Откуда берется ноль на подстанции: Фаза, ноль и земля – что это такое?

Содержание

Фаза, ноль и земля – что это такое?

Электрическая энергия, которой мы пользуемся, вырабатывается генераторами переменного тока на электростанциях. Их вращает энергия сжигаемого топлива (угля, газа) на ТЭС, падающей воды на ГЭС или ядерного распада на АЭС. До нас электричество добирается через сотни километров линий электропередач, претерпевая по дороге преобразования с одной величины напряжения в другую. От трансформаторной подстанции оно приходит в распределительные щитки подъездов и далее – в квартиру. Или по линии распределяется между частными домами поселка или деревни.

Разберемся, откуда берутся понятия «фаза», «ноль» и «земля». Выходной элемент подстанции — понижающий трансформатор, с его обмоток низкого напряжения идет питание потребителю. Обмотки соединяются в звезду внутри трансформатора, общая точка которой (нейтраль) заземляется на трансформаторной подстанции. Отдельным проводником она идет к потребителю. Идут к нему и проводники трех выводов других концов обмоток. Эти три проводника называются «фазами» (L1, L2, L3), а общий проводник – нулем (PEN).

Система с глухозаземленной нейтралью

Поскольку нулевой проводник заземлен, то такая система называется «системой с глухозаземленной нейтралью». Проводник PEN называется совмещенным нулевым проводником. До выхода в свет 7-го издания ПУЭ ноль в таком виде доходил до потребителя, что создавало неудобства при заземлении корпусов электрооборудования. Для этого их соединяли с нулем, и это называлось занулением. Но через ноль шел и рабочий ток, и его потенциал не всегда равнялся нулю, что создавало риск поражения электрическим током.

Теперь из вновь вводимых трансформаторных подстанций выходят два нулевых проводника: нулевой рабочий (N) и нулевой защитный (РЕ). Функции их разделены: по рабочему протекает ток нагрузки, а защитный соединяет подлежащие заземлению токопроводящие части с контуром заземления подстанции. На отходящих от нее линиях электропередачи нулевой защитный проводник дополнительно соединяют с контуром повторного заземления опор, содержащих элементы защиты от перенапряжений. При вводе в дом его соединяют с контуром заземления.

Напряжения и токи нагрузки в системе с глухозаземленной нейтралью

Напряжение между фазами трехфазной системы называют линейным, а между фазой и рабочим нулем – фазным. Номинальные фазные напряжения равны 220 В, а линейные – 380 В. Провода или кабели, содержащие в себе все три фазы, рабочий и защитный ноль, проходят по этажным щиткам многоквартирного дома. В сельской местности они расходятся по поселку при помощи самонесущего изолированного провода (СИП). Если линия содержит четыре алюминиевых провода на изоляторах, значит, используются три фазы и PEN. Разделение на N и РЕ в таком случае выполняется для каждого дома индивидуально во вводном щитке.

К каждому потребителю в квартиру приходит одна фаза, рабочий и защитный ноль. Потребители дома распределяются по фазам равномерно, чтобы нагрузка была одинаковой. Но на практике этого не получается: невозможно предугадать, какую мощность будет потреблять каждый абонент. Так как токи нагрузки в разных фазах трансформатора не одинаковы, то происходит явление, называемое «смещением нейтрали». Между «землей» и нулевым проводником у потребителя появляется разность потенциалов. Она увеличивается, если сечения проводника недостаточно или его контакт с выводом нейтрали трансформатора ухудшается. При прекращении связи с нейтралью происходит авария: в максимально нагруженных фазах напряжение стремится к нулю. В ненагруженных фазах напряжение становится близким к 380 В, и все оборудование выходит из строя.

В случае, когда в такую ситуацию попадает проводник PEN, под напряжением оказываются все зануленные корпуса щитов и электроприборов. Прикосновение к ним опасно для жизни. Разделение функции защитного и рабочего проводника позволяет избежать поражения электрическим током в такой ситуации.

Как распознать фазные и защитные проводники

Фазные проводники несут в себе потенциал относительно земли, равный 220 В (фазному напряжению). Прикосновение к ним опасно для жизни. Но на этом основан способ их распознавания. Для этого применяется прибор, называемый однополюсным указателем напряжения или индикатором. Внутри него расположены последовательно соединенные лампочка и резистор. При прикосновении к «фазе» индикатором ток протекает через него и тело человека в землю. Лампочка светится. Сопротивление резистора и порог зажигания лампочки подобраны так, чтобы ток был за гранью чувствительности человеческого организма и им не ощущался.

Конструкция однополюсного указателя напряжения
Конструкция однополюсного указателя напряжения
1корпус
2разъемное соединение
3пружина
4индикаторная неоновая лампа
5контакт для прикосновения
6изолированная часть
7резистор

Распознать фазные проводники можно по их расцветке, для них используются черный, серый, коричневый, белый или красный цвет. Сложнее всего со старыми электрощитами: в них проводники одного цвета. Но «фазу» с помощью индикатора определить можно всегда и без ошибок.

Нулевой рабочий проводник – синего (голубого) цвета, защитный маркируется желто-зелеными полосами. Напряжение на них отсутствует, но лучше без нужды их не касаться. Есть у электриков такой закон: если сейчас напряжения нет, то оно может появиться в любой момент.

Оцените качество статьи:

Как образуется ноль(нейтраль) в трансформаторе: функции и понятие

Кроме фазных контактов в трансформаторе существует ноль, выполняющий роль нейтрали и начала, служащего исходной точкой для измерения характеристик напряжения. Рассмотрим, откуда берётся ноль в трансформаторе и его функции.

Понятие нуля в трансформаторе

Вырабатываемая на электростанциях электроэнергия изначально подаётся на ближайшие распределительные подстанции по высоковольтным линиям. Для снижения величины напряжения до используемой в технике 380 В задействуются понижающие трансформаторы.

Для этого применяются трёхфазные трансформаторы, в которых ток направляется на первичные катушки, каждая из которых включает 3 фазные обмотки. Таким образом преобразователь состоит из 6 обмоток на входе и 12 – на выводе.

Фазные контакты в трёхфазном трансформаторе могут соединяться по схеме:

  • звёзды;
  • звёзды с нулевым контактом;
  • треугольника.

Нулём в трансформаторе называют соединение фазных контактов. Ноль существует только у трёхфазных агрегатов.

Откуда берётся

Важно понимать, откуда берётся нулевой провод в данном агрегате. Его получают при соединении обмоток в одну точку. Таким способом формируется нейтраль, заземляемая для снижения напряжения в проводниках.

Чтобы обеспечить подвод нулевой фазы к потребителям, от указанного места контакта выполняется отвод, который подаётся на линию, наряду с фазными и заземляющими проводниками.

Различают следующие виды нулевого провода:

  1. Изолированный – который не соединяется с заземляющим контактом в распределительной коробке.
  2. Глухозаземленный – соединяемый с заземлением.

Для старых домов характерно выполнение заземления нулевого провода. Распределительный щиток зануляется, но не подсоединяется к земле. По новым стандартам заземление с нулём разделены. Напряжение подаётся по фазе, а ноль соединяется с нейтральным контактом на распределительной подстанции.

Щитки оборудуются отдельными шинами для подсоединения фазного, нулевого и заземляющего контактов.

Функции

В идеальной ситуации ноль должен выполнять функции проводника, обеспечивая замыкание электрической цепи. Но фактически нередко напряжение по фазам значительно отличается.

При возрастании мощности в одной из фаз происходит снижение силы тока и смещение нуля, с образованием напряжения смещения. Данная характеристика прямо пропорциональна разнице фазного напряжения. В результате отдельным потребителям подаётся напряжение с повышенным, а другим – с пониженным вольтажом.

Назначение нулевого провода состоит в выравнивании напряжения между фазами, чтобы потребителям подавался ток со стандартными характеристиками.

Если для одной фазы вольтаж возрастает, избыток через ноль на подстанции переходит на другую фазу, выравнивая показатели.

Системы подачи напряжения

Различают следующие системы подачи напряжения, предусматривающие наличие различных выводов:

  • с глухозаземлённой нейтралью – когда подаются 3 фазных провода и один заземлённый нулевой, получаемый от их соединения и заземления на подстанции;
  • с двумя нулевыми проводниками – в данной схеме, кроме рабочего нулевого, предусмотрено наличие нулевого защитного провода с разделёнными функциями.

Последняя из приведённых схем обязательна после изменения положений действующего ПУЭ. Таким способом обеспечивается безопасность при выполнении зануления корпусов электрооборудования (соединения их с нулевым проводом).

При первой из приведённых схем, через нулевой провод мог проходить ток. Поэтому подобная мера приводила к высокому риск поражения персонала электрическим током.

Если разделить функции рабочего и защитного нулевого проводов, как регламентируется современными стандартами, нагрузочный ток проходит только по первому из них. Второй предназначен для соединения контактов от корпусов оборудования на заземляющий контур. При подводе к каждому доку, такой проводник подключается к отдельному заземляющему контуру, что обеспечивает дополнительную безопасность.

Рядовому потребителю важно правильно понимать возникновение фазы и нуля при подаче напряжения. Особенно возрастает необходимость повышения начального уровня грамотности в вопросах электротехники, если рядовые потребители дополнительно устанавливают индивидуальные трансформаторы для выравнивания характеристик электрического тока, подаваемого к дому. Это требуется для правильного подключения оборудования и обеспечения безопасной его эксплуатации.

Что такое «фаза», «ноль» и «земля», и зачем они нужны.

Начнём с основ.
Допустим, на электростанции, вращается магнит (для примера — обычный, а в реальности — электромагнит), называемый «ротором», а вокруг него, на «статоре», закреплены три катушки (размазаны по статору).


Вращает этот магнит, скажем, поток воды на ГидроЭлектроСтанции.





Поскольку в таком случае магнитный поток, проходящий через катушки, меняется, то в катушках создаётся напряжение.
Каждая из трёх катушек — отдельная цепь, и в каждой из этих трёх цепей возникает одинаковое напряжение, сдвинутое на треть окружности друг относительно друга.
Получается «трёхфазный генератор».


Можно было бы с одной такой катушки два провода просто взять и вести к дому, а там от них чайник запитывать.


Но можно сделать экономнее: зачем тащить два провода, если можно один конец катушки просто тут же заземлить, а от второго конца вести провод в дом.
Этот провод назовём «фазой».
В доме этот провод подсоединить к одному штырьку вилки чайника, а другой штырёк вилки — заземлить.
Получим то же самое электричество.

Теперь, раз уж у нас три катушки, сделаем так: (например) левые концы катушек соединим вместе тут же, и заземлим.
А оставшиеся три провода и потянем к потребителю.
Получится, мы тянем к потребителю три «фазы».
Вот мы и получили «трёхфазный ток».
Точнее, генератор «трёхфазного тока».
Это «трёхфазное» напряжение идёт по проводам Линии ЭлектроПередач (ЛЭП) к нам во двор, в дворовую подстанцию (домик такой стоит, рядом с детской площадкой).


«Трёхфазный ток» был изобретён Николой Теслой.


Передача электричества в виде трёхфазного тока, некоторые говорят, экономичнее (я не знаю, чем), и там ещё, говорят, у него есть разные преимущества над обычным током для промышленного применения.
Например, все вращающиеся штуки на заводах — станки там, двигатели, насосы, и прочее — сделаны именно для трёхфазного тока, поскольку гораздо легче построить вращающуюся хрень на трёхфазном токе: достаточно просто точно так же подсоединить эти три фазы к трём катушкам на окружности, и в центр вставить металлический стержень с рамкой — и будет он сам крутиться, как только пойдёт ток.
Такой агрегат называется «трёхфазным двигателем».
Поскольку изначально электричеством заморачивались именно на заводах (не было тогда ещё в домах компьютеров, холодильников и люстр), то исторически всё идёт от промышленности в первую очередь.
Поэтому, видимо, ток из электростанции в ЛЭП пускают всегда трёхфазным, с напряжением 35 килоВольтов между фазами (а ток — около трёхсот Амперов).

Такое высокое напряжение нужно, потому что нужна большая мощность тока: весь город энергию ест, как-никак.
Большую мощность тока можно получить либо повышая силу тока, либо повышая напряжение.
При этом чем больше сила тока, тем больше энергии тратится впустую при преодолении сопротивления проводов (потерянная энергия равняется силе тока в квадрате, умноженной на сопротивление проводов).
Поэтому экономически целесообразно повышать мощность передаваемого тока наращивая напряжение.
Потребитель потребляет из розетки именно мощность (силу тока, умноженную на напряжение), а не что-то отдельное, поэтому его не волнует, каким образом эта мощность к нему в дом попадёт.

Кстати, интересный момент: над силой тока в линии электропередачи мы вообще говоря не властны: сила тока — это мера того, как сильно ток течёт по проводам.
Можно сравнить это с силой тока холодной воды по трубам: если все краны включат в ванных, то сила тока воды будет очень большой, а если, наоборот, все краны свои закроют, то вода по трубам вообще не будет течь, и мы никак не можем управлять этой силой тока.
А вот напряжению тока вообще без разницы, потребляет ли кто-нибудь ток, или нет — оно полностью в нашей власти, и только мы можем им управлять.

Поэтому в ЛЭП за основу берётся именно напряжение тока, и именно с ним работают: перед передачей тока по проводам, излишнюю силу тока, выработанного электрогенератором, перегоняют в напряжение, а при приёме тока в «подстанции» во дворе вашего дома — наоборот, излишнее напряжение перегоняют обратно в силу тока, поскольку весь путь успешно пройден током с минимальными потерями.

Прямо всю силу тока перекачать в напряжение не получится, потому что при гигантских напряжениях в проводах возникают свои сложности (может пробить через изоляцию, например, или зажарить человека, проходящего под проводом, или ещё чего-нибудь).
Кстати, забавное видео про короткое замыкание на линии ЛЭП:



Теперь рассмотрим подробнее «трёхфазный ток».
Это три провода, по которым течёт одинаковый ток, но сдвинутый на 120 градусов (треть окружности) друг относительно друга.
Какое напряжение у этого тока?
Напряжение всегда измеряется между чем-то и чем-то.
Напряжением трёхфазного тока называется напряжение между двумя его фазами («линейное» напряжение).
Там, где мы соединили все три фазы вместе в одной точке (это называется соединением по схеме «звезда»), мы получили «нейтраль» (G на рисунке).
В ней, как нетрудно догадаться (или посчитать по формулам тригонометрии) напряжение равно нулю.

Пока просто попробуем подключить генератор к нагрузке, стоящей рядом.
Если все три выходящие из генератора линии соединить, через сопротивления, во вторую «нейтраль» (точка G), то мы получим так называемый «нулевой провод» (от G до M).



Зачем нам нужен нулевой провод?
Можно было бы дома просто подсоединять одну из фаз на один шпенёк вилки, а другой шпенёк вилки соединять с землёй, и чайник бы кипел.
Вообще, как я понял, так и делают в старых советских домах: там есть только фаза и земля в квартирах.
В новых же домах в квартиры входят уже три провода: фаза, земля и этот «ноль».
Это европейский стандарт.
И правильно соединять именно фазу с нулём, а землю вообще оставить в покое, отдав ей только роль защиты от удара током («заземление»).
Потому что если все на землю ещё и ток будут пускать, то само заземление станет опасным — абсурд получится.
Ещё некоторые мысли по поводу того, зачем нужны все три провода, есть в конце этой статьи, можете сразу пролистать и прочитать.

Теперь попробуем посчитать напряжение между фазой и «нейтралью».
Вот ещё ссылка с расчётами.
Пусть напряжение между каждой фазой и «нейтралью» равно U.
Тогда напряжение между двумя фазами равно:
U sin(a) — U sin(a + 120) = 2 U sin((-120)/2) cos((2a + 120)/2) = -√3 U cos(a + 60).
То есть, напряжение между двумя фазами в √3 раз больше напряжения между фазой и «нейтралью».
Поскольку наш трёхфазный ток на подстанции имеет напряжение 380 Вольт между фазами, то напряжение между фазой и нулём получается равным 220 Вольтам.
Для этого и нужен «ноль» — для того, чтобы всегда, при любых условиях, при любых нагрузках в сети, иметь напряжение в 220 Вольт — ни больше, ни меньше.
Если бы не было нулевого провода, то при разной нагрузке на каждую из фаз возник бы «перекос» (об этом ближе к концу статьи), и у кого-то что-то могло бы сгореть.

Ещё один момент: выше мы рассмотрели введение нейтрали у генератора.


А откуда взять нейтраль на дворовой подстанции?
В дворовой подстанции трёхфазное напряжение снижается (трёхфазным) трансформатором до 380 Вольт на каждой фазе.
Это будет похоже на генератор: тоже три катушки, как на рисунке.
Поэтому их тоже можно друг с другом соединить, и получить «нейтраль» на подстанции. А из нейтрали — «нулевой провод».
Таким образом, из подстанции выходят «фаза», «ноль» и «земля», идут в каждый подъезд (своя фаза в каждый подъезд, наверное), на каждую лестничную площадку, в электрораспределительные щитки.

Итак, мы получили все три провода, выходящие из подстанции: «фаза», «ноль» («нейтраль») и «земля».
«фаза» — это любая из фаз трёхфазного тока (уже пониженного до 380 Вольт).
«ноль» — это провод от (заземлённой — воткнутой в землю — на подстанции) «нейтрали».
«земля» — это провод от заземления (скажем, припаян к длинной трубе с очень малым сопротивлением, вбитой глубоко в землю).

По подъездам получается такая разводка (если предположить, что подъезд = квартира):



На подстанции фазы с левой стороны все соединены и заземлены, образуя ноль, а в конечных точках — в конце подъезда, после того, как они пройдут по всем квартирам — вообще не соединены никуда.
Потому что если бы в конце каждая фаза была бы замкнута на «ноль», то ток гулял бы себе по этому пути наименьшего (нулевого) сопротивления, и в квартиры (под нагрузку) вообще бы не заходил.
А так, он вынужден будет идти через квартиры.
И делиться будет по правилу параллельного тока: напряжение в каждую квартиру будет идти одно и то же, а сила тока — тем больше, чем больше нагрузка.
То есть, в каждую квартиру сила тока будет идти «каждому по потребностям» (и проходить через счётчик, который это всё будет считать).
Но для того, чтобы ток был постоянным по мере включения и отключения новых потребителей, нужно, чтобы сила тока в общем проводе каждый раз сама подстраивалась под подлюченную нагрузку.

Что может быть, если все включат обогреватели зимним вечером?


Ток в ЛЭП может превзойти допустимые пределы, и могут либо провода загореться, либо электростанция сгорит (что и было несколько раз в москве, но летом).

Есть ещё один вопрос: зачем тянуть в дом все три провода, если можно было бы тянуть только два — фазу и ноль или фазу и землю?

Фазу и землю тянуть не получится (в общем случае).
Это выше мы посчитали, что напряжение между фазой и нулём всегда равно 220 Вольтам.
А вот чему равно напряжение между фазой и землёй — это не факт.
Если бы нагрузка на всех трёх фазах всегда была равной (см. схему «звезды»), то напряжение между фазой и землёй было бы всегда 220 Вольт (просто вот такое совпадение).
Если же на какой-то из фаз нагрузка будет значительно больше нагрузки на других фазах (скажем, кто-нибудь включит супер-сварочную-установку), то возникнет «перекос фаз», и на малонагруженных фазах напряжение относительно земли может подскочить вплоть до 380 Вольт.
Естественно, техника (без «предохранителей») в таком случае горит, и незащищённые провода тоже, что может привести к пожару.
Точно такой же перекос фаз получится, если провод «нуля» оборвётся или отгорит на подстанции.
Поэтому в домашней сети нужен ноль.

Тогда зачем нам в доме нужен провод «земли»?
Для того, чтобы «заземлять» корпусы электроприборов (компьютеров, чайников, стиральных и посудомоечных машин), для того, чтобы от них не било током.
Приборы тоже иногда ломаются.
Что будет, если провод фазы, где-нибудь внутри прибора, отвалится и упадёт на корпус прибора?
Если корпус прибора вы заранее заземлили, то возникнет «ток утечки» (упадёт ток в основном проводе фаза-ноль, потому что почти всё электричество устремится по пути меньшего сопротивления — по почти прямому замыканию фазы на ноль).
Этот ток утечки будет замечен «Устройством Защитного Отключения» (УЗО), и оно разомкнёт цепь.
УЗО наблюдает за входящим в квартиру током (фаза) и изходящим из квартиры током (ноль), и размыкает цепь, если эти токи не равны.
Если эти токи разные — значит, где-то «протекает»: где-то фаза имеет какой-то контакт с землёй.
Если эта разница резко подскакивает — значит, где-то в квартире фаза замкнула на землю.
Если бы в щитке не стояло УЗО, и вышеупомянутый провод фазы внутри корпуса, скажем, компьютера, отвалился бы, и замкнулся бы на корпус компьютера, и лежал бы так себе, а, потом, через пару дней, человек стоял бы рядом, и разговаривал по телефону, оперевшись одной рукой на корпус компьютера, а другой рукой — скажем, на батарею отопления, то догадайтесь, что бы стало с этим человеком.
Так что «земля» тоже нужна.

Поэтому нужны все три провода: «фаза», «ноль» и «земля».

В квартире к каждой розетке подходит своя тройка проводов «фаза», «ноль», «земля».
Например, из щитка на лестничной площадке выходят три этих провода (вместе с ними ещё телефон, витая пара для интернета и мб какое-нибудь кабельное ТВ), и идут в квартиру.
В квартире на стене висит внутренний щиток.
Там на каждую «точку доступа» к электричеству стоит свой «автомат».
От каждого автомата своя, отдельная, тройка проводов уже идёт к «точке доступа»: тройка к печке, тройка к посудомойке, тройка на зальные розетки и свет в люстре, и т.п..
Каждый «автомат» изготовлен на заводе под определённую максимальную силу тока.
Поэтому он «вырубается», если вы даёте слишком большую нагрузку на «точке доступа» (например, включили слишком много всего мощного в розетки в зале).
Также, автомат «вырубится» в случае «короткого замыкания» (замыкания фазы на ноль), чем спасёт вашу квартиру от пожара.
Вас самих он не спасёт (слишком медленный). Вас спасёт толькоУЗО.

Под конец, просто так, напишу немного про «трансформатор» (читать не обязательно).



Я пробовал несколько раз понять, как он работает, но так и не понял…

Сила тока в цепи всегда подстраивается под подключённую нагрузку.
Для понимания этого факта можно рассмотреть, как работает трансформатор на подстанции.

Трансформатор — это сердечник, на котором две катушки: по одной ток входит, а по другой — выходит.



Если мы не выводим оттуда ток, то вводящая катушка — сама по себе, и она создаёт магнитный поток, который в свою очередь создаёт «сопротивляющееся напряжение» (это называется «ЭДС самоиндукции»), равное напряжению во вводящей цепи, и сводящее его в ноль.
Это «природное» свойство катушки («индуктивности») — она всегда сопротивляется какому бы то ни было изменению напряжения.
И по подключенному участку вводящей цепи ток практически не идёт (этот участок отводится от ЛЭП параллельно, чтобы, если в нём ток пропадёт, то у всех остальных ток остался), и практически нет потерь на таком «холостом ходу» трансформатора.

Потеряется только малость энергии, в том числе энергия, потраченная на «гистерезис» сердечника и на разогрев сердечника вихревыми токами (поэтому особо мощные трансформаторы погружают в масло для постоянного охлаждения).

Магнитный поток, распространяясь по сердечнику внутрь выводящей катушки, создаёт в ней тоже напряжение, которое могло бы вызвать протекание тока, но поскольку в данном случае к выводящей цепи мы ничего не подключили, то тока там не будет.

Если же мы начинаем выводить ток — замыкаем выводящую цепь — то по выводящей катушке начинает идти ток, и она тоже начинает создавать своё магнитное поле в сердечнике, противоположное магнитному полю, создаваемому вводной катушкой. Из-за этого ЭДС самоиндукции вводной катушки уменьшается, и более не компенсирует напряжение во вводной цепи, и по вводной цепи начинает течь ток. Ток нарастает до тех пор, пока магнитный поток «не станет прежним». Как это — я хз, в википедии так написано, а сам я так и не понял, как этот трансформатор работает.

Поэтому получается, что ток на выходе из трансформатора сам себя регулирует: если нет нагрузки, то там не течёт ток; если есть нагрузка — то ток течёт соответствующий нагрузке.
И если мы смотрим телевизор, а потом соседи включают пылесос, то у нас обоих ничего не «вырубается», так как сила тока тут же подстраивается под нас — потребителей электроэнергии.

Что такое фаза, ноль, земля в электрике и зачем они нужны

Известно, что электрическая энергия вырабатывается на электрических станциях при помощи генераторов переменного тока. Затем, по линиям электропередач от трансформаторных подстанций электроэнергия поступает потребителям. Разберем подробнее, каким образом энергия подводится к подъездам многоэтажных домов и частным домам. Это даст понять даже чайникам в электрике, что такое фаза, ноль и заземление и зачем они нужны.

Простое объяснение

Итак, для начала простыми словами расскажем, что собой представляют фазный и нулевой провод, а также заземление. Фаза – это проводник, по которому ток приходит к потребителю. Соответственно ноль служит для того, чтобы электрический ток двигался в обратном направлении к нулевому контуру. Помимо этого назначение нуля в электропроводке – выравнивание фазного напряжения. Заземляющий провод, называемый так же землей, не находится под напряжением и предназначен для защиты человека от поражения электрическим током. Подробнее о заземлении вы можете узнать в соответствующем разделе сайта.

Надеемся, наше простое объяснение помогло разобраться в том, что такое ноль, фаза и земля в электрике. Также рекомендуем изучить цветовую маркировку проводов, чтобы понимать, какого цвета фазный, нулевой и заземляющий проводник!

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению – это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено. Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током.

К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.

Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.

Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:

Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе “Задать вопрос электрику“!

Рекомендуем также прочитать:

Фаза, ноль, заземление. Как их определить и что это такое

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)

Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.

В промышленных масштабах у нас производится трехфазный переменный ток, а в быту мы используем, как правило, однофазный.

Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля — N).

Еще момент — чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой — фазовым.

Отсюда следует еще один очевидный практический вывод: напряжение между «нулем» и «землей» будет близко к нулевому значению (определяется сопротивлением заземления), а «земля» — «фаза», в нашем случае 220 Вольт.

Кроме того, если гипотетически (На практике так делать нельзя!) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение «фаза» — «ноль» у нас будет те же 220 Вольт.

Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и «землей» (рис.4).

Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток «уйдет» по цепи заземления.

Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

Как это делается — тема для отдельного разговора, например, в частном доме можно самостоятельно сделать заземляющий контур. Существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

КАК ОПРЕДЕЛИТЬ ФАЗУ И НОЛЬ

Где фаза, где ноль — вопрос, возникающий при подключении любого электротехнического устройства.

Для начала давайте рассмотрим как найти фазу. Проще всего это сделать индикаторной отверткой (рисунок 7).

Токопроводящим жалом индикаторной отвертки (1) касаемся контролируемого участка электрической цепи (во время работы контакт этой части отвертки с телом недопустим!), пальцем руки касаемся контактной площадки 3, свечение индикатора 2 свидетельствует о наличии фазы.

Помимо индикаторной отвертки фазу можно проверить мультиметром (тестером), правда это более трудоемко. Для этого мультиметр следует перевести в режим измерения переменного напряжения с пределом более 220 Вольт.

Одним щупом мультиметра (каким — безразлично) касаемся участка измеряемой цепи, другим — естественного заземлителя (батареи отопления, металлические водопроводные трубы). При показаниях мультиметра, соответствующим напряжению сети (около 220 В) на измеряемом участке цепи присутствует фаза (схема рис.8).

Обращаю Ваше внимание — если проведенные измерения показывают отсутствие фазы утверждать что это ноль нельзя. Пример на рисунке 9.

  1. Сейчас в точке 1 фазы нет.
  2. При замыкании выключателя S она появляется.

Поэтому следует проверить все возможные варианты.

Хочу заметить, что при наличии в электропроводке провода заземления отличить его от нулевого проводника методом электрических измерений в пределах квартиры невозможно.

Как правило, провод, которым выполнено заземление имеет желто зеленый цвет, но лучше убедиться в этом визуально, например снять крышку розетки и посмотреть какой провод подсоединен к заземляющим контактам.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Защитное зануление | Подробная схема

Защитное зануление от точки «А» до точки «Б»

Откуда к нам в дом попадает защитное зануление, оно же ноль или нейтраль? Давайте рассмотрим его путь от трансформаторной подстанции. Как видно из схемы (внизу), начинается оно с глухозаземленной нейтрали.

В нашем случае глухозаземленная нейтраль – это нейтраль силового трансформатора, соединённая с заземляющим устройством. Затем вместе с линией, состоящей из трех фаз, нейтраль попадает во вводной шкаф и распределяется по электрощитам на этажах.

От нее берется рабочий ноль, который вместе с фазой образует привычное для нас фазное напряжение. Ноль называется рабочим, потому что вы используете его для работы электроприборов (электроустановок).

А вот отдельный ноль (защитный ноль), взятый со щитка, электрически соединенный с глухозаземленной нейтралью, и образует защитное зануление.

Помните, в цепи защитных зануляющих проводников не должно быть разделяющих приспособлений и предохранителей.

Внимание!

Никогда не используйте рабочий ноль как защитный (защитное зануление), этим вы подвергните опасности, как себя, так и окружающих вас людей.

Поскольку при обрыве цепи рабочего нуля, фазный ток через включенные нагрузки попадет на корпус электроприбора, и вместо защиты вы получите ничем не защищенный источник опасного напряжения.

Назначение защитного зануления – устранение опасности поражения электрическим током при прикосновении к корпусу электроустановки или другим нетоковедущим частям, оказавшимся под напряжением, при замыкании фазы на корпус или землю.

Принцип действия зануления заключается в превращении замыкания фазного проводника на корпус электроустановки в однофазное короткое замыкание. Что вызывает большой ток, который обеспечивает быстрое срабатывание защиты поврежденной электроустановки и отключает ее от питающей сети.

Электросхема по теме защитное зануление

Увеличить рис.

1 – Трансформаторная подстанция

  • S – Отсекатель
  • FV1 – FV6 разрядники
  • F1 – F3 предохранители
  • Т – силовой трансформатор
  • S1 – рубильник
  • SF1 – SF3 – автоматические выключатели
  • A, B, C – Линия состоящая из фаз
  • N – Глухозаземленная нейтраль

2 – Многоэтажный дом

2а – Квартира

2b – Распределительный электрический щит

  • SF– автоматический выключатель
  • BW – Счетчик
  • Lc  – фаза
  • N – нейтраль

2C – Вводной электрошкаф

  • A, B, C – Фазные линии
  • N – Глухозаземленная нейтраль
  • F4 – F6 Предохранители
  • S2 – Рубильник

Зануляющие и питающие проводники должны быть одного сечения, кабеля с тремя проводами легко решают эту проблему. Нужное вам сечение провода можете выбрать по таблице «Допустимые значения тока, А»

Статья написана в ознакомительных целях для более простого представления, что такое защитное зануление и откуда оно берется.

Удачного монтажа!
————————————————————————————-
Источники:
Консультант Святенко С. П.
Сайт «Школа для электрика»  http://electricalschool.info
Г. А. Дулицкий, А.П. Комаревцев справочник «Электробезопасность при эксплуатации электроустановок до 1000В»

Что такое «фаза», «ноль» и «земля», и зачем они нужны.

Сегодня решил попробовать разобраться с тем, что такое «фаза», «ноль» и «земля».
Небольшой поиск в Гугле по этому поводу выявил, что в основном люди в интернете отвечают на этот вопрос каждый по-своему, где-то неполно, где-то с ошибками.
Я решил разобраться в этом вопросе досконально, в результате чего появилась эта статья.
Достаточно длинная, но в ней всё объяснено, в том числе, что такое фаза, ноль, земля, как это всё появилось и зачем всё это нужно.

Если очень кратко, то фаза и ноль — для электричества, а земля — только для заземления корпусов электроприборов, во имя спасения жизни человека в случае утечки электрического тока на корпус электроприбора.


Если начать с самого начала: откуда берётся электричество?
Все электростанции построены на одном и том же принципе: если магнит вращать внутри катушки (создавая тем самым периодическое «переменное» магнитное поле), то в катушке возникает «переменный» электрический ток (и, соответственно, «переменное» напряжение).
Этот величайший по своему значению эффект называется в физике «ЭлектроДвижущей Силой индукции», она же «ЭДС индукции», была открыта в середине XIX века.

«Переменное» напряжение — это когда берётся обычное «постоянное» напряжение (как от батарейки), и изгибается по синусу, и оно поэтому то положительное, то отрицательное, то снова положительное, то снова отрицательное.


Напряжение на катушке является «переменным» по своей природе (никто его специально не изгибает) — просто потому что таковы законы физики (электричество из магнитного поля можно получить только тогда, когда магнитное поле «переменное», и поэтому получаемое на катушке напряжение тоже всегда будет «переменным»).

Итак, значит, где-то в дебрях электростанции вращается магнит (для примера — обычный, а в реальности — «электромагнит»), называемый «ротором», а вокруг него, на «статоре», закреплены три катушки (равномерно «размазаны» по поверхности статора).

Вращается этот магнит, не человеком, не рабом, и не огромным сказочным големом на цепи, а, например, потоком воды на мощной ГидроЭлектроСтанции (на рисунке магнит стоит на оси турбины в «Генераторе»).

Поскольку в таком случае (случае вращения магнита на роторе) магнитный поток, проходящий через катушки (неподвижные на статоре), периодически меняется во времени, то в катушках на статоре создаётся «переменное» напряжение.

Каждая из трёх катушек соединена в свою отдельную электрическую цепь, и в каждой из этих трёх электрических цепей возникает одинаковое «переменное» напряжение, только сдвинутое («по фазе») на треть окружности (120 градусов из полных 360-ти) друг относительно друга.


Такая схема называется «трёхфазным генератором»: потому что есть три электрических цепи, в каждой из которых (одинаковое) напряжение сдвинуто по фазе.
(на рисунке выше «N-S» — это обозначение магнита: «N» — северный полюс магнита, «S» — южный; также на этом рисунке вы видите те самые три катушки, которые для упрощения понимания маленькие и стоят отдельно друг от друга, но в реальности они по ширине занимают треть окружности и плотно прилегают друг к другу на кольце статора, так как в таком случае получается больший КПД генератора электроэнергии)

Можно было бы с одной такой катушки оба конца проводки просто взять и вести к дому, а там от них чайник запитать.
Но можно сэкономить на проводах: зачем тащить в дом два провода, если можно один конец катушки просто тут же заземлить (воткнуть в землю), а от второго конца вести провод в дом (этот провод назовём «фазой»).
В доме этот провод подсоединяется, например, к одному штырьку вилки чайника, а другой штырёк вилки чайника — заземляется (грубо говоря, просто втыкается в землю).
Получим то же самое электричество: одна дырка в розетке будет называться «фазой», а вторая дырка в розетке будет называться «землёй».

Теперь, раз уж у нас три катушки, сделаем так: скажем, «левые» концы катушек соединим вместе и прямо тут же заземлим (воткнём в землю).
А оставшиеся три провода (получается, это будут «правые» концы катушек) по отдельности потянем к потребителю.
Получится, мы тянем к потребителю три «фазы».

Вот мы и получили «трёхфазный ток», идущий от генератора «трёхфазного тока».
Это «трёхфазное» напряжение идёт по проводам Линии ЭлектроПередач (ЛЭП) к нам во двор, в дворовую подстанцию (домик такой стоит, рядом с детской площадкой, со знаком «осторожно, высокое напряжение»).
И не только «к нам во двор» — по всей огромной России тянули наши предки эти ЛЭПы во времена ударных пятилеток коммунизма (а это огого какая гигантская работа: тянули электричество, прокладывали дороги, осушали болота, заводы строили по всей стране, поднимали целину — это не в офисах под кондиционерами сидеть).

Изобретён этот «трёхфазный ток» был в самом конце XIX века.
Передача электричества в виде именно трёхфазного тока, как некоторые говорят, экономичнее (возможно, меньше потерь в проводах, или что-нибудь типа того), и там ещё, говорят, у него есть разные преимущества над обычным током для промышленного применения.
Например, все вращающиеся штуки на заводах — станки там, двигатели, насосы, и прочее — сделаны именно для трёхфазного тока, поскольку гораздо легче построить вращающуюся штуковину на трёхфазном токе: достаточно просто точно так же подсоединить эти три фазы к трём катушкам на кольце, и в центр вставить металлический стержень с рамкой — и будет он сам крутиться, как только пойдёт ток.
Такой агрегат называется «трёхфазным двигателем».
Поскольку изначально электричеством заморачивались именно на заводах (не было тогда ещё в домах компьютеров, холодильников и люстр), то исторически всё идёт от промышленности в первую очередь.
Поэтому, видимо, ток из электростанции в ЛЭП пускают всегда трёхфазным, с напряжением 35 килоВольтов между фазами (а сила тока в проводах при этом — около 300 Амперов).

Такое высокое напряжение нужно, потому что нужна большая мощность тока: весь город энергию ест, как-никак, да и различные заводы потребляют порою огого сколько мощности: металлургические, например.
Большую мощность тока можно получить либо повышая силу тока, либо повышая напряжение (потому что мощность тока — это сила тока умноженная на напряжение).
При этом чем больше сила тока, тем больше энергии тратится впустую при преодолении сопротивления проводов при передаче электроэнергии на расстояние по проводам (потерянная энергия равняется силе тока в квадрате, умноженной на сопротивление проводов — именно поэтому чем толще провода в ЛЭП, тем экономичнее, потому что чем толще провод, тем меньше его сопротивление).
Поэтому экономически целесообразно повышать мощность передаваемого тока, наращивая не силу тока, а напряжение (напряжению никак не мешает сопротивление проводов — такова его природа).
Потребитель потребляет из розетки именно мощность (силу тока, умноженную на напряжение), а не отдельно ток и не отдельно напряжение, поэтому его не волнует, в каком виде эта мощность к нему в дом придёт по проводам: будет ли там больше тока и меньше напряжения, или, наоборот, больше напряжения и меньше тока — потребителя волнует только мощность в целом.

Поэтому на электростанции, перед передачей электроэнергии в провода ЛЭП, излишнюю силу тока, выработанного электрогенератором, перегоняют в напряжение, а при приёме тока в «подстанции» во дворе вашего дома выполняется обратное преобразование — излишнее напряжение перегоняют обратно в силу тока, поскольку к этому моменту весь путь по ЛЭП уже успешно пройден электроэнергией с минимальными потерями.

Прямо всю силу тока перекачать в напряжение не получится, потому что при гигантских напряжениях в проводах возникают свои сложности (может пробить через изоляцию, например, или зажарить человека, проходящего под ЛЭП, или ещё чего-нибудь).
Вот забавное видео про короткое замыкание ЛЭП в 110 килоВольтов — весёлый феерверк:

Занимательный факт: при длине ЛЭП переменного тока более нескольких тысяч километров возникает ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц, провод работает как антенна.

Я уже объяснил, что такое «фаза» и что такое «земля», и дальше я объясню, что такое «ноль» («нулевой провод») и зачем он нужен. Объяснение займёт следующие несколько абзацев, и может показаться непростым, но для понимания того, что такое «ноль», придётся понять это объяснение.

Для упрощения, пока представим, что как будто бы трёхфазный генератор стоит не на ГидроЭлектроСтанции, а прямо у нас в квартире. Условно «левые» концы катушек на статоре мы, как и раньше, соединяем вместе.

Такой способ соединения называется соединением по схеме «звезда». Полученная точка соединения трёх фазных проводов называется «нейтралью».


«Нейтраль» обычно заземляют для большей безопасности: если нейтраль не заземлить, то потом когда одна из фаз случайно замкнётся на землю где-нибудь в доме, то полученная электрическая цепь будет разомкнутой — не будет токопроводящего пути от места касания фазой земли в доме обратно на эту фазу на подстанции. А если бы нейтраль заземлили на подстанции, то обратный путь с земли в доме на фазу на подстанции прошёл бы через землю: землю можно в данном случае представить как огромный проводник, хотя строго говоря это и не так, она же не металлическая, но для наглядности можно представить её как один огромный проводник. Итак, при отсутствии заземления «нейтрали» на подстанции, при коротком замыкании фазы на землю ток из фазы в землю не пойдёт (или, может быть, пойдёт, но будет относительно небольшим), и такая неисправность не будет засечена специально созданными для этого приборами («автоматами»), и эти приборы («автоматы») не смогут вовремя предотвратить опасное замыкание фазы на землю, выключив электричество. Подробнее принцип работы «автоматов» описан в конце этой статьи. А если вас заинтересует более подробное объяснение, зачем используется именно заземлённая нейтраль, то можете прочесть его по этой ссылке.

В «нейтральной» точке, как можно посчитать по школьным формулам тригонометрии (или на глаз отмерить по графику с тремя фазами напряжения, который я давал в начале статьи), суммарное напряжение равно нулю. Всегда, в любой момент времени. Вот такая интересная особенность. Поэтому она и называется «нейтралью».

Теперь возьмём и подсоединим к «нейтрали» провод, и этот, получается, уже четвёртый провод тоже будет тянуться рядом с тремя фазными проводами (и ещё рядом будет тянуться пятый провод — это «земля», которой можно будет заземлить корпус подключенного электроприбора).

Получается, от генератора теперь будет идти четыре провода (плюс пятый — «земля»), а не три, как раньше.
Подключим эти провода к какой-нибудь нагрузке (например, к какому-нибудь трёхфазному двигателю, который тоже стоит у нас в квартире).
(на рисунке ниже генератор изображён слева, а трёхфазный двигатель — справа; точка G — это «нейтраль»).

На нагрузке (на двигателе) все три фазных провода тоже соединяются в одну точку (только не напрямую, чтобы не было короткого замыкания, а через некоторые большие сопротивления), и получается ещё одна такая «как бы нейтраль» (точка M на рисунке).
Теперь соединим четвёртый провод (идущий он «нейтрали»; точка G на рисунке) с этой второй «как бы нейтралью» (точка M на рисунке), и получим так называемый «нулевой провод» (идущий от точки G к точке M).


Зачем нужен этот «нулевой» провод?
Можно было бы, как и раньше, не заморачиваться, и просто подсоединять одну из фаз на один шпенёк вилки чайника, а другой шпенёк вилки чайника соединять с землёй, как мы делали раньше, и чайник бы нормально работал.
Вообще, как я понял, так и делали в старых советских домах: там от подстанции в дом заходят только два провода — провод фазы и провод земли.
В новых же домах (новостройках) в квартиры входят уже три провода: фаза, земля и этот «ноль». Это более прогрессивный вариант. Это европейский стандарт.
И правильно соединять фазу именно с нулём, а землю вообще оставить в покое, отдав ей только роль защиты от удара током (именно такой смысл должно нести слово «заземление», и никакого отношения к потреблению тока в розетке оно иметь не должно).
Потому что если все на землю ещё и ток будут пускать, то само заземление станет опасным — абсурд получится, будет поставлен с ног на голову весь смысл заземления.

Теперь немного математики, для тех, кто умеет её считать, и для тех, кто ещё не устал: попробуем посчитать напряжение между фазой и «нейтралью» (то же самое, что между фазой и «нулём»).
(вот ещё ссылка с расчётами, если кто-то захочет заморочиться этим)
Пусть амплитуда напряжения между каждой фазой и «нейтралью» равна U (само напряжение переменное, и скачет по синусу от минус амплитуды до плюс амплитуды).
Тогда напряжение между двумя фазами равно:
U sin(a) — U sin(a + 120) = 2 U sin((-120)/2) cos((2a + 120)/2) = -√3 U cos(a + 60).
То есть, напряжение между двумя фазами в √3 («квадратный корень из трёх») раз больше напряжения между фазой и «нейтралью».
Поскольку наш трёхфазный ток на подстанции имеет напряжение 380 Вольт между фазами, то напряжение между фазой и нулём получается равным 220 Вольтам.
Для этого и нужен «ноль» — для того, чтобы всегда, при любых условиях, при любых нагрузках в сети, иметь напряжение в 220 Вольт — ни больше, ни меньше. Оно всегда постоянно, всегда 220 Вольт, и вы можете быть уверены, что пока вся электрика в доме правильно подсоединена, у вас ничего не сгорит.
Если бы не было нулевого провода, то при разной нагрузке на каждую из фаз возник бы так называемый «перекос фаз», и у кого-то что-то могло бы сгореть в квартире (возможно даже в прямом смысле слова, вызвав пожар). Например, банально могла бы загореться изоляция проводки, если она не является пожаробезопасной.


До сих пор мы для простоты рассматривали случай воображаемого трёхфазного генератора, стоящего прямо в квартире.
Поскольку расстояние от квартиры до дворовой подстанции мало, и на проводах можно не экономить, то можно (и нужно, так же удобнее) перенести этот воображаемый трёхфазный генератор из квартиры в подстанцию.
Мысленно перенесли.
Теперь разберёмся с воображаемостью генератора. Понятно, что реальный генератор стоит не на подстанции, а где-нибудь далеко, на ГидроЭлектроСтанции, за городом. Можем ли мы на подстанции, имея три входящих фазных провода от ЛЭП, как-нибудь их соединить так, чтобы получилось всё то же самое, как если бы генератор стоял прямо в этой подстанции? Можем, и вот как.
В дворовой подстанции приходящее с ЛЭП трёхфазное напряжение снижается так называемым «трёхфазным» трансформатором до 380 Вольт на каждой фазе.
Трёхфазный трансформатор — это в простейшем случае просто три самых обычных трансформатора: по одному на каждую фазу
В реальности его конструкцию немного улучшили, но принцип работы остался тем же самым:


Бывают маленькие, и не очень мощные, а бывают большие и мощные:
Таким образом, входящие фазные провода от ЛЭП не прямо подсоединяются и заводятся в дом, а идут на этот огромный трёхфазный трансформатор (каждая фаза — на свою катушку), из которого уже «бесконтактным» способом, через электромагнитную индукцию, передают электроэнергию на три выходные катушки, от которых она идёт по проводам в жилой дом.
Поскольку на выходе из трёхфазного трансформатора имеются те же самые три фазы, которые вышли из трёхфазного генератора на электростанции, то здесь можно точно так же одни концы (условно, «левые») этих трёх выходных катушек трансформатора соединить друг с другом, чтобы получить «нейтраль» у себя на подстанции. А из нейтрали — вывести в жилой дом четвёртый «нулевой провод», вместе с тремя фазными (идущими от условно «правых» концов этих трёх выходных катушек трансформатора). И ещё добавить пятый провод — «землю».

Таким образом, из подстанции в итоге выходят три «фазы», «ноль» и «земля» (всего — пять проводов), и далее распределяются на каждый подъезд (например, можно распределить по одной фазе в каждый подъезд — получается по три провода заходит в каждый подъезд: одна фаза, ноль и земля), на каждую лестничную площадку, в электрораспределительные щитки (где счётчики стоят).

Итак, мы получили все три провода, выходящие из подстанции: «фаза», «ноль» (иногда «ноль» называют ещё «нейтралью») и «земля».
«фаза» — это любая из фаз трёхфазного тока (уже пониженного до 380 Вольт между фазами на подстанции; между фазой и нулём получится ровно 220 Вольт).
«ноль» — это провод от «нейтрали» на подстанции.
«земля» — это просто провод от хорошего правильного грамотного заземления (например, припаян к длинной трубе с очень малым сопротивлением, вбитой глубоко в землю рядом с подстанцией).

Внутри подъезда фазовый провод по схеме параллельного включения расщипляется на все квартиры (то же самое делается с нулевым проводом и проводом земли).
Соответственно, делиться ток по квартирам будет по правилу параллельного тока: напряжение в каждую квартиру будет идти одно и то же, а сила тока — тем больше, чем больше подключенная нагрузка в каждой квартире.
То есть, в каждую квартиру сила тока будет идти «каждому по потребностям» (и проходить через квартирный счётчик, который это всё будет подсчитывать).

Что может произойти, если все включат обогреватели зимним вечером?
Потребляемая мощность резко возрастёт, ток в проводах ЛЭП может превзойти допустимые рассчитанные пределы, и может либо какой-то из проводов перегореть (провод разогревается тем сильнее, чем больше его сопротивление и чем большая сила тока в нём течёт, и борется с этим сопротивлением), либо просто сама подстанция сгорит (не та, которая во дворе дома, а одна из Главных Подстанций города, которая может оставить без электроэнергии сотни домов, часть города может несколько суток сидеть без света и без возможности приготовить себе еду).

Если ещё у кого-то остался вопрос: зачем тянуть в дом все три провода, если можно было бы тянуть только два — фазу и ноль или фазу и землю?

Только фазу и землю тянуть не получится (в общем случае).
Выше мы посчитали, что напряжение между фазой и нулём всегда равно 220 Вольтам.
А вот чему равно напряжение между фазой и землёй — это не факт.
Если бы нагрузка на всех трёх фазах всегда была равной (см. схему «звезды», когда я объяснял её выше), то напряжение между фазой и землёй было бы всегда 220 Вольт (просто вот такое совпадение).
Если же на какой-то из фаз нагрузка будет значительно больше нагрузки на других фазах (скажем, кто-нибудь включит супер-сварочную-установку), то возникнет «перекос фаз», и на малонагруженных фазах напряжение относительно земли может подскочить вплоть до 380 Вольт.
Естественно, техника (без «предохранителей») в таком случае горит, и незащищённые провода тоже могут загореться, что может привести к пожару в квартире.
Точно такой же перекос фаз получится, если провод «нуля» оборвётся, или даже просто отгорит на подстанции, если по нулевому проводу пойдёт слишком большой ток (чем больше «перекос фаз», тем сильнее ток идёт по проводу нуля).
Поэтому в домашней сети обязательно должен использоваться ноль, и нельзя ноль заменить землёй.
Помню, когда мой отец делал разводку в его квартире в новостройке в Москве, и видел знакомый ему с советской молодости провод земли, а потом видел незнакомый ему провод ноля, то он, недолго думая, просто откусывал кусачками провод ноля, приговаривая, что «а он не нужен»…

Тогда зачем нам в доме нужен провод «земли»?

Для того, чтобы «заземлять» корпусы электроприборов (компьютеров, чайников, стиральных и посудомоечных машин), для того, чтобы от них не било током при прикосновении.

Приборы тоже иногда ломаются.

Что будет, если провод фазы, где-нибудь внутри прибора, отвалится и упадёт на корпус прибора?

Если корпус прибора вы заранее заземлили, то возникнет «ток утечки» (произойдёт короткое замыкание фазы на землю, вследствие чего упадёт ток в основном проводе фаза-ноль, потому что почти всё электричество устремится по пути меньшего сопротивления — по создавшемуся короткому замыканию фазы на землю).

Этот ток утечки будет немедленно замечен либо «автоматом» стоящим в щитке, либо «Устройством Защитного Отключения» (УЗО), тоже стоящим в щитке, и оно сразу разомкнёт цепь.

Почему недостаточно обычного «автомата», и зачем ставят именно УЗО? Потому что у «автомата» и у УЗО разный принцип работы (а ещё, «автомат» срабатывает гораздо позже, чем УЗО).


УЗО наблюдает за входящим в квартиру током (фаза) и исходящим из квартиры током (ноль), и размыкает цепь, если эти токи неодинаковы (в то время как «автомат» измеряет только силу тока на фазе, и размыкает цепь, если ток на фазе превосходит допустимый предел).
Принцип работы УЗО очень прост и логичен: если входящий ток не равен исходящему, то, значит, где-то «протекает»: где-то фаза имеет какой-то контакт с землёй, чего по правилам быть не должно.
УЗО измеряет разность между силой тока на фазе и силой тока на нуле. Если эта разность превышает несколько десятков миллиАмперов, то УЗО немедленно срабатывает и выключает электричество в квартире, чтобы никто не пострадал, прикоснувшись ко сломанному прибору.
Если бы в щитке не стояло УЗО, и вышеупомянутый провод фазы внутри корпуса, скажем, компьютера, отвалился бы, и замкнулся бы на заземлённый корпус компьютера, и лежал бы так себе незамеченным, а, потом, через пару дней, человек стоял бы рядом, и разговаривал по телефону, оперевшись одной рукой на корпус компьютера, а другой рукой — скажем, на батарею отопления (которая тоже фактически является одной гигантской землёй, т.к. протяжённость отопительной сети огромная), то догадайтесь, что бы стало с этим человеком.
А если бы, например, УЗО стояло, но корпус компьютера не был бы заземлён, то УЗО сработало бы только во время прикосновения человека к корпусу и батарее. Но, по крайней мере, оно бы в любом случае мгновенно сработало, в отличие от «автомата», который бы сработал только через некоторый промежуток времени, пусть и маленький, но не мгновенно, как УЗО, и к тому времени человек мог бы быть уже «зажарен». Казалось бы, тогда, можно и не заземлять корпусы электроприборов — УЗО же в любом случае «мгновенно» сработает и разомкнёт цепь. Но кто-нибудь хочет испытать судьбу на предмет того, успеет ли УЗО достаточно «мгновенно» сработать и отключить ток, пока этот ток не нанесёт серьёзных повреждений организму?
Так что и «земля» нужна, и УЗО нужно ставить.

Поэтому нужны все три провода: «фаза», «ноль» и «земля».

В квартире к каждой розетке подходит тройка проводов «фаза», «ноль», «земля».
Например, из щитка на лестничной площадке выходят три этих провода (вместе с ними ещё телефон, витая пара для интернета — всё это называют «слаботочкой», потому что там протекают маленькие токи, неопасные), и идут в квартиру.
В квартире на стене (в современных квартирах) висит внутренний квартирный щиток.
Там эти три провода расщепляются и на каждую «точку доступа» к электричеству стоит свой отдельный «автомат», подписнанный: «кухня», «зал», «комната», «стиральная машина», и так далее.
(на рисунке ниже: сверху стоит «общий» автомат; после которого стоят подписанные «отдельные» автоматы; зелёный провод — земля, синий — ноль, коричневый — фаза: это стандарт цветового обозначения проводов)


От каждого такого «отдельного» автомата своя, отдельная, тройка проводов уже идёт к «точке доступа»: тройка проводов к печке, тройка проводов к посудомойке, одна тройка проводов на все зальные розетки, тройка проводов на освещение, и т.п..

Наиболее популярно сейчас совмещать «главный» автомат и УЗО в одном устройстве (на рисунке ниже оно показано слева). Счётчик электроэнергии ставится между «главным» общим автоматом (который имеет также встроенное УЗО) и остальными, «отдельными», автоматами (синий — ноль, коричневый — фаза, зелёный — земля: это стандарт цветового обозначения проводов):


И вот ещё до кучи схема, по сути, о том же (только здесь главный автомат и УЗО — это разные устройства):

Каждый «автомат» изготовлен на заводе под определённую максимально допустимую силу тока.

Поэтому он «вырубается», если вы даёте слишком большую нагрузку на «точке доступа» (например, включили слишком много всего мощного в розетки в зале).

Также, автомат «вырубится» в случае «короткого замыкания» (замыкания фазы на ноль), чем спасёт вашу квартиру от пожара.

Жизнь человека, при отсутствии правильного заземления электроприборов, автомат без УЗО не спасёт, так как автомат слишком медленно срабатывает (это более грубое устройство, так сказать).

Вроде бы, по этой теме пока всё.

Новый источник энергии поднимается выше нуля

Новая подстанция имеет форму, позволяющую открыть частную подъездную дорогу вдоль бывшей Гринвич-стрит, маршрута, заблокированного старым 7 Всемирным торговым центром. Новая форма потребовала плотно сжать своды трансформатора высотой 40 футов и штабелировать распределительное устройство над головой, что было нелегко с кабелями такой толщины, что им нужен радиус поворота в пять футов.

Эта инженерная задача возникла в дополнение к и без того сложной задаче восстановления подземной энергосистемы, в то время как Verizon, соседний дом на 140 West Street, пытался восстановить переплетенные узлы телекоммуникационной сети, а город восстанавливал канализацию и водоводы.«Это действительно история под землей, — сказал мистер Куинн.

Районные подстанции играют решающую роль в снижении мощности очень высокого напряжения от генерирующих станций до более управляемого тока, который можно распределять по небольшой локальной сети для бытовых и коммерческих потребителей.

На подстанцию ​​торгового центра питание подается по кабелям на 138 000 вольт. Кабели идут к керамическим устройствам, известным как наконечники, над которыми алюминиевые жилы передают мощность через переключатели цепи и вниз к подвижным рычагам.Когда эти руки поворачиваются в нужное положение, электричество завершает свой путь к трансформаторам, из которых оно выходит с напряжением 13000 вольт. Затем он проходит через коммутационное оборудование наверху — по сути, автоматические выключатели — прежде чем снова отправить под улицу клиентам.

Трансформаторы стоимостью 1,1 миллиона долларов были произведены в Австрии компанией Va Tech. Каждый из них имеет высоту 20 футов, весит 168 тонн и охлаждается гигантским радиатором. Это радиаторы, а не трансформаторы, которые видны с улицы, с их вертикальными ребрами охлаждения, увенчанными большими баками с охлаждающей жидкостью на основе минерального масла.

У Con Ed есть еще 23 подстанции на Манхэттене. Компания не идентифицирует их, но их нетрудно обнаружить, если они есть в вашем районе: низкое, без окон, безымянное здание, часто с колоссальными внешними вентиляционными отверстиями для охлаждения трансформаторов внутри, окруженное забором из проволочной сетки, а иногда и , бетонные ограждения.

Напротив, подстанция торгового центра будет превращена в произведение экологического искусства компанией James Carpenter Design Associates, работающей с архитектурной фирмой Skidmore, Owings & Merrill.Он будет украшен рядами призматических стержней из нержавеющей стали, расположенных под чередующимися углами, чтобы отражать различные участки неба и окружающий городской пейзаж. За решеткой будет полость, внутри которой будут установлены светодиоды, которые могут создавать изменяющиеся узоры.

«Все желание состояло в том, чтобы активировать основание здания», — сказал г-н Карпентер, который также является сотрудником проекта транзитного центра на Фултон-стрит, дизайн которого должен быть представлен завтра.

Защитное реле — обзор

IA A Краткая история

Фундамент современной передачи электроэнергии был заложен в 1882 году, когда была построена станция Томаса А. Эдисона на Перл-стрит, генератор постоянного тока и система радиальной передачи, используемая в основном для освещения. в Нью-Йорке. Развитие передачи переменного тока в Соединенных Штатах началось в 1885 году, когда Джордж Вестингауз купил патенты на системы переменного тока, разработанные Л. Голаром и Дж. Д. Гиббсом из Франции. Энергетические системы переменного и постоянного тока в то время состояли из коротких радиальных линий между генераторами и нагрузками и обслуживали потребителей в непосредственной близости от генерирующих станций.

Первая высоковольтная линия электропередачи переменного тока в США была построена в 1890 году и прошла 20 км между водопадом Уилламетт в Орегон-Сити и Портлендом, штат Орегон. Технология передачи переменного тока быстро развивалась (Таблица I), и вскоре были построены многие линии переменного тока, но в течение нескольких лет большинство из них работали как изолированные системы. По мере увеличения расстояний передачи и роста спроса на электроэнергию возникла потребность в перемещении более крупных блоков мощности, стали важны факторы надежности, и начали строиться взаимосвязанные системы (электрические сети).Взаимосвязанные системы обеспечивают значительные экономические преимущества. Меньшее количество генераторов требуется в качестве резервной мощности на период пикового спроса, что снижает затраты на строительство для коммунальных предприятий. Точно так же требуется меньше генераторов во вращающемся резерве, чтобы справиться с внезапным, неожиданным увеличением нагрузки, что еще больше снижает инвестиционные затраты. Электросети также предоставляют коммунальным предприятиям возможности для выработки электроэнергии, позволяя использовать наименее дорогие источники энергии, доступные для сети в любое время. Энергетические системы продолжают расти, и типичные региональные электрические сети сегодня включают десятки крупных генерирующих станций, сотни подстанций и тысячи километров линий электропередачи.Развитие обширных региональных сетей и сетей в 1950-х и 1960-х годах привело к большей потребности в согласовании критериев проектирования, схем защитных реле и управления потоками мощности и привело к развитию компьютеризированных систем диспетчерского управления и сбора данных (SCADA).

ТАБЛИЦА I. Исторические тенденции в высоковольтной передаче электроэнергии

Напряжение системы (кВ)
Номинальное Максимальное Год введения Типичное пропускная способность (МВт) Типичная ширина полосы отвода (м)
Переменный ток
115 121 1915 50–200 15–25
230 242 1921 200–500 30–40
345 362 1952 400–1500 35–40
500 550 1964 1000–2500 35–45
765 800 1965 2000–5000 40–55
1100 1200 Проверено 1970-х годов 3000–10000 50–75
Постоянный ток
50 1954 50–100 25–30
200 (± 100) 1961 200–500 30–35
500 (± 250) 1965 750–1500 30–35
800 (± 400) 1970 1500–2000 35–40
1000 (± 500) 1984 2000–3000 35–40
1200 (± 600) 1985 3000–6000 40–55

Первое коммерческое применение высоковольтной передачи постоянного тока было разработано R.Тюри во Франции на рубеже веков. Эта система состояла из ряда генераторов постоянного тока, соединенных последовательно у источника для получения желаемого высокого напряжения. Позже были разработаны ионные преобразователи, и в 1930-х годах в штате Нью-Йорк был установлен демонстрационный проект на 30 кВ. Первая современная коммерческая система передачи постоянного тока высокого напряжения с использованием ртутных дуговых клапанов была построена в 1954 году и соединила подводным кабелем остров Готланд и материковую часть Швеции. С тех пор за ним последовали многие другие системы передачи постоянного тока, в последнее время использующие тиристорную технологию.Проекты включают воздушные линии и подземные кабели, а также подводные кабели, чтобы полностью использовать мощность постоянного тока, чтобы снизить стоимость передачи на большие расстояния, избежать проблем с реактивной мощностью, связанных с длинными кабелями переменного тока, и служат в качестве асинхронных связей между сетями переменного тока. .

Сегодня коммерческие энергосистемы с напряжением до 800 кВ переменного тока и ± 600 кВ постоянного тока работают по всему миру. Созданы и испытаны опытные образцы систем переменного тока напряжением от 1200 до 1800 кВ. Возможности передачи электроэнергии увеличились до нескольких тысяч мегаватт на линию, а экономия на масштабе привела к повышению номинальных характеристик оборудования подстанции.Распространены блоки трансформаторов сверхвысокого напряжения (СВН) мощностью 1500 МВА и выше. Подстанции стали более компактными, так как все шире используются шины с металлической обшивкой и газовая изоляция SF 6 . Автоматическое регулирование выработки электроэнергии и потока мощности имеет важное значение для эффективной работы взаимосвязанных систем. Для этих приложений широко используются компьютеры и микропроцессоры.

IB Компоненты системы

Целью системы передачи электроэнергии является передача электроэнергии от генерирующих станций к центрам нагрузки или между регионами безопасным, надежным и экономичным способом с соблюдением применимых требований федерального, государственного и местного уровня. правила и положения.Удовлетворение этих потребностей наиболее эффективным и безопасным образом требует значительных капиталовложений в линии электропередачи, подстанции и оборудование для управления и защиты системы. Здесь представлены некоторые из основных компонентов современной высоковольтной системы передачи электроэнергии.

Воздушные линии электропередачи передают электроэнергию от генерирующих станций и подстанций на другие подстанции, соединяющие центры нагрузки с электрической сетью, и передают блоки основной мощности на стыках между региональными сетями.Линии передачи высокого напряжения переменного тока представляют собой почти исключительно трехфазные системы (по три проводника на цепь). Для систем постоянного тока типичны биполярные линии (два проводника на цепь). Воздушные линии электропередачи рассчитаны на заданную мощность передачи при конкретном стандартизованном напряжении (например, 115 или 230 кВ). Уровни напряжения обычно основываются на экономических соображениях, и линии строятся с учетом будущего экономического развития в местности, где они заканчиваются.

Подземные кабели служат тем же целям, что и воздушные линии электропередачи.Подземные кабели требуют меньше полосы отчуждения, чем воздушные линии, но, поскольку они проложены под землей, их установка и обслуживание дороги. Подземная передача часто в 5–10 раз дороже, чем воздушная передача той же мощности. По этим причинам подземные кабели используются только в местах, где воздушное строительство небезопасно или технически неосуществимо, где земля для проезда недоступна или где местные власти требуют прокладки под землей.

Подстанции или коммутационные станции служат в качестве соединений и точек переключения для линий передачи, фидеров и цепей генерации, а также для преобразования напряжений до требуемых уровней.Они также служат точками для компенсации реактивной мощности и регулирования напряжения, а также для измерения электроэнергии. Подстанции имеют шинные системы с воздушной или газовой изоляцией (CGI). Основное оборудование может включать трансформаторы и шунтирующие реакторы, силовые выключатели, разъединители, батареи конденсаторов, устройства измерения тока и напряжения, измерительные приборы, разрядники для защиты от перенапряжений, реле и защитное оборудование, а также системы управления.

Преобразовательные подстанции переменного / постоянного тока — это специальные типы подстанций, на которых выполняется преобразование электроэнергии из переменного в постоянный (выпрямление) или из постоянного в переменный (инвертирование).Эти станции содержат обычное оборудование подстанции переменного тока и, кроме того, такое оборудование, как вентили преобразователя постоянного тока (тиристоры), соответствующее оборудование управления, преобразовательные трансформаторы, сглаживающие реакторы, реактивные компенсаторы и фильтры гармоник. Они также могут содержать дополнительные элементы управления демпфированием или элементы управления устойчивостью к переходным процессам.

Силовые трансформаторы используются на подстанциях для повышения или понижения напряжения и для регулирования напряжений. Для получения желаемого напряжения и поддержания соотношения фазовых углов используются разные схемы обмоток.Обычно используются автотрансформаторы и многообмоточные трансформаторы. Силовые трансформаторы обычно оснащены переключателями ответвлений под нагрузкой или без нагрузки для управления напряжением и могут иметь специальные обмотки для подачи электроэнергии на станцию. Фазовращатели, заземляющие трансформаторы и измерительные трансформаторы — это специальные типы трансформаторов.

Шунтирующие реакторы используются на подстанциях для поглощения реактивной мощности для регулирования напряжения в условиях низкой нагрузки и повышения стабильности системы. Они также помогают снизить переходные перенапряжения во время переключения.Специальные схемы шунтирующего реактора иногда используются для настройки линий передачи для гашения вторичной дуги в случае однополюсного переключения.

Силовые выключатели используются для переключения линий и оборудования, а также для отключения токов короткого замыкания во время аварийных ситуаций в системе. Срабатывание силового выключателя инициируется вручную оператором или автоматически цепями управления и защиты. В зависимости от изоляционной среды между главными контактами силовые выключатели делятся на типы с воздушной, масляной или газовой изоляцией (SF 6 ).

Выключатели-разъединители используются для отключения или обхода линий, шин и оборудования в зависимости от условий эксплуатации или технического обслуживания. Выключатели-разъединители не подходят для отключения токов нагрузки. Однако они могут быть оснащены последовательными прерывателями для прерывания токов нагрузки.

Синхронные конденсаторы — это вращающиеся машины, которые улучшают стабильность системы и регулируют напряжения при различных нагрузках, обеспечивая необходимую реактивную мощность; они не распространены в Соединенных Штатах.Иногда они используются в преобразовательных подстанциях постоянного тока для обеспечения необходимой реактивной мощности, когда пропускная способность приемной системы переменного тока мала.

Шунтирующие конденсаторы используются на подстанциях для подачи реактивной мощности для регулирования напряжения в условиях большой нагрузки. Шунтирующие конденсаторные батареи обычно переключаются группами, чтобы минимизировать скачкообразные изменения напряжения.

Статические вольт-амперные реактивные компенсаторы (ВАР) сочетают в себе функции шунтирующих реакторов и конденсаторов и связанного с ними управляющего оборудования. В статических компенсаторах VAR часто используются конденсаторы с тиристорным управлением или насыщающийся реактор для получения более или менее постоянного напряжения в сети путем непрерывной регулировки реактивной мощности, передаваемой в энергосистему.

Ограничители перенапряжения состоят из последовательно соединенных нелинейных резистивных блоков из оксида цинка (ZnO) или карбида кремния (SiC) и, иногда, из последовательных или шунтирующих разрядников. Ограничители перенапряжения используются для защиты трансформаторов, реакторов и другого основного оборудования от перенапряжений.

Стержневые зазоры служат той же цели, что и разрядники для защиты от перенапряжений, но с меньшей стоимостью, но с меньшей надежностью. В отличие от разрядников для защиты от перенапряжений, зазоры в стержнях при срабатывании вызывают короткое замыкание, что приводит к срабатыванию выключателя.

Конденсаторы серии

используются в линиях передачи на большие расстояния для уменьшения последовательного импеданса линии для управления напряжением.Снижение импеданса линии снижает реактивные потери в линии, увеличивает пропускную способность и улучшает стабильность системы.

Релейное и защитное оборудование устанавливается на подстанциях для защиты системы от аномальных и потенциально опасных условий, таких как перегрузки, сверхтоки и перенапряжения, путем срабатывания силового выключателя.

Коммуникационное оборудование жизненно важно для потока информации и данных между подстанциями и центрами управления. Линия передачи, радио, микроволновая и волоконно-оптическая линии связи широко используются.

Центры управления, мозг любой электрической сети, используются для управления системой. Они состоят из сложных систем диспетчерского управления, систем сбора данных, систем связи и управляющих компьютеров.

Подстанции — обзор | Темы ScienceDirect

6.2.1.15 Электрические подстанции

Подстанции — это места, где электрические линии соединяются и переключаются и где напряжение изменяется с высокого на низкое или наоборот. Наружные конструкции состоят из деревянных опор, анкерных башен, трубчатых каркасов и т. Д.Если места достаточно и внешний вид не является проблемой, обычно устанавливаются опорные фермы для поддержки линий электропередач. Вместо. низкопрофильные подстанции могут потребоваться там, где внешний вид более критичен. Например, поверхности городских подстанций можно отполировать, чтобы придать им привлекательный вид и лучше вписаться в городские здания поблизости. Далее следуют несколько случаев перепланировки.

Построенная в 1924 году электрическая подстанция № 109 является примером первоначальной сети из более чем 360 подстанций, построенных Сиднейским муниципальным советом с 1904 по 1936 год, которые сначала поставляли электричество в Сидней.Период и расположение подстанции отражают рост электрической сети Сиднея. Визуально здание демонстрирует характерную скромную форму, качество дизайна и конструкции для сиднейских подстанций, которые были спроектированы в соответствии с более высокими стандартами, чем это строго требуется для их функций, чтобы уменьшить сопротивление населения вторжению новых технологий и гармонировать с городскими пейзажами. .

Электрическая подстанция № 109 — образец типичной архитектуры 1920-х годов, примененной к утилитарному зданию, включая тяжелую каменную конструкцию, вертикальный акцент, асимметрию, форму крыши, скрытую стеной парапета, контрастную облицовку кирпичной кладкой и штукатуркой, опоры, разделяющие фасад на бухты, ступенчатый горизонт, выступающие над парапетом пирсы, многослойные деревянные окна, оригинальные вывески и элегантный изогнутый архитрав над входом.Двойной уличный фасад необычен для подстанций в данной местности, у которых обычно есть открытая площадка для передачи электроэнергии сбоку. Подстанция проработала почти 70 лет. В конце концов, в декабре 1994 года недвижимость была продана.

До 2012 года здание ненадолго использовалось в качестве магазина древесины и столярной мастерской. Адаптивное повторное использование этого здания для коммерческого использования сохранило его архитектурную целостность как узнаваемую бывшую подстанцию ​​(город Сидней, 2015).

Открытый проект описан в Архитектуре и дизайне (2017).Проект превратил главный кампус калифорнийской коммунальной компании Burbank Water and Power из промышленного наследия в устойчивое использование. Ключевой особенностью генерального плана было восстановление зеленых насаждений, включая ряд экологически чистых ландшафтных технологий.

Компания обслуживала Бербанк более 100 лет, но с возрастом возникли высокие эксплуатационные расходы и отсутствие общественных зеленых насаждений. Студия ландшафтной архитектуры AHBE создала одну из самых длинных зеленых улиц Южной Калифорнии.Используя пять различных типов технологий устойчивого управления водными ресурсами — инфильтрацию, проточную воду, задержку, клетки корней деревьев и улавливание дождевой воды — зеленая улица в основном работает как фильтр перед тем, как сток попадет в систему ливневых вод. Хотя местные законы предписывают, что проекты должны снижать сток, на самом деле этот проект является площадкой с нулевым стоком. Потрясающей особенностью нового кампуса является Centennial Courtyard, зеленая зона, расположенная на территории выведенной из эксплуатации электрической подстанции.Часть индустриальной структуры все еще стоит, большие решетки, которые объединяют промышленность с природой.

В начале 1900-х годов в Чикаго, штат Иллинойс, США, было построено несколько зданий электрических подстанций. Эти специально построенные конструкции были спроектированы как актив для близлежащих сообществ и для представления полезности (Содружество Эдисона) в благоприятном свете: поэтому они были построены так, чтобы быть красивыми и придерживаться различных архитектурных стилей, включая Прерийскую школу, Ар-деко. , и классическое возрождение.Эти подстанции были спроектированы для размещения тяжелого электрического оборудования и изготовлены из прочных материалов. Теперь они представляют собой уникальное наследие.

Однако, хотя многие электрические подстанции в Чикаго работают в условиях от хороших до плохих, другие пустуют и находятся в аварийном состоянии. В частности, одной подстанции грозит снос из-за небрежности. Подстанция Вашингтон-Парк на 6141 С. Прери-авеню является выдающимся примером множества подстанций, построенных по всему Чикаго.Эта подстанция больше большинства, поскольку была предназначена для распределения более высокого напряжения на другие подстанции. Построенный между 1928 и 1939 годами, он имеет уникальный энергетический орнамент, в том числе резные лампочки из известняка на фасаде.

Preservation Chicago рекомендует городу Чикаго получить обозначение ориентира для важных подстанций. Следует выявлять и защищать лучшие образцы разных периодов и стилей. Кроме того, городские и коммунальные предприятия должны стремиться найти адаптивное повторное использование зданий подстанций, которые устарели или не используются.

В качестве одного из примеров повторного использования подстанция фон Холст, расположенная по адресу 924 Н. Кларк-стрит в Голд-Косте, была красиво отремонтирована и преобразована в дом на одну семью и выставлена ​​на продажу за 13,9 миллиона долларов в 2014 году (Preservation Chicago, n.d.). Однако этот проект может вызывать споры. Этот роскошный дом площадью 1400 м 2 построен с использованием фасада старой электроподстанции, а все остальное — новое. Внутри отделка явно первоклассная, а в доме есть фитнес-центр, огромная винная кладовая, гараж на четыре машины и теплица на крыше.Также имеется открытая площадка с узкой лужайкой и бассейном. Возникает вопрос, не является ли это случаем «фасадизма», опровергнутого в Разделе 2.3 (Curbed, 2014)

Co-op Tech: Substation of the Future

[image-caption title = «% 20» description = «(Фото% 20courtesy % 20Georgia% 20Transmission% 20Corp.) «Image =» / remagazine / articles / PublishingImages / substation-of-future-jan-2020-co-op-tech.png «link =» / remagazine / articles / PublishingImages / substation-of -future-jan-2020-co-op-tech.png «linking =» lightbox «css-code =» float:% 20right;% 0Amargin-left:% 203px; » css_code_compiled = «.dynamic-unique-shortpoint-class-name% 20% 7B% 20float:% 20right;% 0Amargin-left:% 203px;% 20% 7D «/]

С улицы, Подстанция 230 кВ компании Georgia Transmission Corporation на окраине Дугласвилля, штат Джорджия, выглядит довольно традиционной. Но этот, казалось бы, нормальный объект на самом деле является частью продолжающейся революции в роли и технологии подстанций.

На протяжении десятилетий основной функцией подстанции было управление напряжением, повышение или понижение его по мере необходимости, а также защита системы и направление питания.Однако спрос на подстанции значительно возрастает, поскольку распределенная генерация (DG), технологии интеллектуальных сетей и аналитика меняют как возможности, так и ожидания.

«Очень важно признать, что подстанция играет совсем другую роль, чем в прошлые годы», — говорит Том Ловас, технический консультант и координатор NRECA. «Теперь мы должны рассмотреть множество разных вещей: коммуникационные технологии, функциональную совместимость устройств, роль отказоустойчивости и, конечно же, вопрос о возможности отслеживать и контролировать работу распределенных ресурсов.«

Повышенное внимание к безопасности, как кибербезопасности, так и физической, и большая интеграция локальной генерации и хранения, как ожидается, также будут играть все более важную роль на подстанциях», — говорит Патти Метро, ​​старший директор NRECA по эксплуатации и надежности сети.

Подстанция будущего становится все более актуальной в уже начавшихся изменениях. Твердотельные и микропроцессорные реле были частью модернизации подстанций еще до начала тысячелетия. В сочетании с широкополосной связью они помогли преобразовать объем данных и степень контроля над компонентами подстанции.

Впереди еще больше возможностей для мониторинга и анализа.

Повышение ситуационной осведомленности

На подстанции в Дугласвилле, управляемой Georgia Transmission Corp. (GTC) со штаб-квартирой в Такере, Джорджия, онлайн-мониторы отслеживают состояние трансформаторов, выключателей и реле. Эта информация концентрируется и хранится на месте с использованием защищенных компьютеров Schweitzer Engineering.

В целом эти системы предоставляют несколько наборов данных, которые помогают G&T определить оборудование, которое необходимо заменить или отремонтировать, что упрощает планирование профилактического обслуживания и повышает производительность и надежность.

В проект также входит новый человеко-машинный интерфейс на дисплее подстанции, который дает представление о работниках, обращающихся в службу технической поддержки, говорит Эрик Шульц, инженер службы передачи GTC. «Это действительно улучшает ситуационную осведомленность».

Модернизация подстанции является частью пилотного проекта в рамках более крупного исследовательского проекта, спонсируемого NRECA и возглавляемого Центром развития энергетики посредством технологических инноваций (CEATI), исследовательским институтом, базирующимся в Монреале. Цель состоит в том, чтобы разработать структуру для центров производительности и диагностики в электроэнергетических компаниях, чтобы улучшить мониторинг системы.

Шульц считает, что улучшение диагностики подстанций будет иметь важное значение в будущем.

«Если вы хотите и дальше повышать надежность, вам придется проявлять большую активность, используя эти типы устройств, умнее отслеживать происходящее и умнее использовать уже имеющиеся у вас данные», — говорит он. «За эти годы мы добились больших успехов в обеспечении надежности. Но если вы хотите сделать следующий шаг и пойти еще дальше, это один из способов сделать это ».

Управление притоком DG

Ловас из NRECA отмечает, что новейшие технологии для подстанций значительно расширяют их роль в совместных электрических операциях.

«Подстанция больше не является просто точкой доставки в системе», — говорит он. «Теперь это информационный узел, а для распределенной энергии — точка сбора».

Значение подстанции как информационного узла является одной из причин Сельскохозяйственный кооператив Buckeye Rural Electric Cooperative (BREC), расположенный в Рио-Гранде, штат Огайо, модернизирует свою систему. Кооператив находится в середине многолетнего проекта, который включает в себя его первую систему SCADA, установку оптоволокна для высокоскоростной связи с некоторыми подстанциями и переход на твердотельные устройства повторного включения и регуляторы.

Новые устройства повторного включения предоставляют данные о токах неисправностей, которые позволяют кооперативу точно определять места неисправностей, которые SCADA может автоматически передавать полевым бригадам.

«Наша система настолько широко распространена, настолько в сельской местности, что эта технология действительно повысит нашу способность обслуживать наших членов», — говорит Эд Моллохан, операционный менеджер BREC.

Кооператив интегрирует систему безопасности подстанции в свою новую систему SCADA, чтобы предупредить персонал о нарушителях, что, как они надеются, уменьшит количество краж и вандализма.Обновления также позволяют выйти на новый уровень мониторинга трансформатора.

«Они могут увидеть, есть ли у них проблемы с маслом или с температурой масла», — говорит Джим Вайкерт, вице-президент по продажам Power Systems Engineering, подрядчика, работающего с BREC над модернизацией.

BREC обслуживает около 18 800 членов в девяти округах на юго-востоке Огайо. По словам Моллохана, 98 процентов членов являются жителями, но DG все еще приходит на территорию обслуживания кооператива.

«Завтра у нас будет четыре солнечных подключения», — говорит он.

Регуляторы, встроенные в систему, будут предоставлять данные, позволяющие контролировать напряжение, необходимое для обработки притока.

«Поскольку DG теперь является еще одним источником питания в системе, они будут иметь возможность активно управлять напряжением», — говорит Вайкерт.

Вольт / ВАр работает с AMI

Ожидается, что сложный контроль напряжения станет важной частью подстанции будущего. Кооператив Choptank Electric Cooperative, расположенный в Дентоне, штат Мэриленд, недавно завершил программу оптимизации напряжения / VAR, которая использует данные передовой измерительной инфраструктуры (AMI) и автоматизированную интеллектуальную электронику на подстанциях.

«Они хотели иметь возможность снизить свои затраты на пиковый спрос», — говорит Ричмонд Миллер, исполнительный менеджер компании Dominion Voltage, которая работала через NRTC над планированием и управлением внедрением. «Они смогли скоординировать всю информацию о понижении напряжения на своих подстанциях, используя данные AMI, чтобы убедиться, что они точно знают, какое влияние это окажет на их членов-потребителей.

«Они смогли снизить общее напряжение на своих подстанциях более чем на 3 процента, не вызывая у клиентов проблем с аварийной сигнализацией напряжения.«

Падение напряжения привело к сокращению общих затрат на электроэнергию более чем на 5 процентов, — говорит Миллер, — что означает большие суммы».

Больше, чем просто подстанция

Усложнение технологии и программного обеспечения на подстанциях, наряду с широкополосной связью, накладывает дополнительную ответственность на проектирование будущих подстанций.

«Разработка решений для управления ожиданиями сетевой безопасности становится все более и более важной, — говорит Metro из NRECA.«Нам придется делать что-то, что касается электронной безопасности для защиты данных и систем контроля, но мы также будем делать все больше и больше физической безопасности».

Североамериканская корпорация по надежности электроснабжения имеет стандарты физической безопасности передающих подстанций. Распределительные кооперативы и другие коммунальные предприятия не сталкивались с такими же требованиями, но Metro говорит, что мы, вероятно, увидим больший акцент в этой области как часть общих проблем безопасности.

В будущем, добавляет она, некоторые подстанции могут превратиться в нечто большее, чем просто подстанции.

«На подстанции, если у вас уже есть доступная земля, вы можете увидеть несколько солнечных батарей и аккумуляторов», — говорит Metro. «Почему на подстанции? Потому что у вас там уже есть активы ».

Комбинация может быть особенно полезна на изолированных или оконечных подстанциях.

«Возможно, вы сможете управлять нагрузкой, имея в наличии генератор определенного типа и аккумуляторную батарею для поддержания критических нагрузок в рабочем состоянии», — говорит Metro.

Моллохан из Buckeye Rural Electric предвидит, что подстанция будущего будет функционировать как «система сбора информации» и как более сложный центр управления энергопотреблением, что даст кооперативам электричества новые способы управления своими системами для повышения как надежности, так и эффективности.

«Это захватывающе, и это может изменить правила игры», — говорит он. «Это один из тех моментов в истории сотрудничества, когда происходят действительно интересные вещи».

Подстанция Сандфорд приветствует новый трансформатор

В рамках логистического планирования компания National Grid успешно доставила новый 178-тонный трансформатор на подстанцию ​​Сэндфорд на 400 000 вольт, которую она строит в рамках проекта Hinkley Connection Project.

Hinkley Connection Project — это новая высоковольтная линия электропередачи протяженностью 57 км, которая соединит шесть миллионов домов и предприятий с новыми источниками низкоуглеродной энергии.Это поможет Великобритании достичь амбициозных целей по достижению чистого нуля к 2050 году. Подстанция Сэндфорд — одна из 300 подстанций в Англии и Уэльсе — лежит в основе проекта.

Трансформатор будет играть ключевую роль в изменении напряжения на подстанции Сэндфорд, чтобы электричество можно было безопасно подавать в дома и на предприятия, или чтобы оно могло проходить по воздушным линиям и кабелям National Grid.

При массе 178 тонн трансформатор весит больше синего кита (в среднем 145 тонн) и составляет 4 штуки.75 метров в высоту, то есть почти как двухэтажный дом. Сложность логистики усугубляется тем, что это критически важное оборудование имеет ширину 5,35 метра и длину 8,67 метра.

Из-за его значительных размеров и веса для безопасной доставки трансформатора использовалась специализированная транспортная машина. 70-метровый транспортный автомобиль забрал трансформатор с пристани Данболл в Бриджуотере, где он хранился с тех пор, как отправился из Южной Кореи, где он был построен, через доки Портбери.

Чтобы добраться до подстанции Сэндфорд, транспортное средство проехало со скоростью 10 миль в час по нескольким дорогам A, включая A39, A38 и A368 Dinghurst Road. Кроме того, на маршруте доставки транспортное средство двигалось по трассе M5, достигая максимальной скорости 15 миль в час. Такие низкие скорости необходимы для обеспечения безопасности всех участников дорожного движения при транспортировке тяжелых грузов.

В мае National Grid намеревается поставить вторую часть крупного электрического оборудования на подстанцию ​​Сэндфорд.Этот элемент, известный как шунтирующий реактор, помогает регулировать напряжение. Позже в этом году на площадку будут доставлены еще один шунтирующий реактор и трансформатор. Дополнительная информация будет предоставлена ​​до этих поставок.

Майкл Пейнтер, ведущий менеджер проекта National Grid, прокомментировал: « Подстанция Сэндфорд является сердцем проекта Hinkley Connection Project. Поставка трансформатора приближает нас на один шаг к завершению проекта и к нашей цели — помочь Великобритании достичь своих нулевых амбиций к 2050 году.

«Успешная транспортировка такого гигантского оборудования — свидетельство упорной работы нашей группы доставки. Перемещение чего-либо такого размера и масштаба всегда является проблемой, когда предмет, который вы перевозите, преодолел более 5 500 миль, чтобы добраться сюда и является ключевой частью крупного энергетического проекта, давление действительно нарастает ».

Обращайтесь только для информации для СМИ:

Хелен Блейк
+44 7790 824788

[адрес электронной почты защищен]

Электроэнергия — Устойчивое развитие — Cal Poly

Большая часть электроэнергии в кампусе используется для освещения и отопления, вентиляции и кондиционирования воздуха.Cal Poly закупает около 68% своей потребности в электроэнергии у Pacific Gas and Electric Company, а остальные 32% вырабатывает на месте за счет комбинации солнечных фотоэлектрических систем, большая часть которых поступает от солнечной фермы Gold Tree и когенерации. Cal Poly реализовала множество проектов по энергосбережению для сокращения потребления электроэнергии, включая модернизацию люминесцентных и светодиодных осветительных приборов, датчиков присутствия, модернизации оборудования HVAC, частотно-регулируемых приводов для насосов и вентиляторов, а также установку цифровых систем управления энергопотреблением.Несмотря на то, что площадь кампуса в последние годы резко выросла, потребление электроэнергии осталось относительно неизменным, что указывает на то, что усилия по сохранению окружающей среды смогли компенсировать рост. Затраты на электроэнергию быстро выросли в последние годы из-за повышения тарифов на коммунальные услуги, которые с 2002 года увеличились более чем вдвое.

Cal Poly имеет 26 различных учетных записей электроснабжения — два обслуживают главный кампус через принадлежащую университету подстанцию ​​Mustang (что составляет 98% всех закупок электроэнергии), а остальные обслуживают различные удаленные объекты, включая ранчо, ирригационные колодцы и насосы, а также удаленные уличные фонари (что составляет 2% от всех покупок электроэнергии).Электроэнергия поступает от PG&E на уровне передачи 70 000 вольт и преобразуется на подстанции Mustang в 12 470 или 4160 вольт для распределения по зданиям кампуса. Электрораспределение в ядре кампуса полностью находится под землей, в то время как распределение в отдаленные районы Ag осуществляется по воздушным линиям. Подстанция Mustang и все распределительные системы университетского городка принадлежат университету и обслуживаются электрическим магазином кампуса. Электроэнергия приобретается у PG&E по тарифу E20T, который включает отдельные сборы за энергию и пиковое потребление, а также разное время использования в периоды пика / частичного пика / непиковой нагрузки и зимнего / летнего сезонов.

Как клиент PG&E, Cal Poly обеспечивает одни из самых экологически чистых источников энергии в стране. PG&E сообщила за 2018 год, что 39 процентов электроэнергии, поставляемой потребителям, было получено из возобновляемых источников, которые соответствуют требованиям Калифорнийского стандарта портфеля возобновляемых источников энергии (солнечная энергия, ветер, геотермальная энергия, биомасса и малая гидроэнергетика). Если учесть крупные гидроэлектростанции и атомную электростанцию, более 85 процентов всей энергии, получаемой PG&E, не содержит парниковых газов. По состоянию на июнь 2016 года PG&E объявила о планах закрыть атомную электростанцию ​​Diablo Canyon и заменить ее более экономичной за счет энергоэффективности, возобновляемых источников энергии и хранения энергии.

Powering CERN | ЦЕРН

По мере развития и расширения физической программы ЦЕРН физики лаборатории использовали более мощные ускорители и детекторы для изучения элементарных частиц. Лаборатории пришлось внедрять инновации, чтобы соответствовать требованиям к электричеству. ЦЕРН потребляет 1,3 тераватт-часа электроэнергии в год. Этой мощности достаточно, чтобы заправить 300 000 домов в Великобритании в год. Но необходимая энергия меняется от месяца к месяцу, так как времена года меняются, а экспериментальные требования меняются.

При пиковом потреблении, обычно с мая по середину декабря, ЦЕРН потребляет около 200 мегаватт электроэнергии, что составляет около трети количества энергии, используемой для питания близлежащего города Женева в Швейцарии. Большой адронный коллайдер (БАК) работает в этот период года, используя энергию для ускорения протонов почти до скорости света. Энергопотребление ЦЕРНа в зимние месяцы падает примерно до 80 мегаватт.

Изменение требований

Это много электричества — откуда оно? Ответ изменился с годами.Когда в 1954 году был основан ЦЕРН, подстанции на швейцарской стороне кампуса было достаточно для удовлетворения электрических потребностей лаборатории. Электроэнергия поступает на подстанцию ​​от электростанции и перенаправляется туда, где она необходима, например, когда пассажиры переключают поезда. По мере того, как сайт — и научная программа — росли, планировщики ЦЕРН пересматривали, как работает лаборатория.

В 1970-х годах была проложена линия, соединяющая новую подстанцию ​​на французской стороне ЦЕРНа с межсетевой подстанцией в 35 км к западу.Эта подстанция является частью европейской сети. Французская подстанция в настоящее время питает весь ЦЕРН, но швейцарская подстанция обслуживается как частичный резерв.

Сверхпроводящие провода для экономии энергии

Основная линия, сделанная из меди, имеет высокие выходы энергии, но она теряет часть энергии на своем пути к внутренним магнитным фидерам из-за электрического сопротивления и при охлаждении до температур, необходимых в LHC. Чтобы решить эту проблему потери энергии, на LHC используются сверхпроводящие провода из ниобий-титана (NbTi) для подключения электромагнитов к источникам питания.Провода могут проводить ток в 100 раз больше, чем традиционные медные провода, потому что при охлаждении почти до абсолютного нуля они не оказывают сопротивления электричеству. Это значительно сокращает потери энергии при прохождении электричества по проводам. Чтобы достичь сверхпроводящего состояния, в магнитах LHC поддерживается температура 1,9 К (-271,3 ° C) — температура ниже, чем в космосе — с помощью замкнутого контура жидкого гелия.

Медный провод слева имеет высоту 11 сантиметров, ширину 8 см и длину 28 см. Он может проводить ток до 12500 ампер при комнатной температуре.При охлаждении до 1,9 К катушка из ниобия и титана справа переходит в сверхпроводящее состояние и может проводить такой же ток (Изображение: CERN)

Когда электричество течет от своего источника к LHC, оно проходит через температурный градиент. Вода охлаждает медные кабели, чтобы облегчить переход от комнатной температуры к криогенной атмосфере, поддерживаемой вокруг ускорителя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *