Молния защита зданий и сооружений: Молниезащита зданий и сооружений — инструкции

Содержание

Молниезащита зданий и сооружений — инструкции

Обязательная, соответствующая современным строительным нормам, молниезащита зданий представляет собой комплекс технических устройств и приспособлений, призванных обеспечить безопасность сооружения при попадании в него природного электрического разряда. Прямой удар молнии может повредить здание, вызвать поломку электроприборов, электрооборудования, даже гибель находящихся внутри или поблизости людей, животных.

Виды молниезащиты

Молниезащита зданий и сооружений подразделяется на: внешнюю, внутреннюю.

Внешняя

Это специальная система приспособлений, предназначенная для перехвата электрического разряда, отведения его к земле по токоотводам. Правильно спроектированная конструкция защитит от вреда здание, людей и животных, находящихся внутри.

Внешняя молниезащита зданий подразделяется на два типа:

Пассивная

  • сетка («пространственная клетка»). Ее монтируют на крыше защищаемого объекта;
  • молниеприемный стержень. Представляет собой один или несколько отдельных металлических прутов, соединенных с контуром заземления посредством кабеля;
  • система натяжных молниеприемных тросов. Их натягивают по периметру защищаемой зоны.

Активная

Генерирует высоковольтные импульсы, что позволяет не ждать, пока молния ударит защищаемое сооружение, а захватывать электрический разряд на большом расстоянии, принудительно направляя его в землю.

Конструктивно внешняя молниезащита зданий и сооружений состоит из:

  • молниеприемника (перехватывает электрический разряд)
  • токоотвода (промежуточная часть, проводящая электрический ток от молниеприемника на заземлитель)
  • заземлителя (часть молниезащиты, контактирующая с землей, рассеивающая полученный разряд тока)

Внутренняя

Представляет собой систему защиты электрооборудования от вызванного молнией (индуктивными и резистивными связями) перенапряжения в сети.

Внутренняя молниезащита (УЗИП) классифицируется по типам:

  • 1 тип – защита при прямом попадании молнии (форма волны 10/350 мкс)
  • 2 тип – защита от непрямого удара, зафиксированного вблизи объекта (форма волны 8/20 мкс)

Нормативные документы

До недавнего времени в России одновременно действовали 2 нормативных документа, регламентирующих требования к установке молниезащитных систем строительных объектов:

Изданная в 2003 году инструкция не отменяла действие регламента 1987 года, хотя имела с ним существенные различия. Приказ Минэнерго России от 30.06.03 № 280 также не отменил старую инструкцию, не прояснил сложившуюся ситуацию. Проектные организации сами выбирали, какими правилами руководствоваться.

В 2011 году Федеральное агентство по техническому регулированию и метрологии выпустило 2 нормативных документа, соответствующих стандартам МЭК (Международной Электротехнической Комиссии) № 62305:

После утверждения данных нормативов, российские требования к молниезащитным мерам начали соответствовать международными стандартам, урегулировав действие ранее выпущенных документов.

Категории молниезащиты и классификация объектов

Квалификация объектов определяется по опасности ударов молнии для самого объекта и его окружения. В соответствии с нормативными документами все здания и сооружения подразделяются на обычные и специальные.

Обычные объекты – это жилые и административные строения, а также здания и сооружения высотой не более 60 м, предназначенные для торговли, промышленного производства, сельского хозяйства.

К специальным объектам относятся следующие:

  • представляющие опасность для непосредственного окружения
  • представляющие опасность для социальной и физической окружающей среды
  • потенциально способные при поражении молнией вызвать вредные биологические, химические и радиоактивные выбросы
  • прочие, для которых должна быть предусмотрена специальная молниезащита, например, строения высотой более 60 м, строящиеся объекты, временные сооружения, игровые площадки и т.п.

Для специальных объектов минимально допустимый уровень надежности защиты от прямых ударов молнии (ПУМ) обозначен в пределах 0,9-0,999 в зависимости от степени его общественной значимости и тяжести ожидаемых последствий от ПУМ. Владелец здания или заказчик сам по желанию может заложить в проекте более высокий уровень надежности, превышающий расчетный предельно допустимый.

Для обычных объектов предлагается 4-е уровня надежности защиты от ПУМ:

Категория молниезащитыПиковый ток молнииНадежность
I 200 кА 0,98
II 150 кА 0,95
III 100 кА 0,90
IV 100 кА 0,80

В РД также предлагается методика, когда категория молниезащиты выбирается в зависимости от среднего количества и продолжительности гроз в регионе расположения здания или сооружения, а также от расчетной вероятности годового количества поражений его молнией.

  • Международный аэропорт Внуково

    Адрес объекта: 

    Москова, ул. 1-я Рейсовая, д. 12, Терминал «А»

    Вид работ: техническое обслуживание и диагностика комплексной системы молниезащиты с восстановлением элементов и соединений, замеры сопротивлений заземления

    Исполнение: Молниезащита внешнего участка кровли выполнена в виде молниеприемной сетки, к которой присоединяются металлические поручни ограждения кровли. Для крепления проводника на профилях кровельных листов Kalzip применяются специальные держатели фирмы OBO Bettermann. Все выступающие элементы (световые фонари, вентиляционные установки, киоски выходов кабелей и др.) замыкаются на общий молниезащитный контур.

  • Колокольня Ивана Великого

    Характеристика объекта: Самая высокая постройка архитектурного ансамбля Московского Кремля. Высота – 81 м.

    Адрес объекта: г. Москва, Соборная площадь Московского Кремля.

    Вид работ: Проектирование и монтаж системы молниезащиты

    Комплектующие: производства фирмы OBO Bettermann.

    Исполнение: Здание относится к III категории по уровню защиты. В качестве элемента системы молниезащиты использована существующая конструкция купола с крестом, молниеотводы из стали горячего цинкования Rd8 выполнены по наружным фасадам с применением фасадных держателей типа СК. Заземляющее устройство выполнено в виде нескольких очаговых заземлителей.

  • Здание Военторга на Воздвиженке, г. Москва

    Адрес объекта: г. Москва, ул. Воздвиженка, 10.

    Вид работ: Монтаж системы внешней молниезащиты здания.

    Комплектующие: производства компании Dehn+Sohne Gmbh.

    Элементы комплекта: стальной оцинкованный проводник Rd8; хомут-держатель Rd8-10 трубный 17.2 мм с клеммой, СГЦ/V2A; соединитель клеммный Rd8-10, СГЦ; соединитель универсальный Rd8-10 / Rd8-10, СГЦ; молниеприемный стержень Rd16 L=2.000 мм, алюминий; клемма-держатель фальцевая вертикальная, СГЦ; фальцевая клемма Rd8-10, СГЦ; соединитель промежуточный Rd8-10 / Fl30-Rd16, СГЦ; стальной хомут крепления ленты; лента из нержавеющей стали V2A; держатель Rd16 c М8.

  • Московский международный Дом Музыки

    Адрес объекта:г. Москва, Космодамианская наб., д. 52, стр. 8

    Вид работ: монтаж системы обогрева лотка поверхностного водосбора и участков сливов на балконах 2-го и 3-го этажей

    Нагревательный элемент: саморегулирующийся нагревательный кабель Thermon RGS-2-60-PU.

    Производимые работы: Ревизия электрической системы водостоков: замер сопротивления изоляции силовых и нагревательных кабелей; проверка состояния распределительных коробок; проверка работоспособности шкафов управления. Изготовление и монтаж электрической системы обогрева: применялись регуляторы ETR и ETV фирмы OJ, автоматические выключатели и контакторы ABB, кабель нагревательный саморегулирующийся Thermon.

  • Солнечногорский завод «ЕВРОПЛАСТ»

    Адрес объекта: Московская обл., Солнечногорский район, дер. Радумля.

    Вид работ: Проектирование системы молниезащиты промышленного здания.

    Комплектующие: производства фирмы OBO Bettermann.

    Выбор системы молниезащиты: Молниезащиту всего здания выполнить по III категории в виде молниеприемной сетки из горячеоцинкованного проводника Rd8 с шагом ячейки 12х12 м. Молниеприемный проводник уложить поверх кровельного покрытия на держатели для мягкой кровли из пластика с бетонным утяжелением. Обеспечить дополнительную защиту оборудования на нижнем уровне кровли установкой многократного стержневого молниеотвода, состоящего из стержневых молниеприемников. В качестве молниеприемника использовать стальной горячеоцинкованный прут Rd16 длиной 2000 мм.

  • ГТЭС Терешково

    Адрес объекта: г. Москва. Боровское ш., коммунальная зона «Терешково».

    Вид работ: монтаж системы внешней молниезащиты (молниеприемная часть и токоотводы).

    Комплектующие:

    производства фирмы OBO Bettermann.

    Исполнение: Общее количество проводника из стали горячего цинкования для 13 сооружений в составе объекта составило 21.5000 метров. По кровлям прокладывается молниеприемная сетка с шагом ячейки 5х5 м, по углам зданий монтируются по 2 токоотвода. В качестве элементов крепления использованы стеновые держатели, промежуточные соединители, держатели для плоской кровли с бетоном, скоростные соединительные клеммы.

Вам это может быть интересно:
Молниезащита офисных и административных зданий
Комплексная молниезащита памятников архитектуры и церквей
Системы молниезащиты АЗС и складов ГСМ
Особенности молниезащиты котельных
Грозозащита дымовых труб

устройство, виды и монтаж системы молниезащиты

Надёжная молниезащита здания – гарантия безопасности людей и сохранности недвижимого имущества во время грозы. Удар молнии силой в 200 000 ампер и выше обычно поражает следующие части сооружения:

  • Металлическая кровля;
  • Водостоки;
  • Выступающие элементы арматуры;
  • Опоры рекламных конструкций;
  • Антенны, соединённые с электронным оборудованием;
  • Кондиционеры.

Восходящий заряд молнии может проложить себе дорогу по мокрой деревянной или бетонной стене. Это создаёт угрозу мгновенного пожара, повреждает электрические приборы и наносит смертельное поражение людям и животным. Жилой дом без молниезащиты в грозу для всех жильцов превращается в зону повышенного риска.

Принципы устройства системы молниезащиты

Защита здания от молнии должна обеспечивать безопасный отвод разряда по специальным каналам к заземлению. Прохождение тока большой силы по токоотводу сопровождается мощным и мгновенным разогревом проводника.

Система молниезащиты должна обеспечить надёжную изоляцию крыши и стен здания от высокой температуры молниеприемника и проводника, с которым он соединён и предусматривать изоляцию тока во время его движения к земле. Если часть заряда попадёт во внутреннюю проводку, распространится по металлическим элементам кровли, карнизов, или подоконников, дойдёт до системы отопления, состоящей из металлических труб и батарей — результат будет катастрофическим.

Основные конструктивные элементы защиты от молнии

Любая система молниезащиты имеет 3 основных компонента:

  • Металлический молниеприемник, устанавливается на самой верхней точке здания и первым принимает на себя удар молнии;
  • Проволочный токоотвод, который является безопасным каналом сброса высокого напряжения;
  • Заземление, представляющее собой конструкцию из углублённых в землю проводников.

Если в здании находится электрооборудование, линии связи и телекоммуникаций, то молниезащита должна иметь дополнительную систему внутренней защиты.

Внутренняя молниезащита

Электрооборудование, электроника, электросети и линии связи защищаются при ударе молнии при помощи УЗИП. Это электронное устройство блокировки импульсных токов большой мощности, возникающих в проводниках вследствие индукционных и резистентных электромагнитных явлений.

Удар молнии порождает мощные электромагнитные поля. Если в зоне их влияния находятся электропроводящие материалы, то в них возникают индукционные токи, способные не только вывести из строя сложную технику, но и стать причиной возгорания.

Типы УЗИП

УЗИП выравнивает электрический потенциал заземлённых токопроводящих элементов (электросети, металлические трубы, отопление). Принцип действия — автоматический выключатель, срабатывающий при возникновении в цепи критических значений импульсных токов. Устройства внутренней молниезащиты подразделяются на типы в зависимости от расчётных параметров импульса.

  • Тип №1 УЗИП, рассчитан на срабатывание при попадании в здание прямого удара молнии (волновая длина 10/350 мксек.), пропускает через себя всю энергию разряда без разрушения, является обязательным оборудованием для сооружений, защищённых внешним громоотводом, и для трансформаторных подстанций;
  • УЗИП Тип №2, срабатывает при затухающей волне (8/20 мксек, непрямой удар), устанавливается после типа №1 и защищает отдельное помещение в здании (квартира, этаж, подвал, цех, и др.), имеет остаточный скачок напряжения после типа №1 не более 2 кВ;
  • Тип №3 устанавливается в качестве защиты для отдельного потребителя в электроцепи (блоки питания, отопительные электрокотлы, стабилизаторы напряжения и проч.).

Задачи, решаемые внутренней молниезащитой

Устройство внутренней защиты от молний зависит от приоритетной задачи:

  • Защита цепи питания от скачков, перепадов без отключения;
  • Безопасное отключение при критических показателях тока.

При установке нескольких УЗИП разных типов учитываются вышеперечисленные задачи, расстояния между устройствами, их последовательность и конструктивные особенности потребителей. Проектирование и установку внутренней молниезащиты в Воронеже можно заказать в нашей компании.

Типы молниеприёмников в молниезащите

По конструкции молниеприёмники делятся на следующие категории:

  • Штыревая система;
  • Металлический трос;
  • Молниеприёмная сетка.

Выбор конструкции определяется конфигурацией и типом кровли, высотностью здания, наличием находящихся рядом других сооружений, или природных объектов (деревьев, холмов), имеющих критически важные параметры высоты. Учитываться также могут архитектурные особенности дома.

Молниеприёмник в форме штыря

Молниезащита, оборудованная штыревыми громоотводами, является наиболее простым конструктивным решением. Стержни обычно устанавливаются на крышах с крутыми наклонными скатами, имеющими металлическую кровлю.Штырь монтируется на самой высокой точке крыши здания. Материалом для уловителя молний может служить железный, медный или латунный прут толщиной от 10 мм. Допускается использование металлических уголков, или пластин с толщиной не менее 4 мм и шириной от 25 мм. Уловитель должен возвышаться от верхней кромки крыши минимум на 2 м. Размер зоны безопасности под приёмником молний рассчитывается как окружность с диаметром, равным двойной высоте штыря.

Молниезащита с тросом

Если скаты крыши, покрытой металлопрофилем, имеют незначительный угол наклона, или её поверхность абсолютно плоская, то в качестве молниеприёмника применяется металлический трос из стальной проволоки толщиной не менее 8 мм. В качестве троса допускается использование железного прута такого же сечения и выше. Опоры тросовой защиты могут быть как деревянные, так и металлические. В последнем случае их необходимо изолировать от троса. Молниезащитас тросом предпочтительнее, если крыша дома имеет крутые скаты, деревянную основу и покрыта шифером, или черепицей. На плоской крыше высота натяжения тросового громоотвода должна составлять от 1,5 м. На двухскатной крыше трос натягивается на высоте 0,5 м вдоль конька.

Сетчатый громоотвод

Молниезащита с сетчатым громоотводом используется на зданиях с плоской крышей большой площади. Материалом уловителя молний служит стальная проволока толщиной 6 мм. Из неё монтируется сетка, свободные концы которой закрепляются на стойках. Высота сетки должна быть не меньше 0,5 метров. Максимальная длина стороны ячейки составляет 6 м. Сетчатая молниезащита устанавливается на крыши ангаров, ферм, цехов и гаражей.

Токоотвод

Для прокладки канала, по которому должен проходить заряд молнии, применяется проволока, или железный прут толщиной не менее 8 мм. Лучшим материалом считается медный кабель. Молниезащита будет надёжной, если соединение токопроводящего канала соштырём громоотвода будет сварным. Крепление токоотвода к стенам доманеобходимо производить при помощипластиковых скоб, или иных приспособлений, не проводящих ток. Система каналов токоотведения делается максимально короткой, без лишних изгибов. Места сильных перегибов при ударе молнии будут резко нагреваться, что может привести к разрушению проводника и возникновению мощной электрической дуги в непосредственной близости от стены здания.Для защиты токопроводящей линии от внешних повреждений проводник можно проложить по пластиковому водостоку. Токоотводящие каналы молниезащиты опускают к земле по углам дома. Минимально допустимое расстояние между разыми каналами составляет 20 метров, и их необходимо прокладывать на максимальном удалении от окон и дверей здания.

Система заземления

Токоотвод приваривается к проводнику, углублённому в землю. Простейшей конструкцией заземления является металлический стержень длиной 1,5 м, вбитый в грунт.

Сооружение более надёжного соединения электрических проводов молниезащиты с землёй делается следующим образом:

  • Во дно траншеи глубиной от 80 см и длиной 3 м по концам вбиваются металлические прутья, тубы, или арматура с сечением от 20 мм;
  • К выступающим частям стержней приваривается металлический прут такой же толщины, к нему приваривается электрический провод молниезащиты, после чего траншея закапывается.

Место для заземления выбирается на максимальном удалении от дверей, окон и дорожек. Минимально допустимое расстояние от входа – 5 м.

Молниезащита с активным уловителем

Современные варианты молниезащиты оснащаются активными уловителями атмосферных разрядов. Система включает генератор высоковольтного импульсного тока, соединённый с громоотводом и питаемый атмосферным электричеством. Напряжённость электрического поля во время грозы достигает 20 кВ/м и выше, что обеспечивает работу устройства. Генератор помогает сформировать восходящий поток заряда непосредственно от громоотвода, который притягивает нисходящие потоки.

Преимущества активной молниезащиты:

  • Во время грозы активная система защиты обеспечивает полную гарантию безопасности дома и прилегающей территории от поражения атмосферными разрядами; пассивная молниезащита не может на 100% обезопасить здание, электрооборудование и людей;
  • Площадь территории на порядок больше той, которую имеет обычный пассивный громоотвод;
  • Молниезащита с генератором может иметь 1 мощный и малозаметный стержень в качестве уловителя, в то время как пассивная защита для обеспечения безопасности большой территории потребует установки нескольких громоотводов.

Недостатком активной молниезащиты является способность притягивать все разряды в радиусе своего действия, а также её более высокая стоимость.

Классы молниезащиты

При проектировании и строительстве жилых домов, промышленных сооружений и объектов инфраструктуры применяются следующие классы молниезащиты:

  • Класс №1 – заводы по производству взрывоопасных и легко воспламеняющихся веществ, АЭС, предприятия промышленной химии и проч;
  • Класс №2 – склады ГСМ и промышленных товаров, деревообрабатывающие предприятия, места хранения ядовитых соединений;
  • Класс №3 — общественные здания, школы, объекты инфраструктуры, высотные сооружения более 30 м.

Присвоение любому объекту одного из вышеперечисленных классов делает установку специальной защиты от грозовых разрядов обязательной.

Все остальные объекты жилой застройки оборудуются молниезащитой по желанию собственников, на которых ложится вся ответственность за возникновение ЧП во время грозы.

Зачем нужна молниезащита зданий и сооружений

Любое здание и сооружение, независимо от назначения, расположения, высоты, строительных материалов подвержено попаданию молний во время грозы. Дорогое оборудование, которое выходит из строя и, зачастую, не поддается ремонту после попадания молнии, вся система электроснабжения, которая подвергается большим перегрузкам во время грозы, безопасность жизни и здоровья людей, находящихся в здании — все это требует тщательно продуманных и профессионально спроектированных мер по молниезащите зданий и сооружений. Ведь, как известно, легче один раз сделать, как следует, чем потом сто раз переделывать или сожалеть о не сделанном. Для этого необходимо обратиться к профессионалам, которые, учитывая все параметры, рассчитают и предложат оптимальный для вас комплекс защитных мер по обеспечению максимальной безопасности и сохранности объекта любой сложности.

Как необходимость установки молниезащиты на объектах  промышленного назначения, так и молниезащита жилых домов, продиктованы не только здравым смыслом, но и строительными нормами и правилами (СНИП).

Если смотреть в целом, то схемы установки молниезащиты любого объекта состоят из одних и тех же компонентов: молниеотвод для приема электрического разряда, защитный контур и заземляющее устройство. Различия зависят уже от сложности сооружения и его специфических параметров. При монтировании молниезащиты котельной, например, на трубах, изготовленных не из металла, необходимо устанавливать  металлические штыри, соединенные через токоотвод с заземлением. В молниезащите дымовых труб нет необходимости только в том случае, если это металлические трубы, которые сами по себе являются отличными проводниками электрических разрядов. Проектируя грозозащиту подстанций, нужно учитывать, что электрический разряд должен проходить по защитному контуру в обход всего оборудования. Особые требования предъявляются к молниезащите металлической кровли — надежное соединение заземления и токоотводов с помощью сварки или болтов.

Своевременно и в полной мере осуществленный комплекс мер по молниезащите — это сохранность оборудования, безопасность людей и экономия времени и средств.

Добавить комментарий

Молниезащита зданий и сооружений от компании «Профэлектрообогрев»

Разряд молнии считается особо опасным, так как его последствия могут быть самыми плачевными, начиная от выхода из строя техники, заканчивая большими пожарами и человеческими жертвами. Именно поэтому молниезащита зданий – вопрос чрезвычайной важности. Качественная система сооружений может предотвратить неприятности, связанные с этим стихийным явлением. Под молниезащитой дома сегодня подразумевается комплекс специальных устройств, которые позволяют обеспечить безопасность людей и сохранность зданий, материалов и оборудования от возможных загораний, взрывов и разрушений, возникающих вследствие удара молнии. Вот почему в настоящее время устройство данной системы является неотъемлемой частью проектирования любого строительного объекта.

Этапы выполнения работ по молниезащите зданий

 

Подготовка

На стадии подготовительных работ важно определить необходимый перечень мероприятий по устройству молниезащиты и разработать технические решения, которые наиболее подходят вашему типу здания.

 

Монтажные работы

Выполняются квалифицированным персоналом в соответствии с проектной документацией.

Наличие СРО, Свидетельства о регистрации электролаборатории.

 

Проверка и испытания

Проверка системы молниезащиты методом инструментальных измерений и оформление паспорта оборудования.

 

Техническое обслуживание

Для обеспечения надежной работы требуется своевременно проводить необходимые проверки системы.

Система молниезащиты

В основе создания подобной системы лежит необходимость изменить траекторию молнии, то есть отвести удар от крыши и направить его в землю. Таким образом, система молниезащиты состоит из молниеприемника, токоотвода, заземлителя. Молниеприемник принимает разряд на себя, после чего посредством токоотвода тот отводится к заземлителю, который и гасит заряд в земле. Во многом вид молниезащиты здания зависит от типа крыши и особенностей кровельного материала – идет ли речь о натуральной, битумной, металлочерепице и т.п. Поэтому, чтобы система была максимально эффективной, доверять ее проектировку следует только опытным профессионалам, таким, какие работают в компании «Профэлектрообогрев».

Молниезащита зданий – это одно из направлений нашей деятельности. Мы обеспечим надежную защиту любому объекту без нарушения его архитектурной целостности и индивидуальности. При этом наша компания гарантирует короткие сроки выполнения работ и долговечность оборудования. Продолжительный срок службы системы обеспечивается высоким качеством всех ее составляющих.

Активная молниезащита

Молниезащита дома может быть пассивной и активной. В первом случае оборудование «ждет», когда в него ударит молния. Что же касается второго варианта, то активная молниезащита обнаруживает возможность удара заранее и не допускает попадания молнии в объект, так как заблаговременно принуждает заряд пройти через молниеотвод. Таким образом, она представляет собой систему, которая наблюдает за молнией и активно вмешивается в ее действия, надежно защищая тем самым вверенное ей здание. «Перехватить» разряд и сократить вероятность его попадания не туда, куда вам требуется, позволяет управляемый заряд большого потенциала с противоположной полярностью.

После установки системы молниезащиты Заказчику передаётся: исполнительная документация по устройству (чертежи, пояснительная записка, паспорт), акт сдачи — приемки устройства, акт на скрытые работы по устройству системы заземления, рекомендации по эксплуатации молниезащиты.

Цена на монтаж молниезащиты здания

Стоимость молниезащиты здания определяется моделью оборудования. Это объясняется тем, что каждая система уникальна и имеет свои технические особенности. Поэтому рекомендуется запрашивать информацию о ценах у менеджеров компании. Чтобы получить максимально точную стоимость услуг, необходимо предварительно направить нам запрос на электронную почту [email protected]

Для того чтобы уточнить необходимые подробности и оформить заказ, свяжитесь со специалистами ООО «Профэлектрообогрев» по телефонам: +7 (495) 943-32-62 и +7 (499) 750-24-44 (оптовый отдел).

Отправить заявку на расчет стоимостиПодобрать комплектацию

ООО «Профэлектрообогрев» обладает всеми необходимыми документами для выполнения проектных и строительно-монтажных работ:

  • СРО на проектирование
  • СРО на СМР
  • Свидетельство о регистрации электролаборатории

Проектирование молниезащиты зданий и сооружений

Содержание статьи

Гроза несет огромный разрушительный потенциал, обезопасить воздействия которого можно путем точных инженерных решений.С другой стороны, молниезащита зданий и сооружений, которая строится без учета расчетных параметров, не обеспечит своих функций и может стать непосредственной причиной аварийных ситуаций.

Проектирование молниезащиты

О разрушительных действиях молний

Видимой частью проявления молнии является прямой удар, который расщепляет вековые стволы деревьев, оплавляет металлические конструкции и является причиной возгорания.

Невидимые, но не менее опасные вторичные проявления молнии, такие как наведенные токи и появление высокого потенциала, визуально не проявляется, но не становятся менее опасными, поскольку разрушения, вызванные этими факторами, носят массовый характер.

Токи, вызванные грозовыми электромагнитными полями, являются причиной выхода со строя различных электроприборов. Наведенные токи и занос высокого потенциала, вызывают искрение, особо опасное в помещениях с взрывоопасной концентрацией взрывчатых веществ. При наличии дорогостоящего электрооборудования, ущерб от молнии будет значительным.

Некоторые критерии расчета защиты

1) Годовой показатель ожидаемого количества поражений молнией. Рассчитывается по эмпирической формуле, в которой задаются геометрические параметры защищаемого объекта и статистические данные среднегодового числа ударов молнии на площади в 1 кв. км.

2) Уровень молниезащиты зданий и сооружений определяется нормативными документами. Защитой от прямых попаданий и появления высоких потенциалов оборудуются строения I, II и III категорий.

Здания I и II категорий, имеющие помещения с взрывоопасной атмосферой, дополнительно защищаются от наведенных токов, вызываемых грозовыми разрядами.

3) Надежность защиты. Регламентируется нормами инструкций не менее 99,5% для зоны А и 95% для зоны Б.

Расчет молниезащиты

Вывод

Расчет молниезащиты зданий и сооружений различного назначения, независимо от сложности объекта и характера производства, выполняется в соответствие с нормативными документами.

Применение расчетных методов позволит с большой степенью вероятности обезопасить строения от природных катаклизмов.

Разрабатывается как на стадии проектной так и рабочей документации.

Нормативные документы по проектированию молниезащиты:

Ответы на вопросы по молниезащите зданий и сооружений

В многоквартирном здании из монолитного железобетона высотой 92 метра в качестве контура заземления использован естественный заземлитель – проваренная арматура фундамента. Как спуски использована арматура монолитного железобетона, проваренная на всем протяжении, соединенная горизонтальными эквипотенциальными поясами через 20 метров. Обязательны ли внешние молниеприемные пояса на фасаде здания (облицован гранитом)? Возможна ли установка активного молниеприемника, который будет использовать выполненную систему молниеотводов (спусков)?

В случае использования арматуры железобетонных конструкций здания в качестве токоотводов при соединении горизонтальных и вертикальных элементов арматуры сваркой, как указано в приведенном примере, дополнительное выполнение наружных токоотводов, в т.ч. горизонтальных соединительных поясов, не требуется (см. «Инструкцию по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО-153-34.21.122-2003), п. 3.2.2.5, последний абзац. – М.: Издательство МЭИ, 2004 г.).

Если внешний молниеприемник является готовым заводским изделием, его установка и присоединение к системе токоотводов выполняются в соответствии с инструкцией изготовителя молниеприемника. При этом проектом каркаса здания, используемого в качестве системы токоотводов, должны быть предусмотрены необходимые присоединительные выпуски и устройства.

Если внешний молниеприемник должен быть изготовлен и установлен в соответствии с проектной документацией на молниезащиту объекта, его конструкция, крепление и соединения должны соответствовать п. 3.2.4 Инструкции СО-153-34.21.122-2003 и п. 3 «Инструкции по устройству молниезащиты зданий и сооружений» (РД 34.21.122-87).

В здании высотой 7 м стоят дизель-генераторы; крыша двухскатная из шифера, по коньку крыши проложен неизолированный провод. Выхлопная труба от дизелей имеет высоту 1 м над крышей. Требуется ли для такого сооружения выполнять молниезащиту (однотросовую или стержневую)?

Защита вращающихся машин от грозовых перенапряжений является обязательной. Она выполняется на основе положений либо «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО 153-34.21.122-2003), либо «Инструкции по устройству молниезащиты зданий и сооружений» (РД 34.21.122-87). Использование провода, проложенного по коньку крыши, в качестве молниеприемника не является достаточным, так как высшая точка молниеприемника (и тросового, и стержневого) должна находиться выше выхлопной трубы дизелей, чтобы защитить выхлопную трубу от прямого поражения молнией.

Вблизи выводов обмотки генератора или на сборных шинах следует устанавливать аппараты защиты от перенапряжений: нелинейные ограничители перенапряжений (ОПН), вентильные разрядники, защитные емкости.

В настоящее время на нашем предприятии питание прожекторов, установленных на металлических мачтах, предназначенных для наружного освещения территории, выполнено кабельными линиями на тросовой подвеске от вводов осветительных сетей в здание. Прожекторные мачты оснащены молниеотводами. Законно ли требование инспектора Ростехнадзора выполнить питание прожекторов кабелем с заземленной металлической оболочкой или в металлической трубе, проложенным в земле на протяжении не менее 10 м, в целях защиты питающей линии от грозовых перенапряжений (он ссылается на п. 6.3.19 ПУЭ 6-го изд.)?

Если прожекторная мачта и линии электроснабжения прожекторов входят в зону защиты отдельно стоящего(щих) молниеотвода(дов), то дополнительные меры по их молниезащите не требуются. Если молниеприемник установлен на прожекторной мачте, то электропроводку к ней рекомендуется выполнять в соответствии с указаниями п. 4.2.141 ПУЭ 7-го изд. (ПУЭ 6-го изд. на вновь сооружаемые и реконструируемые электроустановки не распространяется).

При проектировании молниезащиты зданий обязательно ли следовать указаниям Инструкции СО 153-34.21.122-2003 (указания по расчету молниезащиты очень запутанные)? По какому документу классифицируется надежность защиты объекта и имеются ли разъяснения к инструкции?

К сожалению, в новой редакции «Инструкции по защите зданий, сооружений и промышленных коммуникаций» отсутствуют дополнительные пояснения и рекомендации, что в существенной степени затрудняет её использование при конкретном проектировании устройств молниезащиты. Не выделены финансовые средства для разработки справочного пособия (рекомендаций) для облегчения пользования новой редакцией Инструкции. Нет и документа, устанавливающего необходимый уровень надежности защиты от прямых ударов молнии для указанных в Инструкции проектируемых объектов.

Поэтому задачей проектной организации при кон- кретном проектировании объекта является определение необходимой надежности молниезащиты, исходя из технико-экономических соображений с учетом возможного ущерба при поражении объекта молнией.

Еще раз обращаем внимание организаций на то, что в соответствии с Федеральным законом № 184 «О техническом регулировании» ведомства вправе утверждать только документы рекомендательного характера, за исключением перечисленных в статье 5 упомянутого закона. Инструкция по молниезащите под действие этой статьи не подпадает. Приказ Минэнерго России от 30.06.2003 № 280 об утверждении «Инструкции по молниезащите зданий, сооружений и промышленных коммуникаций» не содержит указания об отмене предыдущей редакции. Поэтому проектные организации вправе выполнять молниезащиту на основании положений предыдущей редакции Инструкции до подготовки и утверждения соответствующего технического регламента.

В связи с распространением различных видов радиосвязи, к нам, энергоснабжающей организации, часто обращаются за разрешением на установку различной аппаратуры на наших молниеотводах. В ПУЭ 6-го изд. по этому поводу есть лишь п. 4.2.143. Распространяется ли этот пункт на кабели, питающие аппаратуру связи и отходящие от них? Какие еще требования предъявляются к оборудованию, устанавливаемому на молниеотводах?

Правила устройства электроустановок не предусматривают возможность установки какой-либо аппаратуры на молниеотводах. Пункт 4.2.141 ПУЭ 7-го изд. рассматривает случай использования в качестве молниеотвода прожекторной мачты, который изначально предполагает необходимость подвода линии электропередачи для электроснабжения устройств освещения.

Установка каких-либо устройств на молниеотводах нормативно-техническими документами не запрещена. Однако следует учитывать высокую вероятность появления импульсного потенциала на молниеотводах при протекании по ним токов молнии и соответственно высокую вероятность повреждения аппаратуры, установленной на молниеотводе.

Госэнергонадзор Министерства энергетики России не рекомендует установку аппаратуры (в том числе радиосвязи) сторонних организаций на молниеотводах энергоснабжающих организаций. В случае такой установки защита от воздействий грозовых перенапряжений должна выполняться с учетом положений «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО 153-34.21.122-2003) или «Инструкции по устройству молниезащиты зданий и сооружений (РД 34 21.122-87).

В каких документах указаны нормы на сопротивление заземлителей для грозозащиты зданий и сооружений?

В настоящее время руководящими документами по грозозащите являются «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций», утвержденная приказом Минэнерго России от 30.06.2003 № 280, и «Инструкция по устройству молниезащиты зданий и сооружений» (РД 34.21.122-87). Этими документами не предусматривается непосредственное нормирование значений сопротивлений заземлителей.

Основное назначение заземлителей – ограничение грозовых (импульсных) напряжений на металлических конструкциях и на оборудовании. На стадии проектирования нет возможности предсказать значения токов молнии и, следовательно, значения импульсных перенапряжений.

Поэтому упомянутые Инструкции не устанавливают значения сопротивлений заземлителей. Инструкцией РД 34.21.122-87 рекомендовался выбор конкретных конструкций заземлителей, исходя из возможных значений токов молнии в диапазоне от 5 до 100 кА.

В то же время в главах 2.4 (пп. 2.4.36, 2.4.41), 2.5 (п. 2.5.129), 4.2 (пп. 4.2.136, 4.2.138, 4.2.143, 4.2.156, 4.2.162, 4.2.165) ПУЭ 7-го изд. приведены конкретные значения сопротивлений заземлителей опор воздушных линий электропередачи и распределительных устройств.

Можно ли использовать профилированный стальной лист кровли 3-этажного административного здания в качестве молниеприемника при условии непрерывной электрической связи между листами и не устраивать молниеприемную сетку?

Можно. «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО-153-34.21.122-2003, п.3.2.1.2) предусматривает использование металлических кровель защищаемых объектов в качестве естественных молниеприемников при одновременном соблюдении следующих условий:

  • электрическая непрерывность между разными частями обеспечена на долгий срок;
  • толщина металла кровли составляет не менее 4 мм для железа, 5 мм для меди и 7 мм для алюминия, если необходимо предохранить кровлю от повреждения или прожога, и не менее 0,5 мм, если кровлю не обязательно защищать от повреждений и нет опасности воспламенения находящихся под кровлей горючих материалов;
  • кровля не имеет изоляционного покрытия. При этом слой антикоррозионной краски, или слой 0,5 мм асфальтового покрытия, или слой 1 мм пластикового покрытия не считается изоляцией;
  • неметаллические покрытия на/под металлической кровлей не выходят за пределы защищаемого объекта.

«Инструкция по устройству молниезащиты зданий и сооружений» (РД 34.21.122-87, пп. 2.11, 2.25), действие которой не отменено, также предусматривает на зданиях и сооружениях с металлической кровлей использование кровли в качестве молниеприемника. Все выступающие над кровлей неметаллические элементы должны быть оборудованы молниеприемниками, присоединенными к металлу кровли. Должны быть соблюдены также требования пп. 2.6, 2.12, 2.13.

Возможно ли для вновь проектируемых (реконструируемых) жилых зданий не делать внешнюю молниезащитную систему? «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций», утвержденная приказом Минэнерго, точного ответа не дает. Вопрос касается не высоких зданий и не зданий «в чистом поле». Хотя и для высотных зданий непонятен принцип устройства молниеприемника (если кровля не металлическая и не выступает за пределы дома). Может быть, существуют какие-то разъяснения?

Молниезащита от прямых ударов молнии и от ее вторичных воздействий для жилых зданий в современных условиях, когда эти здания насыщены достаточно дорогой электронной техникой, должна выполняться, как правило, во всех случаях. Уровень (надежность) защиты определяется экономическими соображениями. Для небольших зданий может быть принят IV уровень защиты, для высотных зданий может оказаться целесообразным (выгодным) и I уровень. Способ защиты – специально установленные молниеприемники, конструктивные элементы здания или их сочетание – определяется проектной организацией. Отсутствие молниезащиты даже небольших зданий желательно обосновывать, например, низкой грозовой деятельностью в отдельных регионах.

К сожалению, в настоящее время отсутствуют публикации, подробно разъясняющие положения данной Инструкции, на их подготовку необходимы определенное время и средства. За консультациями по содержанию Инструкции рекомендуется обращаться к ее составителям: ОАО «ЭНИН им. Кржижановского», ООО «ЭЛНАП».

Согласно пункту 4.2.172 ПУЭ, необходимо выполнить защиту от самопроизвольного смещения нейтрали путем установки в цепь открытого треугольника трансформатора напряжения резистора величиной 25 Ом, рассчитанного на ток 4 А. Есть ли необходимость в такой защите при использовании комплектного токопровода от генератора до повышающего трансформатора, а также при использовании комплектного генераторного элегазового распределительного устройства с разрядниками с нелинейной характеристикой и дополнительными конденсаторами между фазами и землей? Проблема существует из-за невозможности вывести нейтральные точки высоковольтных обмоток трансформатора напряжения за пределы кожуха распределительного устройства для установки трансформатора тока в нейтраль трансформатора напряжения для сигнализации и автоматического включения резистора в цепи открытого треугольника трансформатора напряжения (см. «Инструкцию по проверке транс-форматоров напряжения и их вторичных цепей». М.: СоюзТехЭнерго, 1979).

Сопротивление 25 Ом должно подключаться к выводам обмоток, соединенных в открытый треугольник, и может быть установлено вне оболочки экранированного токопровода. Установка трансформатора тока в нейтрали высоковольтных обмоток трансформатора напряжения не требуется.

Выполнение защиты от самопроизвольных смещений нейтрали в сетях с изолированной нейтралью требуется при соотношении 1,0–3,0 А емкостного тока замыкания на землю на один комплект трансформа- торов напряжения.

При установке трансформаторов напряжения типа НАМИ (антирезонансных) выполнение защиты от самопроизвольных смещений нейтрали не требуется.

В последнее время контролирующие органы стали требовать выполнения молниезащиты при проектировании жилых домов до 6 этажей. В РД 34.21.122-87 нет четких указаний на принадлежность данных объектов даже к третьей категории. Правомочны ли подобные требования и какой нормативной литературой пользоваться для проектирования молниезащиты?

Действующие в России нормы в области молниезащиты не содержат жестких указаний об обязательности защиты от поражений зданий молниями. Поэтому уровень надежности защиты здания от поражений, при отсутствии соответствующих указаний, определяется проектной организацией. В отношении жилых домов Инструкция СО 153-34.21.122-2003 предусматривает выполнение защиты с одним из четырех предлагаемых уровней надежности защиты от прямых ударов молнии. Учитывая насыщенность современных жилых зданий, даже небольших, сложной бытовой техникой, необходимость выполнения молниезащиты и уровень надежности защиты определяются прежде всего возможным ущербом при поражении здания молнией.

С учетом опасности последствий поражения молнией зданий: поражение людей; разрушение строительных конструкций; возникновение пожаров; повреждения, сбои в работе электронных приборов и потеря данных в системах информационных технологий – требование надзорных органов в отношении обязательности выполнения молниезащиты, как правило, представляется обоснованным.

При проектировании молниезащитных устройств допускается использование любой из двух редакций: «Инструкции по устройству молниезащиты зданий и сооружений» (РД 34.21.122-87) или «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО 153-34.21.122-2003).

В качестве заземляющего контура котельной используется электрод (сталь круглая с медным покрытием), забитый в грунт на глубину 12 м. Рядом с котельной на расстоянии 3 м установлена дымоходная труба (h = 22 м), на которой смонтирован молниеприемник. Возможно ли использование данного электрода в качестве общего контура для заземления котельной и молниеприемника или для молниеприемника следует смонтировать свой контур?

Ответ имеется в п. 3.2.3.1 «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций». Заземляющие электроды заземлителя электроустановки котельной должны являться и составной частью заземлителя системы молниезащиты.

Возможно ли прохождение токоотводов по шахте лифта (молниезащита) жилого дома?

В лифтовых шахтах не должны прокладываться какие-либо коммуникации, не относящиеся к обеспечению работы лифтов. Рекомендации по выполнению токоотводов молниеприемников приведены в п. 3.2.2 «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО 153-34.21.122-2003).

Источник: http://www.news.elteh.ru/aq_page/pdf/vo_07.pdf

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Понравилась статья?

Поделиться с друзьями:

Подпишитесь на новые

Энергия — Внешняя молниезащита зданий

Без внешней молниезащиты не обойтись при предотвращении ущерба от прямых попаданий молний в здание, и при исключении различных косвенных воздействий на электронное оборудование внутри объекта.

В момент удара молнии, система грозозащиты перехватывает разряд молнии и отводит ее в землю, тем самым исключая попадание молнии в сам дом и препятствует возгоранию. Внешняя молниезащита (грозозащита) должна быть установлена таким образом, чтобы не возникало опасное искрение при пробое с молниеотвода на защищаемый объект.

Ориентировочные цены на работы по молниезащите*:

  • Выпуск проектной документации: от 4 000 р.
  • Стоимость материалов: от 40 000 р.
  • Стоимость работ по монтажу: от 30 000 р.
  • Выпуск рабочей документации: бесплатно.

* Для уточнения полной стоимости необходимо связаться со специалистом

Из чего состоит внешняя молниезащита

Внешняя молниезащита здания состоит из трех основных частей:

1. Молниеприемник – элемент, который принимает на себя разряд молнии и направляет его далее в токоотвод. В системе молниезащиты молниеприемник может быть различных типов: состоящим из стержневых (молниеприемные стержни и мачты), сетчатых проводников (соответственно — молниеприемная сетка), либо тросовых.

Высоту молниеприемных мачт часто используют для расчета радиуса безопасной и надежно «ловящей» молнию окружности вокруг самого молниеприемника.

Как правило, используется формула вычисления радиуса: R=h*1,73 (при высоте зданий не более 30 метров). Где h — это высота мачты, при условии, что она размещена в самой высокой точке крыши здания. Если же основание мачты находится ниже самой высокой точки крыши, то тогда h — это значение от верхнего конца молниеприемника до верхней точки крыши. Чтобы порою не приходилось возводить слишком высокую мачту, или не ставить чрезмерно большое количество молниеприемников на одной крыше, применяют иной вид оборудования, улавливающего молнию — молниеприемные сетки. В зависимости от площади и рельефа (конструкции) крыши, а также от типа здания и вида кровли, рассчитывают определенный «шаг» сетки и сечение проводника.

Нельзя не упомянуть и о распространенном народном типе простейшей молниезащиты — струнном или тросовом. В данном случае по всей длине кровли вдоль конька натягивается металлический трос на двух изоляционных подпорках, и к нему с обоих концов присоединяют токоотвод (как правило сваркой, для большего контакта), спускают по стенам и далее, соответственно, переходят в заземлители.

2. Токоотвод. Исходя из самого названия он предназначен для проводки разряда молнии к заземляющему устройству в системе внешней молниезащиты. Чтобы уменьшить опасность возникновения искрения, разряд (его энергия) должен течь как минимум по двум путям от токоотвода.

3. Заземляющее устройство – это «конечный пункт» разряда молнии перед уходом непосредственно в землю. Система заземления дома бывает двух типов:

  1. Если каждый токоотвод имеет свой заземлитель, то данная конструкция относится к типу «А». Заземлители при этом можно прокладывать горизонтально в земле на глубине 50 и более см от поверхности (горизонтальные, лучевые заземлители) или же вертикально заглублять их в грунте.
  2. В случае, если вокруг объекта создается контур заземления (как правило из полосовой стали), к которому подключают все токоотводы объекта, то в такой конфигурации это заземлитель типа «В». Наша компания занимается проектированием внешней молниезащиты зданий на основе комплектующих производителя, который на протяжении века славится качеством своих изделий.

Специалисты компании ПК «Энергия» не только разработают для Вас проект молниезащиты любой сложности, а так же помогут осуществить доставку в любую точку России.

Частый вопрос: «как сделать заземление в частном доме?»

Мы всегда с удовольствием консультируем всех, но для выдачи толковой рекомендации нам необходимо знать несколько уже существующих у Вас базовых условий: есть ли уже заземление дома и в каком оно состоянии? Какой грунт вокруг здания, какие размеры и какова форма Вашего объекта? Поэтому, самый удобный способ — это заранее приготовить ответы на данные вопросы и затем позвонить нам.

Заказывайте у нас!

«ПК Энергия» обладая большим опытом в проектировании внешней или внутренней системы молниезащиты промышленных строений, жилых домов, газопроводов. Мы выполняем монтаж любой сложности быстро, с подбором оптимального оборудования для Вашего объекта. Наши специалисты с удовольствием проконсультируют Вас.

Молниезащита зданий каталог

На здании любого предприятия необходимо выполнить установку системы молниезащиты, которая является необходимым элементом техники безопасности и в случае удара молнии сможет уберечь от людских жертв и больших финансовых убытков. В процессе работы над проектом системы молниезащиты для зданий и сооружений в учёт берутся такие факторы, как предназначение производства, нюансы его конструкции и размещение объекта, для определения частоты гроз.

Молниезащита зданий и сооружений промышленности проектируется в зависимости от вида опасного воздействия, которое проявляется от разряде молнии:

  • Прямой удар молнии несёт термическую и механическую опасность для сооружения.
  • Второстепенное действие приводит к появлению электрического тока в токопроводящих цепях здания (проводка, трубы и т.п.). Это может привести к искрению и нагреву металлических конструкций, что спровоцирует пожар или взрыв.
  • Занос высоких потенциалов через токопроводящие конструкции непосредственно в электрооборудование и вывод его из строя.
Самой большей опасности подвержены высотные объекты на производстве – мачты, опоры ЛЭП и др.


Молниезащита зданий и сооружений с индивидуальным комплексом мер

  • Системы для высотных объектов и металлических сооружений выполняется с использованием заземления всего каркаса не менее чем в двух местах.
  • Системы для открытых сооружений, где высока взрывоопасность, выполняется с использованием стержневого отвода молний, или же молниеотводов монтируемых внутри самих установок.
  • Подстанции, на которых используются устройства распределения от прямого попадания молнии, защищаются с применением молниеотвода из троса или стержня. Если сопротивление конструкции заземления у подстанции менее 1Ом, молниеотвод подключают непосредственно к заземлителю, иначе выполняют монтаж дополнительного молниеотвода.
  • Трубы на заводах и фабриках защищаются молниеотводом из стальных стержней сечением 25мм. Количество стержней молниеотвода зависит от высоты трубы. Для труб более 40 м, монтируют два спуска, менее 40м – достаточно одного.
Для остальных промышленных зданий и сооружений молниезащита проектируется в соответствии с нормативной документацией.

Громоотвод — пассивная защита от молнии

Давайте рассмотрим, составляющие систем пассивной молниезащиты.
Заземление — это система заземлителей и заземляющих проводников, находящихся в электрическом контакте с землей непосредственно, или через промежуточную проводящую среду. Заземление необходимо, для рассеивания электрического тока в грунте.
Молниеотвод это проводник, соединяющий систему заземления с молниеприемником. По нему отводится электрический разряд с молниеприемника в систему заземления.
Молниеприёмник — это устройство, перехватывающее разряд молнии, выполненное из токопроводящих материалов и устанавливаемое на наивысшей точке строения. Основная задача — принять на себя и отвести удар молнии через молниеотвод, тем самым обеспечить сохранность строения и самое главное человеческой жизни.
В зависимости от конструктивных особенностей строений пассивная защита от молнии может быть: стержневая, тросовая или сетка «Фарадея».

Основные формы громоотвода

Стержневая молниезащита имеет форму классической молниезащиты. На самой высокой точке строения устанавливается стержневой молниеприемник. Расчет и проектирование стержневой молниезащиты происходит путем определения угла защиты;

Тросовая защита от молнии представляет собой не что иное как стержневая грозозащита установленная на противоположных сторонах одного и того же здания и соединена между собой тросом. Расчет и проектирование тросовой молниезащиты также происходит путем определения угла защиты;

Сетка «Фарадея» отличается от двух предыдущих систем тем, что на кровле здания устанавливается не стержневой молниеприемник, а по кровле раскладывается горизонтальный молниеприемник в виде сетки, с определенным шагом ячейки и с учетом захвата каждого отдельного выступа на кровле.

Чаще всего при монтаже систем молниезащиты применяется комбинированный подход, и с использованием несколько видов молниезащиты одновременно. Этот подход оптимизирует затраты и дает высокую степень защиты. Область применения пассивной молниезащиты – все здания и сооружения, где живут и работают люди, производственные сооружения, памятники архитектуры, зверофермы т.д.
Защита от молнии – неотъемлемая инженерно-техническая часть любого здания.

Бесплатная доставка по России до объекта при комплексной поставке.  


Обзор молниезащиты

— Институт молниезащиты

Общая информация по отрасли

Институт молниезащиты — это общенациональная некоммерческая организация, основанная в 1955 году с целью продвижения образования, осведомленности и безопасности в области молниезащиты. Индустрия молниезащиты началась в Соединенных Штатах, когда Бенджамин Франклин постулировал, что молния — это электричество, и что можно использовать металлический стержень, чтобы отвести молнию от здания.Молния является прямой причиной более 50 смертей и 400 травм ежегодно, и трудно защитить людей на открытых открытых площадках. Прямые удары молнии причиняют ущерб от пожара, превышающий 200 миллионов долларов в год, и страховые компании прямо или косвенно оплачивают претензии на миллиарды долларов, связанные с молнией. Большая часть этих имущественных потерь может быть сведена к минимуму, если не устранена, путем применения надлежащей молниезащиты для конструкций. LPI стремится к тому, чтобы современные системы молниезащиты обеспечивали наилучшее качество как материалов, так и методов установки, обеспечивая максимальную безопасность.

Национальная ассоциация противопожарной защиты . (NFPA) публикует документ № 780 под названием «Стандарт установки систем молниезащиты» считается национальным руководством по проектированию полных систем молниезащиты в Соединенных Штатах. NFPA опубликовало свой первый документ по молниезащите в 1904 году. Документы NFPA, такие как Национальный электротехнический кодекс (NEC — NFPA 70), Национальный кодекс по топливному газу (NFPA 54) и Единый пожарный кодекс (NFPA 1), разрабатываются комитетом для проверки. принятие новой информации по безопасности по конкретным вопросам, связанным с пожарами.

Стандарт защиты от молний № 780 пересматривается с трехлетним циклом для обновления. NFPA 780 включает молниезащиту для типовых строительных конструкций в четвертой главе как требования к обычным конструкциям. Документ 780 охватывает многие специальные конструкции от хранилищ опасных материалов до лодок и кораблей, а также открытых сооружений для пикников и дает рекомендации по личной безопасности на открытом воздухе. NFPA 780 предоставляет лучшее, что мы знаем сегодня в теории и технологиях, о системах защиты, протестированных опытными профессионалами отрасли в официально признанном формате.

Испытания компонентов материалов молниезащиты на заводе перед отправкой для включения в список и маркировки проводятся Underwriters Laboratories, Inc. (UL) . Стандарт UL 96 отвечает минимальным требованиям к конструкции молниеприемников, кабельных жил, фитингов, соединителей и крепежных деталей, используемых в качественных системах молниезащиты. В UL есть инспекционный персонал, который регулярно посещает производственные предприятия, чтобы проверить соответствие требованиям для дальнейшего использования утвержденных товарных этикеток.

Полевой осмотр завершенных установок молниезащиты также может быть организован UL через подрядчиков по установке, указанных в их программе. UL выпускает продукт «Master Label» для систем, полностью соответствующих их Стандарту UL 96A в течение многих лет. Стандарт 96A основан на общих требованиях NFPA 780, но UL имеет техническую группу по стандартам (STP) для проверки требований к более удобному для проверки формату, что приводит к некоторым различиям. UL также будет проверять на соответствие некоторым другим национально признанным стандартам (например, NFPA 780) для полностью соответствующих систем.Некоторые частичные конструкции могут быть доступны для полевой инспекции в рамках их программы «Письмо с выводами».

Институт молниезащиты (LPI) принимает последнюю редакцию стандарта NFPA 780 в качестве справочного документа для проектирования систем. LPI выступает за использование UL в качестве стороннего органа по проверке компонентов в соответствии с их документами UL 96. LPI публикует этот документ # 175 , основанный на NFPA 780, с дополнительными пояснительными материалами, полезными для персонала, выполняющего установку, и инспекторов.

LPI предоставляет отраслевую программу самоконтроля для сертификации участников подмастерьем, мастером-установщиком и дизайнером-инспектором. Люди сдают экзамены, которые включают требования перечисленных выше Стандартов молниезащиты и применение этих принципов к примерам проектирования. Продление членства требуется каждый год, при этом дополнительные экзамены сдают примерно каждые три года при обновлении национальных стандартов. Заключение контрактов со специалистами, прошедшими квалификацию в рамках процесса LPI, обеспечивает дополнительный уровень гарантии качества для первоначальной установки системы и ресурс для будущих проверок и обслуживания существующих систем.

LPI внедрила программу проверки для завершенных установок под названием LPI-IP . LPI-IP предоставляет услуги по сертификации более тщательно и полно, чем любая предыдущая программа проверки от LPI или других, доступных в настоящее время на рынке. Благодаря использованию контрольно-пропускных пунктов, проверок и проверок на месте сертификация системы LPI-IP обеспечивает безопасность с привлечением квалифицированного монтажного персонала и независимых инспекторов. LPI-IP предлагает «Главный сертификат установки» для полных конструкций, «Восстановленный мастер-сертификат установки» для ранее сертифицированных конструкций и «Осмотр ограниченного объема» для частичных систем в определенных контрактах.Это критически важный элемент для специалиста, владельца и страховщика имущества, обеспечивающего проверку качественных установок молниезащиты сторонним независимым источником.

Системы молниезащиты для сооружений, как правило, не являются требованием национальных строительных норм и правил, хотя стандарты могут быть приняты властями, имеющими юрисдикцию для общего строительства или определенных помещений. Поскольку молниезащита может рассматриваться как вариант, крайне важно, чтобы разработчик, строительный подрядчик и страховщик имущества были знакомы с национальными стандартами для обеспечения наивысшего уровня безопасности. Системы молниезащиты зарекомендовали себя в плане защиты от физических опасностей для людей, структурных повреждений зданий и отказов внутренних систем и оборудования. Полученная ценность начинается с правильного проектирования, продолжается с помощью качественных методов установки и должна включать проверку и сертификацию. Конечная цель — безопасная гавань, безопасность инвестиций и устранение потенциального простоя системы в противовес одному из самых разрушительных природных явлений.

Общая информация о системе

Стандарты США для полных систем молниезащиты включают NFPA 780, UL 96 и 96A и LPI 175 . Эти стандарты основаны на фундаментальном принципе обеспечения разумно прямого металлического пути с низким сопротивлением и низким сопротивлением для прохождения тока молнии, а также принятия мер по предотвращению разрушения, пожара, повреждения, смерти или травмы, когда ток течет с крыши. уровни ниже класса.Стандарты представляют собой консенсус властей в отношении основных требований к конструкции и характеристикам квалифицированных конструкций и продуктов. Ожидается, что полная система защиты, основанная на принципах надежной инженерии, исследованиях, протоколах испытаний и полевом опыте, обеспечит безопасность людей и конструкций от молнии и ее побочных эффектов. Стандарты постоянно пересматриваются в отношении новых продуктов, строительных технологий и подтвержденных научных разработок, направленных на устранение опасности молнии.Хотя материальные компоненты могут казаться очень похожими, конфигурация общей конструкции системы за последние 25 лет кардинально изменилась, чтобы отразить современный образ жизни.

Есть пяти элементов , которые должны быть на месте для обеспечения эффективной системы молниезащиты. Устройства защиты от ударов должны быть пригодны для прямого попадания молнии и должны иметь рисунок, чтобы воспринимать удары до того, как они достигнут изоляционных строительных материалов. Кабельные жилы направляют ток молнии через конструкцию без повреждений между заглушками наверху и системой заземляющих электродов внизу.Система заземляющих электродов уровня ниже должна эффективно перемещать молнию к ее конечному пункту назначения вдали от конструкции и ее содержимого. Соединение или соединение системы молниезащиты с другими внутренними заземленными металлическими системами должно быть выполнено таким образом, чтобы исключить возможность попадания молнии в боковую вспышку изнутри. Наконец, устройства защиты от перенапряжения должны быть установлены на каждом служебном входе, чтобы остановить проникновение молнии от инженерных сетей и дополнительно уравнять потенциал между заземленными системами во время грозовых разрядов.Если эти элементы правильно идентифицированы на этапе проектирования, включены в аккуратную рабочую установку и в здании не происходит никаких изменений, система защитит от повреждений молнией. Элементы этой системы пассивного заземления всегда выполняют аналогичную функцию, но общая конструкция индивидуальна для каждой конкретной конструкции.

Компоненты молниезащиты изготовлены из материалов , устойчивых к коррозии, и они должны быть защищены от ускоренного износа.Многие компоненты системы будут подвергаться воздействию атмосферы и климата. Комбинации материалов, образующих электролитические пары в присутствии влаги, не должны использоваться. Компоненты токоведущей системы должны обладать высокой проводимостью. Преобладающие почвенные условия на площадке будут влиять на компоненты подземной системы. Срок службы системы и цикл обслуживания / замены зависят от выбора материала и местных условий. Системные материалы должны быть согласованы с используемыми конструкционными материалами, включая облицовки, колпачки, кожухи вентиляторов, различные кровельные системы, чтобы поддерживать влагозащитную оболочку в течение предполагаемого срока службы здания.

Медь, медные сплавы (включая латунь и бронзу) и алюминий являются основными материалами компонентов системы. Они служат наилучшим сочетанием функций для переноса тока и защиты от атмосферных воздействий. Поскольку алюминиевые материалы имеют немного меньшую токонесущую способность и механическую прочность, чем изделия из меди аналогичного размера, перечисленные и маркированные материалы для молниезащиты включают детали большего физического размера. Например, чтобы считаться эквивалентным, воздушный терминал минимального размера будет иметь диаметр ½ дюйма в алюминии по сравнению с диаметром 3/8 дюйма в меди.

Вода, стекающая с меди, окисляет алюминий и гальванизированные поверхности, поэтому при согласовании конструкции системы необходимо учитывать гальванические аспекты для устранения возможных проблем с монтажом. Квалифицированные биметаллические фитинги используются для согласования компонентов системы для необходимых переходов от алюминия к меди. Они могут включать перечисленные продукты для этой цели или, в некоторых случаях, компоненты из нержавеющей стали. Алюминий никогда не контактирует с землей или почвой. Алюминий никогда не должен контактировать с краской на щелочной основе или встраиваться непосредственно в бетон.

Если какое-либо изделие подвергается необычному механическому повреждению или смещению, оно может быть защищено молдингом или покрытием, но необходимо проявлять осторожность, чтобы заглушки и другие компоненты, устанавливаемые на крыше, могли выполнять свои функции при приемке навесного оборудования. Компоненты молниезащиты под ударными клеммами могут быть скрытыми внутри здания ниже уровня крыши во время строительства или при доступе. Скорость тока молнии и разделение потока между несколькими путями не позволят компонентам нагреться до любой мгновенной температуры возгорания, опасной для типичных строительных материалов.Включение системы в конструкцию позволяет соединять структурный металлический каркас и внутренние заземленные системы и обеспечивает защиту от проблем смещения и обслуживания, которые полезны для продления срока службы системы.

Материалы, подходящие для использования в системах молниезащиты, перечислены в списке , помечены и протестированы как в соответствии со стандартом UL 96. Конструкция проводника включает максимальное увеличение площади поверхности для переноса молнии и гибкость конфигурации для выполнения изгибов и поворотов, необходимых при установке.Основания аэровокзала эффективно передают удар от оконечного устройства к проводнику кабеля и надежно крепятся к различным поверхностям здания в суровых погодных условиях. Фитинги для сращивания должны поддерживать контакт с проводниками, длина которых должна быть достаточной для передачи тока и погодных условий в открытой среде. Заземляющие электроды должны обеспечивать надлежащий контакт с землей для рассеивания заряда и удовлетворять требованиям по пригодности для жизненного цикла в различных составах почвы. Размеры скрепляющих устройств позволяют обеспечить надлежащее соединение систем для выравнивания потенциалов по всей конструкции.Устройства защиты от импульсных перенапряжений соответствуют требованиям более высоких уровней тока для удовлетворения потребностей, связанных с молниезащитой.

Прекращение забастовки

Устройства защиты от ударов выполняют системную функцию по подключению прямых молниеприемников. Они представляют собой зонтик от проникновения молнии в непроводящие строительные материалы для защиты от пожара или взрыва. Любое металлическое тело толщиной 3/16 дюйма или более, выступающее над конструкцией, выдержит удар молнии, не прожигая.Поэтому в некоторых случаях строительные элементы могут быть включены в качестве прекращения забастовки. Высокие мачты или подвесные заземляющие провода, аналогичные средствам защиты линии электропередачи, могут служить в качестве защиты от удара. В большинстве случаев, однако, небольшие молниеотводы специального назначения составляют большинство систем защиты от ударов. Эти ненавязчивые компоненты предпочтительны из-за простоты монтажа и эстетических соображений, и их можно скоординировать в наиболее эффективную конфигурацию для всех типичных строительных конструкций.

Окружающая нас атмосфера электрически заряжена, но свободный воздух поддерживает относительно сбалансированное распределение ионов. Когда мы поднимаем в воздух здание, дерево или даже человека, в меньшей степени, мы меняем этот электрический баланс. Электрическое поле накапливается для изменения точек в геометрии наземных объектов. Такие элементы, как гребни и особенно концы гребней, края зданий с плоской крышей и даже больше, углы становятся точками накопления ионов, которые повышают восприимчивость к ударам молнии.Надлежащая система устройств защиты от ударов учитывает эти реалии за счет использования молний в настроенной схеме, разработанной для использования точек естественного накопления ионов в здании для втягивания молнии в систему защиты. Чем выше конструкция и чем серьезнее плоские изменения (например, от вертикальной стены до горизонтальной плоской крыши), тем больше возможностей для крепления на этих критических стыках. Проектирование системы воздушных терминалов , выступающих всего на 10 дюймов над этими структурными точками акцента и вдоль гребней и краев, было доказано более чем столетней практикой для обеспечения перехвата примерно 95% зарегистрированных вспышек молний, ​​включая большинство жестокий.Некоторые удары молнии с меньшим потенциалом теоретически могут возникать на плоских плоскостях вдали от устройств защиты от ударов, разработанных в соответствии со стандартами, но последствия находятся в допустимых пределах для обычного строительства. Учитывая более низкий уровень энергии, необходимый для байпаса, другие компоненты структурного заземления, включенные в полную систему молниезащиты, и случайную вероятность соединения с компонентом системы в любом случае, этот метод защиты здания считается наиболее эффективным.

Защита самых высоких и выступающих элементов здания с помощью устройств защиты от удара, в зависимости от геометрии здания, также обеспечивает некоторый уровень защиты для нижних пристроек конструкции или элементов, находящихся в «тени» более высоких полностью защищенных областей. Зона защиты существует от любого устройства для защиты от вертикальных ударов и даже больше от вертикального полностью защищенного уровня здания. Зона защиты описана в Стандартах молний с использованием сферической модели с радиусом 150 футов (46 метров) для определения объектов, находящихся под защитой более высоких элементов системы, или расширения зданий на расстояния, требующие дополнительной защиты с помощью дополнительных ударных клемм.Это похоже на катание мяча диаметром 300 футов (92 метра) с высоты по зданию, а затем по зданию на противоположный уровень во всех мыслимых направлениях. Если мяч касается изолированного строительного материала, то добавляется дополнительная ударная клемма. Зоны, поддерживаемые ударными клеммами, ударными клеммами и уклонами, а также вертикальные стены, тогда находятся под защитой правильно спроектированных элементов системы. Эта геометрическая модель для защиты конструкций в целом основана на последнем этапе процесса присоединения молнии и снова покрывает более 90% возможных ударов.На более ответственных конструкциях, таких как те, которые содержат взрывчатые вещества или легковоспламеняющиеся жидкости и пары, модель уменьшается до сферы радиусом 100 футов (30 метров), которая покрывает более 98% зарегистрированных ударов молний.

Система защиты от ударов защищает конструкцию от ударов молнии, обеспечивая предпочтительные точки крепления. В большинстве случаев предпочтительнее использовать медные или алюминиевые молниеотводы из-за их проводимости и устойчивости к погодным условиям.Эту функцию также могут выполнять квалифицированные выступающие металлические строительные элементы. В особых обстоятельствах, когда нельзя допустить проникновения молнии, использование высоких мачт и воздушных заземляющих проводов, используемых в модели с уменьшенной зоной, может обеспечить дополнительную защиту. Защита таких вещей, как стандарты освещения или деревья, может обеспечить некоторую защиту области на основе модели зоны. Конструктивная конфигурация ударной нагрузки — это первый ключевой элемент в обеспечении полной системы молниезащиты.

Проводники

Система проводов . Компонент полной молниезащиты включает в себя кабели основных размеров, конструкционную сталь здания, а также соединительные или соединительные провода с внутренними заземленными системами здания.Основные проводники выполняют токопроводящую функцию от устройств защиты от удара до системы заземления. Основные кабели изготовлены из меди или алюминия с высокой проводимостью, которые хорошо работают во внешних условиях. Молния ищет путь к земле, поэтому даже при использовании очень проводящих материалов кабели должны прокладываться горизонтально или вниз. Это похоже на концепцию самотечного потока воды на наклонных плоских участках в водосточные желоба или в водосточных желобах в водосточные системы.Кабели необходимо прокладывать, используя длинные плавные изгибы не менее 90 градусов. Молния создает значительную механическую нагрузку на кабели, в результате чего могут быть повреждены острые изгибы или углы, а в худшем случае молния может перевернуться. Эту механическую силу можно сравнить с отправкой воды под давлением через пожарный шланг — проводник будет пытаться выпрямиться, вызывая опасность повреждения стыковых фитингов, креплений или самого проводника.

Медные и алюминиевые жилы основных кабелей для молниезащиты спроектированы по стандарту гладкого переплетения или канатной свивки с использованием отдельных проводов меньшего сечения.Такая конструкция обеспечивает максимальную площадь поверхности на единицу веса проводника для размещения молнии, которая быстро распространяется по поверхности. Эта конструкция также позволяет упростить изгиб и формирование системы проводников вдоль, вокруг и над элементами конструкции здания. Открытые проводники крепятся с максимальным интервалом в три фута, чтобы удерживать систему на месте от ветра и непогоды. Все устройства защиты от удара должны быть подключены к проводникам с минимумом двух путей к системе заземления.Устройства защиты от ударов, покрывающие различные области конструкции, должны быть соединены между собой для образования единой системы либо посредством проводников на крыше, либо через токоотводы, либо путем соединения элементов системы заземления для разных уровней или выступов крыши. Жилы молниеотводов могут быть скрыты под или внутри конструкции — на чердаках и в стенах, или в бетонных насыпях — потому что скорость молнии снижает возможность нагрева проводников до температуры искрового воспламенения строительных материалов, намного ниже опасного уровня.

Нисходящие или токоотводы — это элементы системы основных проводов, которые обычно переносят молнию от системы уровня крыши к системе заземления. Это может быть кабельный провод или сплошной стальной каркас , соответствующий требованиям , толщиной 3/16 дюйма или больше, или их комбинация. Арматурная сталь или арматура неприемлемы в качестве замены проводника кабеля, но каждый нисходящий вывод кабеля должен быть прикреплен к несущему каркасу вверху и внизу каждого вертикального участка.Все устройства защиты от ударов должны иметь как минимум два пути к земле, чтобы разделить молнию по нескольким путям, поэтому в самом маленьком здании должно быть минимум два нисходящих вывода. Нисходящие линии для больших зданий могут быть рассчитаны со средними интервалами 100 футов для площади периметра здания, хотя системные компоненты для специальных элементов конструкции здания могут потребовать дополнительных токоотводов для удовлетворения требований к нескольким путям. Важно рассчитать площадь защищаемого периметра, чтобы получить правильное распределение нисходящих водопроводов для коньковых крыш, которые включают ударные заделки только вдоль вершины.

Обеспечение множественных путей для тока молнии имеет большое преимущество, заключающееся в снижении общей энергии на любом проводнике. Это влияет не только на размер проводника, но и удерживает молнию на указанных путях, чтобы свести к минимуму боковую миграцию внутренних систем и уменьшить потенциальные проблемы внутренней индукции. Стандарты молниезащиты требуют минимального количества по периметру, но большее количество путей может быть очень полезным для обеспечения клетки защиты для оборудования и людей внутри.Тот факт, что стальная рама , конструкция создает наибольшее количество квалифицированных вертикальных путей, соединенных горизонтально на многоуровневых структурах, делает его использование в качестве нисходящих проводов предпочтительным для обеспечения улучшенной защиты от проникновения побочного эффекта молнии. Несмотря на то, что кабельные жилы необходимы для нисходящих водопроводов в бетонных конструкциях, необходимое соединение арматуры помогает создать аналогичную сеть защиты в проектах высотного строительства.

Заземление

Правильно выполненные заземляющие соединения необходимы для эффективного функционирования системы молниезащиты, так как они служат для распределения молнии по земле.Это не означает, что сопротивление заземляющего соединения должно быть низким, а скорее, что распределение металла в земле или на ее поверхности в крайних случаях должно быть таким, чтобы обеспечить рассеивание разряда молнии без причинения ущерба.

Низкое сопротивление желательно, но не обязательно, что может быть продемонстрировано крайними случаями, с одной стороны, здания, покоящегося во влажной глинистой почве, а с другой стороны, здания, стоящего на голом камне. В первом случае, если грунт имеет нормальное удельное сопротивление, сопротивление надлежащего заземляющего электрода должно быть меньше 50 Ом, и два таких соединения с землей на небольшом прямоугольном здании опытным путем были признаны достаточными.В этих благоприятных условиях просто обеспечить адекватные средства для рассеивания энергии вспышки без возможности серьезного повреждения. Во втором случае было бы невозможно выполнить хорошее заземление в обычном смысле этого слова, потому что большинство видов горных пород изолируют или, по крайней мере, обладают высоким удельным сопротивлением; следовательно, чтобы получить эффективную основу, необходимы более сложные средства. Наиболее эффективные системы представляют собой разветвленную сеть проводов , проложенную на поверхности скалы, окружающей здание, к которой подключены токоотводы.Сопротивление между таким устройством и землей может быть высоким, но в то же время распределение потенциала вокруг здания по существу такое же, как если бы оно покоилось на проводящей почве, и результирующий защитный эффект также по существу такой же. Система заземляющих электродов для защиты от молний служит для отвода молнии в любые существующие слои почвы и отвода ее от конструкции.

Сеть заземляющих электродов будет определяться в основном опытом и суждением лица, планирующего установку, с должным учетом минимальных требований Стандартов, которые предназначены для покрытия обычных случаев, которые могут возникнуть, при соблюдении Имейте в виду, что, как правило, чем шире доступный металл под землей, тем эффективнее система заземления.Схема заземления зависит от характера почвы: от одиночных заземляющих стержней, когда почва глубокая, до использования нескольких электродов, заземляющих пластин, радиальных проводов или подземных проводных сетей, где почва мелкая, сухая или с плохой проводимостью. Каждый нисходящий кабель должен заканчиваться соединением заземляющего электрода, предназначенным для системы молниезащиты. Электроды или электроды системы связи не должны использоваться вместо электродов заземления молнии. Конечный продукт должен включать соединение отдельных заземляющих электродов разных систем.

По возможности, заземляющие электроды должны быть подключены снаружи к фундаментной стене или достаточно далеко, чтобы избежать заглубленных опор, заглушек труб и т. Д. Заземляющие электроды следует устанавливать ниже линии замерзания, где это возможно. Материалы, используемые для заземляющих электродов, должны подходить к любому щелочному или кислотному составу почв для длительного срока службы.

Во время разряда молнии по системе проводников заземляющие электроды следует рассматривать как точки, через которые протекает сильный ток между системой защиты от удара молнии и землей вокруг конструкции.Следовательно, размещение с целью отвода потока тока от конструкции наиболее выгодным образом является важным. Это будет реализовано путем размещения заземляющих устройств на внешних оконечностях, таких как углы и внешние стены конструкции, и избегая, насколько это возможно, протекания тока под зданием. В некоторых случаях, особенно когда речь идет о пристройках к существующему зданию, может возникнуть необходимость разместить отводы и заземление внутри и под конструкцией.

Заземляющий контур , окружающий конструкцию, соединяющую все нисходящие кабели в их основании и / или устройства заземляющих электродов, является лучшим способом выравнивания потенциала для всей системы молниезащиты. Всегда можно иметь разные значения сопротивления заземляющих электродов даже на одной и той же конструкции.

Поскольку разделение молнии по нескольким путям начинается в точке завершения удара и проходит через систему проводников к земле, разные значения сопротивления электродов могут нарушить эту функцию.Контур заземления решает эту потенциальную проблему и обеспечивает разветвленную сеть проводов для улучшения системы заземления. Контур заземления требуется для каждой конструкции , превышающей 60 футов в высоту. Если соединительный контур нельзя установить в земле, его можно разместить внутри конструкции, чтобы выполнить это требование. Этот контур уровня земли также обеспечивает соединение с другими заземленными системами здания.

Все заземляющие средства в конструкции или на ней должны быть соединены между собой для обеспечения общего потенциала земли с использованием молниеотвода основного размера.Это включает в себя систему заземляющих электродов молниезащиты, заземления системы электрических, коммуникационных и антенн , а также металлические трубопроводы. Системы , входящие в конструкцию, такие как линии воды, газа и сжиженного нефтяного газа, металлические трубопроводы и т. Д. Подключение к газовым линиям должно производиться заказчиком. сторона счетчика, чтобы избежать выхода из строя катодной защиты линий обслуживания. Если все эти системы подключены к непрерывной металлической системе водопровода, требуется только одно соединение между заземлением молниезащиты и водопроводом.Системное соединение может быть выполнено в нескольких точках возле входов в конструкции для систем, или может использоваться одно жесткое соединение на шине заземления. Приведение всех заземленных систем здания к одному и тому же потенциалу на определенном уровне — это первый шаг к защите внутренних компонентов и людей от молнии. Он начинает процесс склеивания против боковых ударов от компонентов системы к внутренним системам здания.

Выравнивание потенциалов (соединение)

Основные токоведущие компоненты системы молниезащиты были описаны в их самой ранней форме Бенджамином Франклином.Современные методы изготовления компонентов и конструкции, включающие систему в конструкции и внутри нее, изменили внешний вид системы, но философия, лежащая в основе прекращения удара, проводимости и заземления, остается аналогичной — принять молнию и отправить ее на землю. Наиболее существенные изменения в конструкции системы молниезащиты происходят из-за адаптации того, как мы строим и оснащаем современное здание, или того, что мы могли бы назвать «фактором внутренней сантехники». Современное здание «» включает в себя металлические трубопроводы, такие как водопровод, канализация и газовые системы, а также схемы для электрических и коммуникационных систем, которые обеспечивают внутренние пути для молнии, чтобы повредить компоненты и приблизить людей к опасности.

В начале удара молнии в систему может произойти немедленное повышение до 1 000 000 вольт на основных компонентах, переходящее к 0 вольт на земле. Любая другая независимо заземленная система здания в непосредственной близости от компонентов молниезащиты будет иметь напряжение 0 вольт, поэтому естественная тенденция состоит в том, что некоторые или все молнии покидают нашу токоведущую систему и вспыхивают на альтернативный путь заземления. Если расстояние между потенциальными путями достаточно мало, дуга или боковая вспышка могут возникать через воздух или строительные материалы, что создает возможность возгорания или взрыва.

Поскольку внутренние заземленные системы здания пронизывают конструкцию, этот потенциал существует на уровне крыши, на стенах здания или в них и даже потенциально ниже уровня земли. Молния распространяется от заземляющих электродов системы у поверхности земли и может возвращаться по металлическим трубам или другим основаниям обратно в здание. Альтернативные пути от внутренней заземленной схемы не предназначены для проведения тока молнии (опасность возгорания), а соединения в металлических трубах не предназначены для использования в качестве токонесущих устройств, приводящих к тепловой деформации или ударам.Оборудование внутри сооружений, от раковины, подключенной как к водопроводной, так и к канализационной линиям, до персонального компьютера, подключенного как к электросети, так и к телефонным или антенным цепям, становится дополнительными точками для дуги молнии между независимо заземленными системами , создавая значительный ущерб.

Полная система молниезащиты решает эту проблему путем соединения или соединения металлических систем здания с системой молниезащиты для создания общего потенциала земли .Когда заземленные системы соединены вместе, у молнии нет причин покинуть наш проектный путь прохождения тока, потому что не существует произвольной дуги по точкам. Требуется соединить каждую заземленную систему здания и систему непрерывных металлических трубопроводов с системой заземляющих электродов молниезащиты вблизи уровня земли. Низкопрофильные конструкции могут нуждаться во взаимном соединении систем только около уровня крыши, когда они находятся в непосредственной близости от компонентов системы молниезащиты.По мере того, как конструкции становятся выше, возникает потребность в соединении верхней части вертикального расширения каждой внутренней заземленной системы с системой крыши с молниезащитой. Наконец, в многоэтажном строительстве системы заземления здания соединяются между собой на уровне земли, на уровне крыши и на промежуточных уровнях, чтобы обеспечить достаточное выравнивание потенциалов между длинными проводниками во избежание возникновения дуги.

Внутренняя дуга между заземленными системами также зависит от количества путей от системы молниезащиты на крыше до системы заземления.Чем больше путей, тем больше мы разделяем молнию на сегменты с более низким напряжением, тем меньше вероятность возникновения дуги через любую среду и альтернативные системы. Включение стальной надстройки в систему молниезащиты обеспечивает наличие колонн, балок и промежуточных соединений для максимального разделения молнии и, таким образом, минимизации разницы потенциальных проблем внутри. Стандарты требуют, чтобы кабельные нисходящие кабели соединялись с арматурной сталью (арматурой) в литых колоннах вверху и внизу каждого участка, создавая аналогичный эффект, хотя эта механическая структурная система не считается подходящей для проведения тока молнии.Арматурная сталь, заземленные внутренние системы и молниезащита также должны быть соединены между собой с интервалом в 200 футов по вертикали, чтобы обеспечить выравнивание потенциалов.

Соединение вместе заземленных систем обычно выполняется с помощью арматуры меньшего размера и кабелей или проводов , проложенных на крышах конструкций. Соединение для выравнивания потенциалов — это не то же самое, что обеспечение пропускной способности по току. Однако во многих случаях проще использовать полноразмерные компоненты системы, потому что в конструкции они размещаются близко к желаемым точкам соединения.Когда мы склеиваем внутри конструкции или ниже уровня, более типичным является использование полноразмерных компонентов, главным образом, для большей механической прочности в соответствии с реалиями строительства.

Расширение системы молниезащиты за счет включения системы заземления соединение для любой конструкции является критическим элементом, основанным на индивидуальном проектировании здания для проживания и процессов, характерных для его предполагаемого использования.

Защита от перенапряжения

Системы молниезащиты спроектированы в первую очередь как системы противопожарной защиты — чтобы предотвратить возгорание здания и потерю людей и оборудования внутри.Внесение металлических элементов в конструкцию обеспечивает пути, по которым молнии будут следовать из внешней среды и создавать опасности внутри. Мы связываем или соединяем заземления и трубы с системой молниезащиты, чтобы частично избежать этой проблемы. Следующим шагом является обеспечение защиты цепей, связанных с электрическими линиями, линиями связи и / или данных, которые могут передавать молнию в конструкцию. Самые серьезные проблемы связаны с инженерными коммуникациями , которые представляют собой разветвленные системы, установленные на столбах или заглубленные, которые могут передавать дополнительные непрямые удары в здание.Полная система молниезащиты в соответствии со стандартами включает устройства защиты от перенапряжения на каждом входе служебных проводов здания, независимо от того, являются ли они коммунальными или, возможно, монтируются в конструкции, например, антенная система.

Устройства защиты от перенапряжения для входов в здания предназначены для «плавания» по линии, обнаружения проблем с перенапряжением и передачи избыточной энергии непосредственно на землю. УЗИП, предназначенные для грозовых перенапряжений, должны быстро реагировать на появление резко возрастающей формы волны и быть в состоянии поддерживать соединение с землей во время сильного перенапряжения, а затем возвращаться к своей роли мониторинга.Большинство устройств имеют два или более внутренних элемента для выполнения этой задачи и реагируют примерно на 150% от стандартного рабочего напряжения системы. Элементы SPD можно рассматривать как самопожертвованные и они могут со временем сгореть, защищая от множества небольших скачков (например, стандартных коммутационных скачков при передаче энергии) или нескольких массивных скачков, таких как прямые молнии. Поэтому важно, чтобы SPD был доступен для просмотра или имел световые индикаторы или другие идентификаторы, чтобы знать, что ваша защита работает, как задумано.Поскольку служебные входы для различных систем работают при разном напряжении, компоненты SPD должны иметь индивидуальный размер для каждой системы и обычно упаковываются индивидуально для выполнения определенных функций, но если службы входят в подсобное помещение для распределения по всему зданию в общей зоне, одно SPD может быть спроектированным так, чтобы выполнять несколько функций в одном корпусе. Поскольку добавление длины пути заземления служит только для замедления времени реакции компонентов SPD, устройство SPD следует подключать как можно напрямую к системе заземления всегда с минимальной длиной провода.

Правильно установленные устройства защиты от перенапряжения на всех входах на фидерах проводников цепи защищают массивный вход молнии в конструкцию, сохраняя проводку от возгорания и в целом защищая такие объекты, как большие двигатели, осветительные приборы и другое надежное оборудование. Это конкретное требование Стандартов — защищать здание от разрушения. Внутри каждой современной структуры у нас есть множество устройств, которые работают при низком напряжении, включая печатные платы, действительно не предназначенные для работы на уровне пропускания 150%, только для SPD.

Также возможны индукционные эффекты для внутренней проводки и оборудования даже с хорошо спроектированной системой молниезащиты. Ток мощного прямого удара молнии в конструкцию создает магнитное поле, исходящее от проводников, поэтому в любой ближайшей альтернативной цепи может возникать некоторое добавленное напряжение из-за индукции. Хотя только в Стандартах по молниезащите и Национальном электротехническом кодексе защита от перенапряжения для внутреннего оборудования рассматривается как дополнительная, это может быть критически важной потребностью в защите для владельца.Защита аудио / видео компонентов, систем связи, компьютерного оборудования и / или технологического оборудования может иметь большое значение для качества предприятия, непрерывности бизнеса без перерывов и физической защиты пользователей оборудования. УЗИП, установленные на используемом оборудовании, должны обеспечивать защиту всех цепей, питающих устройство, чтобы обеспечить общую точку заземления. Поскольку системы утилизационного оборудования, как правило, специфичны для объекта, обычно требуется индивидуальная оценка для определения рентабельных решений.

Когда устройства защиты от перенапряжения посылают энергию в систему заземления, это мгновенное соединение всех систем электропроводки обеспечивает выравнивание потенциалов для этих металлических систем, так же как соединение между компонентами системы молниезащиты и альтернативным заземлением системы здания обеспечивает общее соединение. Достижения в области технологий продолжают изменять среду структур, в которых мы живем, работаем и развлекаемся. Применение SPD вместе с токоведущими компонентами и соединением заземленных систем здания обеспечивает полный пакет для полной системы молниезащиты для защиты конструкции, людей и оборудования внутри.

Осмотр и обслуживание

Открытые компоненты системы молниезащиты — это медь, алюминий или другой металл, предназначенный для пропускания тока, обеспечения контактных соединений и сохранения работоспособности в открытой погодной среде. Как и в случае с любым другим строительным элементом, изготовленным из аналогичных материалов, окисление или коррозия компонентов не ожидается при нормальных условиях в течение длительного периода или обычного «срока службы» конструкции .Компоненты системы, скрытые внутри конструкции между крышей и перекрытием, защищены от атмосферных воздействий и неправильного обращения. Система заземляющих электродов может быть защищена от атмосферных воздействий погодных условий, но подвержена потенциальной деградации из-за состава почвы и влаги. Можно ожидать, что правильная первоначальная установка обеспечит защиту навсегда или, по крайней мере, в течение разумного срока службы конкретного здания.

Существуют дополнительные особенности строительства, использования нами зданий и даже неизвестные в местных условиях, которые требуют рассмотрения технического обслуживания для системы молниезащиты.Пассивную систему заземления, такую ​​как молниезащита, нелегко оценить неспециалистам — вы не можете щелкнуть выключателем или включить кран, чтобы проверить, находится ли он в рабочем состоянии.

Есть очевидные моменты, когда изменения в структуре вызывают необходимость в обслуживании или расширении исходной системы. Замена кровли здания, внесение дополнений в конструкцию здания или добавление вентиляционных труб или антенн для новых внутренних процессов — очевидные области, требующие пересмотра и обработки.Не так очевидно, но, как сообщается, главной причиной для обязательной проверки систем является привычка рабочих из других профессий удалять и не переустанавливать компоненты системы, потому что они не понимают важности общей конструкции системы молниезащиты . Также возможно, что соседний технологический стек будет выделять вещество, переносимое ветром к компонентам вашей системы, которое разрушает материалы намного быстрее, чем ожидалось. Любой из этих элементов требует периодических проверок и технического обслуживания, чтобы гарантировать работоспособность системы в условиях удара молнии, но это, безусловно, может быть проигнорировано с серьезными непредвиденными последствиями.

Программа осмотра и возможного технического обслуживания должна быть реализована, чтобы гарантировать постоянную эффективность системы на конструкции. Визуальный осмотр может выполняться ежегодно с использованием контрольного списка и умеренного обучения вашего поставщика молниезащиты, чтобы учесть любой мелкий ремонт, такой как незакрепленная арматура, неправильное крепление, повреждение оголенных кабелей, замена снятого оборудования или повреждение устройств защиты от перенапряжения. Это может сделать обычный специалист по обслуживанию здания или даже владелец здания под руководством.Если специалист по молниезащите не привлекается для каждой ежегодной проверки, то с интервалом в пять лет будет важно проводить «тестовую» проверку с привлечением знающего человека — инспектора или установщика — для более тщательной проверки.

Полная испытательная проверка будет включать визуальные проверки вместе с проверкой целостности для проверки эффективности системы от крыши до уровня и наземные испытания для проверки функции скрытых подземных электродов.Программа обеспечения качества, разработанная для обслуживания вашей системы молниезащиты, устранит неожиданности, которые могут привести к катастрофическим последствиям.

Реализация системы молниезащиты включает в себя искусство, науку, мастерство и технологическую интуицию. Это специализированная отрасль со своими собственными стандартами, разработанными специально для борьбы с великим случайным разрушителем природы. Как и в любом другом начинании, подготовка, обучение и сертификация лиц, участвующих в проектировании, установке и проверке полной системы молниезащиты, определяют высшее качество. Lightning Protection Institute фокусирует наши усилия на обучении профессионалов, владельцев, пользователей и широкой общественности безопасной и эффективной молниезащите и предоставляет качественные ресурсы через наше членство для выполнения этой важной услуги для всей строительной отрасли.

Структурная молниезащита | Мастер молний

СИСТЕМА ЧЕТВЕРТОГО ТИПА

Существует также четвертый тип системы, система задержки стримеров Lightning Master®, также называемая системой аэротерминала задержки стримеров (SRAT).Эта система идентична стержневой системе Франклина по концепции и форме. Единственная разница заключается в точках молнии. В системе SRAT используются заостренные молниеотводы (молниеотводы) для задержки образования грозовых разрядов.

Подъемный провод (вал) молниеприемника оканчивается тупым верхним концом. В этот тупой наконечник вставлено множество рассеивающих электродов малого радиуса. Эти электроды значительно улучшают рассеивание заряда земли в атмосферу благодаря их небольшому радиусу (остроте).

Прикрепление молнии определяется формированием стримера. Выигрывает тот объект, который испускает лучшую полосу. Эти точки с малым радиусом разрушаются в корону при гораздо более низком потенциале (напряжении), чем у закругленных или даже заостренных обычных молниеотводов, что затрудняет накопление достаточного количества заряда земли для формирования стримера из молниеотвода. Поскольку воздушный терминал быстрее разрушается до состояния короны, он рассеивает заряд в течение более длительного периода времени.

Изображение угла конструкции.Заряд на основании грозового облака притягивает заряд земли, окружающий конструкцию, вверх и на угол конструкции. По мере нарастания интенсивности шторма разность потенциалов между зарядом основания облака и углом конструкции нарастает. Когда разность потенциалов преодолевает диэлектрическую проницаемость (сопротивление) промежуточного воздуха, разность потенциалов выравнивается ударом молнии. Для того чтобы угол конструкции излучал стример, заряд заземления должен накапливаться до уровня, на котором он может образовать зрелый стример.Заряд заземления, вытекающий из точек малого радиуса, препятствует этому накоплению.

В основном режиме SRAT рассеивает заряд заземления, который в противном случае сформировал бы грозозащитную косу, уменьшая вероятность прямого попадания молнии. Если заряд заземления растет слишком быстро или накапливается слишком высоко, рассеивающая способность молниеприемника может быть превышена. В этом случае молниеотвод возвращается к своему вторичному режиму обычного громоотвода. Поскольку SRAT расположен наверху конструкции в соответствии с требованиями как NFPA 780, так и UL 96A, и он уже насыщен косой, составляющей заряд земли, SRAT затем излучает косу, надежно собирая любые удары и передавая их на землю над поверхностью земли. система молниезащиты.

Эффективность и надежность этого подхода была подтверждена многочисленными, опытными и искушенными пользователями за последние 30 с лишним лет, когда эта система была доступна.

СООТВЕТСТВИЕ СТАНДАРТАМ ОТРАСЛИ

Воздухораспределители с задержкой стримеров

Lightning Master соответствуют требованиям NFPA 780 и внесены в список UL 96. SRAT обеспечивают зону защиты, точно такую ​​же, как и любой другой молниеотвод, и разработаны и предназначены для использования в качестве компонентов в системе NFPA 780 или UL 96A.Таким образом, завершенная установка имеет право на получение сертификата UL Master Label, золотого стандарта молниезащиты.

В нефтяных месторождениях применяются требования к заземлению Американского института нефти API 545 и API 2003.

ПОЯСНИТЕЛЬНЫЕ МОДЕЛИ И ПРИМЕРЫ

Чтобы объяснить это явление, мы иногда используем один или несколько следующих примеров или моделей. Иногда полезно представить себе, как мы берем защищенную структуру, переворачиваем ее вверх дном и окунаем в сироп.Когда перевернутая структура поднимается из сиропа, сироп имеет тенденцию стекать с внешних краев, углов и любых выступов. Эти точки аналогичны точкам накопления заряда этой конструкции и могут помочь понять, почему в эти точки с наибольшей вероятностью ударит молния. Это также объясняет, почему NFPA 780 и UL 96A размещают молниеотводы в этих местах. Отсюда следует, что SRAT, являющиеся громоотводами, также должны быть установлены в этих местах для рассеивания заряда и задержки формирования стримеров из мест, где наиболее вероятно поражение молнией.

При разговоре с инженерами иногда полезно использовать вариант закона Кулона, показывающий, что чем меньше радиус точки, тем больше напряженность электрического поля вокруг нее. Это объясняет больший ток рассеяния от SRAT, чем от обычного молниеотвода.

На выставках мы иногда используем генератор Ван де Граафа, чтобы показать разницу в рассеивании между объектами различной формы. Если автомобильный ключ или обычный молниеотвод может иметь дугу от 1/2 до 1 дюйма или около того до 200 000 вольт Ван де Граафа, Lightning Master SRAT может быть приложен к шару генератора без образования дуги.Мы также используем Ван де Граафа, чтобы показать способность электрического поля индуцировать ток в куске металла. Затем этот кусок металла дугой соединяется с любым другим металлическим предметом, поднесенным к нему, что свидетельствует об общей причине возгорания, особенно на нефтепромысловых объектах.

РАСПРОСТРАНЕННЫЕ Заблуждения

SRAT защищает не только себя, позволяя нанести близлежащие удары по защищаемой конструкции. По нашему опыту, это на самом деле больше проблема с обычными молниеотводами, чем с молниеотводами Lightning Master с задержкой стримеров.Два показательных примера. Первоначально Lightning Master подвергся воздействию структурной молниезащиты для зданий в больнице для ветеранов в Бэй-Пайнс, Флорида. В крышу здания между громоотводами попала прямая молния. Удар пробил крышу, расплавив кровельный материал. Служба поддержки зданий слышала о Lightning Master и попросила нас посмотреть, сможем ли мы разработать решение их проблемы. В то время Lightning Master обеспечивала молниезащиту в основном для средств вещания и связи.В ответ мы разработали воздушный терминал, использующий технологию задержки стримеров, которая скользит и обжимается на обычном громоотводе. Чтобы получить список UL, мы позже модифицировали продукт, чтобы он больше не скользил, а заменили обычный громоотвод.

Несколько лет спустя в центре обработки данных в Лейк-Мэри, Флорида, была установлена ​​обычная система громоотвода. Эта система была разработана известной и влиятельной инженерной компанией, специализирующейся на разработке обычных систем громоотвода.
Поскольку центр обработки данных считался критически важным, система была спроектирована и установлена ​​с использованием системы с уменьшенным расстоянием между громоотводами для повышения уровня защиты. Через некоторое время после завершения установки в конструкцию был нанесен прямой удар молнии по крыше рядом с обычным громоотводом, но не с ним. После расследования никто не мог объяснить, почему это произошло или как предотвратить повторение этого явления. Установщик оригинальной системы предложил заменить обычные молниеотводы на молниеотводы Lightning Master с задержкой стримеров.Заказчик так и сделал, и с тех пор инцидентов не было.

Нас спросили, как система SRAT может рассеивать миллионы вольт и тысячи ампер удара молнии. В этом нет необходимости. Фактически, только небольшой процент этой энергии необходимо рассеять, чтобы снизить порог излучения стримеров защищаемой конструкции. Как и в случае плотины, сдерживающей водохранилище, нет необходимости осушать весь резервуар, чтобы предотвратить переполнение плотины.Необходимо только слить очень небольшой процент резервуара.

Также нет необходимости разряжать грозовое облако. Система SRAT не влияет на грозовое облако. Он затрагивает только один небольшой участок поверхности земли.

ПРЕИМУЩЕСТВА ДЛЯ ПРОМЫШЛЕННЫХ ОБЪЕКТОВ

Согласно как NFPA 780, так и UL 96A, определенные проводящие металлические компоненты конструкции могут быть заменены компонентами системы молниезащиты. Промышленный объект обычно состоит из металлических технологических сосудов, поддерживаемых стальными каркасами.Двутавровые балки и рамы, составляющие верхнюю часть конструкций, имеют толщину более 3/16 дюйма. Следовательно, они могут заменить молниеотводы. Горизонтальный и вертикальный каркас также имеет толщину более 3/16 дюйма (или, возможно, 0,064 дюйма), поэтому его можно заменить основной системой и системой токоотвода. Рамы заземляются на систему заземления завода в их основаниях, что соответствует требованиям к заземлению СМЗ. Таким образом, эти конструкции считаются самозащитными согласно стандартам NFPA 780 и UL 96A.Согласно этим стандартам, молниезащита не требуется и нет смысла устанавливать систему громоотвода.

Однако, судя по опыту с поражением молнией, эти растения, очевидно, не обладают самозащитой. Проблема не в огне. Маловероятно, что удар молнии сожжет стальную конструкцию. Эти заводы работают на базе микропроцессорных систем связи и управления и страдают от повреждений, сбоев и отключений во время грозы. Помимо повреждения оборудования, возникают и другие проблемы, начиная от кратковременного прерывания передачи данных и заканчивая аварийным остановом предприятия (ESD).Эти проблемы, как правило, являются результатом воздействия вторичных или электромагнитных импульсов (ЭМИ) прямых или близких ударов молнии. Решение состоит в том, чтобы установить SRAT наверху завода. Используя основания из нержавеющей стали, внесенные в список UL, молниеотводы просто прикрепляются к двутавровым балкам или рамам и используют конструкцию установки в качестве проводника и системы заземления. Эффект от системы SRAT двоякий. Во-первых, они действуют как простые статические фитили, подобные фитилям в самолете, для уменьшения статического заряда на конструкциях.Во-вторых, рассеивая заряд заземления, они задерживают формирование стримеров из защищаемой конструкции, тем самым снижая вероятность прямого удара молнии. Нет удара, нет вторичных или ЭМИ эффектов, поэтому меньше урона и время простоя.

Молниезащита на объекте — Конструкции и системы

Риск поражения молнией и разрушения промышленности и собственности США постоянно растет. Стоимость ущерба, связанного с молнией, в настоящее время оценивается в 8–10 миллиардов долларов в год (1) и растет на 20% в год.Помимо физической деградации, большая часть общих затрат связана с простоями оборудования и прерыванием бизнес-операций.

Тот факт, что молния может разрушить как внешние конструкции, так и внутренние системы, часто игнорируется, пока не становится слишком поздно. Однако внедрение комплексной системы молниезащиты объекта (FLPS) может снизить риск повреждения и сбоя в обоих случаях. Эффективный FLPS не только защищает крыши, стены и другие конструктивные элементы от прямых ударов молнии, но также защищает электрические цепи, коммуникации, системы управления технологическими процессами и другие элементы, уязвимые для непрямых ударов.

Нейтрализация прямых ударов молнии

Прямые удары молнии можно нейтрализовать с помощью структурной системы молниезащиты (структурная СМЗ). Основными компонентами этой системы являются молниеотводы (также известные как молниеотводы), проводники, соединяющие молниеотводы, и токоотводы, которые соединяют молниеотводы с землей. В соответствии с основными принципами физики структурная СМЗ генерирует электрическую «косу», которая перехватывает нисходящий электрический «лидер» из грозового облака.Этот перехват устанавливает цепь, позволяющую структурной СМЗ проводить ток молнии к земле, минуя конструкцию здания, при этом уравновешивая потенциал между облаком и землей.

Фото: активность восходящего и нисходящего лидера при ударе молнии

Конструктивная СМЗ не притягивает молнии, и удар молнии в месте не зависит от того, установлена ​​ли защита. Вместо этого структурная СМЗ просто обеспечивает предпочтительный путь для тока молнии, протекающего к земле.Эта форма заземления отличается от обычного электрического заземления, устанавливаемого для повседневной безопасной работы электрических систем, которое не предназначено для работы с чрезвычайно высокими уровнями мгновенного напряжения и тока (100 миллионов вольт, 30 000 ампер или более), которые типичны для удар молнии.

Узнайте больше об образовании молний на веб-сайте Национального управления океанических и атмосферных исследований NOAA (2) .

Одного пути к земле недостаточно, чтобы гарантировать, что молния будет правильно отводиться от конструкции здания.Множественные проводники должны быть проложены через правильно удаленные интервалы на защищаемом здании.

Стандарты для этих систем молниезащиты включают NFPA 780 и UL 96A для США и IEC-62305 на международном уровне. Программа UL Master Label Certificate охватывает проверку и сертификацию этих систем.

Схема: воздушный терминал, проводник и расстояние между нижним проводником для LPS

Индукционный ток и косвенное повреждение

Молния также производит электромагнитный импульс (ЭМИ), который наводит ток в любых черных металлах в здании.Близлежащие удары молнии, удары по электросети или системам связи или даже удары от облака к облаку могут вызвать опасный ток в объекте и его системах. Ток может вызвать возгорание проводов и оборудования. Это также может привести к внутреннему отказу электрического оборудования, оборудования связи и управления технологическим процессом, даже если нет видимых снаружи повреждений.

Таким образом, представление о том, что молния должна поразить здание напрямую, чтобы нанести ущерб или вызвать убытки, является мифом. Наведенный ток, который, например, повреждает системы управления технологическим процессом на объекте, может вызвать столько же простоев, как и физическое повреждение всей конструкции здания.Кроме того, здание и его оборудование с большей вероятностью будут повреждены индукцией вспомогательного тока, чем прямым ударом.

Необходимость как структурных, так и системных систем молниезащиты

Конструкционная СМЗ сама по себе не защитит объект от риска индукции. В то время как структурная система молниезащиты имеет решающее значение для защиты физической конструкции, а выравнивание потенциала, которое она обеспечивает, может снизить наведенные токи, внутренние системы требуют дополнительных мер защиты.

К счастью, другие технологии позволяют защитить производственные системы, электрические компоненты, коммуникации и средства управления процессами так же эффективно, как и саму конструкцию. Эту защиту обеспечивает:

  • Системы заземления с низким сопротивлением (низкое переходное сопротивление)
  • Выравнивание потенциалов
  • Устройства защиты от перенапряжения (УЗИП)

Системы заземления с низким сопротивлением (низкое переходное сопротивление)

Стандарты

для полных систем молниезащиты основаны на принципе обеспечения прямого или квазинепрямого пути с низким сопротивлением и низким сопротивлением для безопасного прохождения тока молнии до земли.Достижение низкого импеданса требует правильного обращения с сопротивлением и реактивным сопротивлением (емкостью и индуктивностью) системы.

Невнимательность или необоснованные предположения об эффективности системы заземления могут способствовать повреждению, связанному с молнией, и прерыванию работы. Практические правила предотвращения этого риска включают следующее:

  • Системы заземления должны быть спроектированы и испытаны на достаточно низкое сопротивление заземления, обычно менее 25 Ом, для каждого заземляющего соединения.Там, где требуется заземление с особенно низким импедансом, например, для средств связи, или если сама земля имеет высокое сопротивление, можно использовать стержень электролитического заземления или другое усиление заземления.
  • Существующие системы необходимо регулярно проверять, чтобы гарантировать их работоспособность и неповрежденность: например, заземляющие стержни, установленные несколько лет назад, теперь могут быть корродированы или повреждены иным образом.
  • Новые системы должны быть долговечными. Например, система заземления с низким сопротивлением, которая работает только в течение трех лет, не является подходящим решением, хотя она и хороша в течение этого времени.

Выравнивание потенциалов

Молния может проходить через почву и поэтому может улавливаться подземными водоводами, входящими в здание. Неправильное выравнивание потенциалов между электрическими и служебными линиями (вода, газ, телефонная связь, кабельное телевидение) и зданием, которое они обслуживают, может подвергнуть людей воздействию высоких уровней потенциала прикосновения и сделать объект уязвимым для косвенного поражения молнией. Следовательно:

  • Все системы на объекте, а также физическая структура должны быть надлежащим образом соединены вместе и подключены к одной и той же системе заземления для выравнивания потенциалов (уравнивания потенциалов).Эти системы включают в себя электроснабжение переменного тока, телекоммуникации, газ, воду, кабельное телевидение, системы управления и антенны.
  • Служба, которая должна оставаться изолированной и не может быть напрямую связана с системой заземления здания, должна использовать разрядник с газоразрядной трубкой (GDT), установленный между службой и системой заземления здания. GDT обеспечит путь разряда к земле для выравнивания потенциалов.

Эквипотенциальное соединение не заменяет кабелепроводы или служебные линии для заземления системы молниезащиты.Это также не подвергает эти системы большему риску. Вместо этого он позволяет отводить заряды от систем через общий потенциал земли, что также снижает риск боковой вспышки, искрения и воздействия на людей смертельного потенциала прикосновения в результате удара молнии.

Устройства защиты от перенапряжения (SPD)

УЗИП (устройство защиты от перенапряжения) предназначено для защиты электрооборудования от скачков напряжения. Он ограничивает напряжение, подаваемое на оборудование, до безопасного уровня, блокируя или отводя избыточные напряжения на землю, в том числе передаваемые в конструкцию электрическими цепями, линиями связи или линиями передачи данных.УЗИП может также называться ограничителем перенапряжения, устройством защиты от перенапряжения или ограничителем перенапряжения переходных процессов (TVSS).

Неправильное использование SPD является обычным явлением, и неправильная реализация может вызвать ложное ощущение защиты. К распространенным ошибкам относятся:

  • Неправильно расположенные или установленные SPD
    Правильная установка и размещение SPD является критическим фактором в обеспечении защиты. Точки входа в служебные линии являются ключевыми местами для установки УЗИП из-за обширных систем, которые образуют служебные линии для непрямой передачи молнии.По той же причине следует оборудовать другие электрические проводники здания, такие как антенные системы, УЗИП в точках входа.
  • Неправильное сквозное напряжение
    УЗИП предназначен для пропускания напряжения до определенного предела, известного как сквозное напряжение. Минимизация сквозного напряжения важна для защиты подключенного оборудования. УЗИП для питания переменного тока часто устанавливают на служебном входе, но в зависимости от используемых УЗИП и их установки сквозное напряжение может быть недостаточно низким для надлежащей защиты всего оборудования, расположенного ниже по цепочке.Дополнительные SPD могут потребоваться в точках разветвления и рядом с оборудованием для дальнейшего снижения сквозного напряжения.
  • Отсутствующие УЗИП
    УЗИП также важны для низковольтных коммуникационных проводников, которые входят в установку или панель управления технологическим процессом. Хотя они часто являются наиболее уязвимыми системами, их часто упускают из виду при развертывании SPD. В более общем плане ни одно устройство защиты от перенапряжения не может защитить всю конструкцию, и SPD всегда должны быть развернуты в нескольких местах для надлежащей защиты оборудования.

Заключение

Сегодняшние объекты должны постоянно работать, что делает простои недопустимыми. К счастью, сбои и повреждения, связанные с молнией, можно предотвратить, используя доступные сейчас технологии. Правильно спроектированная и интегрированная система заземления объектов с низким сопротивлением / низким сопротивлением, выравнивание потенциалов и SPD может эффективно защитить современные цифровые системы, в то время как структурная система молниезащиты защищает здание, в котором они находятся.

Полная система молниезащиты объекта также важна для обеспечения безопасной и эффективной защиты. Частичные системы оставляют объекты уязвимыми к переходным напряжениям и токам, а также к боковым вспышкам для незащищенных проводящих компонентов и, следовательно, к повреждению, потере и прерыванию работы. Только за счет полной интеграции защиты как от прямого, так и от непрямого поражения молнией предприятия США могут рассчитывать на сокращение или даже устранение ежегодного ущерба и сбоев, связанных с молнией, на сумму от 8 до 10 млрд долларов.

Схема: структурная СМЗ, заземление, выравнивание потенциалов и защита от перенапряжения (SPD / TVSS)

Тодд Д. Воут, вице-президент по развитию бизнеса, VFC — BSBA, более 30 лет опыта в разработке и внедрении систем молниезащиты. Сертификат LPI № 861

Ларри Лабайен, старший инженер по приложениям, Lyncole — BS Electronics and Communications, имеет более чем 30-летний опыт работы в области электроники и телекоммуникаций.

Артикулы:

Система молниезащиты — Designing Buildings Wiki

Удар молнии может превышать 100 миллионов вольт ампер. Любой заземленный объект, который обеспечивает путь к земле, будет излучать вверх «положительные стримеры» или пальцы электрического заряда. Они создают канал плазменного воздуха для огромных нисходящих токов удара молнии.

Токи высокого напряжения от удара молнии всегда будут проходить по пути наименьшего сопротивления к земле.Система молниезащиты (LPS) может защитить конструкцию от повреждений, вызванных ударами молнии, обеспечивая путь с низким сопротивлением к земле, по которому молния может следовать и рассеиваться.

LPS не притягивает молнии и не может рассеивать молнии, он просто обеспечивает защиту от пожара и повреждений конструкции, предотвращая прохождение молнии через сами строительные материалы.

Наибольшему риску подвержены здания, расположенные на большой высоте, на вершинах холмов или склонах холмов, в изолированных местах и ​​в высоких башнях и дымовых трубах.

В отсутствие LPS при ударе молнии может использоваться любой проводник в качестве пути для достижения земли, который может включать телефонные кабели, силовые кабели, инженерные сети, такие как водопроводные или газовые трубы, или саму конструкцию, если это стальной каркас.

Некоторые из основных опасностей, связанных с ударами молнии в здание, включают:

[править] Стержни или «воздушные терминалы»

Громоотвод — это высокий металлический наконечник или заостренная игла, помещенный наверху здания. Для заземления стержня используются один или несколько проводов, часто из медных лент.Стержни предназначены для использования в качестве «вывода» для разряда молнии.

[править] Токопроводящие кабели

Множество тяжелых кабелей проложено вокруг здания симметрично. Иногда это называют «клеткой Фарадея». Эти кабели проложены вдоль вершин и по краям крыш, а также вниз по одному или нескольким углам здания к заземляющему стержню (ам), который переносит ток на землю. Этот тип СМЗ может использоваться в зданиях, которые подвергаются сильному воздействию, или в чувствительных помещениях, таких как компьютерные залы.

[править] Стержни заземления

Это длинные толстые стержни, закопанные глубоко в землю вокруг защищенной конструкции. Обычно они изготавливаются из меди или алюминия и предназначены для излучения положительных стримеров.

Включение СМЗ следует учитывать на стадии проектирования. Конструкция должна гарантировать, что даже если молния первой поразит конструкцию, токи большого напряжения будут втянуты в СМЗ до того, как можно будет нанести серьезный ущерб.

LPS может быть спроектирован таким образом, чтобы использовать части здания, которые могут безопасно выдерживать большие токовые нагрузки, и отводить энергию от тех частей здания, которые не способны на это.

СМЗ должна быть спроектирована и установлена ​​так, чтобы предотвратить боковые вспышки между объектами. Поддерживая электрическую непрерывность объектов по отношению к заземляющему проводнику, любые различия в электрическом потенциале могут быть обнулены, что позволяет одновременно происходить любым изменениям напряжения.

Отсутствие надлежащего заземления приведет к неэффективности СМЗ, поскольку безопасное рассеивание энергии удара будет невозможно. Часто требуется дополнительное заземление от поставщика коммунальных услуг.

Как работают системы молниезащиты

Системы молниезащиты — это современное развитие инновации, изобретенной Бенджамином Франклином: громоотвод. Сегодня системы молниезащиты используются в тысячах зданий, домов, фабрик, башен и даже на стартовой площадке космического корабля «Шаттл». В этой статье будет рассмотрено, зачем нужна молниезащита и что системы могут и что нельзя делать.

В этой статье:
— Компоненты системы молниезащиты
— Системы молниезащиты — Что они делают и чего не делают
— Как работает система молниезащиты
— Устройства защиты от молнии и перенапряжения / ИБП
— Мифы об рассеивании / уничтожении молний
— Факты о молниезащите

Компоненты системы молниезащиты

Молниеотводы или молниеотводы — это лишь небольшая часть полной системы молниезащиты.Фактически, стержни могут играть наименее важную роль в установке системы. Система молниезащиты состоит из трех основных компонентов:

  1. Стержни или «воздушные терминалы» — Небольшие вертикальные выступы, предназначенные для использования в качестве «вывода» для разряда молнии. Стержни бывают разных форм, размеров и дизайнов. Большинство из них увенчаны высокой заостренной иглой или гладкой полированной сферой. Функциональность различных типов молниеотводов и даже необходимость стержней в целом являются предметом многих научных дискуссий.
  2. Проводящие кабели — Тяжелые кабели (справа), по которым ток молнии проходит от стержней к земле. Кабели проложены по верху и по краям крыш, затем по одному или нескольким углам здания к заземляющему стержню (ам).
  3. Стержни заземления — Длинные, толстые и тяжелые стержни, закопанные глубоко в землю вокруг защищенной конструкции. К этим стержням подключаются токопроводящие кабели, образуя безопасный путь для разряда молнии вокруг конструкции.

Токопроводящие кабели и заземляющие стержни являются наиболее важными компонентами системы молниезащиты, выполняя главную задачу по безопасному отведению тока молнии через конструкцию. Сами по себе «громоотводы», то есть заостренные вертикально ориентированные выводы по краям крыш, не играют большой роли в функциональности системы. Полная защита при хорошем покрытии кабеля и хорошем заземлении все равно будет достаточно работать без молниеприемников.

Системы молниезащиты — что они делают и чего не делают

Единственная цель системы молниезащиты — обеспечить безопасность здания и его жителей, если молния попадает прямо в него. — задача, решаемая путем обеспечения хорошего и безопасного пути к земле, по которому молния будет следовать. Вопреки мифам, системы молниезащиты:

  • Не привлекает молнию
  • Не и не могут рассеивать или предотвращать молнию, «высасывая» шторм из своего заряда
  • Большинство не предлагают защиту от перенапряжения для чувствительной электроники
  • Do обеспечивает защиту от огня и структурных повреждений, предотвращая прохождение горячих взрывных каналов молний через строительные материалы.
Создание этого веб-сайта стало возможным благодаря поддержке CIS Internet .

Как работает система молниезащиты

Незащищенная конструкция

[перезапустить анимацию]

Без обозначенного пути для достижения земли при ударе молнии вместо этого можно использовать любой проводник, доступный внутри дома или здания. Это может быть телефон, кабель или электрические линии, водопроводные или газовые трубы или (в случае здания со стальным каркасом) сама конструкция. Молния обычно будет следовать по одному или нескольким из этих путей к земле, иногда прыгая по воздуху через боковую вспышку , чтобы достичь более заземленного проводника (см. Анимацию выше).В результате молния представляет несколько опасностей для любого дома или здания:

  • Пожар — Пожар может начаться в любом месте, где открытый канал молнии соприкасается, проникает или приближается к горючим материалам (дереву, бумаге, газовым трубам и т. Д.) В здании, включая конструкционные пиломатериалы или изоляцию внутри стен и крыш. Когда молния следует за электропроводкой, она часто перегревает или даже испаряет провода, создавая опасность пожара в любом месте пораженных цепей.
  • Боковые вспышки — Боковые вспышки могут прыгать через комнаты, возможно, травмируя любого, кто окажется на пути.Они также могут воспламенить такие материалы, как канистра с бензином в гараже.
  • Повреждение строительных материалов — Взрывная ударная волна, создаваемая разрядом молнии, может взорвать участки стен, разбить бетон и штукатурку на части и разбить близлежащее стекло.
  • Повреждение бытовой техники — Телевизоры, видеомагнитофоны, микроволновые печи, телефоны, стиральные машины, лампы и почти все, что подключено к поврежденной цепи, могут быть повреждены и не подлежат ремонту. Электронные устройства и компьютеры особенно уязвимы.

Добавление системы защиты не предотвращает удара, но обеспечивает лучший и безопасный путь к земле. Молниеприемники, кабели и заземляющие стержни работают вместе, чтобы отводить огромные токи от конструкции, предотвращая возгорание и большинство повреждений оборудования:

Защищенная конструкция

[перезапустить анимацию]

Устройства защиты от молнии и перенапряжения / устройства ИБП

Устройства защиты от перенапряжения и ИБП не подходят для защиты от молний.Эти устройства обеспечивают некоторую степень защиты от скачков напряжения при ежедневных скачках напряжения и удаленных ударах молнии. Но когда молния поражает конструкцию прямо или очень близко к ней, независимо от системы молниезащиты, все ставки не принимаются.

Обычный сетевой фильтр просто не может повлиять на резкий, катастрофический всплеск тока от очень близкого или прямого удара молнии. Постоянный ток молнии слишком велик, чтобы его можно было защитить с помощью небольшого электронного устройства внутри удлинителя или даже здоровенного ИБП.Если ваш ИБП или устройство защиты от перенапряжения мешают прохождению молнии, вся или часть молнии просто вспыхнет над устройством или через него — независимо от количества задействованных конденсаторов и батарейных батарей.

Даже «разъединения» или устройства, которые физически отключают питание устройства путем активации набора контактов, не гарантируют защиты. Небольшой воздушный зазор не остановит молнию, которая уже прыгнула на несколько миль в воздух. Он не будет дважды думать о том, чтобы прыгнуть еще на несколько дюймов или даже на несколько футов, особенно если «путь наименьшего сопротивления» к земле проходит через контакты выключателя.

Более того, даже не полноценная система молниезащиты со стержнями, кабелями и заземлением не гарантирует от повреждения электроники и компьютеров. Чтобы любая система обеспечивала 100% защиту, она должна отводить почти 100% тока молнии от прямого удара, что практически невозможно физически: Закон Ома гласит, что для набора сопротивлений, соединенных параллельно, ток будет распределяться. по ВСЕМ сопротивлениям на уровнях, обратно пропорциональных различным значениям сопротивления.Дом или здание — это не что иное, как набор резисторов, «соединенных» параллельно — электропроводка, водопровод, телефонные линии, стальной каркас и т. Д. (Даже если водопровод и электропроводка, например, не могут быть физически соединены, молнии будет использовать боковые вспышки через воздушные зазоры для их эффективного соединения). При прямом ударе молнии ток не будет идти только по одному пути — он будет распространяться по всем путям к земле в зависимости от сопротивления каждого пути.

Ток молнии часто достигает максимума в 100 000 и более ампер. Имея это в виду, подумайте, установлена ​​ли у вас система молниезащиты, и в ваш дом напрямую попадает молния. Если система защиты забирает даже 99,9% тока, то ваша электропроводка может забрать оставшиеся 0,1%. 0,1% от 100 000 ампер — это скачок тока в 100 ампер через ваши линии, которого может быть достаточно, чтобы вывести ваш компьютер из строя.

Нередко «боковые вспышки» возникают внутри дома или здания, когда вся или часть молнии прыгает через всю комнату и достигает земли, например, от системы электропроводки к хорошо заземленным водопроводным трубам.Если ваш компьютер мешает, пришло время купить новый, даже если у вас установлена ​​самая дорогая система защиты.

Гарантии на упаковке ИБП / устройств защиты от перенапряжения несколько вводят в заблуждение, когда речь идет о молниезащите, подразумевая, что устройства могут предотвратить любые последствия удара. В некоторых случаях они будут — если они не находятся на прямой линии огня или рядом с ней. Но на самом деле ничто не может гарантировать абсолютную защиту от прямого или очень близкого удара.

Все это не означает, что вы не должны использовать сетевой фильтр, ИБП, разъединитель или полноценную систему громоотвода. Любое устройство обеспечит или степень защиты от каждодневных скачков напряжения в линии электропередач и удаленных ударов молнии. Но когда молния попадает рядом или прямо, все ставки отменяются.

Лучший и самый дешевый способ защитить вашу стереосистему, телевизор, компьютер или любое электронное устройство — это отключить от всех источников питания, телефона, кабеля (модема) и антенны во время грозы.

Некоторые могут возразить, что риск прямого удара по любому конкретному дому слишком низок, чтобы оправдать отключение всего от сети при каждом шторме, проходящем над головой. В этом есть доля правды. В таком случае разумно убедиться, что страховка вашего домовладельца или арендатора покрывает ущерб от молнии, а все ваши устройства инвентаризированы и покрываются полисом. В конце концов, застрахованную дорогую электронику можно заменить. Однако считайте незаменимыми такие, как данные, сохраненные на вашем компьютере (фотографии, видео, рабочие файлы и т. Д.).Вы можете снизить этот риск, выполняя частое резервное копирование вне офиса и / или сохраняя данные на внешнем жестком диске, который вы можете отключить при необходимости.

Мифы об рассеивании / устранении молнии

Продукты, называемые устройствами для устранения молний или устройств для рассеивания молний, ​​возникли в результате двух мифов: во-первых, заряд грозы может истощить или иным образом повлиять на объекты на земле, а во-вторых, начинаются разряды молнии между облаками и землей. с земли.Эти продукты, которые продаются до сих пор, утверждают, что способны предотвратить прямой удар молнии в любой объект, на котором они установлены. Устройства имеют очень разный внешний вид, но обычно характеризуются металлическим корпусом с сотнями заостренных щетинок, игл или тонких стержней. Конструкция оправы варьируется от гребенчатой ​​до зонтичной.

Утверждается, что устройства предотвращают или уменьшают прямые удары молнии по объектам, на которых они установлены, с помощью коронного разряда для выполнения одного или нескольких из следующих действий: 1.) для истощения его заряда до того, как может произойти молния, 2) для создания локализованного «пространственного заряда» над защищаемой зоной, который отводит удары молнии, или 3) для затруднения инициирования восходящих лидеров от объекта, тем самым снижение шансов на прямую ступенчатую связь лидер-земля-лидер.

Как мы обсуждали в нашей статье о рассеянии грозового заряда, проблема с этими устройствами заключается в том, что, хотя они и создают коронный разряд, скорость «утечки» заряда совершенно незначительна по сравнению со скоростью генерации заряда на высоте 10 миль. , Над головой гроза диаметром от 15 до 25 миль! Никакой искусственный коронный разряд в таком небольшом масштабе не имеет ни малейшего шанса истощить заряд быстрее, чем его производит гигантское грозовое облако.И хотя мелкомасштабная корона действительно помогает предотвратить возникновение лабораторных искр (например, от генераторов Ван де Граафа), это не может быть экстраполировано для применения к полноразмерным разрядам молнии, которые в несколько тысяч раз больше, чем искусственные аналоги ( нашу статью о сравнении искусственного и естественного освещения). Коронный разряд от небольших «диссипаторов» незначителен для полноразмерной грозы и никак не повлияет на возникновение или поведение молнии в непосредственной близости от нее.

Удары молнии из облака в землю возникают высоко во время грозы, на много миль над поверхностью, где наземные объекты не действуют. Даже после начала разряда движущийся вниз ступенчатый лидер «слеп» к объектам на земле, пока не окажется очень близко к земле, в пределах от 50 до 100 футов. На таком расстоянии молния ударит в очень маленькую область, в которую она уже спускается, независимо от каких-либо устройств поблизости, которые утверждают, что отклоняют или предотвращают удар. Например, существует фотография удара молнии в здание Merchandise Mart в центре Чикаго.Торговый центр находится очень близко к Сирс-Тауэр высотой 1700 футов, но даже Сирс-Тауэр не повлиял на наземное соединение этого близкого удара облака с землей.

В дополнение к очевидным научным недостаткам концепции устройств «рассеивания» и «устранения» молний, ​​они оказались неэффективными в реальных установках. Многие устройства «рассеивания молнии» на башнях и зданиях были поражены напрямую. Несмотря на доказательства, они продолжают продаваться, устанавливаться и продвигаться.

Факты о молниезащите

Жезлы и системы защиты не притягивают молнии и не влияют на место удара молнии.

Стержни или системы защиты не предотвращают и не могут предотвратить молнию, а также не могут «разрядить» грозу.

Системы молниезащиты (включая размещение стержней, кабелей и заземлений) проектируются индивидуально для отдельных конструкций и требуют сложной инженерии для правильного функционирования.Их должны устанавливать только квалифицированные подрядчики.

Системы молниезащиты не всегда предотвращают повреждение электроники или компьютеров. Вы все равно должны отключать такие устройства во время грозы, чтобы обеспечить достаточную защиту.

< Вернуться к библиотеке погоды

Связанные темы о молниях:

Создание этого веб-сайта стало возможным благодаря поддержке CIS Internet .

GO: Home | Штурмовые экспедиции | Фотография | Библиотека экстремальных погодных условий | Стоковые видеозаписи | Блог

Избранная статья библиотеки погоды:

Системы молниезащиты — Безопасность и здоровье сельскохозяйственных животных


Используйте следующий формат для цитирования этой статьи:

Системы молниезащиты.(2014) Практикующее сообщество Farm and Ranch eXtension in Safety and Health (FReSH). Получено с http://articles.extension.org/pages/71216/lightning-protection-systems.

Системы молниезащиты рекомендуются для всех коровников, чтобы снизить риск повреждения от удара молнии. Грозы с участием молний случаются по всей территории Соединенных Штатов, но наиболее распространены в центральных и восточных штатах. Молния — это поток чистой энергии шириной примерно от 1/2 до 3/4 дюйма, окруженный 4 дюймами чрезвычайно горячего воздуха, который ищет путь наименьшего сопротивления между облаками и землей.Сила тока от молнии может быть примерно в 2000 раз больше, чем в обычном доме.

Молния и потенциальный урон

Мощная сила молнии может вызвать возгорание в зданиях, повредить электрическое оборудование и убить людей и домашний скот электрическим током. Как правило, молния попадает в здание, ударяясь о металлический объект на крыше, напрямую поражая здание, поражая дерево или конструкцию (например, силосную башню), что приводит к попаданию удара в соседнее здание, или поражая линию электропередачи или провод забор, который обеспечивает проход в конструкцию.Вы можете защитить свою ферму или постройки ранчо, установив систему молниезащиты, которая будет направлять удар в сторону от ваших зданий и безопасно рассеивать удар.

Компоненты системы молниезащиты

(Источник: Penn State Ag Safety & Health)

Система молниезащиты состоит из следующих пяти частей: молниеотводов (молниеотводов), проводников, заземляющих соединений (электродов), соединения и грозозащитных разрядников.

Воздушные терминалы. Молниеотводы или молниеотводы — это металлические стержни или трубы, установленные в каждой выступающей высокой точке здания — например, на пике, слуховом окне, флагштоке или резервуаре с водой — для перехвата удара молнии. Сплошные медные стержни должны быть минимум 3/8 дюйма в диаметре, а сплошные алюминиевые стержни — минимум 1/2 дюйма в диаметре. Стержни должны выступать на высоте от 10 до 36 дюймов над выступающим объектом. Обычно стержни имеют длину от 10 до 24 дюймов; Для стержня длиной более 24 дюймов требуется дополнительная опора или скоба.Наиболее эффективное расстояние составляет 20 футов для стержней длиной менее 24 дюймов или 25 футов для стержней длиной от 24 до 36 дюймов. Кроме того, стержень должен быть расположен в пределах 24 дюймов от конца любого строительного конька или выступающего объекта. Стратегическое размещение стержней на конструкции гарантирует, что молния поразит стержни, а не другую часть здания.

Проводники. Проводники, которые представляют собой медные или алюминиевые кабели, обеспечивают соединение между воздушными клеммами и землей, чтобы направить удар молнии глубоко в землю, где он может безопасно рассеяться.Выбирайте медь или алюминий, а не их комбинацию, потому что между двумя элементами может происходить гальваническое или химически коррозионное воздействие. Основные проводники соединяют все молниеотводы с токоотводами, а затем подключаются к заземляющим соединениям.

Заземление. Заземляющие соединения или электроды обеспечивают контакт с землей для безопасного рассеивания заряда молнии. Для большинства зданий следует использовать как минимум два заземляющих соединения; дополнительные могут потребоваться для более крупных конструкций.Тип заземления может зависеть от проводимости почвы в вашем районе. Заземляющие электроды должны быть диаметром 1/2 дюйма, длиной 10 футов, покрытыми медью, стальными или сплошными медными стержнями, вбитыми в землю не менее чем на 8 футов.

Склеивание. Соединение включает ответвления, которые защищают от боковых вспышек, соединяя металлические предметы (например, вентиляторы, водопроводные трубы и т. Д.) С системой заземления. Общее заземление может устранить боковые вспышки молнии. Заземление достигается, когда все электрические системы, телефонные системы и подземные металлические трубопроводы подключены к системе молниезащиты.

Грозовой разрядник. Грозовой разрядник обеспечивает защиту от удара, проникающего в ваше здание через систему электропроводки и, тем самым, вызывающего потенциальные скачки напряжения, которые могут привести к серьезному повреждению электрических устройств. Для обеспечения наилучшей защиты молниеотводы должны быть установлены на внешней стороне здания, где электрические сети входят в здание, или на внутреннем служебном входе.

Защита домашнего скота и деревьев

Осмотрите свою ферму или ранчо с помощью сертифицированного установщика, чтобы определить, следует ли расширить защиту от молний для защиты ценных деревьев; деревья, расположенные в пределах 10 футов от строения, например силоса; или деревья, используемые домашним скотом в качестве тени.Если домашний скот стоит под деревом, он может быть убит прямым ударом молнии по дереву или контактом с образовавшейся заряженной почвой. Чтобы избежать этого сценария, рассмотрите возможность удаления деревьев, предпочитаемых домашним скотом, ограждения домашнего скота от деревьев или обеспечения защиты с помощью системы проводников.

Молниезащита для дерева включает размещение молниеприемников на концах основного ствола и прикрепление полноразмерного заземляющего кабеля к заземляющему стержню. Заземляющий стержень должен располагаться подальше от корневой системы дерева.К основным ответвлениям можно присоединить молниеотводы с меньшими кабелями. Если дерево имеет диаметр 3 фута или больше, используйте два заземляющих стержня, прикрепленных к системе основных проводов.

Защита ограждений

Молния может распространяться на расстояние до 2 миль вдоль незаземленного проволочного забора, представляя угрозу для людей и домашнего скота. Заборы могут быть прикреплены к деревянным столбам, стальным столбам, установленным в бетоне, или к зданиям, и даже деревьям (не рекомендуется). При любых обстоятельствах забор должен быть заземлен, чтобы надежно направить напряжение молнии в землю.Чтобы заземлить забор, вбейте стальные стержни 1/2 дюйма или трубу 3/4 дюйма на 5-10 футов в землю рядом с деревянными столбами забора с интервалом 150 футов. Пусть несколько дюймов заземляющего стержня или трубы выступят за верхнюю часть соседнего столба ограждения. Прикрепите стержень или трубу к столбу забора с помощью хомутов для обеспечения плотного соединения.

Установка и обслуживание системы

Сертифицированный установщик должен установить вашу систему молниезащиты, чтобы снизить риск отказа системы и убедиться, что ваша система соответствует необходимым нормам и стандартам.Институт молниезащиты сертифицирует системы, отвечающие всем его требованиям. Чтобы поддерживать сертификацию системы, необходимо проводить регулярное обслуживание и ежегодный осмотр. Повреждения, вызванные сильным ветром, пристройкой зданий, ремонтом или модернизацией крыши, могут повлиять на производительность системы. Чтобы найти сертифицированного установщика в вашем регионе, щелкните одну из ссылок на ресурсы ниже:

Институт молниезащиты

Лаборатории андеррайтеров

ресурсов

Щелкните здесь, чтобы получить дополнительную информацию о структурной молниезащите от Национального института молниезащиты.

Щелкните ссылку ниже для получения более подробной информации по соответствующей теме.

Молниезащита

Источники

Чемберлен, Д. и Холлман, Э. (1995) Молниезащита для ферм. Кооперативное расширение Корнелла. Получено с http://ecommons.library.cornell.edu/bitstream/1813/5168/2/LIGHTNING%20PROTECTION%20FOR%20FARMS.pdf.

Линн Р. (1993) Молниезащита для фермы. Montguide. Государственный университет Монтаны.Больше не доступно в Интернете.

Мерфи, Д. (1988) Молниезащита для фермы. Государственный университет Пенсильвании. Получено с http://nasdonline.org/1168/d001010/lightning-protection-for-the-farm.html.

Технические условия на молниезащиту — инженерная практика ASAE. (1998) Справочник по стихийным бедствиям 1998 Национальное издание. Институт пищевых продуктов и сельскохозяйственных услуг Университета Флориды. Больше не доступно в Интернете.

Проверено и обобщено:

Линда М.Фетцер, Университет штата Пенсильвания — [email protected]

Уильям К. Харшман, Государственный университет Пенсильвании (уже на пенсии)

Том Карски, Университет Айдахо (уже на пенсии)

Деннис Дж. Мерфи, Государственный университет Пенсильвании (уже на пенсии)

Ресурсы по защите от молний в коммерческих и жилых помещениях

Lightning (lît’n nng) n. Вспышка света, сопровождающая естественный электрический разряд высокого напряжения в атмосфере.

Система молниезащиты не притягивает, не отталкивает и не предотвращает удары молнии. Скорее, он обеспечивает определенные пути, по которым может распространяться молния, неся разрушительную силу удара молнии в землю. Таким образом, система защиты не причиняет вреда конструкции, ее содержимому и находящимся в ней людям.

Система молниезащиты состоит из множества компонентов, которые изготовлены из высокопроводящих медных или алюминиевых сплавов, и именно здесь мы вступаем в силу.Мы разрабатываем и производим эти компоненты, чтобы специалисты по установке могли эффективно защитить предприятия и дома.

Система состоит из пяти элементов, которые работают вместе, чтобы защитить конструкцию от повреждения молнией. Их:

  • Воздушные терминалы (молниеотводы)
  • Проводники (кабели в специальной металлической оплетке)
  • Склеивание соединений с металлическими телами внутри конструкции
  • Заземление
  • Подавление перенапряжения

Крайне важно, чтобы каждый из этих элементов был правильно спроектирован и установлен для обеспечения эффективной защиты.Кроме того, все материалы в системе молниезащиты должны быть совместимы со всеми металлами в конструкции.

Современные системы молниезащиты должны разрабатываться с учетом эстетики сооружения, чтобы система гармонировала со стилем сооружения, делая систему практически незаметной с земли.

В то время как молния является естественным явлением жизни, наш бизнес защищает здания от потенциально разрушительной реальности одного болта.

Электронная защита

Современные объекты особенно уязвимы для разрушительного воздействия молнии на чувствительное электронное оборудование. Для обеспечения наивысшего уровня защиты на всех электрических щитах и ​​в линиях входящих данных и сигналов должны быть установлены грозовые разрядники, включенные в список UL. Разрядники — это первая линия защиты от вредных скачков напряжения, которые могут проникнуть в конструкцию через линии электропередач. Путем фильтрации и рассеивания вредных скачков напряжения разрядники помогают предотвратить электрические пожары и защитить от переходных процессов, которые могут повредить электрическую систему здания.Для дополнительной защиты могут быть установлены устройства защиты от импульсных перенапряжений, включенные в список UL, для защиты определенных электронных компонентов. Квалифицированный специалист по молниезащите может дать рекомендации по защите от перенапряжения, адаптированной к конкретному объекту.

КАЧЕСТВО ЗНАЧИТ

Очень важно, чтобы системы молниезащиты устанавливались обученными, квалифицированными специалистами по молниезащите. Для обеспечения качества все материалы и методы должны соответствовать национально признанным стандартам безопасности для молниезащиты, установленным Underwriters Laboratories и Национальной ассоциацией противопожарной защиты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *