Схема однофазный щиток: Как правильно собрать электрический щиток: схемы, что купить для щитка, монтаж, подключение

Содержание

Электрика своими руками: Проектируем и собираем однофазный щит в квартиру (часть 2)


Добрый день, уважаемые читатели. 

Эта статья является продолжением первой части. Если вы еще не читали первую часть, прошу вначале ознакомиться с ней. В данной статье будет рассмотрено проектирование и сборка щита «своими силами», основываясь на информации из первой части статьи и на конкретном примере с форума.

Детальное проектирование распределительного щита на примере с форума Mastercity


Предлагаю рассмотреть распределение линий на примере темы, которая появилась на форуме во время написания данной статьи — пользователь Алиса Селезнева спросила на форуме Mastercity как ей собрать щиток в квартиру. Пример очень показательный в части проектирования щита:

Итак, исходные данные:
  • Квартира однокомнатная, в новостройке, проводка от застройщика под полную переделку.
  • В этажном щите установлен автомат C40, этажный щит выполнен по «советской схеме», то есть в нем, кроме вводного, установлены два автомата — один на свет, один на розетки.
    Следовательно, существует необходимость прокладывать вводной кабель… Алиса планировала вводной кабель 3×6, но по рекомендациям на форуме он заменен на 3×10.
  • Бюджет позволяет установить три качественных УЗО и автоматические выключатели от известных европейских производителей. Но, в то же время, щит планируется без особых излишеств.
  • Реле напряжения предусмотрено. Так же, несмотря на наличие автомата в подъезде, Алиса решила добавить вводной автомат и в квартирный щит. Довольно многие так делают, хотя при простых схемах щитов считаю это несколько излишним.

Ниже представлен план квартиры «от застройщика» до перепланировки. Перепланировка предполагает разделение на спальню и зал (к сожалению, рисунка перепланировки нет).


Перечень линий, представленный Алисой, привожу уже в обработанном варианте, в виде таблицы, о которой писал в первой части статьи:

На всякий случай напомню простое правило выбора сечения кабеля и автомата, которое более подробно описано в статье про проектирование линий:


  • На линии освещения — кабель сечением 1. 5 квадрата и автомат не более 10 ампер.
  • На линии розеток — кабель сечением 2.5 квадрата и автомат не более 16 ампер.
  • На варочную панель и проточный водонагреватель — кабель сечением 6 квадратов и автомат не более 32 ампера.
  • Линии разных типов не желательно смешивать друг с другом. Освещение можно объединить с розетками, но тогда автомат берется «по минимуму», то есть 10 ампер.

Время-токовую характеристику автомата (когда речь идет о «домашнем» электромонтаже, то стоит выбор между B или C), в общем случае, желательно выбирать типа B. Эта характеристика обеспечивает более высокую чувствительность к токам короткого замыкания, при этом не отключаясь ложно от пусковых токов практически любой бытовой техники. Но есть и исключения, когда следует ставить автомат с характеристикой С — например, на старые холодильники и стиральные машины. Еще вариант — при наличии нескольких мощных импульсных блоков питания на линии (например, несколько компьютеров) или большого количества ламп накаливания (что, скорее, характерно для офисов).
Так же, если вы планируете работать мощной болгаркой (более 2000 Вт) без плавного пуска, то следует на розетку для такой болгарки предусмотерть автомат с ВТХ типа С. 

Алиса выбрала себе характеристику С так как в Рязани, где она живет, автоматы с характеристикой B на складах — редкость, их следует заказывать и ждать (к сожалению, это актуально для многих городов в России). Именно по этой же причине многие выбирают именно С, потому что в магазинах их города другого нет. Другая причина — в том, что C стоит обычно чуть дешевле, чем B.

Но при этом есть же важный нюанс — в старом жилом фонде, сельской местности, гаражных кооперативах, то есть там где старая проводка, имеющая большое сопротивление, при коротком замыкании из-за высокого сопротивления проводки ток замыкания может быть недостаточным для сработки автомата с характеристикой C, что наверняка приведет к возгоранию проводки за время срабатывания второго защитного механизма автомата — теплового расцепителя. 

Например:

21 февраля в 12:35пожар произошёл в квартире дома № 2 по улице Карла Либкнехта в Верхней Салде.
(…) Площадь возгорания составила 2 квадратных метра, жертв, пострадавших нет. В результате пожара произошло сильное закопчение стен квартиры, повреждена внутренняя отделка, предметы мебели и кухонная техника. Причиной пожара послужило короткое замыкание электробытового прибора.

Очевидно, что при коротком замыкании должен срабатывать «мгновенный» электромагнитный расцепитель автомата и отключать такую цепь. Неотключение автомата, вероятно, произошло из-за того, что ток короткого замыкания оказался недостаточным для срабатывания «мгновенного» электромагнитного расцепителя автомата. Причиной могла стать либо неверно выбранная характеристика автомата, либо завышенный номинал. А, скорее всего, и то и другое одновременно — автоматы С25 на розетки ставит каждый первый первый халтурщик «чтобы не выбивало» (а надо B16 или, максимум, C16).

В целом, в выборе C на все линии в новостройке нет ничего криминального, если, конечно, ожидаемые токи короткого замыкания в вашем щите гарантированно вызовут срабатывание электромагнитного расцепителя автомата — а в новостройках токи замыкания довольно высокие, в отличие от старого жилого фонда.  

Распределение автоматических выключателей по УЗО


Итак, линии известны. Теперь необходимо выбрать распределить их по УЗО. 

На самом деле, не так принципиально распределять линии. Я предлагаю три простых правила:

  1. Розетки и освещение одной и той же комнаты желательно подключить к разным УЗО.
  2. Освещение смежных помещений желательно подключить к разным УЗО.
  3. Линии должна распределяться более менее-равномерно, то есть каждое УЗО должно иметь примерно одинаковое число линий.
Такие правила позволят, в случае отключения одного из УЗО, не остаться без освещения во всей квартире, если в электроприборе произошла утечка тока, вызвавшая срабатывание УЗО. 

Впрочем, вы можете придумать свои правила, удобные вам. Если номинал УЗО выбран не менее номинала вводного автомата, вы можете распределять автоматы по УЗО как хотите. Например, некоторые пользователи форума все освещение предпочитают подключить к одному УЗО, кто-то подключает к одному УЗО все потребители в зонах с повышенной влажностью (теплые полы и розетки санузлов, кондиционеры и т. д.).

Я же предпочитаю смотреть по обстоятельствам, но в общем случае считаю такую схему оптимальной.

Итак, давайте распределим линии Алисы по трем УЗО.

Начнем с освещения. Глядя на план квартиры, можно распределить линии по УЗО так чтобы линии освещения смежных помещений находились на разных УЗО. Таким образом, если отключится освещение в одной комнате из-за срабатывания УЗО, свет будет в соседней и не придется идти к щитку через темноту. Проще начать с основных комнат (кухня, жилые комнаты) и закончить распределением освещения дополнительных помещений (санузел и т.д.):


Данные из таблицы в Excel невероятно удобно представить в виде сводной таблицы — по ней легко будет собирать щит и закупать автоматы. Особенно это актуально для больших щитов.

В качестве примера рядом я привожу настройки сводной таблицы для тех кто ранее не пользовался этим инструментом в Excel:

Затем переходим к розеткам. Постараемся распределить так, чтобы розетки и освещение одного и того же помещения находились на разных УЗО.
При утечке в приборе, включенным в розетку, свет в комнате не погаснет. 

Для распределения так же удобно пользоваться фильтром на таблицу.

Но опять же, это мое представление об «оптимальном» отключении линий в случае сработки УЗО. Вы можете выбрать совсем другой принцип. 

Так же изменим сводную таблицу чтобы знать какие автоматы и в каком количестве закупать для щита:


Итого надо купить 14 автоматов, из них 7 — C10, а еще 7 — C16.


Какого производителя автоматов выбрать?


Данный вопрос является предметом самого лютого холивара в разделе «Электрика». При желании можете ознакомиться и поучаствовать. Поэтому прошу считать все сказанное в данной статье и в этом разделе моим личным мнением.

Предлагаю вам выбрать любого понравившегося производителя из этих — Schneider Electric, Legrand, ABB, Eaton / Moeller, Hager, Siemens (есть так же и другие качественные зарубежные производители (не китай!), но я указал наиболее распространенных в России). В первом приближении их можно считать одинаковыми (по крайней мере, для домашнего электромонтажа). Если вы эстет, выбирайте стандартные серии (например, DX3 у Legrand — но она весьма дорогая), но вполне хватит и «домашней» (например, TX3 у того же Legrand).

Не рекомендую разработанные и изготовленные в Китае изделия, завозимые в Россию и продаваемые под видом «российских» брендов — IEK, EKF, TDM и прочие (тысячи их). Тем более что цена таких «китайцев» в российских реалиях иногда не сильно отличается от цены «домашних» серий европейских производителей.

Мои предпочтения и рекомендации основаны на виденных мной и описанных на данном и других форумах дефектах, отказах и ложных сработках «китайцев» и, с моей точки зрения, низком качестве их изготовления. 

Впрочем, на данном форуме присутствуют люди, считающие данные автоматы ни в чем не уступающими европейским производителям, и даже в чем-то превосходящими их, при меньшей цене. 

Кроме того, зачастую в небольших городах и сельской местности, в продаже нет ничего, кроме китайской модульной продукции и там выбирать не приходится — лучше уж поставить китай, чем ничего не поставить.

В общем, предлагаю вам самостоятельно найти ответ на данный вопрос. 

Алиса же выбрала автоматы качественного европейского производителя — ABB, с чем ее можно поздравить. 

Еще важный момент — автоматы и УЗО следует покупать в специализированных магазинах, желательно, у официальных дилеров данной марки. Категорически не стоит покупать на рынках, особенно ABB  — там довольно высокий шанс нарваться на подделку (кстати, чаще всего подделывают именно ABB). 

Компоновка автоматов и выбор корпуса щита


После того как определено количество и тип устройств, устанавливаемых в щит, необходимо их скомпоновать. В данный щит будет установлено:
  • Вводной двухполюсный автомат C40 — 1 шт.
  • Реле защиты по напряжению УЗМ-51 — 1 шт.
  • УЗО 40 ампер тип А — 3 шт.
  • Автоматический выключатель С10 — 7 шт.
  • Автоматический выключатель С16 — 7 шт.
Так же потребуются дополнительные устройства. Так как Алиса выбрала однополюсные автоматы — для них потребуются шинки ноля, по одной штуке на каждое УЗО (на эти шинки приходит нулевой провод от от УЗО и все нулевые провода линий, подключенных к этому УЗО).

Стандартные щитки имеют N реек по 12 одиночных модулей на каждой рейке (есть варианты с 18 модулями на рейку, а так же в фирменных щитках всегда есть 1-2 дополнительных места на рейке «про запас»). Будем рассматривать щит с 12 модулями на рейку.

Опять же, очень удобно пользоваться шаблоном в Excel, на который я нанес «главные» устройства — автомат, УЗМ и три УЗО). Под «вводной узел» в таких щитах я обычно выделяю верхнюю рейку.

Так же сразу думаем чем их соединять — лучше всего для этих целей подойдет двухполюсная гребенка:

Вводной автомат будет подключен к УЗМ, а УЗМ к гребенке гибким проводом ПугВ сечением 10 квадратных миллиметров. Гребенкой подключить не получится так как у УЗМ вход и выход нельзя поменять местами (как у автоматов), а если переворачивать его, то получится некрасиво.

Далее распределяем автоматы, их 14 штук. Уже использовано 10 «посадочных мест», осталось как раз на 14 автоматов:

Группа третьего узо получилась «разорванной на две», но тем не менее, все влезло в щит.

Я настоятельно рекомендую использовать 100% заполнение щита только в случае крайней необходимости. Дело в том, что потом без навыка монтажа, будет очень непросто развести и подключить много проводов. Особенно это актуально, если щит дешевый — в таких щитах производители в последнюю очередь думают над тем, как их монтировать в угоду низкой стоимости. 

С моей точки зрения, лучшим вариантом для Алисы была бы такая компоновка:

Но, как я заметил, часто заказчицы-женщины почему-то всеми силами стремятся уменьшить размер щита (в отличие от мужчин). Поэтому, отвечая Алисе в теме, я выбрал именно такой вариант.

Обратите внимание, что у каждой гребенки на схеме есть не подключенные никуда «зубы» (при монтаже их обязательно надо заизолировать, в идеале термоусадкой) — это «резерв» для возможного расширения щита в будущем — потом можно будет легко подключить еще пару автоматов или даже дополнительное УЗО (или двухполюсный автомат). Вот как это выглядит в щите, фото которого я приводил в первой части статьи:


Кстати, если вы используете ту архитектеру щита, где линия кондиционера «вынесена» из-под УЗО, то купите для линии кондиционера двухполюсный (или полюс-нейтраль) автомат  — и он отлично станет в верхний ряд под одну гребенку вместе с УЗО.  

Соединение элементов и сбор щита


Щит можно монтировать как гибким (ПУГВ, ранее — ПВ3), так и жестким (ПУВ, ранее ПВ1) проводом сечением 6 или 10 квадратов в зависимости от номинала вводного автомата (6 — до 32А включительно). Гибкий предпочтительнее так как монтаж им сильно легче, а кроме того, такой провод не стремится «выдернуть» автомат с посадочного места. Но в случае гибкого провода его необходимо оконцевать наконечником, обычно для этого используются наконечники НШВИ, сечение которых выбирается по сечению провода:


На фото — НШВИ на проводе сечением 10 мм2


Но для этого нужен специальный инструмент, покупка которого ради одного маленького щита вряд ли целесообразна. Как вариант — при покупке наконечников и провода попросить обжать в магазине (но нужно заранее знать длины кусочков) или обжать наконечник клеммой автомата (я против такого способа, но тем не менее вынужден сказать о нем).

НШВИ хорошо зажимается в клемму автомата, но плохо подходит для подключения в эту же клемму вместе с гребенкой. В этом случае следует использовать другие типы наконечников, например, НШПИ (но там вообще без специального обжимного инструмента не обойтись).

Как вариант, использовать готовые соединительные кабели (например, от Legrand — но они не такие уж и дешевые):

Либо специальные переходники с гребенки на провод.

У приобретенной Алисой серии ABB, автоматы имеют две независимые клеммы на сторону, что позволило ей обойтись без покупки дополнительных аксессуаров.

Вот что в итоге у ней получилось:

Медная шина в однополюсной гребенке внизу разделена на участки, но корпус оставлен один. Так делают некоторые сборщики щитов, но я так не делаю и не рекомендую (т.к. это вводит в заблуждение).

НШВИ обжаты клеммами автоматов, а не инструментом — но что сделать, зато этот способ работает.

Три синие шинки нулевых проводов расположены снизу за проводами нижнего ряда автоматов — они еле влезли так как Алиса купила самый дешевый щит. По этой же причине ей пришлось пропиливать дырочки внизу щита, так как завести провод с изоляцией в щит, не имея специального инструмента для снятия изоляции с кабеля, было бы крайне неудобно.

Не считая этих мелочек, скорее принципиальных для профессионала, щит получился отличный, не правда ли?

А если мне лень самому собирать щит? 


На форуме Mastercity есть мастера, которые оптимальным образом запроектируют и соберут вам щит. Заказывать щит отдельно от электромонтажных работ — частая практика, так как на электромонтаж часто нанимают специалистов подешевле (зря, кстати, но уж как есть), а проектирование и сбор щита доверяют профессионалам. Особенно это актуально если щит сложный.

В том числе, проектированием и сборкой щитов занимается и автор данной статьи 🙂

Отдельно хочу отметить моего коллегу — Мастера (с большой буквы) Юрку, который  собирает великолепные щиты, причем заказывая у него материалы для щита по розничным ценам, сборка вам фактически обходится бесплатно (так как собирает он за стоимость скидки в магазине ЭТМ, которая у него накопилась за все время).

Вот, например, большой, красивый, грамотно спроектированный и собранный щит.


Узнать подробности и посмотреть готовые щиты с ценами можете в его теме.

Уверен что высокий уровень работ этого Мастера, плюс готовые щиты по цене комплектующих вас, вероятно, порадуют.

Заключение


Искренне надеюсь, что данная статья немного помогла тем кто сам решил собирать щит или тем, кто хочет самостоятельно разобраться в данном вопросе.

Следует понимать что архитектур щитов бывает великое множество и в статье представлена лишь одна из них. Разные мастера делают по-разному, я описал свое видение некоего «типового» решения. 

Надеюсь, статья была для вас полезной. Спасибо вам за внимание.

С уважением, Алексей.

Подключение счетчика: однофазного, трехфазного, схемы

Главная » Электрика » Как подключить счетчик самостоятельно: однофазный и трехфазный

Ввод в эксплуатацию или реконструкция электропроводки в доме или квартире редко обходится без установки или замены электросчетчика. По нормативам работы могут выполнять только специально обученные люди, имеющие допуск для работы в сетях напряжением до 1000 В. Но установить все элементы, произвести подключение счетчика к нагрузке (электроприборам), без подключения питания можно самостоятельно. После необходимо вызвать представителя энергопоставляющей организации для тестирования, пломбировки и пуска системы. 

Один из вариантов корпусов для счетчика

Подключение счетчика: правила и основные требования

Точно все требования прописаны в ПУЭ, а основные правила такие:

  • Устанавливаться должен с защитой от воздействия погодных условий. Традиционно монтируются в специальные боксы (короба) из негорючего пластика. Для установки на улице короба должны быть герметичными и должны обеспечивать возможность контроля показаний (иметь стекло напротив табло).
  • Закрепляется на высоте 0,8-1,7 м.
  • Подключение счетчика производится медными проводами, сечением соответствующим максимальной токовой нагрузке (есть в техусловии). Минимальное сечение для подключения квартирного электросчетчика 2,5 мм(для однофазной сети это ток 25 А, что сегодня очень мало).
  • Проводники используются изолированные, без скруток и ответвлений.
  • При однофазной сети дата госповерки счетчика — не старше 2 лет, при трехфазной — одного года.

Место установки счетчика в многоквартирных домах регламентируется проектом. Счетчик может устанавливаться на лестничной площадке или в квартире — в щитке. Если ставится в квартире, то обычно недалеко от двери.

Комплектация входного щитка

В частном доме тоже несколько вариантов. Если столб стоит во дворе, можно счетчик разместить на столбе, но лучше — в помещении. Если по требованиям энегроснабжающей организации он должен находится на улице, ставят его на лицевой стороне дома в герметичном боксе. Автоматы, идущие к группам потребителей (различным устройствам) монтируются в другом боксе в помещении. Также одно из требований при монтаже электропроводки в частном доме: провода должны просматриваться визуально.

Установка счетчика на столбе

Чтобы была возможность проводить работы на электросчетчике, перед ним устанавливают входной рубильник или автомат. Он тоже пломбируется, причем возможности поставить пломбу на самом устройстве, как на счетчике, нет. Необходимо предусмотреть возможность отдельной пломбировки этого устройства — купить небольшой бокс и смонтировать его внутри квартирного щитка или поставить отдельно на лестничной площадке. При подключении счетчика в частном доме варианты те же: в одном боксе со счетчиком на улице (пломбируется весь бокс), в отдельном боксе рядом.

Как провести электричество от столба в дом читайте тут.

Двухтарифные счетчики и расчет их экономичности описаны тут.

Схема подключения однофазного электросчетчика

Счетчики для сети 220 В могут быть механические и электронные. Также делятся они на однотарифные и двухтарифные. Сразу скажем, что подключение счетчика любого типа, в том числе и двухтарифного, производится по одной схеме. Вся разница в «начинке», которая потребителю недоступна.

Если добраться до клеммной пластины любого однофазного счетчика, увидим четыре контакта. Схема подключения указана на обратной стороне крышки клеммника, а в графическом изображении все выглядит как на фото ниже.

Как подключить однофазный счетчик

Если расшифровать схему, получается следующий порядок подключения:

  1. К 1 и 2 клемме подключаются фазные провода. На 1 клемму приходит фаза вводного кабеля, от второй идет фаза к потребителям. При монтаже первой подключают фазу нагрузки, после ее закрепления — фазу входа.
  2. К клеммам 3 и 4 по тому же принципу подключается нулевой провод (нейтраль). К 3-му контакту нейтраль от ввода, к четвертому — от потребителей (автоматов). Порядок подключения контактов аналогичен — сперва 4, потом 3.

    Наконечники штыревые

Подключение счетчика происходит зачищенными на 1,7-2 см проводами. Конкретная цифра указывается в сопроводительном документе. Если провод многожильный, на его концы устанавливаются наконечники, которые выбираются по толщине и номинальному току. Они опрессовываются клещами (можно зажать пассатижами).

При подключении оголенный проводник вставляется до упора в гнездо, которое расположено под контактной площадкой. При этом необходимо следить, чтобы под зажим не попала изоляция, а также чтобы очищенный провод не торчал из корпуса. То есть, длинна зачищенного проводника должна выдерживаться точно.

Фиксируется провод в старых моделях одним винтом, в новых — двумя. Если крепежных винта два, сначала закручивается дальний. Слегка подергав провод, убеждаетесь, что он закреплен, потом затягиваете второй винт. Через 10-15 минут контакт подтягивается: медь мягкий металл и немного приминается.

Как самостоятельно сделать проводку в доме читайте тут. Об особенностях электропроводки в деревянном доме написано тут.

Это что касается подключения проводов к однофазному счетчику. Теперь о схеме подключения. Как уже говорилось, перед электросчетчиком ставится входной автомат. Его номинал равен максимальному току  нагрузки, срабатывает при его превышении, исключая повреждение оборудования. После ставят УЗО, которое срабатывает при пробое изоляции или если кто-то прикоснулся к токоведущим проводам. Схема представлена на фото ниже.

Схема подключения однофазного счетчика электроэнергии

Схема для понимания несложна: от ввода ноль и фаза поступают на вход защитного автомата. С его выхода они попадают на счетчик, и, с соответствующих выходных клемм (2 и 4), идут на УЗО, с выхода которого фаза подается на автоматы нагрузки, а ноль (нейтраль) идет на нулевую шину.

Обратите внимание, что входной автомат и входное УЗО двухконтактные (заходят два провода), чтобы размыкались оба контура — фаза и ноль (нейтраль). Если посмотрите на схему, то увидите, что автоматы нагрузки стоят однополюсные (заходит на них только один провод), а нейтраль подается напрямую с шины.

Посмотрите подключение счетчика в видео-формате. Модель механическая, но сам процесс соединения проводов ничем не отличается.

О самостоятельной сборке электрощитка рассказывается в этой статье. 

Как подключить трехфазный счетчик

В сети 380 В имеются три фазы, и электросчетчики этого типа отличаются только большим количеством контактов. Входы и выходы каждой фазы и нейтрали располагаются попарно (смотрите на схеме). Фаза А заходит на первый контакт, выход ее на втором, фаза B  — вход на 3-м, выход на 4-м и т.д.

Как подключить трехфазный счетчик

Правила и порядок работы такие же, только большее количество проводов.  Сначала зачищаем, выравниваем, вставляем в контактный разъем и затягиваем.

Схема подключения 3 фазного счетчика с током потребления до 100 А практически такая же: входной автомат-счетчик-УЗО. Разница только в разводке фаз к потребителям: есть одно- и трехфазные ветки.

Схема подключения трехфазного счетчика

Трехфазная схема распределительного щита для частного дома

Здравствуйте, уважаемые читатели сайта elektrik-sam.info!

Сборка трехфазного электрощита на заказ для частного дома с резервным генератором.

Щит вторично-учетный вводно-распределительный. Ко мне обратился заказчик с просьбой спроектировать и собрать ему электрический щит для его частного дома, с возможностью подключения резервного генератора, в случае длительных перебоев с электричеством.

На границе участка дома уже был установлен щит учета с электросчетчиком. Заказчик пожелал установить второй многотарифный счетчик в щите дома, чтобы было удобно снимать показания, не выходя из дома на участок к щиту учета.

В этом проекте реализовано:

  • пофазная защита от скачков и перепадов напряжения на реле напряжения Zubr;
  • двухступенчатая дифференциальная защита с установкой противопожарного селективного УЗО;
  • резервное электроснабжение всего дома при помощи резервного генератора с индикацией;
  • неотключаемые линии с индикацией включения;
  • программное управление бойлером при помощи недельного таймера.

На первой рейке скомпонован ввод: вводной автоматический выключатель, счетчик вторичного учета электроэнергии, противопожарное селективное УЗО.

В схеме применена двухступенчатая дифференциальная защита:

  • противопожарное УЗО — первая ступень;
  • групповые УЗО и дифавтоматы — вторая супень.

Справа на первой и второй DIN-рейках смонтирован резервный ввод от генератора и его обвязка с индикацией питания от генератора.

Вторая рейка — защита от скачков и перепадов напряжения в каждой фазе и неотключаемые линии. При выходе из дома одним нажатием на клавишу рубильника отключаем всю электросеть дома, кроме приборов жизнеобеспечения — это котел, холодильник, охранная сигнализация и для удобства свет коридора.

Третья DIN-рейка — рубильник отключаемых линий с индикацией включения и группа потребителей кухни.

Остальные две рейки — группы потребителей дома со своей групповой дифференциальной защитой.

Компоновка этого электрощита выполнена в ряд по группам — групповое УЗО и его групповые автоматические выключатели. Сборка щитов с такой компоновкой выходит сложнее, чем с обычной древовидной, но зато получается более дружественный интерфейс для пользователя — заказчика. Так намного удобней и наглядней пользоваться электрощитом, сразу видно конкретную группу целиком, не надо искать по рейкам какому УЗО соответствуют какие автоматические выключатели.

Нулевые рабочие проводники отключаемых групп подключены через двухполюсный кросс-модуль.

Для дополнительной экономии электроэнергии при многотарифном учете удобно включать мощные потребители в ночное время. Одним из мощных потребителей, который работает круглогодично, является водонагреватель. Применив недельный таймер, который управляет подключением бойлера к электросети через контактор, мы получили возможность автоматически управлять водонагревателем по заданной программе.

При необходимости программу можно изменить с помощью кнопок на передней панели таймера. И все, далее бойлер будет включаться и нагревать воду к заданному времени автоматически в течение дня, семь дней в неделю. Очень удобно и современно!

В качестве оболочки применен полностью металлический щит Hager FW в форм-факторе 5 DIN-реек по 24 модуля. Места за рейками просто очень много! Собирать такие щиты легко и приятно.

Щит полностью протестирован, снабжен понятными авторскими схемами, пояснительной запиской, упакован и отправлен заказчику.

Если Вы желаете заказать проект или сборку электрощита у автора, оставьте заявку в разделе КОНТАКТЫ.

Трехфазный щит дома с резервным генератором

Трехфазные распределительные щиты 380В часто применяют в частных домах и на много реже в квартирах в новостройках. Это позволяет снизить сечение подходящего к дому кабеля и грамотно распределить нагрузку. Зачастую отведенная мощность на дом составляет 15 кВт. Это очень широко распространенная практика в нашей стране. При такой отведенной мощности нужно устанавливать вводной автоматический выключатель номиналом 25А. Также 3-х фазное электроснабжение позволяет подключать электроплиты по трехфазной схеме. Это позволяет уменьшить номинал автомата, снизить сечение кабеля и уменьшить потребление тока по фазе. Например, варочная панель мощность 7кВт при однофазном подключении будет потреблять ток 31А, а при 3-х фазном подключении будет потреблять около 10А по каждой фазе. Давайте ниже рассмотрим типовые и не типовые трехфазные схемы в с наглядными примерами реальных собранных электрощитов.

Трехфазная схема распределительного щита

Типовая схема трехфазного щита состоит из входного 3-х фазного автоматического выключателя и нескольких групповых автоматов, которые защищают только свои отходящие однофазные линии. Тут на входе стоит 3-х полюсный автоматический выключатель номиналом 25А-40А и с характеристикой выше групповых однофазных автоматов (с характеристикой С). Это необходимо для попытки соблюдения селективности и исключения одновременного срабатывания входного автомата и группового. Хотя при коротком замыкании скорее всего сработают и вводной автомат С25 и групповой В16. При такой минимальной разнице номиналов автоматических выключателей добиться селективности практически не возможно.

В схеме все нулевые проводники заводим на общую нулевую шину, все заземляющие проводники заводим на общую шину заземления, а фазные проводники на автоматические выключатели. Объединять групповые автоматы по фазам можно с помощью перемычек из провода, а лучше с помощью специальной гребенчатой шины. Ниже представлена типовая трехфазная схема распределительного щита 380В. Может кому и пригодится я сюда еще вставил счетчик электроэнергии. Здесь представлена система заземления TN-S. Если у вас система заземления TN-C, то вам обязательно нужно делать переход на систему заземления TN-C-S, т.е. разделять входящий PEN проводник на самостоятельные нулевой рабочий N и нулевой защитный PE проводники. Как это правильно организовать читайте здесь.

Вот наглядный пример подключения автоматических выключателей в 3-х фазном электрощите. Все фото сборки данного щитка можете посмотреть здесь: Сборка трехфазных электрощитов на заказ

Если у кого-то в доме помимо однофазных потребителей есть трехфазная нагрузка, например, электрическая плита, то вам должна пригодиться следующая схема трехфазного распределительного щита. В представленном варианте можно подключить один 3-х фазный прибор и несколько однофазных.

Если в щитке нет места для счетчика электроэнергии или он стоит в другом месте, то вот схема щита 380В аналогичная предыдущей, но уже без прибора учета. Тут все фазные проводники напрямую идут на групповые автоматические выключатели.

Если с предыдущими трехфазными схемами распределительных щитов все понятно, то идем дальше. Ниже для вас выложил схему, где еще присутствуют УЗО и дифавтомат. С их помощью обязательно нужно защищать все группы розеток. Этого требует ПУЭ, а также электробезопасность должна быть на первом месте. Тут дифавтомат стоит только на стиральную машину, так как в случае его срабатывания найти неисправность будет не так сложно. УЗО в паре с автоматическим выключателем стоит на группу кухонных розеток. Почему в паре можете узнать тут. Это сделано для облегчения поиска неисправности, так как в них будет включено много разных электроприборов. Если сработал автомат, то значит где-то короткое замыкание или если вы включили в сеть все электроприборы одновременно, то скорее всего перегрузка. Если сработало УЗО, то вероятнее всего появилась утечка в каком-то бытовом приборе. Ниже нарисовано как правильно подключить УЗО и подключить дифавтомат в щитке 380В.

Ниже представлен реальный пример трехфазного щита с подключением 2-х полюсных и 4-х полюсных УЗО.

Вот еще одна схемка может кому и пригодится. Она построена на одном общем (входном) и нескольких групповых УЗО.

Ниже представлены полностью готовые к монтажу трехфазные щитки. Это моя работа по сборке электрощитов на заказ. Данная услуга доступна всем желающим из любой точки нашей необъятной родины. Любые вопросы по данному вопросу пишите на адрес Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Я готов вам предложить закупку комплектующих у официальных поставщиков электроматериалов по личной скидке до 20% от розничной цены ЭТМ. При заказе сборки электрощита разработка схемы и паспорт идут бесплатно. Буду очень рад вашим заказам. С каждого собранного электрощита 50% дохода идет на погашение ипотеки. Сделаем вместе жилье доступным для электромонтажника )))

Еще вас будут радовать цветные наклейки)))

Остались вопросы? Буду рад на них ответить в комментариях. Если и после этого ничего не понятно, то не искушайте судьбу и позовите грамотного электрика.

Электрик, химик, механик и программист едут вместе в машине. Вдруг заглох мотор.
– Электрик говорит, – «Наверно аккумулятор сел».
– Химик говорит, – «Нет, скорее всего не тот бензин».
– Механик,- «Я думаю, что это передача не работает.»
– Программист, – «Может выйдем из машины, и зайдем обратно?»

Сегодня очень часто частные дома стали подключать к трехфазной электросети. Также в некоторых новых многоэтажках в квартиры начали заводить три фазы вместо одной как раньше. Как правило, при данном подключении местные сетевые компании выделяют на дом или на квартиру мощность 15 кВт. Это означает, что номинал вводного автоматического выключателя должен быть 25 А. Для небольших офисов, кафе и т.д. выделяют большую мощность. Поэтому в их щитах номиналы вводных автоматов будут совершенно другими.

Подключение к 3-х фазной электросети обуславливает установку трехфазных электрощитов. Ниже разберем пять разных вариантов простых трехфазных схем для распределительного щита.

Все схемы простые и носят рекомендательный характер. Они наглядно показывают суть самих подключений разных защитных устройств в одном щитке. К разработке схемы каждого щита нужно подходить индивидуально, так как у всех условия разные. Система заземления в представленных вариантах TN-S.

Вариант 1

Здесь представлена самая простая трехфазная схема щита. На вводе обязательно должен стоять вводной автоматический выключатель. Он будет ограничивать потребляемый ток, каждого потребителя — дома или квартиры. Далее идет 3-х фазный прибор учета электроэнергии.

На самом деле места размещения счетчиков могут быть разные. Они могут устанавливаться на улице в щите учета для частных домов, в этажных щитах в многоквартирных домах или непосредственно в домашних щитах. Где ставить счетчики указываю в технических условиях на подключение местные сетевые компании или это строго определяется проектной документацией зданий.

Большинство бытовых потребителей подключаются к однофазной сети. Тут составляют исключения мощные варочные поверхности, проточные водонагреватели, электрокотлы и т.д. Такие потребители имеют возможность подключения к 3-х фазной сети.

После прибора учета электроэнергии необходимо всю однофазную нагрузку равномерно распределить по фазам. Для этого нужно сосчитать мощность приборов, количество однополюсных автоматических выключателей и постараться их разделить на три равные части.

В предложенном варианте трехфазной схемы щита для наглядного понимания на каждой фазе подключено по два. Рабочий ноль от счетчика подключается к общей нулевой шине, а нулевые защитные проводники подключаются к общей шине заземления. Фазы подключаются через групповые автоматы. Таким образом получается, что при отключении потребителя будет разрываться только один фазный проводник. Это стоит учитывать и следить, чтобы при подключении щита к сети на вводе не были перепутаны между собой фаза и ноль. С такими ошибками мне пару раз приходилось сталкиваться. Получалось, что ноль коммутировался автоматами, а фаза сидела на нулевой шине. При отключении автомата в розетки все равно оставалось опасное напряжение, что могло привести к плачевным последствиям. Будьте внимательны и осторожнее.

Вариант 2

Данный вариант схемы по своей сути аналогичен с предыдущем вариантом. Тут только нет прибора учета электроэнергии и изображен 3-х полюсный автоматический выключатель для 3-х фазной нагрузки. Также тут изменено чередование однополюсных автоматов. То есть автоматы, подключенные к фазе «А» — это первый, третий и т.д. устройства. Чередование происходит через каждые два полюса. Тут так это показано для возможности использования 3-х фазной гребенчатой шины. Зубчики ее шины от одной фазы как раз имеют такое чередование. С ее помощью очень удобно соединять между собой несколько защитных устройств. Она исключает изготовления множества перемычек между ними.

Вариант 3

Этот вариант схемы трехфазного электрощита уже больше отвечает современным нормам электробезопасности. В нем после счетчика стоит общее УЗО. В текущем примере показано устройство защитного отключение с током утечки на 30мА. Данная схема щита полностью защищает человека от поражения электрическим током. Но есть некоторые минусы у использования всего одного УЗО 30мА на вводе:

  1. При его срабатывании будут одновременно отключаться все потребители в доме. Если это произойдет в темное время суток и поиск места утечки займет много времени, то это будет не очень удобно.
  2. Есть возможность появления ложного срабатывания УЗО из-за естественных токов утечки, которые присутствуют в бытовых приборах. В данной схеме также устанавливается одна общая нулевая шина после УЗО и одна общая шина заземления. Здесь с подключением кабелей от розеток сложно запутаться.

Вариант 4

Вот в данном варианте уже можно немного запутаться с подключением нулевых рабочих проводников, так как тут стоит несколько УЗО. А мы знаем, что у каждого УЗО должна быть своя индивидуальная нулевая шина, иначе ничего работать не будет.

В текущей трехфазной схеме на вводе стоит уже противопожарное селективное УЗО на 300 мА. Оно будет защищать кабели от возгорания при замыкании фазы на землю. Для человека ток 300 мА уже опасен и поэтому для его защиты нужно ставить дополнительное УЗО на 10-30 мА.

Ниже на рисунке показано одно УЗО с током утечки 30 мА только на первой фазе, к которому подключено два автоматических выключателя. У этого УЗО будет своя нулевая шина и поэтому нулевые рабочие проводники от других групп к его шине подключать нельзя. А шина заземления всегда и для всех потребителей будет одной общей.

В текущем варианте можно рассмотреть схему с установкой трех 2-х полюсных УЗО по одному на каждую фазу. Так все группы будут иметь защиту от утечек тока. Тогда здесь можно будет отказаться от общего вводного УЗО на 300 мА, так как у вас и так все будет иметь защиту с уставкой 30 мА.

Вариант 5

В пятом варианте представлена схема трехфазного щита без вводного УЗО, но с использованием однофазных дифавтоматов на некоторые потребители. АВДТ ставится один на одну группу и поэтому их количество может быть равно количеству групп. Так все группы потребителей будут независимы друг от друга. То есть при возникновении утечки тока в одном приборе, отключится только дифавтомат, к которому он подключен. При использовании УЗО с 3-5 автоматами при срабатывании УЗО будет отключаться соответственно 3-5 групп. А это уже не очень удобно со стороны эксплуатации потребителей.

Вышеприведенные схемы имеют наглядный вид, чтобы донести саму суть подключений разных защитных устройств в одну общую схему электрощита. Также эти примеры очень элементарные и поэтому ваши схемы будут намного больше и сложнее.

Типовые схемы подключения УЗО в распределительном щитке: варианты для однофазных и трехфазных сетей


Решение использовать устройство защитного отключения в домашнем распределительном щите заслуживает всяческого поощрения. Согласитесь, что еще может нас защитить от поражения электротоком при утечке тока на металлический корпус бытовых приборов. УЗО может стоять как на входе, так и на какой-то отдельной линии сети. Это значит, что схем их включения довольно много, и нам нужно разобраться, когда и какую использовать. Поверьте, это в интересах вашей же безопасности.

Как правильно подключить устройство защитного отключения?

 


Важно запомнить одну важную деталь: подводящие провода всегда подсоединяют к верхним контактам, это правило работает для любой марки прибора и не зависит от количества полюсов. Отвод на нагрузку подключают только к нижним контактам. Если правильная схема подключения УЗО не получается, например, короткие провода, то замените их, или, в крайнем случае, переверните устройство отключения вверх ногами.

Маркировка контактов

Получилось так, что у каждого производителя УЗО нулевой провод может быть заведен как с правой стороны, так и с левой. Поэтому смотрим на обозначения на корпусе, а потом уже подсоединяем:

  • N – клемма для подключения «нуля».
  • 1 – контакт для подсоединения приходящего фазного провода.
  • 2 – зажим для подключения отходящего фазного провода.

Нужна ли защита УЗО автоматом при подключении его в распределительном щитке?

По правилам подключать устройство защитного отключения без автоматического выключателя нельзя. Зачем это нужно? Дело в том, что принцип работы УЗО основан на срабатывании только по причине утечки тока, при коротком замыкании или при перегрузке оно не срабатывает. Отсюда опасность возгорания проводки или выхода из строя самого устройства.


Здесь представлены две простые схемки соединения автомата с двухполюсным и четырехполюсным устройством отключения.


Вывод: всегда делайте защиту автоматическим выключателем. В большинстве случаев в схеме подключения однофазной сети квартиры используют УЗО и автомат с одинаковыми номиналами. Однако практика показывает, что лучше выбрать устройство отключения с номинальным током большим на одну ступень. Например, если автомат на 16А, то УЗО будем ставить на 25А. Почему так, а не иначе? Попытаемся смоделировать цепь событий:

  • Если внимательно изучить время-токовую характеристику автомата, то станет понятно, что ему нужен определенный отрезок времени для срабатывания теплового расцепителя во время перегрузки.
  • Это значит, что сквозь автомат будет протекать повышенный ток, такая ситуация может длиться от нескольких секунд до нескольких минут.
  • Этот же ток пойдет и через УЗО, что крайне нежелательно для его контактов и механизмов – они попросту не рассчитаны на такой форс-мажор. Устройство определенно будет греться, и если оно просто сгорит, то считайте, что вы еще легко отделались.

 

Версии защиты для однофазной сети

О комплекте защитных приборов постоянно напоминают производители мощной домашней техники. Зачастую уже в сопроводительной документации к стиральной или посудомоечной машине, электроплите указано, какие дополнительные устройства необходимо установить.

Если учесть количество контуров, направленных на обслуживание розеток и мощной техники, можно с уверенностью утверждать, что проектов монтажа устройств защиты бесконечно много. Ниже рассмотрим базовые варианты, которые встречаются чаще всего, на их основе возможно построение модернизированной электросхемы, заточенной под конкретные условия.

Простая схема подключения общего УЗО на вводе однофазной сети квартиры или коттеджа

В этом проекте используют одно устройство защитного отключения. Его ставят на вводе после двухполюсного автомата перед отводящими выключателями. Здесь аппарат контролирует утечку тока во всей сети. Основной недостаток: определить линию, в которой произошла утечка довольно сложно. Зато все дешево и сердито.

Проект со счетчиком и общим устройством защитного отключения на вводе

Схема практически повторяет предыдущую, единственное отличие – установка прибора учета электроэнергии, что по нынешним временам обязательное условие. Что касается плюсов и минусов проекта, то они копируют прежний вариант: та же экономичность, но сложности с определением линии утечки.

Схема подключения в квартире общего УЗО на вводе и автоматов с групповыми УЗО на отводящих линиях

В таком решении устройства защитного отключения используются не только на вводе, но и на каждой отходящей цепи. Здесь важно соблюдать селективность, иначе во время утечки одновременно отключатся и групповое устройство, и вводное. Поэтому на ввод чаще всего ставят аппарат на 100мА, а на линии по 30мА.

 


К особенностям этой схемы подключения УЗО в распределительном щитке можно отнести два фактора, которые противоположны друг другу:
  1. Положительный аспект – при утечке отключается только аварийная цепь, остальные будут функционировать в штатном режиме.
  2. Отрицательный момент – дороговизна и большой объем работ.

Электросхема подсоединения групповых УЗО на отводящих цепях

Схема собрана по аналогии с предыдущей, единственное отличие – отсутствие общего УЗО на вводе. По мнению некоторых его установка – лишняя трата средств, потому что все линии уже ограждены от утечек групповой защитой. Так что решение о дополнительных тратах за вами.


Намерение поставить групповую защиту только на отходящие цепи уже можно поприветствовать. Большинство домовладельцев вообще ее не ставят, так же как и защиту от атмосферных перенапряжений и заземление.

 

Типичные схемы подключения четырехполюсного УЗО в трехфазную сеть в щитке частного дома

Вариант №1

Сеть частных домостроений часто питается от 380В. Представленный проект включает не только четырехполюсное устройство защитного отключения, но и групповые УЗО на каждую отходящую линию. Без последних схема тоже будет работать.

Вариант №2

Проект собран по аналогии с первым вариантом, но здесь уже задействован прибор учета электроэнергии.

Безопасность – прежде всего!

Основная часть правил безопасности при монтаже схемы подключения УЗО носят общий характер для всех электромонтажных работ. Перед оборудованием распределительного щита не забывайте:

  • Обесточить сеть – выключить входной автомат.
  • Провода должны иметь соответствующую цветовую маркировку.
  • Входной выключатель всегда монтировать в первую очередь.
  • Внимательно следить за полюсами приборов – путать их нельзя!

 

 



Поделиться в социальных сетях

Как правильно подключить однофазный электросчётчик

Электрический счётчик – устройство для учёта количества потреблённой электроэнергии. Электрические счётчики применяются как на производстве, так и в быту.

Виды и типы электросчётчиков

По типу нагрузки счётчики бывают однофазными и трёхфазными. В бытовой электрической сети в большинстве случаев используют однофазные счётчики, т.к. все бытовые потребители работают от однофазной сети 220В.

По конструктивному исполнению счётчики бывают электромеханическими (индукционными) и электронными. В последнее время на производстве и в быту выполняется замена счётчиков старого образца на новые электронные счётчики. При вводе в эксплуатацию новых электрических сетей сегодня уже используются только современные счётчики электронного типа.

Это связано с тем, что они надёжней в работе, а подсчёт электроэнергии более точный. Кроме того, функционал некоторых новых электронных счётчиков позволяет дистанционно узнавать и передавать информацию о потреблённых киловатт-часах.

Инструменты для подключения

Иногда случаются ситуации, когда счётчик выходит из строя и его необходимо заменить. Также достаточно часто по желанию выполняется замена старого счётчика на новый, более современный. Если электрическая сеть только вводится в эксплуатацию, то первая установка счётчика выполняется по всем современным нормам и правилам.

Независимо от того, по какой причине будет устанавливаться новый счётчик, для его монтажа необходимо использовать некоторые инструменты, электроизмерительные приборы и расходные материалы:

  • плоскогубцы, бокорезы;
  • нож монтажный;
  • съёмник изоляции;
  • отвёртки;
  • отвёртка-индикатор;
  • дрель, перфоратор;
  • молоток;
  • стрелочный тестер или цифровой мультиметр;
  • медный монолитный провод;
  • дюбеля, шурупы.

Общая схема подключения однофазного счётчика

Для того, чтобы правильно подключить счётчик, необходимо знать схему его подключения. Следует отметить, что процесс подключения всех однофазных счётчиков абсолютно одинаков.

  • Во-первых, счётчик подключается напрямую в силовую цепь, т.е. последовательно с подводимым питающим напряжением и электрической нагрузкой. Если рассматривать электрическую схему полностью, то она выглядит следующим образом: входное (питание) напряжение 220В – однофазный счётчик – выходное напряжение 220В – защитный автомат – переходная (соединительная) коробка – электрические потребители.
  • Во-вторых, у каждого однофазного счётчика имеются четыре специальных силовых клеммы для подключения проводов. Если считать эти клеммы слева направо, то первая клемма – это приходящая фаза, вторая клемма – выходящая фаза. Третья клемма – приходящий ноль, ну а четвёртая – выходящий ноль. Т.е. у однофазного счётчика две входных и две выходных клеммы.

Для того чтобы при подключении не перепутать назначение каждой клеммы, обычно указывается схема подключения либо на самом счётчике, либо в его паспорте.

Монтаж и подключение счётчика

Для каждой отдельно взятой квартиры счётчик обычно устанавливается в общем щитке на этаже многоквартирного дома или в самой квартире. Иногда счётчики устанавливаются на улице. Обычно такое бывает, если это частный дом.

Вариант установки счётчика зависит от нескольких технических моментов. Если выполняется замена старого (или негодного) счётчика, то демонтаж и монтаж происходит следующим образом.

Для демонтажа заменяемого счётчика сначала отключается входное напряжение на счётчик и выполняется его распломбирование. Затем снимается клеммная крышка на счётчике. Тестером, мультиметром или отвёрткой-индикатором проверяется отсутствие напряжения на счётчике, после чего все четыре провода поочерёдно отключаются при помощи отвёртки. Когда счётчик будет освобождён от всех проводов, выполняется его демонтаж с установочного места.

Монтаж и подключение нового счётчика выполняется в обратном порядке. Сначала новый счётчик монтируется на место старого, затем на силовые клеммы счётчика подключаются четыре провода. Закрывается клеммная крышка и счётчик пломбируется. После этого подаётся напряжение, включается электрическая нагрузка в виде бытовых потребителей и визуально определяется работа счётчика.

Если счётчик необходимо подключить на новом месте (например, где-то в квартире), то процесс монтажа будет немного сложнее. 

Для начала необходимо определиться с местом установки счётчика. Обычно счётчик устанавливают недалеко от входа в квартиру. Когда место выбрано, необходимо подобрать щиток для счётчика. Щиток выбирается таким, чтобы внутри него кроме самого счётчика можно было дополнительно установить автоматические выключатели и устройства защитного отключения.

  • Итак, в размеченном на стене месте дрелью или перфоратором сверлятся отверстия под установку щитка. В отверстия молотком забиваются дюбеля. Затем шурупами щиток прикручивается к стене.
  • Следующий этап — это установка в щиток самого счётчика. В настоящее время для крепления счётчиков, автоматов, УЗО и т.д. используются специальные металлические DIN-рейки, на которые всё это должно закрепляться. Очень часто в электрических щитках DIN-рейка уже присутствует. После установки счётчика устанавливается модульное оборудование (автоматы, УЗО) в необходимом количестве.
  • Следующий шаг – это проводной монтаж, т.е. к счётчику необходимо подключить все провода. Сначала подключаются два провода на вторую и четвёртую клеммы, т.е. к выходу счётчика. Для того чтобы подключить провода, жилы проводов зачищаются ножом (а лучше специальным съёмником изоляции). Затем провода, выходящие из счётчика, подключаются на общий автоматический выключатель, подающий напряжение на электрические потребители.
  • После этого подключаются провода на первую и третью клемму, т.е. на вход счётчика. Для этого с них тоже снимается часть изоляции. После того, как провода подключены, закрывается клеммная крышка и счётчик пломбируется.

Обычно установка, подключение и пломбировка счётчика выполняется энергоснабжающей организацией. Если же выполнять монтаж и подключение самостоятельно, то чтобы избежать недоразумений и штрафов, необходимо сначала обратиться к представителям этой организации, которые сами утвердят правильный порядок работ.

Как правильно подключить распределительный электрощиток в гараже

В современном гараже невозможно обойтись без электричества. Электричество в гараже требуется не только для освещения помещения и рабочего места, но и для подключения зарядного устройства аккумуляторов и электроинструмента. Нередко в гараже также устанавливают станки с электроприводом для ремонта автомобиля и сварочный аппарат.

пример электрощитка

Для правильного и безопасного подключения входного кабеля и распределенных потребителей нужно оборудовать электрощиток в гараже. В корпусе также устанавливают прибор учета потребленной электроэнергии. В магазинах продают готовые конструкции, которые так и называются – щиток гаражный. Однако, при владении определенными навыками и соблюдении правил безопасности, вполне можно сделать электрический щиток в гараж своими руками.

Какой щиток можно установить в гараже

Электрические щитки выпускают в металлическом или пластмассовом корпусе. Можно использовать пластмассовый корпус, но, учитывая присутствие в помещении большого количества металлических предметов, безопаснее будет купить бокс из металла. Тогда снижается вероятность механического повреждения корпуса.

Если гараж не отапливается, в воздухе скапливается большое количество влаги. Для предотвращения коррозии установленных элементов климатическое исполнение щитка должно быть У3 (для установки в не отапливаемых помещениях и эксплуатации при температурах от минус 40 до плюс 40 градусов).

Корпус должен оснащаться запорным устройством, на его внешней стороне должен располагаться болт для подключения заземляющего устройства.

открытый электрощиток

Устройство гаражного щитка

Монтируя электрощиток своими руками, нужно четко представлять себе его устройство. Входящий электрический кабель необходимо подключать к вводному автомату, выполняющему роль рубильника. Желательно в качестве вводного автомата применять двухполюсный автоматический выключатель. Таким способом производится отключение сразу двух проводников кабеля. Это делается в целях безопасности при проведении ремонтно-монтажных работ внутри щитка или в помещении гаража. Дело в том, что в гаражных кооперативах, зачастую, отсутствует должный контроль состояния электрохозяйства и, возможно, что на входящей линии нулевой и фазный проводники окажутся поменяны местами.

Если входящий ноль подключить, минуя автомат, то может сложиться ситуация, когда при выключенном автомате на узлах щитка будет присутствовать высокий потенциал. Это справедливо, если к гаражу подводится однофазное напряжение. При подаче трехфазного напряжения оптимальным будет применение четырехполюсного автоматического выключателя.

схема электрощитка

После вводного автомата подключают прибор учета электроэнергии. Обычно это бытовой счетчик, например, Меркурий 201. Выходящие из счетчика фазный и нулевой проводники подключают к УЗО (устройству защитного отключения). Наличие УЗО необходимо для защиты людей от поражения электрическим током. Когда человек прикасается к неизолированному проводнику, находящемуся под напряжением, через его тело начинает проходить ток утечки. Чтобы значение тока утечки не достигало опасного для жизни значения, УЗО отключает подачу напряжения.

Правильное срабатывание УЗО невозможно без наличия в щитке заземления. Заземление должно быть оборудовано в гараже независимо от наличия во вводном кабеле заземляющего проводника.

С выходных клемм УЗО фаза поступает на групповые автоматы защиты, с которых уже напряжение подается на каждый потребитель электроэнергии раздельно. Нулевой же проводник подключают к металлической шине. К этой же шине подсоединяют все нулевые проводники из кабелей, идущих к потребителям. Подобная шина объединяет все присутствующие заземляющие проводники.

Все элементы схемы щитка крепят на металлическую пластину, которая называется DIN-рейка. Конструкция DIN-рейки такова, что позволяет быстро закрепить на ней все элементы или, наоборот, демонтировать их. Для нулевой и заземляющей шин тоже существуют варианты крепления на DIN-рейку.

Возможный вариант размещения всех узлов внутри щитка.

электрощиток

После монтажа узлов внутри щитка все детали закрываются защитным экраном из комплекта щитка для предотвращения случайного прикосновения к токоведущим частям. В экране должны присутствовать окна, через которые производятся переключения и снимаются показания прибора учета электроэнергии.

Подведение электричества к гаражу

В любом гаражном кооперативе находится главный электрический щит. От него осуществляется разводка кабелей по боксам. Идеальным вариантом было бы подключение кабелей от каждого бокса непосредственно к главному щиту. Однако из-за большого количества гаражных боксов и их удаленности такое подключение неосуществимо ввиду больших затрат. Поэтому используют другие варианты.

Самым распространенным способом является разводка кабелей от щита до группы боксов. На каждую группу устанавливают групповой щиток, оборудованный рубильником с плавкими вставками или автоматом, рассчитанным на большой рабочий ток.

От местного щитка прокладывается кабель на электрощит в гараж. Устройство местного щита похоже на гаражный щиток, но в нем отсутствуют УЗО и электросчетчик. Для прокладки кабеля его помещают в гофрированную трубу или металлорукав и надежно крепят к стене на максимально возможной высоте. Труба защищает кабель от случайных механических повреждений. С той же целью, при вводе кабеля через стену гаража, используют защитные гильзы.

Защитная гильза

Подключение электричества к кабелю в групповом щитке производится только после окончательного монтажа щитка в гараже. Все работы необходимо вести при снятии напряжения на участке проведения работ.

Существует еще другой вариант подключения кабеля от гаража к магистрали. Этот способ используют тогда, когда вместо групповых щитов разводка электрокабелей по территории гаражного кооператива выполнена по столбам освещения. В этом случае подсоединение кабеля от гаражного щитка происходит к магистральным линиям на столбе. Соединение производится с помощью специальных зажимов или проколов.

Второй вариант менее предпочтителен, потому что для безопасности работ во время подключения требуется обесточить большое количество боксов. Сами работы проводятся на высоте, это создает дополнительную опасность.

Схема соединений внутри щитка

Представлен типовой вариант схемы гаражного щитка.

схема подключения

Номиналы защитных автоматов выбраны с тем расчетом, чтобы при коротком замыкании в линии или превышении допустимой нагрузки на кабеле отключение нагрузки происходило раньше, чем проводники нагреются до температуры плавления изоляции. В параметрах УЗО указан ток утечки 30 мА, это соответствует безопасному значению для предотвращения поражения электрическим током.

Автоматы номиналом 16 А применены на линиях освещения или розеток для подключения ручного электроинструмента. Линия с автоматом на 32 А предназначена для использования более мощной нагрузки, например, сварочного аппарата или тепловой пушки.

Вывод

Можно заметить, что самостоятельное подключение и монтаж гаражного электрощита своими руками не вызывает особенных трудностей, если соблюдать технику безопасности и придерживаться схемы соединения.

Как собрать трёхфазный электрощит

Устройство трехфазных электросетей позволяет использовать кабель с меньшим сечением для передачи электричества, а также равномерно распределять нагрузку. Но при этом трехфазные щиты для дома имеют более сложное устройство, чем однофазные.

В одной из предыдущих статей мы рассматривали общие правила монтажа электрических щитов. В этой статье мы подробнее остановимся на особенностях трехфазной сети, а также рассмотрим разные варианты устройства электрощита.  

1. Особенности трехфазной сети

Для того чтобы правильно составить схему и подключить электрощит, нужно знать принцип работы трехфазных сетей.

Электрогенерирующая станция подаёт электроэнергию по сети, состоящей из трех рабочих проводников, нейтрали и заземления. Два рабочих проводника между собой имеют линейное напряжение 380 В. Рабочий проводник в паре с нейтралью имеет фазное напряжение в 220 В. Нулевой проводник в трехфазной сети выступает в роли уравновешивающего элемента – при неравномерно распределенной нагрузке на фазах излишек тока уходит в ноль, а система стабилизируется.

При постоянной неравномерной нагрузке в трехфазной сети возникает опасность отгорания нуля и перекоса фаз. Это может привести к повышению напряжения на одной из фаз, что может стать причиной поломки техники. Именно поэтому так важно равномерно распределять нагрузку на все фазы сети.


2. Как правильно распределить нагрузку и что нужно учесть при составлении схемы трехфазного щита

Перед составлением схемы щита необходимо выяснить, нужно ли подключение трехфазной техники. Так могут подключаться мощные электроприборы: печки, посудомоечные и стиральные машины, котлы, станки и пр. Для подключения такой техники нужно выделить одну или несколько трехфазных линий.

Для подключения обычной бытовой техники и освещения нужно распределить всю нагрузку равномерно по трём фазам. Это значит, что суммарная мощность подключенных приборов должна быть приблизительно одинакова по всем фазам.

Также следует придерживаться логической группировки по потребителям:

— Рекомендуется ставить защитные автоматы отдельно на освещение, а также розетки. Так, в случае отключения одного из автоматов, помещение не останется полностью обесточенным.

— Электроточки в помещениях с повышенной влажностью лучше группировать отдельно.

— Мощные электроприборы должны подключаться отдельной линией с отдельными защитными приборами.

Чтобы упростить процесс составления схемы, составьте список предполагаемых линий, укажите нагрузку на них, а также тип помещения. Следуя принципу равномерного распределения, составьте общую схему.

Затем следует проверить схему на критичность отключения каждого из автоматов: мысленно отключаем каждый из автоматов и продумываем возможные последствия этого. Желательно, чтобы в случае отключения, в соседнем помещении были доступны работающие розетки.

К сожалению, не всегда на стадии предварительного планирования электрощита можно предусмотреть и распределить всю нагрузку. Часто случается, что одна из фаз перегружена, в то время как другие мало используются. В таких случаях должна быть предусмотрена возможность оперативного перераспределения нагрузки.

3. Какие бывают схемы трехфазного щита

При сборке трехфазного щита необходимо руководствоваться 3 основными принципами безопасности:

— Безопасность для человека достигается за счет установки средств защиты от поражения током – УЗО.

— Безопасность для проводки обеспечивается установкой защитных автоматов, которые срабатывают при перегревании кабеля, а также в случае короткого замыкания.

— Безопасность для техники осуществляется путем установки реле напряжения, которые отключат нагрузку при несоответствии напряжения в сети установленным показателям. Компания DS Electronics выпускает реле контроля напряжения ZUBR для однофазных, а также для трехфазных сетей. Установка однофазного реле на каждую из фаз поможет избежать последствий перекоса по каждой фазе. Для защиты трехфазной техники рекомендуется использовать реле ZUBR 3F.

При монтаже трехфазных щитов рекомендуется использовать кросс-модули, а также электрические гребенки. Это позволит сократить количество проводов, упростит схему подключения, а также обеспечит надежность соединений.

Если с обеспечением безопасности для техники все достаточно просто, то безопасность для человека, а также проводки можно обеспечить разными способами.

3.1. Сборка щита на дифавтоматах

Электрический трехфазный щит можно собрать с использованием дифавтоматов – специальных устройств, которые объединяют в себе функции УЗО и защитных автоматов.

Такие устройства нужно установить в щитке на каждую выделенную линию.

Такая схема подключения имеет свои достоинства и недостатки:

+ максимальная защита от перегрузок, утечек, а также короткого замыкания;

+ лучшая визуализация группировки в щите;

+ легче выявить и локализовать проблемную зону;

+ простота распределения нагрузки по фазам;

+ возможность быстрого перераспределения нагрузки по фазам;

— высокая цена на оборудование.

 Трехфазный электрощит, собранный на дифавтоматах, является наилучшим вариантом подключения электричества, но высокая стоимость приборов и необходимость их установки на каждой линии заставляет искать другие решения.

3.2. Сборка электрощита на УЗО и защитных автоматах

Подключение электрощита на 3 фазы с использованием отдельных УЗО и защитных автоматов считается более экономным вариантом.

В зависимости от сложности группировки и потребляемой мощности подбираются необходимые по параметрам устройства, а также разрабатывается схема подключения. При этом возникает дополнительная группировка по УЗО. Такие варианты сборки щита также имеют свои достоинства и недостатки:

+экономия на комплектующих;

— плохая визуализация подключений;

— сложность схемы подключения;

— невозможность оперативного перераспределения нагрузки по фазам;

— риск отгорания нулевого проводника и перекоса фаз;

— ложные срабатывания УЗО;

— большие габариты щита.

Некоторые из недостатков можно нивелировать путем использования кросс-модулей, а также многополюсных защитных автоматов и УЗО. Это, в свою очередь, приводит к удорожанию проекта.

Заключение

От работы электрощита зависит стабильность и безопасность электросети в доме. Ошибки и просчеты при составлении схемы и монтаже могут привести к печальным последствиям.  Если вы не уверены, что сможете правильно собрать трехфазный щит своими руками, то лучше предоставить это профессиональным электрикам. Они просчитают возможные варианты сборки и подберут оптимальный по цене и функциональности.

Оцените новость:

Нейтраль силового кабеля и заземление системы

Прокладка силовых кабелей среднего напряжения под землей сопряжена со своими собственными проблемами. С инженерной точки зрения перед установкой кабеля необходимо учесть несколько факторов. Наиболее упускаемый из виду, если не вполне понятный фактор, — это тип силового кабеля, который требуется для данного приложения, а также время заземления нейтрали кабеля или ленточного экрана.

Силовой кабель с концентрической нейтралью

Взгляните на рисунок 1.Этот тип кабеля используется коммунальными предприятиями для распределения электроэнергии по подземным кабельным каналам. Он содержит нейтраль размером 1/3 (относительно фазного проводника), когда он используется для трехфазного питания, или полноразмерную нейтраль для однофазного питания.

Рисунок 1: Силовой кабель с концентрической нейтралью

Когда концентрическая нейтраль в этом кабеле заземлена с обоих концов, существует возможность циркуляции токов в нейтральном проводе (ток течет от одного конца к другому; затем в землю и обратно в провод в исходное положение).Это может произойти либо из-за несимметричных токов нагрузки, индукции напряжения из-за рассеянного магнитного поля, либо из-за короткого замыкания, связанного с замыканием линии на землю. В любом случае эта токоведущая нейтраль составляет четвертый кабель (в трехфазной схеме). Когда эта установка устанавливается внутри кабелепровода, необходимо снизить допустимую нагрузку на дополнительный провод (во избежание тепловой перегрузки).

Имейте в виду, что для трехфазных проводов с 1/3 нейтралью эквивалентная нейтраль будет 1 / 3 x 3 = 1 полноразмерный нейтральный кабель в комплекте из трех кабелей внутри кабелепровода.

Рис. 2: Силовой кабель с концентрической нейтралью, используемый для подачи от подстанции к центрам нагрузки.

Силовой кабель с ленточным экраном (без нейтрали)

Иногда концентрический нейтральный проводник поверх изоляции не требуется, обычно при подключении вторичной обмотки силового трансформатора к расположенному рядом распределительному устройству или при подаче питания на промышленную нагрузку (которая преимущественно содержит трехфазные нагрузки). Для этого сценария используется кабель без нейтрального провода.

На рисунках 3 и 4 показан кабель, имеющий ленточный экран поверх изоляции из EPR вместо концентрического нейтрального проводника. Лента представляет собой тонкий лист меди, который обернут вокруг кабеля и полностью закрывает его. Этот кабель дешевле (чем с нейтралью) в производстве.

Рисунок 3: Силовой кабель с ленточным экраном Рисунок 4: Силовой кабель с ленточным экраном.

Значение ленты-экрана

Вам может быть интересно, каково назначение ленты-экрана? Важнейшая функция ленты — равномерное распределение электрического поля, создаваемого напряжением на медном кабеле.С поврежденной лентой электрическое поле может свободно фокусироваться на заземленном поблизости материале. Это концентрированное поле создает нагрузку на изоляцию кабеля. Кроме того, любые дефекты в изоляции EPR или XLPE или проникновение влаги позволяют электрическому полю разъединять изоляцию, что приводит к преждевременному выходу кабеля из строя.

  • Повреждение изоляции кабеля из-за напряжения электрического поля. Источник: Cablab.
  • Прорванная оболочка кабеля
Рисунок 5: Повреждения кабеля

Допустимая нагрузка на ленточный экран по току

Из-за тонкой толщины ленты она не рассчитана на пропускание значительного тока нейтрали или тока короткого замыкания .Таким образом, чтобы предотвратить прохождение любого тока, ленточный экран заземляется только в одной точке на всем протяжении его прохождения. Это создает свои собственные проблемы.

В длинном кабеле, когда лента заземлена только на одном конце, напряжение начинает нарастать на ленте по мере того, как вы переходите к другому концу кабеля. Это представляет опасность для персонала, работающего поблизости.

Таким образом, чтобы обеспечить безопасность людей, работающих рядом с этими кабелями, на некоторых установках лента заземлена с обоих концов. В этой схеме для защиты ленточного экрана специальный заземляющий провод проходит с трехфазными проводниками в одном кабелепроводе. Рис. 6: Для небольших участков, особенно между трансформатором и распределительным устройством, можно использовать силовой провод с ленточным экраном. Нейтральный провод в этом случае прокладывается отдельно — либо к нейтральной шине распределительного устройства, либо к нейтральному реактору или резистору.

Сводка

  1. Для систем распределения электроэнергии: используйте силовой кабель с концентрическим нейтральным проводом. Заземлите нейтраль на обоих концах и в люках, где соединяется кабель.
  2. Для промышленного распределения электроэнергии или небольших участков внутри подстанции: используйте силовой кабель с ленточным экраном.Экран заземляющей ленты только на одном конце.

Поддержите этот блог, поделившись статьей

Изолированное питание

Изолированное питание

9.9 МОЩНОСТЬ ИЗОЛЯЦИОННЫЕ ТРАНСФОРМАТОРЫ (методы заземления и экранирования) Р. Моррисон)

Слова изолирующий трансформатор подразумевают решение проблемы. Просто добавляю трансформатор к проблеме редко срабатывает. Проблема и решение должны совпадать. Изолирующий трансформатор используется в контрольно-измерительных приборах, обычно имеет один или несколько электростатических экранов, обернутых вокруг внутренних катушек.Этот трансформатор находится внутри оборудования и не считается частью объекта. Эти щиты подключаются к разным точки в приборе и могут контролировать поток нежелательного тока (см. раздел 5.6). Когда изолирующий трансформатор используется для питания группы инструментов, то возникают некоторые новые проблемы. Трансформатор становится частью объекта, а роль щитов совершенно иная.
Трансформаторы и связанные с ними схемы, которые описаны в этом разделе может быть однофазным или трехфазным.Однофазная схема используется в качестве примера, потому что его проще рисовать. Единый щит показано на рисунке 9.1. Этот трансформатор в идеале устанавливается на заземляющем слое. Единый щит внутри подключен к раме трансформатора. Когда трансформатор установлен, экран подключен. Первичные и вторичные проводники несут в канал. Труба крепится к раме трансформатора и считается частью системы заземления оборудования.
Действие трансформатора связано с разностным сигналом между силовые проводники.Также может быть синфазный сигнал (помеха) на первичной линии электропередачи. Экран на рис. 9.1 отражает любые общие сигналы режима и не позволяет им подключаться к вторичным цепям. Без экран, емкость передает синфазные сигналы непосредственно от первичной обмотки. к вторичным цепям. В типичном изолирующем трансформаторе утечка емкость вне экрана около 5 пФ. Со щитом большая часть синфазный ток возвращается внутрь первичного кабелепровода и никогда не видит вторичные цепи.
Часть синфазного тока течет в катушках первичной обмотки. Этот ток возникает во вторичной обмотке под действием трансформатора. Ограничить Благодаря этому к трансформатору можно добавить второй экран. Этот щит внутренне подключен к одной стороне первичной обмотки. Синфазный ток теперь потоки между экранами не в катушках первичной обмотки. Это добавлено Экран показан на рисунке 9.2.

Если вторичный нагрузки генерируют любые синфазные сигналы, желательно, чтобы эти сигналы оставались от распространения через трансформатор в других системах.Этот путь может быть закрывается добавлением третьего экрана, который снова подключается к одной стороне вторичная обмотка.
Силовой изолирующий трансформатор имеет внутренние экраны, которые недоступны пользователю. Если они вынесены отдельно, они должны быть подключены к трансформатору. Подключения к удаленным основаниям слишком индуктивны. Эти соединения не имеют электрического смысла и нарушают изоляционные процессы.

Информационное сообщение № 98-03: Недостаточная проверка уставок отключения по сверхтоку в металлических низковольтных автоматических выключателях

СОЕДИНЕННЫЕ ШТАТЫ
КОМИССИЯ ПО ЯДЕРНОМУ РЕГУЛИРОВАНИЮ
ОТДЕЛЕНИЕ ПО РЕГУЛИРОВАНИЮ ЯДЕРНЫХ РЕАКТОРОВ
ВАШИНГТОН, Д.C. 20555-0001

21 января 1998 г.

ИНФОРМАЦИОННОЕ УВЕДОМЛЕНИЕ NRC 98-03: НЕАКТИВНАЯ ПРОВЕРКА УСТАВОК ПЕРЕНАПРЯЖЕНИЯ ТОКОВ В МЕТАЛЛИЧЕСКИХ ВЫКЛЮЧАТЕЛЯХ НИЗКОГО НАПРЯЖЕНИЯ
90 9392

Все обладатели лицензий на эксплуатацию ядерных энергетических реакторов.

Цель

Комиссия по ядерному регулированию США (NRC) выпускает это информационное уведомление, чтобы предупредить адресатов о том, что неадекватная проверка уставок отключения по максимальному току для низковольтных автоматических выключателей в металлическом корпусе может привести к потере нескольких функций безопасности.Ожидается, что получатели изучат информацию на предмет применимости к их объектам и при необходимости рассмотрят меры, чтобы избежать подобных проблем. Однако предложения, содержащиеся в этом информационном сообщении, не являются требованиями NRC; IN 98-03

Описание обстоятельств

16 сентября 1996 года автоматический выключатель типа K600S 480-Vac компании Asea Brown Boveri (ABB) преждевременно отключился от перегрузки по току на АЭС Перри компании Centerior Energy и обесточился. центр управления двигателем, связанный с безопасностью (MCC).Твердотельное устройство отключения SS-5 автоматического выключателя (Power Shield) обнаружило перегрузку по току, хотя фактический ток MCC во время отключения был значительно ниже ожидаемой уставки отключения Power Shield. Последующий осмотр автоматического выключателя показал, что провода от одного из трех трансформаторов тока (ТТ), используемых для измерения токов повреждения, были перевернуты. Перевернутая проводка трансформатора тока привела к смещению уставки отключения при длительной перегрузке по току Power Shield вниз с 660 ампер первичного тока до примерно 330 ампер и вызвала непреднамеренное срабатывание выключателя при перегрузке по току.

Обсуждение

Трехфазные твердотельные и микропроцессорные расцепители чувствительны к полярности (или фазе) сигнала от трансформаторов тока датчика фазы. Сигнал может быть эффективно сдвинут на 180 противофаз, если провода ТТ перевернуты (или соединения между нижними клеммами ТТ и клеммами блока Power Shield перепутаны) или если катушка ТТ установлена ​​в перевернутом положении. Обычно сигналы от трансформаторов тока трехфазных датчиков разделены на 120 фаз. Однако, когда один сигнал с фазовым сдвигом на 180 от неправильно подключенного или установленного трансформатора тока объединяется в процессоре с двумя другими, измеренная пиковая амплитуда объединенного сигнала может быть эффективно удвоена.По крайней мере, в одном случае, как описано выше, это условие привело к срабатыванию твердотельного расцепителя тока при уровне первичного тока, значительно ниже ожидаемого уровня.

Однако такой неожиданный фазовый сдвиг вторичного выходного тока ТТ не обнаруживается во время калибровки и тестирования однофазного первичного тока. Следовательно, могут потребоваться дополнительные проверки или испытания для надлежащей проверки правильности работы автоматических выключателей, оснащенных твердотельными расцепителями. Процедура проверки полярности фазового датчика для полупроводниковых расцепителей типа SS-3, -4, -5, -13, -14 и -15 компании ABB следующая:

  1. На блоке статического отключения (Power Shield). клеммная колодка, подключите аналоговый счетчик (т.е.e., обычное электромеханическое движение измерителя д’Арсонваля), настроенного на измерение тока (шкала 100 мА), чтобы проверить фазовые датчики для каждого полюса следующим образом: отрицательный измерительный провод на клемме 5, положительный измерительный провод последовательно для каждого теста на клеммах 6, 7 и 8 для левого, центрального и правого полюсов соответственно.
  2. Подсоедините ОТРИЦАТЕЛЬНЫЙ (-) вывод 1,5-вольтовой батареи к пальцевым соединениям НИЖНИХ первичных разъединителей выключателя для каждого из вышеуказанных соответствующих полюсов для каждого теста.Затем, наблюдая за измерителем, прикоснитесь испытательным проводом от ПОЛОЖИТЕЛЬНОЙ (+) клеммы батареи к ВЕРХНЕМУ первичному разъединителю соответствующего полюса по очереди для каждого теста.
  3. Убедитесь, что стрелка счетчика на мгновение отклоняется в положительном направлении, когда положительный вывод аккумуляторной батареи соприкасается с каждым верхним первичным разъединителем. Положительное отклонение указывает на правильность полярности сигнала от трансформатора тока, считываемого статическим расцепителем.

Обычно этот тест подтверждает правильность проводки и ориентации трансформатора тока фазового датчика.Однако следует отметить, что если и проводка, и ориентация трансформатора тока на одном полюсе поменяны местами, это также даст сигнал правильной полярности или правильного фазового соотношения для двух других полюсов, но это не является предпочтительным условием. Завод использует этот тест как процедуру поиска неисправностей, а не заменяет хороший визуальный осмотр сборки. Кроме того, испытание подтвердит правильность обмотки ТТ, внутренних соединений между выводами обмотки и маркировки крышки, которая в противном случае не была бы очевидна, если бы она была неправильной на новых ТТ, изготовленных на предприятии-изготовителе ТТ.

Автоматический выключатель, который преждевременно отключился от перегрузки по току в Perry, был новым автоматическим выключателем, поставленным ABB Power T&D Co., Inc. 26 марта 1997 года ABB уведомила NRC в отчете 10 CFR Part 21, что существует потенциал для новых низковольтные автоматические выключатели K-line, оснащенные твердотельным отключающим устройством Power Shield, для отключения значительно ниже уставки отключения устройства, если трансформаторы тока перегрузки по току автоматического выключателя неправильно подключены к устройству отключения Power Shield. Хотя выключатель, который преждевременно сработал в Perry, был новым выключателем, существует вероятность того, что отремонтированные выключатели будут иметь аналогичный дефект проводки.NRC известно о случаях, когда автоматические выключатели ABB K-line были отправлены в сервисные центры ABB для ремонта, а сервисный центр возвращал автоматические выключатели лицензиату с неправильно подключенными трансформаторами тока.

Стандартный автоматический выключатель ABB K-line в металлической оболочке имеет шесть трансформаторов тока. Три из этих шести трансформаторов тока называются «фазовыми датчиками» и используются для обнаружения токов короткого замыкания. Остальные три трансформатора тока, называется «датчики мощности» и используется для разработки опорного сигнала отключения в блоке отключения питания щита.На каждой фазе выключателя установлены два трансформатора тока, датчик фазы и датчик мощности. Выводы всех шести трансформаторов тока подключены к трем клеммным колодкам, прикрепленным к передней части литой монтажной платы трансформатора тока рядом с нижней частью автоматического выключателя. Эти три клеммных колодки, в свою очередь, подключены к твердотельному расцепителю Power Shield с помощью многожильного жгута проводов. Приложение 1 к этому уведомлению является копией электрической схемы ABB 709551, редакция 16, для справки. В Приложении 2 к этому уведомлению приводится фотография монтажной платы ТТ в нижней части выключателя K-line, помогающая интерпретировать рисунок.Типичные ошибки подключения и сборки, которые были обнаружены в автоматических выключателях ABB K-line, включают следующее:

  • Выводы ТТ были подключены к неправильным клеммам нижних клеммных колодок.
  • Жилы многожильного кабеля были подключены к неправильным клеммам нижних клеммных колодок или к неправильным клеммам расцепителя Power Shield.
  • CT были установлены в перевернутом виде, но были правильно подключены к нижним клеммным колодкам (такой же эффект, как и при перестановке выводов).
  • После того, как провода на клеммах 6, 7 и 8 расцепителя Power Shield будут подняты для проверки целостности фазовых датчиков или провода на клеммах 11, 12, 13 и 14 будут подняты для проведения калибровочных испытаний, провода переставлены неправильно.

Ошибки в проводке или сборке выключателя могут быть вызваны изготовителем оригинального оборудования, компаниями, оказывающими услуги по ремонту выключателя, или коммунальными службами во время испытаний. Неправильно подключенные или собранные автоматические выключатели могут в настоящее время находиться в эксплуатации или храниться на складе для обслуживания в более поздний срок.Поскольку однофазное калибровочное испытание не может обнаружить описанные здесь ошибки подключения или установки ТТ, существует вероятность того, что неправильно смонтированные или собранные автоматические выключатели пройдут обычное однофазное калибровочное испытание, но сработают токи нагрузки, меньшие, чем желаемая уставка срабатывания (например, на пуск нагрузки выключателя, связанной с безопасностью, при проектной аварии), приводящий к потере функций безопасности.

Это информационное сообщение не устанавливает новых требований NRC; Таким образом, данное уведомление не требует каких-либо конкретных действий или письменного ответа.Тем не менее, получателям напоминаем, что в соответствии с 10 CFR 50.65 они должны принимать во внимание опыт работы в отрасли (включая информацию, представленную в информационных уведомлениях NRC), где это возможно, при постановке целей и проведении периодических оценок. Если у вас есть какие-либо вопросы относительно информации в этом уведомлении, пожалуйста, свяжитесь с одним из технических контактных лиц, перечисленных ниже, или с соответствующим менеджером проекта NRR.

подписано Дэйвом Б. Мэтьюзом ДЛЯ

Джека У.Роу, исполняющий обязанности директора
Отдел управления реакторной программой
Управление регулирования ядерных реакторов

Контактные лица по техническим вопросам: Дональд Кослофф, RIII
440-259-3610
Электронная почта: [email protected]

Стивен Александер, NRR
301-415-2995
Эл. Почта: [email protected]

Вирджил Бистон, NRR
301-415-5774
Эл. Почта: [email protected]

Дэвид Скин, NRR
301-415-1174
Эл. Почта: dls @ nrc.gov


(инвентарный номер NUDOCS 9801200035)

Страница Последняя редакция / обновление 22 мая 2015 г.

% PDF-1.4 % 282 0 объект > эндобдж xref 282 103 0000000016 00000 н. 0000003722 00000 н. 0000003857 00000 н. 0000003893 00000 п. 0000004507 00000 н. 0000004694 00000 н. 0000004834 00000 н. 0000004973 00000 н. 0000005110 00000 н. 0000005247 00000 н. 0000005386 00000 п. 0000005523 00000 н. 0000005661 00000 п. 0000005798 00000 н. 0000005936 00000 н. 0000006073 00000 н. 0000006210 00000 н. 0000006348 00000 п. 0000006485 00000 н. 0000006622 00000 н. 0000006760 00000 н. 0000006897 00000 н. 0000007035 00000 п. 0000007172 00000 н. 0000007310 00000 н. 0000007447 00000 н. 0000007584 00000 н. 0000008963 00000 н. 0000010877 00000 п. 0000011028 00000 п. 0000011335 00000 п. 0000011610 00000 п. 0000011697 00000 п. 0000013056 00000 п. 0000014759 00000 п. 0000015150 00000 п. 0000016511 00000 п. 0000018228 00000 п. 0000018678 00000 п. 0000018790 00000 п. 0000018904 00000 п. 0000020094 00000 п. 0000021281 00000 п. 0000021344 00000 п. 0000021515 00000 п. 0000022705 00000 п. 0000023894 00000 п. 0000024649 00000 п. 0000025064 00000 п. 0000025507 00000 п. 0000026267 00000 п. 0000027953 00000 п. 0000028384 00000 п. 0000029743 00000 п. 0000030928 00000 п. 0000031866 00000 п. 0000032537 00000 п. 0000033135 00000 п. 0000033297 00000 п. 0000048219 00000 п. 0000048527 00000 н. 0000058603 00000 п. 0000076049 00000 п. 0000076307 00000 п. 0000076894 00000 п. 0000087489 00000 н. 0000097696 00000 п. 0000097926 00000 п. 0000098009 00000 п. 0000098064 00000 п. 0000098127 00000 п. 0000098584 00000 п. 0000109027 00000 н. /)] IA20 / rЌ) GS $ HɌlgcd] @ scS% Qeq3WVy # 6 + Jcd Z 3Ht $ YdžH / jS9 ڇ a S * ;:> = 5) /! -} E4p & َ D0G` yyq y! 0 ‰ R7Hq \ R ‘+ # brUZ_HɇQLQ + * 3>} Lz + fBiZ =, ‘KD = | 09B% GhrE # XCN | & hv # 2ħ

] h # RD

Сравнение защиты от электромагнитных помех и фильтрации | Astrodyne TDI

По мере того, как наш мир становится все более цифровым, а электронные устройства продолжают играть все более важную роль в нашей жизни, электромагнитные помехи или EMI становятся все более важной проблемой.Каждый, кто разрабатывает и производит электронные устройства или компоненты, должен заботиться об управлении электромагнитными помехами.

Экранирование и фильтрация — два основных метода достижения этой цели.

Когда электронные устройства принимают электромагнитные волны, они могут вызывать электрические токи в цепи, вызывая помехи и нарушая предполагаемую работу устройства. Если энергия будет особенно мощной, электронное устройство может быть повреждено. Даже если подаваемая мощность относительно мала, если она смешивается с радиоволнами, используемыми для связи, это может вызвать потерю приема, нарушение видео и аномальный шум в местах, где радиоволны слабые.

Качественная система электрического заземления может помочь свести к минимуму проблемы EMI.

Экраны, фильтры, конденсаторы и катушки индуктивности также могут снизить восприимчивость системы к помехам. При разработке электронных устройств добавление фильтров и экранов может помочь контролировать электромагнитные помехи. Оба типа компонентов обеспечивают подавление шума и могут использоваться без значительного увеличения размера или стоимости устройства.

В чем же разница между этими двумя методами подавления шума и когда их следует использовать? Читай дальше что бы узнать.

Что такое EMI?

EMI — это нарушение работы электронного продукта из-за воздействия электромагнитного поля. EMI также называют радиочастотными помехами (RFI), когда поле находится в радиочастотном спектре на электромагнитном частотном спектре. Электромагнитные волны, вызывающие помехи, называются электромагнитным шумом.

Еще один термин, связанный с EMI, — EMC, что означает электромагнитную совместимость. Этот термин относится к тому, насколько хорошо устройство работает в среде с электромагнитным шумом.

Устойчивость продукта к шуму, а также то, сколько он производит, влияют на его ЭМС.

Чтобы функционировать и позволить другим устройствам работать, каждый продукт должен работать даже при воздействии определенного уровня шума и не должен создавать электромагнитные помехи на уровнях, которые препятствуют работе устройств. В США EMI регулирует Федеральная комиссия по связи (FCC). Международный специальный комитет по радиопомехам регулирует его на международном уровне в некоторых секторах.

Многие другие отраслевые стандарты также устанавливают требования, связанные с электромагнитной совместимостью.

Цепи в персональных компьютерах создают электромагнитные поля в радиочастотном диапазоне. Дисплеи с электронно-лучевой трубкой также производят электромагнитную энергию в широком диапазоне частот.

Если вы используете беспроводной приемник одновременно с персональным компьютером, вы, скорее всего, услышите в приемнике радиочастотный шум. Беспроводные передатчики также создают электромагнитные поля, а передатчики средней и высокой мощности могут создавать поля, достаточно сильные, чтобы нарушить работу электронного оборудования, работающего в этом районе.Например, если вы используете радио- или телевизионный передатчик рядом с вещательной станцией, вы можете столкнуться с электромагнитными помехами.

Сильные радиочастотные поля могут привести к неправильной работе телефонов, компьютеров и даже некоторых медицинских устройств. Природные явления, такие как электрические бури, солнечные вспышки и статическое электричество, также могут вызывать электромагнитные помехи. Вот почему так важны экранирование и фильтрация электромагнитных помех.

Как работает экранирование от электромагнитных помех?

Что такое экранирование EMI-RFI?

Экранирование EMI-RFI означает окружение объекта металлической пластиной или какой-либо другой формой защиты для блокировки электромагнитных полей.Экраны EMI предназначены для предотвращения выхода излучаемого излучения за пределы определенной точки. Решения для защиты от электромагнитных помех могут как защитить устройство от внешнего излучения, так и предотвратить излучение этим устройством излучения, которое может создавать помехи другим устройствам.

Итак, что происходит, когда электромагнитная волна попадает на экран EMI?

Давайте взглянем на некоторые основные принципы защиты от электромагнитных помех.

Проводящая поверхность экрана отражает большую часть энергии электромагнитной волны в различных направлениях.То, как именно отражается волна, зависит от качества материала щита и фазы волны, когда она попадает в щит. Экран EMI также будет поглощать часть энергии электромагнитной волны, которая преобразуется в тепловую энергию.

В зависимости от задействованных уровней мощности эта тепловая энергия может потребовать управления температурным режимом.

Некоторые материалы для защиты от электромагнитных помех используются в качестве теплоотводов. В более мощных электронных схемах, особенно когда используются экранирующие механизмы, которые поглощают больше энергии, вам может потребоваться иметь отверстия в металлических листах экрана для отвода тепла.Размер этих отверстий не должен зависеть от длины волны удерживаемых волн, так как это может минимизировать эффективность экранирования электромагнитных помех.

Чтобы экранирующие материалы работали хорошо, им также необходимо хорошее заземление.

Как вы выбираете, какие экранирующие материалы EMI-RFI использовать?

Есть несколько важных параметров, включая толщину, вес, проводимость материала и стоимость инструмента.

Более толстые экраны обычно дают лучшие результаты, но это связано с увеличением веса конструкции.Большинство поставщиков защитных материалов обеспечивают показатели эффективности на разных частотах с используемыми частотными диапазонами материалов. Эти измерения помогают сравнить вес и плотность экранирующего материала с объемом экранирования, который он обеспечивает.

Другие менее распространенные, но все же потенциально полезные параметры включают объемное удельное сопротивление, диапазон рабочих температур и силу сжатия при использовании материала в качестве прокладки.

Примеры материалов, обычно используемых для защиты от электромагнитных помех, включают:

  • Медь
  • Алюминий
  • Нержавеющая сталь

В последнее время производители также начали использовать композитные материалы, такие как сетки и ткани.В этих решениях часто сочетается металл с полиэфирным материалом. Некоторыми преимуществами этих новых материалов являются их легкий вес и гибкость. Несмотря на небольшой вес, они все равно работают.

Применения защиты от электромагнитных помех, в которых используются эти материалы, включают экранирование печатных плат в корпусе оборудования и обеспечение вторичной защиты в медицинских учреждениях.

Доступны индивидуальные решения для защиты от электромагнитных помех, а также стандартные экранирующие продукты.

Как работает фильтрация электромагнитных помех?

Фильтры

EMI-RFI могут удалить нежелательные компоненты и пропустить необходимые компоненты в электрическом токе, протекающем в проводниках. Шум отводится на землю, поглощается или возвращается к своему источнику.

Фильтр электромагнитных помех состоит из компонентов двух типов — конденсаторов и катушек индуктивности, которые работают вместе для уменьшения электромагнитных помех:

  • Конденсаторы: Конденсаторы подавляют постоянный ток, благодаря которому в устройство передается значительное количество электромагнитных помех, но пропускают переменный ток.
  • Дроссели: Дроссели — это небольшие электромагниты, которые могут удерживать энергию в магнитном поле при прохождении через него электрического тока, уменьшая общее напряжение.

Конденсаторы, используемые в фильтрах электромагнитных помех, называются шунтирующими конденсаторами.

Они перенаправляют высокочастотный ток, который может вызвать помехи, от цепи и подавать его в катушки индуктивности, расположенные последовательно. Когда ток проходит через эту серию катушек индуктивности, его напряжение снижается. В идеале, катушки индуктивности будут сводить к нулю помехи, что также называется замыканием на землю.

Роль фильтров отличается от экранирования по нескольким причинам.

Давайте рассмотрим некоторые основные принципы фильтрации EMI.

Экраны

EMI обеспечивают экранирование всей конструкции или цепей.

С другой стороны, фильтры подавления электромагнитных помех

нацелены на конкретные источники шума. Щиты сдерживают электромагнитное излучение в пределах области, а также предотвращают попадание электромагнитного излучения в эту область. Фильтры контролируют электромагнитную энергию, проходящую через проводники. Они размещаются в определенных точках цепи для управления током на различных частотах.

В то время как экраны предназначены для контроля излучаемых электромагнитных помех, фильтры предназначены для контроля кондуктивного шума.

Правильный фильтр для использования зависит от механической конфигурации системы и частоты шума в системе, связанной с целевой частотой отправляемых сигналов. Вам нужно выбрать фильтр с конденсатором, который не будет обрезать сигналы, которые вы хотите пройти, но будет блокировать сигналы в частотном диапазоне шума, который вы пытаетесь устранить.

Вы можете использовать различные типы фильтров электромагнитных помех.

Правильный тип зависит от частот, которые вы хотите заблокировать, напряжения, с которым вы работаете, и других факторов. Обычно производители фильтров предоставляют подробную информацию о частоте среза фильтров, которые они предлагают.

Два основных типа фильтров электромагнитных помех включают однофазные и трехфазные фильтры:

  • Однофазные фильтры: Эти фильтры лучше всего подходят для небольшого оборудования, такого как бытовая электроника, бытовая техника, оборудование для фитнеса и некоторых промышленных применений, таких как источники питания, телекоммуникационное оборудование и оборудование для общественного питания.
  • Трехфазные фильтры: Эти фильтры могут блокировать более высокие уровни шума, чем однофазные фильтры, и полезны для более строгого подавления электромагнитных помех. Эти типы фильтров необходимы для приложений с большой мощностью, таких как медицинское оборудование, испытательное оборудование и различные типы промышленного оборудования, такие как инструменты и двигатели.

Другие классификации фильтров EMI включают:

  • Входные фильтры IEC, которые используются для приложений ввода питания.
  • фильтры постоянного тока, которые блокируют высокочастотные токи, но пропускают постоянный ток и токи низкой частоты.
  • Инверторные фильтры электромагнитных помех
  • , которые используются в приложениях, включающих преобразователи частоты или инверторные системы управления.
  • Проходные фильтры, которые используются в таких приложениях, как корпуса, базовые станции, мобильные убежища и коммутационное оборудование, и обеспечивают высокие вносимые потери от частот кГц до ГГц.

Многие фильтры предназначены для использования в определенном секторе или приложении, и доступны как стандартные, так и настраиваемые фильтры.

Также важно отметить, что, как и в случае с экранами, фильтры зависят от правильного заземления для правильной работы.

Когда лучше использовать фильтр электромагнитных помех вместо экрана?

Фильтры и экраны являются ценными инструментами для снижения электромагнитных помех. В некоторых случаях может быть лучше сосредоточиться на одном, чем на другом.

Часто использование обоих является наиболее эффективным решением.

Иногда при использовании методов экранирования EMI отверстия и зазоры в экранировании могут снизить его эффективность. Однако эти отверстия необходимы для снижения температуры. Это пример того, когда следует использовать фильтры электромагнитных помех в дополнение к экрану.

Экранирование полезно для ряда проблем EMI и может адекватно отражать EMI.

Однако фильтры

могут устранить электромагнитные помехи. Фильтры могут решать многие проблемы, связанные с проникновением через экраны, а также входы и выходы электрической системы, которые обычно являются наиболее уязвимыми точками экранированной системы. Фильтры наиболее эффективны в этих местах.

Использование методов фильтрации электромагнитных помех, а также подавления переходных процессов на интерфейсе экранированного корпуса является высокоэффективным способом защиты от проблем совместимости.

Размещение фильтров и фильтрованных разъемов на входных и выходных интерфейсах системы может помочь устранить электромагнитные помехи как от внутренних, так и от внешних источников на интерфейсе разъема. Такое размещение направляет нежелательную энергию в заземленный экранированный корпус, что делает его оптимальным местом для устранения высокочастотного шума и устранения проблем, связанных с электромагнитными помехами.

Фильтры защищают от шума, проходящего через проводники, а экраны уменьшают шум, проходящий через пространство.Однако проводник, через который проходит шум, также может действовать как антенна. Когда проводник работает как антенна, два типа проводимости преобразуются друг в друга из-за антенны.

Вот почему — чтобы полностью исключить шум — важно использовать и экраны, и фильтры в одном месте.

Например, если экран используется для блокировки пространственной проводимости, и проводник проходит через экран, этот проводник улавливает шум и втягивает его внутрь и наружу экрана, что приводит к эмиссии шума.По этой причине нельзя исключить пространственную проводимость одним экраном.

Аналогичным образом, при использовании фильтра для защиты от проводимости через проводник, провода, размещенные до и после фильтра, могут быть связаны друг с другом посредством пространственной проводимости. Из-за этого фильтр не может полностью перекрыть проводимость самостоятельно.

Однако, если вы используете и механизм экранирования электромагнитных помех, и фильтр в одном месте, вы можете полностью исключить как пространственную, так и проводящую проводимость, устраняя шум.

Если проводник, расположенный между источником шума и фильтром, короткий, он не будет иметь значительного влияния в качестве проводника. Затем вы можете игнорировать проблему проводника, действующего как антенну, и эффективно устранять шум, используя только фильтр. По сути, если вы можете разместить фильтр значительно ближе к источнику шума, вы можете подавить его с помощью простого фильтра, и использование экрана не обязательно.

Решения для фильтрации электромагнитных помех от Astrodyne TDI

Более 50 лет Astrodyne TDI занимается исследованиями, разработкой, совершенствованием и предоставлением фильтров электромагнитных помех для широкого спектра применений в различных секторах, включая коммерческий, промышленный, военный и медицинский секторы.За наш многолетний опыт мы заработали репутацию надежного партнера, который помогает компаниям создавать мощные, надежные продукты и соблюдать соответствующие стандарты в области электроники и энергетики.

В зависимости от потребностей вашего оборудования и отрасли, вам может понадобиться либо недорогой серийный фильтр электромагнитных помех, либо прочный, высокопроизводительный специализированный фильтр для применения в медицине, авиакосмической отрасли, военном секторе или на другом рынке.

Astrodyne TDI предлагает широкий выбор высококачественных фильтров электромагнитных помех.У нас также есть собственный инженерный и конструкторский опыт, необходимый для предоставления вам индивидуального решения EMI, отвечающего требованиям вашего оборудования, а также отраслевым стандартам и нормам.

Наши решения по фильтрам электромагнитных помех включают в себя все, от небольших однофазных компонентов до промышленных трехфазных фильтров. Мы предлагаем фильтры EMI постоянного тока, сквозные фильтры, входные фильтры IEC, инверторные фильтры EMI, компоненты подавления, фильтры гармоник и многое другое.

У нас также есть большой запас источников питания для различных областей применения.Наши блоки питания варьируются от 5 Вт до 16,5 кВт и используются в качестве основы для более крупных систем мощностью до 500 кВт. Большая часть нашего стандартного инвентаря имеет одобрение международных агентств таких организаций, как Underwriters Laboratories (UL), Conformité Européenne (CE) и Canadian Standards Association (CSA).

Чтобы узнать больше о наших стандартных и настраиваемых фильтрах электромагнитных помех, свяжитесь с нами или запросите ценовое предложение сегодня.

Мы можем помочь вашему оборудованию и вашему бренду завоевать репутацию производителя мощности и надежности.С Astrodyne TDI у вас теперь есть мощность.

IRJET-Запрошенная вами страница не найдена на нашем сайте

IRJET приглашает статьи из различных инженерных и технологических и научных дисциплин для Тома 8, выпуск 3 (март-2021)

Отправить сейчас


IRJET Vol-8, выпуск 3 , Март 2021 г. Публикация в процессе …

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для свою систему управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 3 (март-2021)

Отправить сейчас


IRJET Vol-8, выпуск 3, март 2021 Публикация в процессе … Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 3 (март-2021)

Отправить сейчас


IRJET Vol-8, выпуск 3, март 2021 Публикация в процессе … Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 3 (март-2021)

Отправить сейчас


IRJET Vol-8, выпуск 3, март 2021 Публикация в процессе … Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 3 (март-2021)

Отправить сейчас


IRJET Vol-8, выпуск 3, март 2021 Публикация в процессе … Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 3 (март-2021)

Отправить сейчас


IRJET Vol-8, выпуск 3, март 2021 Публикация в процессе … Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 3 (март-2021)

Отправить сейчас


IRJET Vol-8, выпуск 3, март 2021 Публикация в процессе … Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 3 (март-2021)

Отправить сейчас


IRJET Vol-8, выпуск 3, март 2021 Публикация в процессе … Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


Однофазные асинхронные двигатели



ЦЕЛИ

• описать основные операции следующих типов асинхронных двигателей:

  • Двухфазный двигатель (одно и два напряжения)
  • конденсаторный пуск, асинхронный двигатель (одинарное и двойное напряжение)
  • конденсаторный пуск, конденсаторный двигатель с одним конденсатором
  • конденсаторный пуск, конденсаторный двигатель с двумя конденсаторами
  • конденсаторный пуск, конденсаторный двигатель с автотрансформатором с один конденсатор

• сравните двигатели в списке цели 1 в отношении запуска крутящий момент, скоростные характеристики и коэффициент мощности при номинальной нагрузке.

Два основных типа однофазных асинхронных двигателей — это двухфазные электродвигатели. двигатель и конденсаторный двигатель. Оба типа однофазных асинхронных двигателей обычно имеют дробную оценку мощности. Используется двигатель с расщепленной фазой для работы с такими устройствами, как стиральные машины, небольшие водяные насосы, масляные горелки и другие типы небольших нагрузок, не требующие сильного пускового момента. Конденсаторный двигатель обычно используется с устройствами, требующими сильного пуска. крутящий момент, например, в холодильниках и компрессорах.Оба типа однофазных асинхронные двигатели относительно невысоки по стоимости, имеют прочную конструкцию; и демонстрируют хорошие производственные показатели.

КОНСТРУКЦИЯ ИНДУКЦИОННОГО ДВИГАТЕЛЯ РАЗДЕЛЕННОЙ ФАЗЫ

Асинхронный двигатель с расщепленной фазой в основном состоит из статора, ротора, центробежный выключатель, расположенный внутри двигателя, корпус с двумя торцевыми щитками подшипники, поддерживающие вал ротора, и стальная литая рама в к которому прижимается сердечник статора.Два торцевых щита прикручены к стальной литой каркас. Подшипники, расположенные в торцевых щитках, удерживают ротор. центрирован внутри статора, так что он будет вращаться с минимальным трением, без ударов и трения сердечника статора.

Статор двигателя с расщепленной фазой состоит из двух обмоток, удерживаемых на месте. в пазах стального многослойного сердечника. Обе обмотки состоят из изолированных катушки распределены и соединены в две обмотки, разнесенные на 90 электрических градусы друг от друга.Одна обмотка — это бегущая обмотка, а вторая обмотка. это пусковая обмотка.

Ходовая обмотка состоит из изолированного медного провода. Он находится по адресу дно пазов статора. Сечение провода в пусковой обмотке составляет меньше, чем у бегущей обмотки. Эти катушки размещены сверху катушек ходовой обмотки в ближайших к ротору пазах статора.

Пусковая и рабочая обмотки подключены параллельно к однофазная линия при пуске двигателя.После того, как мотор разгоняется до скорости, равной примерно от двух третей до трех четвертей номинальной скорости, пусковая обмотка автоматически отключается от линии с помощью центробежного переключателя.

Ротор двигателя с расщепленной фазой имеет такую ​​же конструкцию, как и трехфазного асинхронного двигателя с короткозамкнутым ротором. То есть ротор состоит цилиндрического сердечника, собранного из стальных пластин. Медные прутки устанавливается у поверхности ротора.Прутки припаиваются или привариваются к два медных концевых кольца. В некоторых двигателях ротор выполнен из литого алюминия. единица.

илл. 1 показан типичный короткозамкнутый ротор для однофазной индукции. мотор. Этот тип ротора требует минимального обслуживания, так как нет обмотки, щетки, контактные кольца или коммутаторы. Обратите внимание на рисунок, что роторные вентиляторы являются частью ротора с короткозамкнутым ротором. Эти ротор вентиляторы поддерживают циркуляцию воздуха через двигатель, чтобы предотвратить большое увеличение по температуре обмоток.


ил. 1 Ротор с короткозамкнутым ротором из литого алюминия.

Центробежный выключатель установлен внутри двигателя. Центробежный переключатель отключает пусковую обмотку после достижения ротором заданного скорость, обычно от двух третей до трех четвертей номинальной скорости. Выключатель состоит из неподвижной части и вращающейся части. Стационарная часть устанавливается на одном из торцевых щитов и имеет два контакта, которые действуют как однополюсный однонаправленный переключатель.Вращающаяся часть центробежного переключатель установлен на роторе.

Простая схема работы центробежного выключателя приведена в рисунок 2. Когда ротор остановлен, давление пружины на оптоволоконном кольце вращающейся части удерживает контакты замкнутыми. Когда ротор достигает примерно трех четвертей своей номинальной скорости, центробежное действие ротора заставляет пружину ослаблять давление на оптоволоконном кольце и контакты размыкаются.В результате пусковая обмотка цепь отключена от линии. ill 3 — типичный центробежный переключатель, используемый с асинхронными двигателями с расщепленной фазой.


ил. 2 Схема показывает работу центробежного выключателя: ротор в состоянии покоя, центробежный выключатель замкнут; ротор с нормальной скоростью центробежный сила, установленная в механизме переключателя, заставляет воротник двигаться и позволяет переключать контакты для открытия. ил. 3 Центробежный выключатель с переключатель удален.

Принцип работы

Когда цепь к асинхронному двигателю с расщепленной фазой замкнута, оба пусковая и ходовая обмотки запитываются параллельно. Потому что бег обмотка состоит из проволоки относительно большого сечения, ее сопротивление составляет низкий. Напомним, что ходовая обмотка размещена внизу прорезей. сердечника статора. В результате индуктивное сопротивление этой обмотки сравнительно высока из-за массы окружающего его железа.Поскольку бегущая обмотка имеет низкое сопротивление и высокое индуктивное сопротивление, ток бегущей обмотки отстает от напряжения примерно на 90 электрические степени.

Пусковая обмотка состоит из проволоки меньшего сечения; следовательно, его сопротивление высокое. Поскольку обмотка размещена в верхней части статора пазов, масса железа, окружающего его, сравнительно мала, а индуктивная реактивное сопротивление низкое. Следовательно, пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление.В результате ток пускового обмотка почти синфазна с напряжением.

Ток ходовой обмотки отстает от тока пусковой обмотки. примерно на 30 электрических градусов. Эти два тока разнесены на 30 электрических градусы друг от друга проходят через эти обмотки и вращающееся магнитное поле разработан. Это поле распространяется по внутренней части сердечника статора. Скорость магнитного поля определяется с использованием той же процедуры. дано для трехфазного асинхронного двигателя.

Если асинхронный двигатель с расщепленной фазой имеет четыре полюса на обмотках статора и подключен к однофазному источнику с частотой 60 Гц, синхронная скорость Оборотного поля:

S = 120 x f / 4

S = синхронная скорость

f = частота в герцах

S = 120 x 60/4 = 1800 об / мин

Поскольку вращающееся поле статора движется с синхронной скоростью, оно сокращает медные стержни ротора и индуцирует напряжение в стержнях беличьей клетки обмотка.Эти наведенные напряжения создают токи в стержнях ротора. Как в результате создается поле ротора, которое реагирует с полем статора на развивают крутящий момент, который заставляет ротор вращаться.

Когда ротор разгоняется до номинальной скорости, центробежный выключатель отключается. пусковая обмотка от линии. Затем двигатель продолжает работать. используя только бегущую обмотку. На рисунке 4 показаны соединения. центробежного выключателя в момент запуска двигателя (выключатель замкнут) и когда двигатель достигает своей нормальной скорости вращения (выключатель разомкнут).

Двигатель с расщепленной фазой должен иметь под напряжением как пусковую, так и рабочую обмотки. при запуске мотора. Двигатель напоминает двухфазный асинхронный двигатель. в котором токи этих двух обмоток составляют примерно 90 электрических градусов не в фазе. Однако источник напряжения однофазный; следовательно, двигатель называется двухфазным двигателем, потому что он запускается как двухфазный двигатель от однофазной сети. Как только двигатель разгонится до значения, близкого к его номинальная частота вращения, он работает на ходовой обмотке как однофазный индукционный мотор.

Если контакты центробежного переключателя не замыкаются при остановке двигателя, тогда цепь пусковой обмотки все еще разомкнута. Когда цепь двигателя снова запитана, двигатель не запускается. Двигатель должен иметь как пусковая и рабочая обмотки находятся под напряжением в момент замыкания цепи двигателя для создания необходимого пускового момента. Если мотор не запускается, но просто издает низкий гудящий звук, затем цепь пусковой обмотки размыкается. Либо контакты центробежного переключателя не замкнуты, либо есть обрыв катушек пусковых обмоток.Это небезопасное состояние. Бегущая обмотка потребляет чрезмерный ток и, следовательно, двигатель должен быть отключен от сети.


ил. 22-4 Подключения центробежного переключателя при пуске и работе. Асинхронный двигатель с расщепленной фазой: центробежный переключатель размыкается примерно при На 75% от номинальной скорости пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление. Ходовая обмотка имеет низкое сопротивление и высокое индуктивное сопротивление.(обеспечивает фазовый угол 45-50 градусов для запуска крутящий момент.)

Если механическая нагрузка слишком велика при запуске двигателя с расщепленной фазой, или если напряжение на клеммах двигателя низкое, двигатель может не достичь скорости, необходимой для работы центробежного переключателя.

Пусковая обмотка предназначена для работы от сетевого напряжения в течение всего три или четыре секунды, пока двигатель ускоряется к его номинальной скорости.Важно, чтобы пусковая обмотка была отключена. от линии центробежным выключателем, как только двигатель набирает обороты до 75 процентов номинальной скорости. Работа двигателя при его запуске обмотка более 60 секунд может привести к сгоранию изоляции на обмотке. или вызвать перегорание обмотки.

Чтобы изменить направление вращения двигателя, просто поменяйте местами провода пусковая обмотка (5). Это приводит к тому, что направление поля устанавливается обмотками статора на обратное.В результате направление вращения обратное. Направление вращения электродвигателя с расщепленной фазой также можно поменять местами, поменяв местами два провода ходовой обмотки. Обычно, пусковая обмотка используется для реверса.

Однофазные двигатели часто имеют двойное номинальное напряжение: 115 В и 230 В. вольт. Для получения этих номиналов ходовая обмотка состоит из двух секций. Каждая секция обмотки рассчитана на 115 вольт. Один участок бега обмотка обычно обозначается T и T, а другая часть обозначается T и T. Если двигатель должен работать от 230 В, две обмотки по 115 В. соединены последовательно через линию 230 В.Если мотор должен быть работает от 115 вольт, затем две 115-вольтовые обмотки подключаются в параллельно линии 115 В.


ил. 5 Изменение направления вращения при двухфазной индукции мотор.

Пусковая обмотка обычно состоит только из одной обмотки на 115 В. В выводы пусковой обмотки обычно имеют маркировку T и T. Если двигатель должен работать от 115 вольт, обе секции ходовой обмотки включены параллельно пусковой обмотке (6).

Для работы от 230 вольт в клемме заменены соединительные перемычки. коробку так, чтобы две 115-вольтовые секции ходовой обмотки были соединены последовательно по линии 230 В (7). Обратите внимание, что 115 вольт пусковая обмотка подключена параллельно одной секции ходовой обмотка. Падение напряжения на этом участке ходовой обмотки равно 115 вольт, и напряжение на пусковой обмотке тоже 115 вольт.


ил.6 Двигатель с двойным напряжением, подключенный на 115 В.


ил. 7 Двигатель с двойным напряжением, подключенный на 230 вольт.


ил. 8 Обмотка двухвольтного двигателя с двумя пусковая и две ходовые обмотки

Некоторые двухфазные двигатели с двойным напряжением имеют пусковую обмотку с двумя секции, а также двухсекционная ходовая обмотка. Бегущая обмотка секции обозначены T1 и T2 для одной секции и T3 и T4 для другой. раздел.Одна часть пусковой обмотки имеет маркировку Т5 и Т6, а Вторая секция пусковой обмотки имеет маркировку Т7 и Т8.

Национальная ассоциация производителей электрооборудования (NEMA) имеет цветовую кодировку. терминальные выводы. Если используются цвета, их следует кодировать следующим образом: Т1 — синий; Т2 — белый; Т3 — оранжевый; Т4 — желтый; Т5 — черный; и Т6 — красный.

илл. 7 показано расположение обмоток для двухвольтного двигателя с две пусковые обмотки и две ходовые обмотки.Правильные соединения для режима 115 В и для режима 230 В приведены в таблице проиллюстрировано в 8.

У асинхронного двигателя с расщепленной фазой очень хорошее регулирование скорости. Это имеет быстродействие от холостого хода до полной нагрузки, аналогичное этому трехфазного асинхронного двигателя с короткозамкнутым ротором. Процент скользит по большинству фракционные двигатели с разделенной фазой в лошадиных силах составляют от 4 до 6 процентов.

Пусковой момент двигателя с расщепленной фазой сравнительно низкий.В низкое сопротивление и высокое индуктивное сопротивление в цепи бегущей обмотки, а также высокое сопротивление и низкое индуктивное реактивное сопротивление в пусковой обмотке цепи приводят к тому, что два значения тока будут значительно меньше 90 электрических градусы друг от друга. Токи пусковой и ходовой обмоток во многих электродвигатели с расщепленной фазой имеют сдвиг по фазе всего на 30 электрических градусов с каждым Другой. В результате поле, создаваемое этими токами, не развивается. сильный пусковой момент.

КОНДЕНСАТОР ПУСК, ВПУСКНОЙ ДВИГАТЕЛЬ

Конструкция конденсаторного пускового двигателя почти такая же, как и у двигателя. асинхронного двигателя с расщепленной фазой. Однако для конденсаторного пускового двигателя конденсатор включен последовательно с пусковыми обмотками. Конденсатор обычно устанавливается в металлическом кожухе наверху двигателя. Конденсатор может быть установлен в любом удобном внешнем положении на раме двигателя и, в некоторых случаях может быть установлен внутри корпуса двигателя.Конденсатор обеспечивает более высокий пусковой крутящий момент по сравнению со стандартной расщепленной фазой мотор. Кроме того, конденсатор ограничивает пусковой выброс тока. до более низкого значения, чем у стандартного двигателя с расщепленной фазой.

Асинхронный двигатель с конденсаторным пуском применяется в холодильных установках, компрессорах, масляные горелки, а также для небольшого машинного оборудования, а также для приложений которые требуют сильного пускового момента.


ил.9 Два соединения ходовой обмотки и одна пусковая обмотка схема подключения.

Принцип работы

Когда конденсаторный пусковой двигатель подключен к более низкому напряжению и запущен, как ходовая, так и пусковая обмотки подключены параллельно через линейное напряжение при замыкании центробежного выключателя. Пусковая обмотка, однако он подключен последовательно с конденсатором. Когда мотор достигает при значении 75 процентов от его номинальной скорости центробежный выключатель размыкает и отключает пусковую обмотку и конденсатор от сети.В тогда двигатель работает как однофазный асинхронный двигатель, используя только работающий обмотка. Конденсатор используется для улучшения пускового момента и не улучшает коэффициент мощности двигателя.

Для создания необходимого пускового момента вращающееся магнитное поле должно настраиваться обмотками статора. Пусковой ток обмотки приведет к рабочий ток обмотки на 90 электрических градусов, если конденсатор, имеющий правильная емкость подключена последовательно с пусковой обмоткой.В результате магнитное поле, создаваемое обмотками статора, почти идентична двухфазному асинхронному двигателю. Пусковой момент для двигателя с конденсаторным пуском, таким образом, намного лучше, чем у стандартного двухфазный двигатель.

Неисправные конденсаторы — частая причина неисправностей в конденсаторах. пусковые, асинхронные двигатели. Возможны следующие отказы конденсаторов:

• конденсатор может закоротить сам себя, о чем свидетельствует более низкий пусковой ток. крутящий момент.

• конденсатор может быть «открыт», в этом случае цепи пусковой обмотки будет открыт, в результате чего двигатель не запустится.

• конденсатор может вызвать короткое замыкание и вызвать срабатывание предохранителя для цепь электродвигателя продувается. Если номиналы предохранителей достаточно высоки и не прерывают подачу питания на двигатель достаточно скоро, запуск обмотка может перегореть.

• пусковые конденсаторы могут вызвать короткое замыкание, если двигатель многократно включается и выключается за короткий промежуток времени.Чтобы предотвратить выход конденсатора из строя, многие производители двигателей рекомендуют запускать двигатель с конденсаторным пуском. не более 20 раз в час. Поэтому этот тип двигателя используется только в тех приложениях, где относительно мало запусков в коротком временной период.


ил. 10 Подключения для конденсаторного пуска, асинхронный двигатель

Скоростные характеристики двигателя с конденсаторным пуском очень хорошие. Прирост в процентах скольжения от холостого хода до полной нагрузки от 4 процентов до 6 процентов.В этом случае быстродействие такое же, как у стандартного. двухфазный двигатель.

Провода цепи пусковой обмотки поменяны местами на реверс направление вращения конденсаторного пускового двигателя. В результате направление вращения магнитного поля, создаваемого обмотками статора в сердечнике статора меняется на обратное, и вращение ротора меняется на противоположное. (См. Рисунок 9, где показано подключение проводов в обратном направлении.)

ил 10 — схема подключения конденсаторного пускателя. двигатель до того, как провода пусковой обмотки меняются местами для реверсирования направление вращения ротора.Схема на рисунке 11 показывает схемы соединений двигателя после замены выводов пусковой обмотки для изменения направления вращения.

Второй способ изменения направления вращения пускового конденсатора Двигатель должен поменять местами два провода ходовой обмотки. Однако этот метод редко используется.

Конденсаторный пуск, асинхронные двигатели часто имеют двойное напряжение 115 вольт и 230 вольт. Подключения для конденсаторного пускового двигателя такие же, как у асинхронных двигателей с расщепленной фазой.


ил. 11 Соединения для реверсирования конденсаторного пуска, индукционные запустить мотор.

КОНДЕНСАТОР ПУСК, КОНДЕНСАТОР РАБОТАЮЩИЙ ДВИГАТЕЛЬ

Конденсаторный пуск, конденсаторный двигатель аналогичен конденсаторному пуску, асинхронный двигатель, за исключением того, что пусковая обмотка и конденсатор постоянно включен в цепь. У этого мотора очень хороший пуск крутящий момент. Коэффициент мощности при номинальной нагрузке составляет почти 100 процентов или единицу. из-за того, что в двигателе постоянно используется конденсатор.

Для этого типа двигателя существует несколько различных конструкций. Один тип конденсаторный пуск, конденсаторный двигатель имеет две обмотки статора, которые разнесены на 90 электрических градусов. Подключается основная или ходовая обмотка непосредственно через номинальное сетевое напряжение. Конденсатор подключен последовательно с пусковой обмоткой и эта последовательная комбинация также связана по номинальному сетевому напряжению. Центробежный переключатель не используется, потому что пусковая обмотка находится под напряжением в течение всего периода работы мотор.

илл. 12 иллюстрирует внутренние соединения для запуска конденсатора, конденсаторный двигатель запускает с использованием одного значения емкости.


ил. 12 Разъемы для конденсаторного пуска, конденсаторного двигателя.

Чтобы реверсировать вращение этого двигателя, проводные соединения пускового обмотку необходимо поменять местами. Этот тип конденсаторного запуска, конденсаторный запуск двигатель работает бесшумно и используется на масляных горелках, вентиляторах и небольших деревообрабатывающие и металлообрабатывающие станки.

Второй тип конденсаторного запуска, конденсаторный двигатель имеет два конденсатора. 13 — схема внутренних соединений двигателя. В в момент запуска двигателя два конденсатора включаются параллельно. Когда двигатель достигает 75 процентов номинальной скорости, центробежный переключатель отключает конденсатор большей емкости. Затем двигатель работает с меньший конденсатор подключен только последовательно с пусковой обмоткой.


ил.13 Подключения для конденсаторного пуска, конденсаторного двигателя: МАЛЫЙ КОНДЕНСАТОР, ИСПОЛЬЗУЕМЫЙ ДЛЯ ЗАПУСКА И РАБОТЫ; КОНДЕНСАТОР БОЛЬШОГО РАЗМЕРА ДЛЯ ЗАПУСК.

Этот тип двигателя имеет очень хороший пусковой момент, хорошую регулировку скорости и коэффициент мощности почти 100 процентов при номинальной нагрузке. Заявки на к этому типу двигателей относятся топочные топки, холодильные агрегаты и компрессоры.

Третий тип конденсаторного запуска, конденсаторный двигатель с автотрансформатором. с одним конденсатором.Этот двигатель имеет высокий пусковой крутящий момент и высокую рабочую фактор силы. Рис. 14 представляет собой схему внутренних соединений для этот мотор. При запуске двигателя центробежный переключатель подключает обмотку 2 в точку А на отводном автотрансформаторе. Поскольку конденсатор подключенный через максимальное количество витков трансформатора, он получает максимальное напряжение вывод при запуске. Таким образом, конденсатор подключается с номиналом примерно 500 вольт. В результате в обмотке возникает большое значение ведущего тока. 2 и развивается сильный пусковой крутящий момент.

Когда двигатель достигает примерно 75 процентов номинальной скорости, центробежный выключатель отключает пусковую обмотку от точки А и снова подключает эту обмотку к точке B на автотрансформаторе. Применяется меньшее напряжение к конденсатору, но двигатель работает с обеими обмотками под напряжением. Таким образом, конденсатор поддерживает коэффициент мощности, близкий к единице, при номинальной нагрузке.

Пусковой момент этого двигателя очень хороший, а регулировка скорости удовлетворительно.Приложения, требующие этих характеристик, включают большие холодильники и компрессоры.


ил. 14 Подключения для конденсаторного запуска, конденсаторного двигателя с автотрансформатором

НАЦИОНАЛЬНЫЙ КОД ЭЛЕКТРИЧЕСКОГО КОДА

Раздел 430-32 (b) (1) Национального электротехнического кодекса гласит, что любые двигатель мощностью не более одной лошадиных сил, который запускается вручную и находится в пределах вид с места стартера, считается защищенным от перегрузка устройством максимального тока, защищающим проводники ответвления схема.Это устройство максимального тока ответвления не должно быть больше указанного. в статье 430, части D (Ответвительная цепь двигателя, короткое замыкание и замыкание на землю). Защита). Исключением является то, что любой такой двигатель можно использовать при напряжении 120 вольт. или менее в ответвленной цепи, защищенной не более 20 ампер.

Считается, что расстояние более 50 футов находится вне поля зрения стартовая локация. Раздел 430-32 (c) охватывает двигатели мощностью в одну лошадиную силу или меньше, запускаются автоматически, вне поля зрения со стартовой точки или стационарно установлен.

Раздел 430-32 (c) (1) гласит, что любой двигатель мощностью в одну или менее лошадиных сил который запускается автоматически, должен иметь отдельное устройство максимального тока который реагирует на ток двигателя. Этот блок перегрузки должен быть установлен отключиться при не более 125% номинального тока полной нагрузки мотор для моторов с маркировкой на превышение температуры не более 40 градусов Цельсия или с коэффициентом обслуживания не менее 1,15 (1,15 или выше) и не более 115 процентов для всех других типов двигателей.

РЕЗЮМЕ

Однофазный асинхронный двигатель — один из наиболее часто используемых двигателей в жилых и легких коммерческих целях. Каждое приложение подскажет правильный мотор стиль для использования. Все двигатели используют концепцию использования одной фазы или одной фазы. синусоиды, и смещение эффектов токов через катушки на создать движущееся магнитное поле. Расщепленная фаза и конденсаторный пуск электродвигатель использует пусковой выключатель для отключения пусковых обмоток от линии, когда двигатель набирает скорость.Двухконденсаторные двигатели используют несколько конденсаторов или варианты конденсаторов двух номиналов для создания пусковой и работающей цепи. Все те же правила NEC, которые применяются к трехфазному двигатели по-прежнему применимы к однофазным двигателям. Есть много исключений, которые относятся только к двигателям малой мощности.

ВИКТОРИНА

1. Перечислите основные части асинхронного двигателя с расщепленной фазой.

2. Что произойдет, если контакты центробежного переключателя не смогут повторно замкнуться, когда мотор останавливается?

3.Объясните, как направление вращения асинхронного двигателя с расщепленной фазой обратный.

4. Асинхронный двигатель с расщепленной фазой имеет номинальное значение двойного напряжения 115/230. вольт. Двигатель имеет две ходовые обмотки, каждая из которых рассчитана на 115 вольт и одну пусковую обмотку на 115 вольт. Нарисуйте схематическую диаграмму этого асинхронного двигателя с расщепленной фазой, подключенного для работы от 230 В.

5. Нарисуйте принципиальную схему подключения асинхронного двигателя с расщепленной фазой. в вопросе 4 подключен для работы от 115 вольт.

6. Асинхронный двигатель с расщепленной фазой имеет номинальное значение двойного напряжения 115/230. вольт. Двигатель имеет две ходовые обмотки, каждая из которых рассчитана на 115 вольт. Кроме того, есть две пусковые обмотки, и каждая из этих обмоток рассчитан на 115 вольт. Нарисуйте принципиальную схему подключения этой разделенной фазы. асинхронный двигатель подключен для работы от 230 В.

7. В чем основное отличие асинхронного двигателя с расщепленной фазой от конденсаторного двигателя с индукционным пуском?

8.Если центробежный выключатель не открывается при ускорении двигателя с расщепленной фазой до его номинальной скорости, что будет с пусковой обмоткой?

9. Какое ограничение у конденсаторного пуска асинхронного двигателя?

10. Вставьте правильное слово или фразу для завершения каждого из следующих заявления.

а. Двигатель мощностью не более одной лошадиной силы, который запускается вручную и который находится в пределах видимости от стартовой точки, считается защищенной ______

г.Двигатель мощностью не более одной лошадиной силы, запускаемый вручную, считается в пределах видимости места стартера, если расстояние не превышает _________

г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *