC или RAC; 1 для высокого качества RCA и 2 для низкого качества RCA) и XC. (XC1 или XC3).Все плиты, независимо от того, изготовлены ли они из NA, высокого или низкого качества RCA и подвергаются воздействию XC1 или XC3, соответствуют требованиям Еврокодов по прочности, удобству обслуживания, долговечности и огнестойкости. Таким образом, была достигнута полная функциональная эквивалентность. Количества компонентов компонентов в Таблице 10.6 представляют собой эталонные потоки и исходные данные для сравнительной ОЖЦ.

Таблица 10.6. Расчетные значения железобетонной плиты перекрытия для различных параметров

63 99 5,52 99 5,52 99 5,52 , Бетон на натуральном заполнителе; RAC , Бетон из переработанного заполнителя; XC , Класс экспозиции.

Требования к бетонному полу — двухстоечные и четырехстоечные подъемники

Загрузить Требования к бетонным перекрытиям 2019 (pdf)

Минимальные требования к существующим этажам:

Высота c низ c верх Reinf. бот Reinf. верх Reinf. всего w d a v d b
мм мм 8 мм 90 90 90 м 2 / м кг / м 3 мм мм
S_NAC1_XC1 150 20 20 4.85 6,23 69,58 0,147 21,13
S_RAC1_XC1 160 20 20 4,30 5,84 5,84 20 20 3,43 6,30 61,10 0,162 21,54
S_RAC2_XC1 170 41298 30 00 5,59 53,14 0,208 21,34
S_NAC1_XC3 160 30 20 5,04 6.08 9 30 20 4,30 5,74 55,63 0,202 19,76
S_NAC2_XC3 160 30 20 6,35 58,76 0,196 19,94
S_RAC2_XC3 180 45 20 4,85 4,85 4,85 5,52
ДВЕ МОДЕЛИ МИН.ТОЛЩИНА МИН. КОМП. ПРОЧНОСТЬ УСИЛЕНИЕ РАССТОЯНИЕ СТЕРЖНЯ
МОДЕЛИ СЕРИИ GP ‐ 7 4-1 / 4 « 3000 фунтов на квадратный дюйм / 28 дней выдержки # 6 Арматура 12 из
МОДЕЛИ СЕРИИ XPR ‐ 9 4-1 / 4 « 3000 фунтов на квадратный дюйм / 28 дней выдержки # 6 Арматура 12 из
МОДЕЛИ СЕРИИ XPR ‐ 10 4-1 / 4 « 3000 фунтов на квадратный дюйм / 28 дней выдержки # 6 Арматура 12 из
МОДЕЛИ СЕРИИ XPR ‐ 12 6 1/2 « 3000 фунтов на квадратный дюйм / 28 дней выдержки # 6 Арматура 10 из
МОДЕЛИ СЕРИИ XPR ‐ 15 8 « 3000 фунтов на квадратный дюйм / 28 дней выдержки # 6 Арматура 10 из
МОДЕЛИ СЕРИИ XPR ‐ 18 8 « 3000 фунтов на квадратный дюйм / 28 дней выдержки # 6 Арматура 10 из
ПОДЪЕМНИКИ 4 ‐ ПОС. МИН.ТОЛЩИНА МИН. КОМП. ПРОЧНОСТЬ УСИЛЕНИЕ РАССТОЯНИЕ СТЕРЖНЯ
МОДЕЛИ СЕРИИ HD ‐ 7 4-1 / 4 « 3000 фунтов на квадратный дюйм / 28 дней выдержки Только температура ACI * Только температура ACI *
МОДЕЛИ СЕРИИ HD ‐ 9 4-1 / 4 « 3000 фунтов на квадратный дюйм / 28 дней выдержки Только температура ACI * Только температура ACI *
МОДЕЛИ СЕРИИ GP ‐ 9 4-1 / 4 « 3000 фунтов на квадратный дюйм / 28 дней выдержки Только температура ACI * Только температура ACI *
МОДЕЛИ СЕРИИ PL ‐ 6K 4-1 / 4 « 3000 фунтов на квадратный дюйм / 28 дней выдержки Только температура ACI * Только температура ACI *
МОДЕЛИ СЕРИИ HDS ‐ 14 4-1 / 4 « 3000 фунтов на квадратный дюйм / 28 дней выдержки Только температура ACI * Только температура ACI *
МОДЕЛИ СЕРИИ HDS ‐ 18 4-1 / 4 « 3000 фунтов на квадратный дюйм / 28 дней выдержки Только температура ACI * Только температура ACI *
МОДЕЛИ СЕРИИ HDS ‐ 27 4-1 / 4 « 3000 фунтов на квадратный дюйм / 28 дней выдержки Только температура ACI * Только температура ACI *
МОДЕЛИ СЕРИИ HDSO ‐ 14 4-1 / 4 « 3000 фунтов на квадратный дюйм / 28 дней выдержки # 6 Арматура 12 из
HD-973P 6-1 / 2 « 3000 фунтов на квадратный дюйм / 28 дней выдержки Только температура ACI * Только температура ACI *
МОДЕЛИ СЕРИИ HDS-35 6-1 / 2 « 3000 фунтов на квадратный дюйм / 28 дней выдержки Только температура ACI * Только температура ACI *
МОДЕЛИ СЕРИИ HDS-40 6-1 / 2 « 3000 фунтов на квадратный дюйм / 28 дней выдержки Только температура ACI * Только температура ACI *

* Пол должен быть выдержан в соответствии со спецификациями Американского института бетона.Пол не требует армирования, но рекомендуется использовать минимум проволочной сетки.

Существующие бетонные полы необходимо просверлить для проверки минимальной толщины пола и подтверждения строительных чертежей. Необходимо получить образец керна и испытать его для проверки минимальной прочности пола на сжатие. При исследовании свойств пола сверьтесь с чертежами здания, чтобы убедиться в правильности армирования пола. Для всех двухстоечных подъемников требуется сплошная одинарная плита. Наложение расширительных швов или позиционирование стоек на отдельных плитах недопустимо.

  • ЗАПРЕЩАЕТСЯ устанавливать подъемники BendPak на любой поверхности, кроме бетона, с соблюдением минимальных значений прочности на сжатие, старения, армирования и толщины, указанных в таблица выше. ВСЕ ПОДЪЕМНИКИ BENDPAK ДОЛЖНЫ УСТАНОВИТЬСЯ ТОЛЬКО НА БЕТОН.
  • ЗАПРЕЩАЕТСЯ устанавливать подъемники BendPak на компенсационные швы, а также на потрескавшийся или дефектный бетон. Все анкеры диаметром 3/4 дюйма должны находиться на расстоянии не менее 6 дюймов от любого компенсационные швы, контрольные швы или другие несоответствия в бетоне.
  • Все анкеры должны располагаться на расстоянии не менее 6 дюймов от любых деформационных швов, контрольных швов или других дефектов в бетоне. Обратитесь к производителю анкера. спецификации для конкретной информации относительно краевых расстояний и требований к расстоянию между болтами.
  • НИКОГДА не устанавливайте подъемник BendPak на бетон, смешанный вручную.
  • ЗАПРЕЩАЕТСЯ устанавливать лифты BendPak на уровне второго этажа или на любом первом этаже с подвалом под ним без письменного разрешения архитектора здания. и предварительная консультация и одобрение BendPak.
  • Если пол не соответствует этим минимальным требованиям к ранее существовавшему перекрытию, предлагается построить плиту, как указано ниже в Рекомендациях по новым плитам. Если расположение подъемника в сейсмической зоне, свяжитесь с BendPak для проектирования сейсмических плит.

Рекомендации по новым бетонным перекрытиям:

Информация, содержащаяся в этом дополнении, заменяет любую другую информацию, содержащуюся в прилагаемом руководстве. Эта информация представлена ​​для рекомендаций по проектированию новой бетонной плиты в случае, если уже существующий этаж не соответствует минимальным требованиям применимого типа лифта.Пожалуйста, внимательно прочтите все приведенные ниже инструкции перед изготовлением новой плиты.

НОВАЯ БЕТОННАЯ ПЛИТА ТРЕБОВАНИЯ К БЕТОНУ:

Минимальная прочность бетона на разрыв: 4000 фунтов на квадратный дюйм
Минимальное старение новой бетонной плиты: 28 дней (время отверждения)
Минимальная толщина бетонной плиты: См. Новую таблицу перекрытий и рисунки ниже
Минимальная ширина и длина плиты: См. Новую таблицу перекрытий и рисунки ниже
ПОДЪЕМНЫЕ МОДЕЛИ МИН.ТОЛЩИНА ПЛИТЫ Вт
МИН. ШИРИНА ПЛИТЫ
л
МИН. ДЛИНА ПЛИТЫ
R
РАЗМЕР УСИЛЕНИЯ
(СМ. ПРИМ. 1 и 2)
S1 и S2
РАССТОЯНИЕ ДЛЯ УСИЛЕНИЯ
(СМ. ПРИМ. 3)
D
ДИАМЕТР АНКЕРА
I
ДЛИНА АНКЕРА
GP ‐ 7 СЕРИЯ 12 « 48 дюймов мин. 12 дюймов шире, чем OA Ширина подъема 8 — # 4 — Основные стержни
21 — # 4 — Температурные стержни
6 дюймов — длинные стержни
8 дюймов — короткие стержни
3/4 « 5 «
XPR ‐ 9 СЕРИЯ 12 « 48 дюймов мин. 12 дюймов шириной подъемника 8 — # 4 — Основные стержни
21 — # 4 — Температурные стержни
6 дюймов — длинные стержни
8 дюймов — короткие стержни
3/4 « 5 «
XPR ‐ 10 СЕРИЯ 12 « 48 дюймов мин. 12 дюймов шире, чем OA Ширина подъема 8 — # 4 — Основные стержни
21 — # 4 — Температурные стержни
6 дюймов — длинные стержни
8 дюймов — короткие стержни
3/4 « 5 «
XPR ‐ 12 СЕРИЯ 12 « 72 дюйма Мин. 12 дюймов шире, чем OA Ширина подъема 12 — # 4 — Основные стержни
23 — # 4 — Температурные стержни
6 дюймов — длинные стержни
8 дюймов — короткие стержни
3/4 « 7 «
XPR ‐ 15 СЕРИЯ 12 « 72 дюйма Мин. 12 дюймов шириной подъемника 12 — # 4 — Основные стержни
23 — # 4 — Температурные стержни
6 дюймов — длинные стержни
8 дюймов — короткие стержни
3/4 « 7 «
XPR ‐ 18 СЕРИЯ 12 « 72 дюйма Мин. 12 дюймов шире, чем OA Ширина подъема 12 — # 4 — Основные стержни
23 — # 4 — Температурные стержни
6 дюймов — длинные стержни
8 дюймов — короткие стержни
3/4 « 7 «
HD ‐ 7 СЕРИЯ 12 « мин. 24 дюйма * мин. 24 дюйма * 8 — Бары №4 6 дюймов — в каждую сторону / крест-накрест 3/4 « 5 «
HD ‐ 9 СЕРИЯ 12 « мин. 24 дюйма * мин. 24 дюйма * 8 — Бары №4 6 дюймов — в каждую сторону / крест-накрест 3/4 « 5 «
GP ‐ 9 СЕРИЯ 12 « мин. 24 дюйма * мин. 24 дюйма * 8 — Бары №4 6 дюймов — в каждую сторону / крест-накрест 3/4 « 5 «
PL ‐ 6K СЕРИИ 12 « мин. 24 дюйма * мин. 24 дюйма * 8 — Бары №4 6 дюймов — в каждую сторону / крест-накрест 3/4 « 6 «
HDS ‐ 14 СЕРИЯ 12 « мин. 24 дюйма * мин. 24 дюйма * 8 — Бары №4 6 дюймов — в каждую сторону / крест-накрест 3/4 « 5 «
HDS ‐ 18 СЕРИЯ 12 « мин. 24 дюйма * мин. 24 дюйма * 8 — Бары №4 6 дюймов — в каждую сторону / крест-накрест 3/4 « 7 «
HDS ‐ 27 СЕРИЯ 12 « 48 дюймов Мин. * 48 дюймов Мин. * 16 — Бары №4 6 дюймов — в каждую сторону / крест-накрест 3/4 « 7 «
HDSO ‐ 14 СЕРИЯ 12 « 48 дюймов мин. * 48 дюймов мин. * 16 — Бары №4 6 дюймов — в каждую сторону / крест-накрест 3/4 « 5 «
HD-973P 12 « 48 дюймов Мин. * 48 дюймов Мин. * 16 — Бары №4 6 дюймов — в каждую сторону / крест-накрест 3/4 « 5 «
HDS-35 СЕРИИ 12 « 48 дюймов мин. * 48 дюймов мин. * 16 — Бары №4 6 дюймов — в каждую сторону / крест-накрест 3/4 « 7 «
HDS-40 СЕРИИ 12 « 48 дюймов Мин. * 48 дюймов Мин. * 16 — Бары №4 6 дюймов — в каждую сторону / крест-накрест 3/4 « 7 «

* Четыре отдельные плиты сформированы на каждой стойке.

Температурные стержни — это стальные стержни, расположенные горизонтально (по длине) в бетонных плитах для предотвращения образования трещин из-за перепадов температуры или высыхания; размещены перпендикулярно основным арматурным стержням (короткий пролет). Температурные стержни размещаются под прямым углом к ​​основным арматурным стержням.

Примечание 1: Температурные стержни — это стальные стержни, размещенные горизонтально (по длине) в бетонных плитах для предотвращения трещин из-за изменений температуры или высыхания; размещены перпендикулярно основным арматурным стержням (короткий пролет).Температурные стержни размещаются под прямым углом к ​​основным арматурным стержням.

Дополнительный слой 6 x 6 — 10/10 WWF на средней высоте новой плиты рекомендуется в любом чрезвычайно жарком или холодном климате для контроля растрескивания из-за колебаний температуры и усадки. В местах расположения анкерных болтов сетку WWF держите только ниже отметки анкерного крепления, чтобы избежать столкновения с проволокой при сверлении.

Примечание 2: Основная арматурная и низкотемпературная сталь должна быть деформированным стержнем класса 60

Примечание 3: Допуск на расстояние между стержнями в каждом направлении должен быть представленным значением плюс или минус 1 дюйм.Кроме того, необходимо использовать количество стержней, указанное в таблице.

Примечание 4: Габаритные размеры бетона и армирование показаны для допустимой несущей способности фундаментного основания не менее 2 000 фунтов / кв. Фут (1 тонна на квадратный фут). Многие глины, и большинство из них твердая глина, твердая глина, песчано-глинистые смеси, сухой песок, крупнозернистый сухой песок, сухой песок и иловые смеси, песчано-гравийные смеси и грунты гравийного типа соответствуют или превышают эту допустимую несущую способность. Если есть вопросы относительно допустимой несущей способности фундамента, следует проконсультироваться с инженером по испытанию грунтов.Особого внимания требуют ситуации, когда допустимая несущая способность ниже этого значения.

Новые бетонные плиты должны соответствовать вышеуказанным свойствам, прежде чем установка лифта будет признана приемлемой. Новая плита должна быть полностью окружена существующим асфальтовым или бетонным полом. Сертифицированную документацию по прочности следует получить у фирмы, поставляющей бетонную смесь во время заливки. Эти новые бетонные плиты спроектированы как «автономные» и не учитывают вклад прочности окружающего бетона.Может быть желательно привязать новую плиту к ранее существовавшему окружающему полу и укрепить ее. Следует проявлять осторожность, чтобы расположить арматурные стержни вдали от позиций анкеров конкретного подъемника.

Эти новые бетонные плиты не учитывают установку второго этажа или установку на первом этаже с подвалом под ним. В этом случае нельзя устанавливать лифт без письменного разрешения архитектора здания.

Все анкеры диаметром 3/4 дюйма должны находиться на расстоянии не менее 6 дюймов от любых компенсационных швов, контрольных швов или других дефектов в бетоне.

НИКОГДА не замешивайте бетон вручную.

Загрузить Требования к бетонным перекрытиям 2019 (pdf)

РЕКОМЕНДАЦИИ ПО НОВЫМ БЕТОННЫМ ПЛИТАМ


МОДЕЛИ С ДВУМЯ ПОДЪЕМНИКАМИ

РЕКОМЕНДАЦИИ ПО НОВЫМ БЕТОННЫМ ПЛИТАМ


МОДЕЛИ НА ЧЕТЫРЕ ПОДЪЕМНИКАХ

% PDF-1.3 % 99 0 объект > эндобдж xref 99 88 0000000016 00000 н. 0000002127 00000 н. 0000002221 00000 н. 0000003662 00000 н. 0000003881 00000 н. 0000004476 00000 н. 0000004528 00000 н. 0000004579 00000 п. 0000004816 00000 н. 0000004868 00000 н. 0000004909 00000 н. 0000004961 00000 н. 0000005013 00000 н. 0000005065 00000 н. 0000005400 00000 н. 0000005629 00000 н. 0000006160 00000 п. 0000006726 00000 н. 0000006942 00000 н. 0000007172 00000 н. 0000007224 00000 н. 0000007601 00000 н. 0000008018 00000 н. 0000008232 00000 н. 0000008254 00000 н. 0000008842 00000 н. 0000009390 00000 н. 0000009614 00000 н. 0000009838 00000 п. 0000010795 00000 п. 0000010818 00000 п. 0000011051 00000 п. 0000011196 00000 п. 0000011631 00000 п. 0000011787 00000 п. 0000012188 00000 п. 0000013282 00000 п. 0000013304 00000 п. 0000014167 00000 п. 0000014189 00000 п. 0000014884 00000 п. 0000014906 00000 п. 0000015368 00000 п. 0000015390 00000 н. 0000015847 00000 п. 0000015869 00000 п. 0000016150 00000 п. 0000016644 00000 п. 0000018723 00000 п. 0000019102 00000 п. 0000019623 00000 п. 0000020586 00000 п. 0000021174 00000 п. 0000021196 00000 п. 0000021488 00000 п. 0000022069 00000 п. 0000022892 00000 п. 0000034011 00000 п. 0000041319 00000 п. 0000077213 00000 п. 0000077292 00000 п. 0000085150 00000 п. 0000105161 00000 п. 0000129575 00000 н. 0000132254 00000 н. 0000132482 00000 н. 0000150116 00000 п. 0000150485 00000 н. 0000150692 00000 н. 0000159593 00000 н. 0000159807 00000 н. 0000159927 00000 н. 0000160167 00000 н. 0000186296 00000 н. 00001 00000 н. 0000193033 00000 н. 0000193239 00000 н. 0000194005 00000 н. 0000194618 00000 н. 0000194979 00000 н. 0000195308 00000 н. 0000204338 00000 н. 0000205715 00000 н. 0000208736 00000 н. 0000210736 00000 н. 0000216263 00000 н. 0000002373 00000 н. 0000003639 00000 н. трейлер ] >> startxref 0 %% EOF 100 0 объект > эндобдж 101 0 объект `Dz — # _ m_} g) / U (bY% ​​yF | kh {~ 80qx) / P -60 / V 1 / Длина 40 >> эндобдж 185 0 объект > транслировать kRqfq

C = Qu1;} V-

‘(OZwMr _ (> 7GS% re ה r? E> pWR3BOXeq * + PXt [) m_-h, 3S ߊ ef ޵ + ݌ܑ} mX8 $ rIs ~ 4% / ͸] 0k (# ਡ) lm 4vaƂ N: oU q q ~> YZD 炋 PфEF # ΠK (h8 & ҟZB + ~ 4d΋P_z} t

Расчет нагрузки на колонну — Расчет нагрузки на колонну, балку, стену и перекрытие

Что такое столбец?

Колонна является важным элементом конструкции RCC, который помогает передавать нагрузку надстройки на фундамент .

Это вертикальный сжимающий элемент, подверженный прямой осевой нагрузке, и его эффективная длина в три раза больше, чем его наименьший поперечный размер.

Когда конструктивный элемент находится в вертикальном положении и подвергается осевой нагрузке, известной как колонна, тогда как если он наклонный и горизонтальный, известный как стойка.

Что такое луч?

Это важный структурный компонент рамной конструкции, который в основном выдерживает нагрузку, приложенную к оси балки сбоку. В основном это режим прогиба из-за изгиба.

Из-за приложенной нагрузки в опорной точке балки возникают силы реакции, и действие этих сил создает в ней поперечную силу и изгибающий момент , что вызывает деформацию, внутренние напряжения и прогиб балки.

Его нижняя часть испытывает растяжение, а верхняя часть — растяжение; следовательно, в нижней части балки используется дополнительная сталь, чем в верхней части.

Обычно балки классифицируются в соответствии с условиями их опоры, условиями равновесия, длиной, формой поперечного сечения и материалом.

Что такое стена?

Это непрерывная вертикальная конструкция, которая разделяет или ограничивает пространство территории или здания, а также обеспечивает укрытие и безопасность. Обычно его строят из кирпича и камня.

В здании в основном есть два типа стен: внешняя стена и внутренняя стена. Внешняя стена помогает обеспечить ограждение здания.

В то время как внутренняя стена разделяет замкнутое пространство на помещения необходимого размера.Внутренняя стена также известна как перегородка.

В здании стена помогает сформировать основную часть надстройки и помогает разделить внутреннее пространство, а также обеспечивает уединение, звукоизоляцию и защиту от огня.

Что такое плита?

Плита — это широко используемый конструктивный элемент, который образует перекрытия и крыши зданий. Это плоский элемент, глубина которого намного меньше его ширины и размаха.

Плита может поддерживаться каменными стенами, балкой RCC или непосредственно колонной. Он обычно несет равномерно распределенные гравитационные нагрузки, действующие на его поверхность, и передают ее на опору за счет сдвига, изгиба и кручения.

Типы расчета нагрузки на колонну, балку, стену и перекрытие

Собственный вес колонны × Количество этажей

Собственный вес балки на погонный метр

Нагрузка на стену на погонный метр

Общая нагрузка на плиту = собственная нагрузка (из-за складирования мебели и других вещей) + динамическая нагрузка (из-за движения человека) + собственный вес

Помимо вышеуказанной нагрузки, колонны также испытывают изгибающие моменты, учитываемые при окончательном проектировании.

Наиболее продуктивным способом проектирования конструкций является использование передового программного обеспечения для проектирования конструкций, такого как Staad pro и Etabs.

Эти инструменты помогают избежать трудоемких и утомительных ручных расчетов при проектировании конструкций. В настоящее время это настоятельно рекомендуется в области проектирования конструкций.

При профессиональном проектировании конструкций существуют некоторые фундаментальные допущения, которые мы принимаем во внимание при расчетах нагрузок на конструкции.

Расчет нагрузки на колонну

Мы знаем, что плотность бетона составляет 2400 кг / м3 или 24 кН, а плотность стали составляет 7850 кг / м3 или 78.5 кн.

Рассмотрим колонну размером 300 × 600 с 1% стали и длиной 3 метра.

  • Объем бетона = 0,3 x 0,60 x 3 = 0,54 м³
  • Вес бетона = 0,54 x 2400 = 1296 кг
  • Вес стали (1%) в бетоне = 0,54 x 0,01 x 7850 = 42,39 кг
  • Общий вес колонны = 1296 + 42,39 = 1338,39 кг = 13,384 кН

Примечание — I KN = 101,9716 кг, например, 100 кг

Расчет нагрузки балки

Мы выполняем аналогичную процедуру расчета для балки , как и для колонны.

Примем размеры поперечного сечения балки 300 мм x 450 мм без учета толщины плиты.

, следовательно,

  • 300 мм x 450 мм без учета толщины плиты
  • Объем бетона = 0,3 x 0,60 x 1 = 0,138 м³
  • Вес бетона = 0,138 x 2400 = 333 кг
  • Вес стали (2%) в Бетон = = 0,138 x 0,02 x 7850 = 22 кг
  • Общий вес колонны = 333 + 22 = 355 кг / м = 3.5 кН / м

Таким образом, собственный вес будет около 3,5 кН на метр.

Расчет нагрузки стены

Мы знаем, что плотность кирпича находится в пределах от 1500 до 2000 кг / м3.

Для кирпичной стены толщиной 9 дюймов, длиной 1 метр и высотой 3 метра

Нагрузка на метр = 0,230 x 1 x 3 x 2000 = 1380 кг или 13 кН / метр.

Этот процесс можно использовать для расчета нагрузки на метр кирпича любого типа.

Для блоков AAC (автоклавный газобетон) вес на кубический метр составляет около 550–700 кг / м3 .

Если вы используете блоки AAC для строительства, нагрузка стен на метр может составлять всего 4 кН / метр . Использование этого блока позволяет значительно снизить стоимость проекта.

Расчет нагрузки перекрытия

Рассмотрим плиту толщиной 100 мм.

Следовательно, собственный вес плиты на квадратный метр составит

= 0.100 x 1 x 2400 = 240 кг или 2,4 кН.

Если учесть, что наложенная временная нагрузка составляет около 2 кН, на метр, а чистовая нагрузка составляет около 1 кН на метр.

Следовательно, мы можем оценить, что нагрузка на плиту будет примерно от 6 до 7 кН (приблизительно) на квадратный метр из приведенного выше расчета.

Расчет нагрузки здания

Строительная нагрузка — это сумма статической нагрузки, Навязанной или временной нагрузки, ветровой нагрузки, землетрясения, снеговой нагрузки, если конструкция расположена в зоне снегопада.

Статические нагрузки — это статические нагрузки, возникающие из-за собственного веса конструкции, который остается неизменным на протяжении всего срока службы здания. Эти нагрузки могут растягивать или сжимать нагрузки.

Возникающие или временные нагрузки — это динамические нагрузки, возникающие в результате использования или размещения в здании, включая мебель. Эти нагрузки время от времени меняются. Динамическая нагрузка — одна из важных нагрузок при проектировании.

Расчет динамической нагрузки

Для расчета динамической нагрузки здания мы должны руководствоваться допустимыми значениями нагрузки согласно IS-875 1987 часть 2.

Обычно мы считаем значение временной нагрузки для жилых домов равным 3 кН / м2. Значение динамической нагрузки зависит от типа здания, для которого мы должны соблюдать нормы IS 875-1987, часть 2.

Расчет статической нагрузки

Для расчета статической нагрузки здания мы должны определить объем каждого элемента, такого как фундамент, колонна, балка, плита и стена, и умножить на удельный вес материала, из которого оно изготовлено.

Путем сложения статической нагрузки всех элементов конструкции можно определить общую статическую нагрузку здания.

Фактор безопасности

Наконец, после расчета всей нагрузки на колонну не забудьте добавить коэффициент безопасности, который наиболее важен для конструкции конструкции любого здания для ее безопасной и подходящей работы в течение всего срока службы.

Это необходимо, когда расчет нагрузки на колонну выполнен.

Коэффициент запаса прочности равен 1.5 согласно IS 456: 2000,

Надеюсь, теперь вы поняли , как рассчитать нагрузку на колонну, балку, стену и плиту .

Спасибо!

Также прочтите

Что такое балка цоколя? Защита цоколя — разница между балкой цоколя и поперечной балкой

Разница между уровнем цоколя, уровнем порога и уровнем перемычки

Что такое столбец? — Типы колонн, арматуры, порядок проектирования

Разница между длинным столбцом и коротким столбцом

Разница между предварительным и последующим натяжением

Бетонная крышка — прозрачная крышка, номинальная крышка и эффективная крышка

Оценка строительных работ — метод длинных стенок, коротких стенок, метод осевой линии

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *