Схема зануления и заземления: Страница не найдена

Содержание

Наглядная схема распределительного электрощита частного дома с ошибками зануления

 

Схема распределительного электрощита частного дома

Здравствуйте читатели сайта Elesant.ru. Сегодня в разделе «Наглядные схемы электропроводки» представляю наглядную схему распределительного щита частного дома с сауной. Электропитание трехфазное(380 Вольт) без защитного проводника.

Отсутствие в схеме защитного проводника это основной и недопустимый недостаток этой схемы. Защитный проводник это провод, выполняющий роль защитного заземления или зануления.

Примечание: Заземление и зануление открытых частей электроустановок выполняют одну и ту же функцию. Они защищают от поражения электрическим током в случае повреждения изоляции проводника. Подкулючение защитных проводов заземления (зануления) должно быть осуществлено таким образом, чтобы при замыкании фазного провода на любой открытый токопроводящий корпус возникало короткое замыкание, обеспечивающее отключение автомата защиты.

Заземление и зануление,в чем разница

Возникает вопрос: чем отличается заземление от зануления. По функциональности нечем. И заземление и зануление защищают от поражения электрическим током. Разница, только в месте исходного подключения защитных проводов заземления и зануления (смотри рисунок).

При электропитании 380 Вольт защитное заземление электроустановок требуется выполнять в любом случае. (ГОСТ 12.1.030)

Во всех помещениях открытые проводящие части стационарных электроприемников, таких как электроплита, кондиционер, нагреватели нужно подключать к нулевому защитному проводнику. (ПУЭ 7.1.68)А в данной схеме такого проводника нет.

В электросетях трехфазного тока с напряжением питания 380 вольт электроустановки нужно занулять обязательно.

Если говорить об электропроводке частного дома, питающегося от воздушной линии с глухозаземленной нейтралью (TN)защитный проводник подключается к главной заземляющей шине, которую лучше установить во вводном распределительном устройстве дома (ВРУ).

Как видно из представленной схемы, на ней нет защитного проводника. Что является недопустимой ошибкой при трехфазном электропитании.

Использование УЗО в электрической сети

Отмечу также: В этой схеме для защиты групповых сетей стоят УЗО (устройства защитного отключения). Это правильно. Только при таком соединении это должны быть не УЗО, а дифференциальные автоматы защиты (УЗО-Д). Дифференциальный автомат совмещает в себе функцию автомата для защиты от сверхтоков и функцию УЗО для защиты от токов утечки.

На этом все! Относитесь к электрике с почтением! ©Elesant.ru

Другие Электросхемы и Электропроекты:

  • мая 2012

  • июня 2012

  • октября 2012

  • ноября 2012

 

 

Заземление и зануление — в чем разница

Каждого человека интересует вопрос безопасности в его собственном доме. Особенно когда речь касается обычных электроприборов. Маленькой поломки или небольшого замыкания достаточно, чтобы они превратились в смертельно опасные предметы.

Особую опасность в доме представляют такие приборы, как бойлер и стиральная машина. Дело в том, что они постоянно контактируют с водой. А она, как известно, лучше всего передаёт электрический ток. При наихудшем развитии ситуации вам даже не нужно будет касаться корпуса, достаточно ступить в лужу воды.

Последствия от удара тока более чем серьёзные вплоть до остановки сердца. Именно поэтому нужно сделать всё возможное, чтобы каждый бытовой прибор в доме был безопасным. Сейчас есть два основных метода защиты: зануление и заземление. Чем они отличаются друг от друга, и в каких случаях стоит применять первый метод, а в каких второй, разберёмся ниже.

Средства защиты

В некоторых случаях пробки и другие защитные устройства не срабатывают при возникшей неисправности. Результатом подобного становится нарушение изоляции. В результате металлические элементы корпуса становятся отличными проводниками, неся огромную опасность.

К счастью, есть зануление и заземление. И та и другая методики позволяют защитить организм человека от поражения электричеством. Тем не менее техническая реализация данных методов защиты электрических приборов серьёзно отличается.

Некоторые части электрических приборов согласно особенностям установки находятся под напряжением. В таком случае производители используют специальные кожухи. Возможны и другие меры защиты, такие как барьеры и сетчатые заграждения. Тем не менее без заземления и зануления обойтись не получится. Они представляют собой крайнюю границу защиты, и чтобы понять, где что нужно применять, необходимо знать, чем они отличаются.

Заземление

Чтобы понять, чем отличается заземление от зануления, начнём с первого. Данная система защиты от поражения электричеством устанавливает цепь между прибором и землёй. Результат действия подобной схемы более чем действенный — напряжение с металлических элементов уходит в землю при случайном прорыве изоляции. Вы можете совершенно спокойно прикасаться к технике, не боясь себе навредить.

Важно! Главное, чем отличается заземление, от весьма похожего на слух зануления — это работа в сетях, где изолирована нейтраль.

После того как вы сделаете заземление. Ток будет уходить по проводнику в землю, не создавая какой-либо опасности для человека. Этим, собственно, и отличается данный метод защиты от зануления.

Заземляющая часть должна иметь минимальный показатель сопротивления. Это необходимо для того, чтобы ток без каких-либо препятствий входил в землю. Это ещё один важный фактор, которым отличается заземление.

Заземление также отличается от зануления тем, что значительно увеличивает аварийный ток, который подаётся при возникновении замыкания. Показатель сопротивления имеет потому малое значение, что в противном случае в аварийной ситуации напряжение будет слишком мало для активации защитного контура. Поэтому устройство может остаться под напряжением.

В заземлении есть два основных элемента — это заземлитель и проводник. Именно они вместе образуют новое устройство. Данный агрегат соединяет бытовые приборы с землёй, делая их безопасными для использования. Принцип работы зануления существенно отличается. Поэтому схема с занулением используется в новых сетях.

В процессе развития средств защиты от спонтанных ударов электричеством заземление поделились на два вида: для отвода импульсного тока и для защиты от грозы. Уникальная конструкция позволяет добиться двух целей в зависимости от изменения некоторых элементов конструкции.

В первом случае проводники поддерживают нормальную работу бытовых приборов даже в аварийных ситуациях. Во втором предотвращают возможное нанесение урона живым организмам. Подобная ситуация возникает в тех случаях, когда нарушается изоляция фазного провода. Так как он выходит на металлический корпус последствия более чем серьёзные.

Мало кто знает, но заземление также может быть и природным, проще говоря, естественным. Металлические конструкции и трубопроводы при выполнении определённых условий могут служить отличным заземлением.

Важно! В качестве естественного заземления запрещается использовать трубы, по которым транспортируется газ или другие горючие вещества.

Классификация

Как было сказано выше, в процессе постоянного развития технологий, учёными было выделено множество уникальных схем заземления. В результате существуют такие подгруппы:

В них используются разные схемы соединения, мало того, количество проводников значительно отличается. Сама аббревиатура может много рассказать об устройстве. Первая буква говорит об источнике питания.

  • T — нейтраль, ведущая к земле.
  • I — полностью изолированные проводники.

Вторая буква указывает на метод заземления токопроводящих частей.

  • N — прямая связь с точкой.
  • T — связь с землёй.

В двух приведённых выше схемах вы можете увидеть ещё несколько букв, стоящих через чёрточку. Буква C указывает на наличие всего одного проводника. S — о диаметрально противоположном.

Зануление

Теперь рассмотрим, что такое зануление, и чем оно отличается от обычного заземления. Если говорить о чисто конструкционной составляющей, то данная система защиты от удара электрического тока представляет собой комбинацию металлических частей.

Каждый из элементов конструкции имеет нулевое напряжение. Возможен вариант и с использованием нейтрали. Но она должна иметь трёхфазный источник. Второй вариант включает в себя заземлённый вывод генератора. Причём последний должен иметь одну фазу.

Зануление работает следующим образом. Как только нарушается изоляция, происходит короткое замыкание. В результате срабатывает автоматический выключатель. Конечно, здесь многое зависит от самой системы. К примеру, в некоторых просто перегорают предохранители. В любом случае эффект — это безопасность людей, прикасающихся к устройствам.

Обычно зануление применяется в оборудование, в котором нейтраль наглухо заземлена. В принципе, этим данная система отличается от заземления. Особенность схемы зануления заключается в том, что при подключении УЗО происходит срабатывание всей системы. Подобный казус образуется из-за разности сил тока.

Ещё зануление от заземления отличается тем, что при установке УЗО и автоматического выключателя в нестандартной ситуации могут сработать два этих элемента. Также возможно задействование третьего устройства, обладающего более высоким быстродействием.

Особенности зануления

Зануление отличается тем от заземления, что при коротком замыкании ток должен обязательно достичь показателя, при котором предохранитель расплавится. Конечно, есть ещё альтернатива в виде выключателя.

Важно! Если выключатель не сработает или предохранители не расплавятся, под электрическим напряжением окажутся все корпуса устройства, подключенные к защитной схеме.

Чтобы подобного не произошло вам всегда нужно следить за нулевым проводом. От его состояния зависит безопасность всей системы. Чтобы не допустить ток на все объекты зануления необходимо воздержаться от прерывания нулевого провода какими-либо выключателями или предохранителями. Кстати, подобное требование ничем не отличается и для заземления.

Ключевые различия

Мы рассмотрели основные характеристики заземления и зануления, теперь давайте просуммируем, чем они отличаются друг от друга:

  1. Заземление отличается большей эффективностью.
  2. Заземление отличается тем, что обеспечивает безопасность за счёт снижения мощности тока.
  3. Зануление отличается тем, что защита электроприборов осуществляется благодаря отключению повреждённого участка.
  4. Зануление отличается сложностью в установке. Установить заземление под силу каждому.

Как видите, отличия между занулением и заземлениям довольно весомые.

Итоги

Зануление и заземление — это две принципиально разные системы защиты от удара электрическим током. Отдельно нужно отметить, что первую систему используют в домах с новой проводкой, а вторую в старых постройках.

Если же говорить о преимуществах, то заземление считается куда более надёжным способом защиты. Но установка именно такой схемы возможна далеко не во всех электрических сетях.

Чем отличается зануление от защитного заземления

Что такое заземление

Заземление – способ защиты пользователя от удара током при подаче напряжения на корпус прибора в результате аварии. Суть заземления заключается в соединении корпуса электроустановки или прибора с землей.

Заземление выполняется с помощью заземляющего устройства. Оно состоит из заземлителя и заземляющего электрода. Заземлитель находится непосредственно в земле. Заземляющий электрод соединяет его с любой точкой электроустановки или сети.

Схема заземления

На иллюстрации заземляющий проводник (PE) соединен с землей и рабочим нулем (N).

Есть несколько систем заземления:

  • Система TN с описанными выше схемами TN-C, TN-S и TN-CS. В этих системах нейтральный проводник глухо заземлен.
  • Система TT. Токопроводящие части электроустановок и нейтральный проводник заземляются независимо друг от друга.
  • Система IT. Токопроводящие части электроустановок заземлены, нейтральный проводник не заземлен.

При аварии и подаче электричества на корпус благодаря заземлению срабатывают автоматы-предохранители. Если предохранители не срабатывают, большая часть электричества уходит в землю. Это защищает человека от опасного для жизни и здоровья удара током.

Заземление применяется в промышленности и в быту.

Главное отличие

Самое главное, что нужно запомнить: схемы зануления и заземления имеют различное защитное действие. Ноль гарантирует быструю реакцию на изменение потенциалов или утечку тока для обеспечивающих защиту установок. Соответственно, при высоком напряжении обеспечивается отключение всех потребителей энергии: осветительных приборов, компьютера и других машин (в том числе, станков, трансформаторов).

Фото — отличие зануления и заземления

Заземлением же обеспечивается выравнивание потенциалов и защита от поражения током. Земля чаще применяется в домашних условиях, её монтаж можно легко сделать своими руками. Но здесь нет гарантии, что предохранители быстро отреагируют на утечку. Оптимальным вариантом для повышения гарантии безопасности является совместное применение зануления и заземления сетей и открытых частей машин.

Перед установкой любого из этих вариантов защиты, нужно обязательно получить разрешение на проведение работ. Также дополнительно проводится расчет защитного проводника, подведение к каждому потребителю в жилище земли и установка защитного оборудования.

{SOURCE}

Для чего необходимо заземление

Заземление

Из нормативной документации ГОСТа № 12.01.009-76 следует, что защитное заземление – это создание единого контура с землей и металлическими токоведущими частями, которые в процессе эксплуатации электротехнических приборов могут оказаться под напряжением, например, корпус микроволновой печи или стиральной машины.

Заземление требуется, чтобы при образовании напряжения в тех местах, где его быть не должно, электричество уходило в землю. Это позволяет предотвратить поражение током жителей квартиры или дома. Как правило, подобные явления наблюдаются при нарушении целостности изоляционного слоя и касания токоведущей жилы корпуса.

Типы заземления в бытовых условиях

В бытовых условиях правильно реализованная система заземления гарантирует бесперебойную работу всех электрических приборов. Во времена существования Советского Союза в домах не было большого скопления электроустановок, следовательно, такая мера безопасности практически не использовалась.

В то время широкое распространение получила эксплуатация системы TN-C, в которой заземляющий провод РЕ коммутировался с рабочим нулем в единую токопроводящую жилу РЕN, а к квартире подключался двухжильный провод. Эта система устарела, на замену пришла новая – TN-C-S. Ее особенность заключается в разъединении в распределительном щитке провода PEN на РЕ и N.

Все современные здания или строения, подлежащие модернизации, обслуживаются по трех- или пятипроводной схеме. В помещение подается три линии:

  • земля;
  • рабочий ноль;
  • фаза.

Если здание устаревшее и не оснащено системой заземления, а проводка двухпроводная, все современные трехпроводные электротехнические приборы утрачивают свои качества. Например, сетевой фильтр становится обычной переноской. В этом случае установка зануления в квартире согласно нормативному документу ПУЭ 1.7.132 запрещена.

Это интересно: Тахометр: что это такое и как работает

Требования к защитному заземлению

Защитное заземление – это наиболее жесткое устройство, чем зануление цепи. Здесь предусмотрена прокладка отдельной шины, довольно небольшого уровня сопротивления, которая идет к системе заземлителей, забитых в землю в виде треугольника.

Расчет защитного заземления, требует знания множества формул и наличия множества исходных данных. Поэтому принято для жилого фонда применять типовые проекты контура заземления для каждого региона.

Установка зануления предусматривает прокладку шины нейтрали или любого другого способа отвода тока в однофазной цепи. При этом, значения сопротивлений каждого проводника зануления до подстанции или питающего трансформатора, складываясь, образуют значение сопротивления защитного устройства.

Эта величина может изменяться, но требования к защитному заземлению и занулению, предусматриваю общее значение максимально возможного уровня сопротивления цепи.

Бытовое заземление

Как правило, системы электроснабжения, должны иметь сопротивление защитного заземления, должно быть от 4 Ом, до 30 Ом. Для обустройства, как правило, применяют стальные уголки и полоса шириной 40 мм. Предусматривают использование медной шины, достаточного сечения, согласно ГОСТу. Это обязательное требование.

При использовании защитного проводника с медным проводом 0,5 мм2 нам не хватит и 100 метров провода для достижения критического значения. Наиболее строгие требования предъявляются при обслуживании участков:

  1. Установки, с напряжением цепи до 1000. В, оснащаются устройством, сопротивление которого, не должно превышать 0,5 Ома. Значение заземленного контура измеряют при помощи специального измерительного прибора – измерителем сопротивления. Это измерение проводится двумя дополнительными заземлителями. Разведя их на определенное расстояние, выполняем замер, затем сдвигая электрод, проводим несколько замеров. Самый худший результат принимается за номинальное значение.
  2. Для обслуживания цепи трансформатора, других источников питания, при величинах напряжения от 220 В до 660 В – величина сопротивления заземления должна быть от 2 Ом до 8 Ом.

Производственное защитное заземление

Использование дополнительных мер для выравнивания величин потенциала – это основная «обязанность» применения защитного обустройства производственных мощностей. Для достижения надежной защиты, все металлические детали конструкций и устройств, а коммуникационные трубопроводы подсоединяются на заземляющий проводник.

В жилых помещениях, так следует оборудовать ванные комнаты и стальной водопровод, канализацию, и трубы отопления. В наше время пускай и редко, но они встречаются. На промышленных объектах заземляют:

  • приводы электрических машин;
  • корпуса каждой электроустановки, находящейся в помещении;
  • коммуникации металлических труб, металлоконструкции;
  • защитные оплетки электрокабелей , с напряжением постоянного тока до 120 В;
  • электрощитовые, различные корпуса системы электропроводки.

Детали, не требующие защиты:

  • металлические корпуса приборов и оборудования, установленных на стальной платформе, главное – обеспечение надежного контакта между ними;
  • разнообразные участки с металлической арматурой, установленная на деревянных конструкциях, исключение составляют объекты, где защита распространяется и на эти объекты;
  • корпуса электрооборудования, имеющие 2, 3 классы безопасности;
  • при вводе в здание электропроводки, с напряжением не выше 25 В, и прохода их сквозь стену из диэлектриков.

В заключение необходимо отметить.

После монтажа каждого из видов защиты, необходимо выполнить проверку величины сопротивления защиты. После этого составляется акт проверки. Замеры, проводят летом и зимой, в это время грунт имеет наибольшее сопротивление.

Проверку жилого фонда рекомендуется проводить раз в год. Помните о необходимости оснащения щитовой автоматами размыкателями цепи и защитным устройством от утечек тока.

Заземление и зануление в цепях переменного тока

По сути, ноль – провод синего цвета, промаркированный N. Зануление – это преднамеренное соединение либо средней точки в обмотке 3-х фазного генератора, либо соединение в нагрузке к рабочему нолю. Основных функций у зануления две: 1 – рабочая функция и 2 — защитная функция. Рабочая функция ярче всего проявляется в схеме распределения электроэнергии в многоквартирном доме. Изначально ввод электричества выполняется только с помощью трехфазного тока, который равномерно распределяется по квартире. В качестве примера допустим, что в одном конкретном подъезде имеется 36 квартир. Следовательно, распределение нагрузки должно быть произведено максимально сбалансированно и равномерно: на фазу A подключаем 12 квартир, на фазу В 12 квартир, а на фазу С, естественно, оставшиеся 12 квартир. Как бы не старались проектировщики сбалансировать схему потребления, практика однозначно говорит о том, что достичь баланса и равномерность нагрузки никогда на 100% не удается – кто-то тратит электричества больше, а кто-то меньше. Поэтому и была придумана линия N – рабочий ноль. Основная цель рабочего ноля – восстановить баланс напряжений по фазам, то есть не дать возникнуть перекосу напряжений. К слову, именно внезапное отключение нулевого проводника может привести к тому, что в некоторых квартирах возникнет молниеносный всплеск рабочего напряжения до отметки 380 В. На жаргоне электриков данное явление называют отгоранием или отвалом ноля.

Трехфазная система требует наличие заземления и зануления средней точки рабочих обмоток, соединенных по схеме звезда. Чтобы четко понимать разницу между занулением и заземлением, давайте обратимся к стандартной схеме включения нагрузки к трехфазному источнику питания по схеме Y (звезда). Если мы рассматриваем в качестве нагрузки трехфазный трансформатор, трехфазный асинхронный электродвигатель, трехфазную печь, то система будет функционировать, будучи подключенной с помощью трех проводов с фазами A, B, С и нулевого провода N. По сути, если мы рассматриваем электроустановки на производстве, то наличие четвертого проводника выполняет чисто защитные функции. При пробое изоляции обмоток трехфазного электродвигателя высокий потенциал устремляется на корпус устройства, который находится в прямой гальванической связи с проводом N, то есть рабочим нолем. Следовательно, при таком подключении произойдет короткое замыкание, что вызовет отключение трехфазного автомата защиты.

Какая система надежнее?

Для сравнения можно ознакомиться с несколькими пунктами:

Как показывает практика, нередки случаи обрыва или отгорания нулевого провода в электрощите, что делает зануляющую систему защиты не действующей. В этом случае появляется реальная угроза поражения человека электрическим током. Во избежание подобной проблемы, места коммутации нужно периодически осматривать, что создает определенные неудобства.


Подгоревший нулевой провод в распределительном щитке близок к полному обрыву

  • Заземляющая система избавлена от указанных недостатков, так как РЕ-проводник не участвует в общей работе электропроводки и задействуется только при возникновении утечки, чтобы отвести ток на землю.
  • Устройство зануления требует определенных знаний и навыков работы с электрическими цепями, что в случае их отсутствия также причиняет некоторые неудобства, связанные с необходимостью вызова электрика.

Принимая во внимание изложенное, можно сделать вывод, что система заземления более надежна и безопасна, поэтому лучше использовать ее. Однако в случае отсутствия такой возможности, можно прибегнуть к альтернативному варианту. Запрещается производить зануление непосредственно в розетке путем установки перемычки между нулевым разъемом и заземляющей скобой

Это создает угрозу для человека (поражение электротоком) и для бытовой техники. 

Назначение заземления

Покупая любое электрооборудование, будь то стиральная машина или холодильник он не рассчитан на пожизненный срок службы и в процессе работы как любое другое оборудование может сломаться. Чтобы защитить электрооборудование от ненормальных режимах работы (перегрузка или короткое замыкание) применяются различные защитные аппараты (автоматы, пробки и т.д.)

Но бывают ситуации, когда защитные устройства не реагируют на возникшие повреждения. Одним из таких случаев является повреждение внутренней изоляции и возникновении на металлическом корпусе оборудования высокого напряжения.

В этом случае защита необходима самому человеку, который попадет под напряжение прикоснувшись к поврежденному оборудованию. Для защиты от таких повреждений и было придумано заземление, основное назначение которого — снизить величину этого напряжения.

То есть, основное назначение заземления — снизить напряжение прикосновения до безопасной величины.

Предположим, что у вас дома имеется потолочный светильник, корпус которого не подключен к заземлению. В следствии повреждения изоляции металлическая часть светильника оказалась под напряжением. В тот момент когда вы попытаетесь поменять лампочку вас ударит током, так как прикоснувшись к корпусу вы становитесь проводником и электрический ток будет протекать через ваше тело в землю.

Если же светильник будет заземлен, большая часть тока будет стекать в землю по заземляющему проводу и в момент касания, напряжение на корпусе, будет намного меньше, а соответственно и величина тока проходящий через вас будет также меньше.

Заземлением — называется соединение металлических нетоковедущих частей электроустановки с землей (контуром заземления) которые в нормально состоянии не находятся под напряжением, но могут оказаться из-за повреждения изоляции.

Также, заземление необходимо для функциональности таких аппаратов как УЗО. Если корпуса электроустановок не будут соединены с землей, то ток утечки протекать не будет, а значит УЗО, не среагирует на неисправность.

Понятие заземления

Прежде чем дать ответ на вопрос, чем отличается заземление от зануления, рассмотрим каждое понятие отдельно. Заземление – это специальное соединение электроустановок с землей. Цель этого соединения является снижение резкого скачка напряжения в электрической сети. Оно используется в той цепи, где нейтраль будет изолирована. Когда будет установлено подходящее заземляющее оборудование, то избыточный ток, который поступает в сеть, будет уходить в землю по отводящим контактам. Сопротивление этой части должно быть относительно низким, чтобы ток был поглощен без остатка.

Также функция защитного заземления электроустановок позволяет увеличить объем аварийного тока замыкания, несмотря на то, что это противоречит его назначению. Заземлитель с большим сопротивлением слабый ток замыкания может не воспринять, только со специальными защитными приборами. В таком случае, когда будет аварийная ситуация, установка будет под напряжением, что может представлять большую опасность для здоровья человека в этом помещении. Назначение защитных электроустановок также рассчитано на отведение блуждающего тока в электрической сети.

Заземлитель является особым проводником, который может состоять из одного или нескольких элементов. Обычно они соединены между собой электропроводящим материалом и заключены в землю, которая поглощает проходящий заряд. В качестве заземляющих проводников может использоваться сталь и медь. По нормам ПУЭ данная мера защиты в обязательном порядке должна делаться в современных жилых домах, а также рабочих помещениях, заводах, в общественных заведениях и других зданиях различного назначения.

В большинстве домов современного образца установлены схемы заземления. Однако их может не быть в старых зданиях. В такой ситуации специалисты рекомендуют заменить проводку трехжильным кабелем с заземляющим проводом, подключив защитную электроустановку. Бывают ситуации, когда нет возможности сделать монтаж полноценного заземляющего контура. В современной электротехнике может использоваться специальное портативное оборудование – переносной заземляющий штырь (шина). Их действие соответствует стандартному заземляющему устройству жилых домов или отводов. Такое устройство имеет хорошее практическое значение, легко подвергается монтажу и переноске, починке, а также имеет широкий функционал.

Функцию заземления могут выполнять несколько самостоятельных групп защитного оборудования. Грозозащитные. Они служат для того, чтобы быстро отводить импульсный высокий заряд от молнии. Зачастую их применение необходимо в разрядниках и современных молниеотводах. Рабочие. Такая группа позволяет поддерживать в нужном режиме работу всех электроустановок при разных условиях (нормальные и аварийные).

Защитные. Данная группа оборудования нужна для предотвращения прямого контакта людей и животных с электрическим зарядом, который возникает в результате механического повреждения фазы в проводе. Они позволяют предотвратить множество несчастных случаев, которые могли бы быть, если проблемы с силовой линией не были замечены своевременно.

Заземлители условно разделены на искусственные и естественные. Искусственные электроустановки представляют собой специальные конструкции, которые делаю специально для того, чтобы увести избыточный ток сети в землю, обеспечив защиту своему дому. Их могут производить на заводе или делаться самостоятельно, используя стальные элементы. Естественными заземлителями является грунт, фундамент под зданием или же дерево возле дома.

Заземление и Зануление: в чем разница?

Как «заземление», так и «зануление» – это термины, используемые при описании электрических установок. Стоит отметить, что зануление уже устарело. Это связано с модернизацией электросетей, что, в свою очередь, влияет на то, что процесс Зануления больше не используется.

О чем это?

Зануление и заземление – это методы защиты от поражения электрическим током в электроустановках. Зануление состоит в соединении электропроводящих частей, таких как металлический корпус, с защитным проводником или защитным нейтральным проводником.

Когда система выходит из строя, она автоматически отключает питание. Зануление можно использовать в установках с максимальным напряжением 500 В в электросети. В такой системе нейтральная точка устройства питания заземлена и защищенные проводящие элементы соединены с нейтральной точкой.

Схема зануления

Заземление, с другой стороны, представляет собой проводник, выполненный из электрического проводника, и соединяет тело, электрифицированное с землей, для его нейтрализации

Заземление выполняется для обеспечения правильной, а также, что очень важно, безопасной работы всех электропроводящих устройств

Схема заземления

Заземление состоит из защитных проводников и защитно-нейтральных проводников. Существует четыре типа заземления. Это: защитное, функциональное, молниевое и вспомогательное заземление. Примером заземления является громоотвод или характерный штифт в вилке бытовых приборов.

В заключение …

  • Зануление соединяет электропроводящие части с защитным проводником
  • Заземление – это провод, соединяющий электрифицированный корпус с землей с целью его безразличия
  • Зануление – это метод, который выходит из употребления, он просто заменяет заземление

zen.yandex.ru/media/yaznal/

Вопросы, возникающие при оформлении систем защиты

Вопрос №1. Можно ли сделать контур заземления под окнами многоэтажного дома и проложить провод в квартиру?

Теоретически это возможно, но при условии, что для этого есть разрешение управляющей компании, сопротивление заземления не превышает 4 Ом, о чем свидетельствует справка из отдела стандартизации, а также подтверждение из управления метеорологии, что устройство не нарушает молниезащиту здания.

Заземлить квартиру в многоэтажке можно, но это сложно оформить документально

Вопрос №2. Можно ли использовать водяной трубопровод для временного заземления, пока не устроено основное?

Однозначно на этот вопрос не возьмется ответить никто. Лучше какое-то время не подключать прибор вовсе, пока не сделается заземление или зануление, но в качестве временной меры подвергать опасности себя и соседей не стоит.

Вопрос №3. Разрешается ли металлическую полосу заземления зарывать плинтусом или укладывать в кабель-каналы?

Можно. Это позволит скрыть неприглядный вид и задекорировать интерьер помещения.

Вопрос №4. Обязан ли электрик из обслуживающей организации по требованию жильцов производить зануление в квартирах старых домостроений, где отсутствует заземление?

Это не является его прямыми обязанностями, но если к вопросу подойти продуктивно и попробовать нанять его, как специалиста, то вряд ли кто-то откажется от дополнительного заработка.

Вопрос №5. В подъездном щитке рабочий ноль выведен из клеммника, соединенного с общим нулем, исходящим из общедомового распределительного щита. Можно ли от свободной клеммы вывести зануляющий провод?

Конечно можно. Это будет то самое расщепление, о котором говорилось в статье. Причем в данном случае оно будет сделано абсолютно верно. Нужно только сделать хороший контакт и проложить провод предельно аккуратно.

В заключение можно сделать вывод: Создать защитную систему можно в любом случае, при любых обстоятельствах. Главное, чтобы она была грамотно и надежно устроена и возложенные на нее функции эффективно выполнялись в полном объеме.

Оцените качество статьи

Нам важно ваше мнение:

Заземление и зануление: отличие друг от друга

Рис 1

Заземление и зануление нужны для отвода напряжения, только происходит это различными способами (Рис 1). В конце статьи приведены схемы подключения TN — C, TN — S, TN — C — S.

Отличие первое – способ утилизации тока

Разница состоит в том, что зануление способствует мгновенному отключению электричества при касании человеком электро шнура или прибора, отводя ток однофазного короткого замыкания на вводной щит, а заземление мгновенно отводит опасное напряжение в почву.

Отличие второе – особенности монтажа

Монтаж заземления и зануления имеет разные степени сложности.

Устройство заземления в частном строении влечет за собой определенные монтажные работы, занимающие в среднем до одного рабочего дня. Приобрести готовые комплекты модульно-штыревого (глубинного) заземления либо выполнить их самостоятельно из допустимых материалов, четко следуя указаниям производителя либо требованиям к заземлению – довольно несложно. Непосредственно заглубление заземлителя можно доверить сервисным службам, имеющим специальное оборудование либо обойтись своими силами, обладая достаточным опытом и физической силой.

Относительно зануления, то сам по себе монтаж контура зануления выглядит нетрудоемким, но не стоит обманываться: при отсутствии должной квалификации электромонтера минимальный промах и незнание могут обернуться бедой.

Отличие третье – защита человека

Согласно правилам устройства электроустановок (ПУЭ), зануление может быть применено только для промышленных установок и не является в полной мере гарантией безопасности. При попадании фазы на открытую часть электроприбора или оборудования, ток никуда не девается. Происходит контакт двух фаз и короткое замыкание. Нейтраль нужна для скорого срабатывания защитного автомата при замыкании, но не для защиты человека от электроудара. Поэтому зануление рекомендуется к использованию на производстве, где при аварии требуется незамедлительное отключение питания.

Отличие четвертое – требования к профессионализму наладчика

Когда организуется зануление, то для того, чтобы верно распознать нулевые точки и подобрать способ защиты, крайне необходимо участие профессионального электрика. А вот грамотно собрать контур заземления и погрузить его в грунт по силам большинству домашних умельцев.

К сожалению, на практике довольно часто можно столкнуться с результатами вопиющей некомпетентности в вопросах зануления и электробезопасности в целом, беря во внимание, как частных наладчиков, так и электриков сервисных служб. А вот типичные и очень опасные ошибки кустарного зануления:

А вот типичные и очень опасные ошибки кустарного зануления:

  • подключение электроприбора с занулением к незануленному щиту;
  • подсоединение заземляющего контакта розетки к «нулевому» автомату;
  • установка в розетке перемычки, соединяющей нулевой и защитный контакты;
  • выполнение зануления в двухпроводной системе и др.

Типы систем заземления

Вы замечали, что нулевой провод в трёхфазном кабеле имеет меньшее сечение, чем остальные? Это вполне объяснимо, ведь на него ложится не вся нагрузка, а только разница токов между фазами. Хотя бы один контур заземления в сети должен быть, и обычно он находится рядом с источником тока: трансформатор на подстанции. Здесь система требует обязательного зануления, но при этом нулевой проводник перестаёт быть защитным: что бывает, если в ТП «отгорел ноль», знакомо многим. По этой причине заземляющих контуров по всей протяжённости ЛЭП может быть несколько, и обычно так оно и есть.

Конечно, повторное зануление, в отличие от заземления, вовсе не обязательно, но зачастую крайне полезно. По тому, в каком месте выполняется общее и повторные зануления трехфазной сети, различают несколько типов систем.

Разница между заземлением и занулением

В системах под названием I-T или T-T защитный проводник всегда берётся независимо от источника. Для этого у потребителя устраивается собственный контур. Даже если источник имеет свою точку заземления, к которой подключен нулевой проводник, защитной функции последний не имеет. Он с защитным контуром потребителя никак не контактирует.

Системы без заземления на стороне потребителя более распространены. В них защитный проводник передаётся от источника потребителю, в том числе и посредством нулевого провода. Обозначаются такие схемы приставкой TN и одним из трёх постфиксов:

  1. TN-C: защитный и нулевой проводник совмещены, все заземляющие контакты на розетках подключаются к нулевому проводу.
  2. TN-S: защитный и нулевой проводник нигде не контактируют, но могут подключаться к одному и тому же контуру.
  3. TN-C-S: защитный проводник следует от самого источника тока, но там всё равно соединяется с нулевым проводом.

Ключевые моменты электромонтажа

Итак, чем вся эта информация может быть полезна на практике? Схемы с собственным заземлением потребителя, естественно, предпочтительны, но иногда их технически невозможно реализовать. Например, в квартирах высоток или на скальном грунте. Вы должны знать, что при совмещении нулевого и защитного проводника в одном проводе (называемом PEN) безопасность людей не ставится в приоритет. А потому оборудование, с которым контактируют люди, должно иметь дифференциальную защиту.

И здесь начинающие монтажники допускают целый ворох ошибок. Неправильно определяя тип системы заземления/зануления и, соответственно, неверно подключают УЗО. В системах с совмещённым проводником УЗО может устанавливаться в любой точке, но обязательно после места совмещения. Эта ошибка часто возникает в работе с системами TN-C и TN-C-S. А особенно часто, если в таких системах нулевой и защитный проводники не имеют соответствующей маркировки.

Разница между заземлением и занулением

Поэтому никогда не используйте жёлто-зелёные провода там, где в этом нет необходимости. Всегда заземляйте металлические шкафы и корпуса оборудования, но только не совмещённым PEN-проводником. На нём при обрыве нуля возникает опасный потенциал. Это необходимо делать защитным проводом PE, который подключается к собственному контуру.

Кстати, при наличии собственного контура на него выполнять незащищённое зануление очень и очень не рекомендуется. Если только это не контур вашей собственной подстанции или генератора. Дело в том, что при обрыве нуля вся разница асинхронной нагрузки в общегородской сети проследует в землю через ваш контур, раскаляя соединяющий провод.

   Защитное заземление. Чем опасно самостоятельное выполнение заземления?

   Принцип работы заземления для зданий по системе ТN-C, TN-S и TN-C-S.

   Заземление дома. Монтаж контура заземления!

   Контур заземления. Заземление и зануление на объектах.

Будем рады, если подпишетесь на наш Блог!

Заземление и зануление их принципиальное отличие и что лучше использовать в доме

Наверняка большинство из вас слышало про такое понятие как зануление и тем более про защитное заземление. А вы знаете, чем они отличаются и что лучше использовать в доме? Если нет, то в этой статье я вам объясню принципиальное отличие этих двух систем и поведаю что желательно использовать в вашем доме.

В чем же различие

Защитное заземление предназначено для предотвращения попадания человека под опасные значения тока при возникновении утечки. Проще говоря, если на корпусе электрического прибора появится ток, то он будет сразу уходить на землю и человек, прикоснувшийся к такому прибору, не будет поражен током.

Причем реализовать заземление можно собственноручно и без серьезных финансовых затрат. Ведь достаточно взять сварочный аппарат, лопату, несколько арматур, полосу металла и медный провод. И ваш контур будет готов. После этого соединяем его с трех проводной сетью вашего дома и все, защита обеспечена.

А зануление представляет собой соединение земли с рабочим нулем. В случае такого же пробоя изоляции вызывает короткое замыкание и вследствие этого отключение защитных автоматов.

А выполнить зануление в доме без вызова специалиста, оный просчитает и выберет специальную точку, просто невозможно.

Для наглядности внимательно рассмотрите схему, на оной показано отличие зануления и заземления в простой форме.

Что выбрать для дома

Здесь я скажу и обозначу свою позицию: я категорически против использования зануления, так как этот метод – это потенциально отложенная опасность. Ведь если вы даже будете очень тщательно и регулярно проверять целостность нуля, все равно есть вероятность, что в результате непредвиденных обстоятельств будет поменяна фазировка и ноль окажется фазой. В таком случае абсолютно все электроприборы, воткнутые в сеть, окажутся под напряжением, а это может привезти к очень плачевным последствиям.

Так же может произойти обрыв нуля, и в этом случае система окажется недееспособна, вновь вы будете под угрозой поражения электрическим током.

Защитное заземление в этом плане на несколько порядков надежнее и будет достаточно проводить ревизию болтового соединения не чаще одного раза в год. И на долгие годы вы будете обеспечены надежной защитой.

zen.yandex.ru/media/energofiksik/

Заземление и зануление, в чем разница?

Заземление. Контур монтируется отдельно, вне зависимости от способа подключения рабочего энергоснабжения. На противоположном конце (от электроустановки) подключается заземляющее устройство. От него должен быть проложен проводник с надежным контактом. Этот проводник соединяется с корпусом электроустановки.

Как правило, в домашних условиях отдельного контакта на корпусе электроустановки не предусмотрено. Сетевой кабель имеет три жилы: фаза, ноль и «земля». Рабочее заземление подключено к соответствующей контактной группе в электрической розетке. При подключении электроприбора, происходит одновременное соединение с питающими контактами и «землей».

Важно! Такой способ подключения является единственно возможным с точки зрения безопасности. Зануление

Система электропитания имеет фазные и нулевые проводники. В случае однофазного питания (традиционные 220 вольт в нашей розетке), это нулевой провод от ближайшей трансформаторной подстанции. Он имеет непосредственный контакт с реальной «землей», в непосредственной близости от трансформатора. Такой вывод называется глухозаземленным

Зануление. Система электропитания имеет фазные и нулевые проводники. В случае однофазного питания (традиционные 220 вольт в нашей розетке), это нулевой провод от ближайшей трансформаторной подстанции. Он имеет непосредственный контакт с реальной «землей», в непосредственной близости от трансформатора. Такой вывод называется глухозаземленным.

При организации трехфазного питания – нулем будет являться нейтральный вывод трансформатора. Принцип подключения такой же. Нейтраль имеет непосредственный контакт с «землей» в пределах трансформаторной подстанции.

Заключение по теме

Подводя итог всему вышесказанному, можно отметить, что заземление и зануление отличаются друг от друга принципом работы и применяемыми дополнительными защитными устройствами, которые приходится настраивать под определенные условия эксплуатации. То есть, в чем их разница, стало понятным. Как показывает практика, заземление в чистом виде – идеальный вариант в современных условиях. Конечно, приходится дополнительно выделять деньги на приобретение УЗО или дифференциальных автоматов, но это стоит того. Безопасность еще никто не отменял, тем более гарантированную безопасность.

Заземление и зануление в чем разница между ними?

Основное требование эксплуатации бытовых приборов – безопасность. Особенно это относится к приборам, контактирующими с водой. Даже самый малый дефект в электрической проводке внутри аппаратов становится опасным. Прожог изоляции проводов, пробивка между витками электродвигателей или пробивка изоляции нагревательных элементов, все это становится причинами перехода электрического потенциала на корпусы аппаратов. Соприкасаясь с ними, человек получает удар электрическим током. Поэтому стоит позаботиться о том, чтобы в таких ситуациях бытовой прибор не представлял опасности. Для этого существует два способа: заземление и зануление – в чем разница между ними?

Заземление

Что такое заземление – это контур, который соединят бытовые приборы через розетки с землей. Это самый действенный вариант обезопасить себя от удара тока. Можно спокойно прикасаться к металлическим деталям корпуса, не получив при этом неприятных ощущений.

Самое важное, чтобы заземляющий контур имел минимальный показатель сопротивления. Вот почему его собирают из стальных или медных элементов. Меньшее сопротивление дает возможность через проводник пропустить ток большего значения. А сила тока короткого замыкания зависит от мощности прибора (зависимость прямая) и сопротивления проводника (зависимость обратная). То есть, чем больше мощность и меньше сопротивления, тем большей силы ток может пройти по заземляющему элементу.

Часть контура закапывается в грунт рядом с домом, вторая часть – это проводники, соединяющиеся между собой через распределительный щит. Обе части соединяются на улице методом сварки.

Есть еще одно отличие, которая разделяет между собой защитное заземление и зануление. Это толщина проводников, минимальный размер которых составляет 10 мм² для медного провода или 6-8 мм² для стального. При таких величинах можно не бояться появления в сети тока большой силы, который возникает при замыкании внутри агрегатов большой мощности. К примеру, в бойлере (до 6 кВт) или в стиральной машинке (до 2 кВт).

Схема подключения заземления отличается от схемы зануления. В ней присутствует три провода, которые подводятся к розетке: фаза, ноль и земля. При этом конструкция новых розеток и вилок сделана таким образом, чтобы еще до коммутации фазы и нуля в них первыми подключились контакты заземления. Они же при вынимании вилки из розетки отключаются последними. Это уже обеспечивает безопасность. Теперь перейдем конкретно к рассмотрению вопроса: разница между заземлением и занулением.

Зануление

В электрической разводке, собранной по схеме зануления, также присутствуют три провода. Но контакты земля соединены напрямую с нулевыми контактами в распределительном щите. При этом получается, что заземляющий провод и есть нулевой. В системе TN-C, которая присутствует во всех старых домах, подводка к розеткам состоит из двух проводов: фаза и ноль.

Внимание! При установке современной розетки с контактом земля, многие электрики ставят перемычку между нулевым контактом и заземляющим. Это тоже является занулением и конечно, отличается от заземления. Главное, так делать нельзя!

Все дело в том, что нейтраль трансформатора, проведенная по нулевому проводу до распределительного щита, является заземляющим проводником. Именно от названия нулевого провода и названа зануляющая система. Оптимально, если провод PE будет проведен от розетки прямо к распределительному щиту. Если делать перемычку внутри розетки, то при обрыве нулевого проводника N оборвется и заземляющая сеть. Поэтому использовать эту схему категорически запрещается.

В чем минус этого способа. В распределительном щите на фазный контур устанавливается автомат, который отключается при появлении короткого замыкания. Но все дело в том, что это устройство реагирует на силу тока, которая определяется характеристиками вставки внутри автомата. К примеру, на панели может быть указан показатель – 16 А. То есть, он будет реагировать именно на эту силу тока или большую. Все, что меньше данного значения, легко проскакивает, и автомат на это не реагирует. Он не будет разрывать цепь, к примеру, если сила тока короткого замыкания равна 10 амперам. А это величина, которая может нанести увечья человеку. При включенном автомате на металлическом корпусе бытового прибора образуется большой потенциал напряжения.

Основное отличие

Чем отличается заземление от зануления в чисто защитных действиях? Чему отдать предпочтение: занулению или заземлению?

Оба варианта являются заземляющими. Но в системе зануления используется нулевой проводник, который соединяет распределительный щит в доме с контуром заземления, расположенного на подстанции. По сути, получается так, что нейтраль трансформатора подключается напрямую с землей внутри подстанции. При этом от нее отходит один провод – он же нулевой и заземляющий, поэтому имеет обозначение «PEN». В распределительный щит входят два провода: фаза и ноль PEN. Заземляющий провод (PE), проведенный до розеток, соединяется с нулевым PEN в распределительном щитке. То есть, выходящие из дома ноль (N) и земля (PE) соединяются в один проводник PEN, который тянется до трансформатора.

В системе заземления к заземляющей конструкции в подстанции подводится два проводника: ноль (N) и земля (PE). То есть, до распределительного щита идет три провода: фаза, ноль и земля. Этим же количеством они входят в дом и доводятся до розеток. При такой схеме происходит выравнивание потенциалов напряжения между фазой и заземляющим проводником, когда появляется короткое замыкание.

Если сказать короче, то заземление и зануление отличаются между собой так:

  • защита человека от напряжения на металлическом корпусе бытового прибора при зануляющей схеме спасает автомат, который разрывает питающую цепь;
  • заземляющая схема – это защита с помощью снижения потенциала напряжения на корпусе прибора, за счет отвода тока в грунт.

И хотя задачи обе системы выполняют одну – защита человека, но обеспечивают они эту защиту по-разному.

Теперь, что касается области применения той или иной защиты. В электроустановках, которые работают от напряжения до 1000 вольт, используются пять заземляющих систем: TN-C, TN-C-S, TN-S, TT, IT. Зануление используется в трех первых. Заземление в двух последних.

То есть, зануление соединяется с нейтралью трансформатора или отдельным проводником, или совмещенным с нулевым. Заземляющая разводка сооружается, как отдельно собранная конструкция рядом с домом, она носит аббревиатуру TT. При этом проводник PE никак не связан с проводником PEN.

Разводка IT – это схема с изолированной нейтралью. То есть, в трансформаторной подстанции нейтраль не соединена с заземляющим контуром. От нее отходит нулевой проводник N, который протягивается до распределительного щита в доме. А вот с заземлением напрямую соединяется заземляющий проводник PE, который соединяет этот контур с распределительным ящиком. В этом случае, как и при системе TT, можно установить заземляющую конструкцию около дома, собрав его своими руками. Что даст возможность не тянуть далеко проводник PE. На сегодняшний день это самый идеальный вариант.

Итак, подводя итог разбора: заземление или зануление, отметим, что первую схему лучше всего использовать в частных домах путем установки заземляющей конструкции, вторую в городских квартирах. Тем более, при строительстве многоквартирного дома раньше использовалась схема TN-C, сегодня TN-C-S.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Схема заземления и зануления объекта электроснабжения

Чем отличается заземление от зануления

Для безопасной работы на различных электоустановках и проводниках используется соединение открытых металлических отводов с землей и подключение сети к нулевому кабелю. Но немногие начинающие мастера точно знают, чем отличается заземление и зануление электроустановок и электрооборудования.

Определение заземления

Заземление – это умышленное подключение открытых частей электрического оборудования, которые находятся под напряжением, к специальному заземляющему отводу, шине или другому защитному оборудованию. Это может быть арматура в земле, часть электроустановки и другие приспособления. Такой подход, согласно ПУЭ, является обязательной мерой преднамеренной защиты как жилого, так и нежилого фонда. Это же гласят правила и требования ГОСТ 12.1.030-81 ССБТ (электробезопасность и система стандартов безопасности труда).

Фото — схема

Практически в каждом современном доме установлена схема заземления TN-C-S или TN-S. Но в зданиях старой постройки заземление зачастую вообще отсутствует, поэтому владельцам квартиры в таких постройках приходится своими силами организовывать землю. Такая система называется TN-C. Выполняется при помощи подключения отвода к заземляющему контуру, который может располагаться непосредственно в земле у здания или возле трансформаторной будки.

Теоретически, такую модернизацию проводки может организовать специальная монтажная компания, но практикуется это редко. Чаще к щитку на этаже (в многоквартирном доме) подводится земля, и уже к ней подключаются остальные провода.

  1. Если фаза попадает на открытый металлический отвод любого электрического устройства, то в нем появляется напряжение. Это же случается, если, к примеру, нарушена изоляция кабеля. Человеческое тело – отличный проводник тока, если Вы дотронетесь к такому отводу, то получите сильный удар током. Заземление поможет избежать это;
  2. Блуждающие токи уходят в заземляющий проводник, этим гарантируется охрана жизни;
  3. В особенности опасно напряжение, которое попадает на радиаторы отопления. В таком случае, все батареи в доме становятся проводниками тока. Но если установлена земля, то все напряжение уйдет по проводнику.
Фото — вариант земли

Если нет возможности провести полноценный заземляющий контур, тогда используются другие способы. К примеру, сейчас очень распространено подключение переносных заземляющих штырей (портативные шины). Их действие никак не отличается от стандартного стационарного отвода, но при этом они гораздо практичнее по своему функционалу.

Фото — переносная шина

Назначение зануления

Иногда зануление и заземление путают друг с другом, так в чем разница между ними? Зануление применяется по ПУЭ только для промышленных установок и не является гарантом безопасности. Если фаза попадает на открытую часть устройства, то ток не уходит. После этого происходит сопряжение двух фаз, и, как следствие, короткое замыкание. Нулевой проводник необходим для быстрого реагирования дифференциального защитного автомата на КЗ, но не для защиты человека от поражения током. Поэтому его принято использовать только на производстве, где требуется быстрое отключение питания в случае аварийной ситуации.

Фото — схема зануления

Нужно ли делать зануление в частном доме или квартиры? Нет, это необязательно, и даже чревато различными негативными последствиями. Скажем, если нулевой провод сгорит, то большее количество электрических устройств, к которым он был подключен, сломается из-за чрезвычайно высокого скачка напряжения. Стоит помнить, что Ваша безопасность не пострадает, если вместе с занулением обустроить также заземление, установить УЗО и защитный выключатель.

Фото — принцип работы зануления

Как установить зануление, чтобы устройство, подключенное к нему, не сгорело:

  1. Нужно использовать трехжильный провод с изоляцией. Одна жила отведена для фазы, вторая для нуля, третья для заземления;
  2. Земля подключается в самом конце электромонтажных работ на корпус безопасного проводника к заземляющему контуру и т. д. Наиболее практичен специальный заземляющий отвод у щита;
  3. В целях безопасности обязательно устанавливаются различные выключатели питания и прочие защитные установки.

Видео: в чем разница зануления и заземления

Главное отличие

Самое главное, что нужно запомнить: схемы зануления и заземления имеют различное защитное действие. Ноль гарантирует быструю реакцию на изменение потенциалов или утечку тока для обеспечивающих защиту установок. Соответственно, при высоком напряжении обеспечивается отключение всех потребителей энергии: осветительных приборов, компьютера и других машин (в том числе, станков, трансформаторов).

Фото — отличие зануления и заземления

Заземлением же обеспечивается выравнивание потенциалов и защита от поражения током. Земля чаще применяется в домашних условиях, её монтаж можно легко сделать своими руками. Но здесь нет гарантии, что предохранители быстро отреагируют на утечку. Оптимальным вариантом для повышения гарантии безопасности является совместное применение зануления и заземления сетей и открытых частей машин.

Перед установкой любого из этих вариантов защиты, нужно обязательно получить разрешение на проведение работ. Также дополнительно проводится расчет защитного проводника, подведение к каждому потребителю в жилище земли и установка защитного оборудования.

Что такое защитное зануление и где оно применяется

Защитное зануление — система, в которой токопроводящие части оборудования, не находящиеся в норме под напряжением, соединены с нейтралью. В защитных целях преднамеренно создается соединение между открытыми проводящими элементами глухозаземленной нейтрали (в сетях трехфазного тока).

В сетях однофазного тока создают контакт с глухозаземленным выводом источника однофазного тока, а в случае с постоянным током — с глухозаземленной точкой источника тока. Хотя зануление характеризуется серьезными недостатками, система по-прежнему широко применяется во многих сферах для защиты от тока.

Разница между занулением и заземлением

Между занулением и заземлением имеются отличия:

  1. В случае заземления лишний ток и появившееся на корпусе напряжение перенаправляются в грунт. Принцип действия зануления основан на обнулении на щитке.
  2. Заземление более эффективно с точки зрения защиты человека от удара током.
  3. Заземление основано на быстром и значительном уменьшении напряжения. Тем не менее, какое-то (уже неопасное) напряжение остается.
  4. Зануление заключается в создании соединения между металлическими деталями, в которых отсутствует напряжение. Принцип зануления основан на умышленном создании короткого замыкания при пробое изоляции или попадании тока на нетоковедущие части электроустановок. Как только происходит замыкание, в дело вступает автоматический выключатель, перегорают предохранители или срабатывают иные средства защиты.
  5. Заземление чаще всего используют на линиях с изолированной нейтралью в системах типа IT и TT в трехфазных сетях, где напряжение не превышает тысячи вольт. Заземление применяют при напряжении более тысячи вольт с нейтралью в любом режиме. Зануление используют в глухозаземленных нейтралях.
  6. При занулении все элементы электроприборов, не находящиеся в стандартном режиме под напряжением, соединяются с нулем. Если фаза случайно коснется зануленных элементов, резко увеличивается ток и отключается электрооборудование.
  7. Заземление не зависит от фаз электроприборов. Для организации зануления требуется соблюдение жестких условий подключения.
  8. В современных домах зануление применяется редко. Однако этот способ защиты все еще встречается в многоэтажных домах, где по каким-либо причинам нет возможности организовать надежное заземление. На предприятиях, где имеются повышенные нормативы по электробезопасности, основной способ защиты — зануление.

Обратите внимание! Для правильного определения нулевых точек и выбора способа защиты понадобится помощь квалифицированного электрика. Сделать заземление, собрать элементы контура и установить его в грунт можно и своими руками.

Схема работы

Как было сказано выше, зануление основано на провоцировании короткого замыкания после попадания фазы на металлический корпус электроустановки, соединенной с нулем. Так как сила тока возрастает, подключается защитный механизм, отключающий электропитание.

По нормативам Правил установки электроустановок в случае нарушения целостности линии она должна отключаться автоматически. Регламентируется время на отключение — 0,4 секунды (для сетей 380/220В). Для отключения используются специальные проводники. Например, в случае однофазной проводки задействуется третья жила кабеля.

Для правильного зануления важно, чтобы петля фазы-нуля характеризовалась невысоким сопротивлением. Так обеспечивается срабатывание защиты за нужный промежуток времени.

Организация зануления требует высокой квалификации, поэтому такие работы должны выполнять только квалифицированные электрики.

На схеме ниже показан принцип работы системы:

Область применения

Защитное зануление используют в электроустановках с четырехпроводными электросетями и напряжением до 1 кВт в следующих случаях:

  • в электроустановках с глухозаземленной нейтралью в сетях TN-C-S, TN-C, TN-S с проводниками типов N, PE, PEN;
  • в сетях с постоянным током и заземленной средней точкой источника;
  • в сетях с переменным током и тремя фазами с заземленным нулем (220/127, 660/380, 380/220).

Сети 380/220 допускаются в любых сооружениях, где зануление электроустановок обязательно. Для жилых помещений с сухими полами зануление обустраивать не нужно.

Электрооборудование 220/127 используются в специализированных помещениях, где отмечается повышенный риск поражения током. Такая защита необходима в условиях улицы, где занулению подлежат металлические конструкции, к которым прикасаются работники.

Проверка эффективности зануления

Чтобы проверить, насколько действенно зануление, нужно сделать замер сопротивления петли фаза-ноль в наиболее отдаленной от источника электропитания точке. Это даст возможность проверить защищенность в случае воздействия тока на корпус.

Сопротивление измеряется с использованием специализированной аппаратуры. Измерительные приборы оснащены двумя щупами. Один щуп направляют на фазу, второй — на зануленную электроустановку.

По результатам измерений устанавливают уровень сопротивления на петле фазы и нуля. С полученным результатом рассчитывают ток однофазного замыкания, применяя закон Ома. Расчетное значение тока однофазного замыкания должно быть равно или превышать ток срабатывания защитного оборудования.

Предположим, что для предохранения электроцепи от перегрузок и коротких замыканий подключен автомат-выключатель. Ток срабатывания составляет 100 Ампер. По результатам измерений сопротивление петли фазы и нуля равно 2 Ом, а фазовое напряжение в сети — 220 Вольт. Делаем расчет тока однофазного замыкания на основе закона Ома:

I = U/R = 220 Вольт/2 Ом = 110 Ампер.

Поскольку расчетный ток короткого замыкания превышает ток мгновенного срабатывания автомата-выключателя, делаем вывод об эффективности защитного зануления. В противном случае понадобилась бы замена автомата-выключателя на прибор с меньшим током срабатывания. Другой вариант решения проблемы — сокращение сопротивления петли фаза-ноль.

Нередко при проведении расчетов ток срабатывания автомата умножают на коэффициент надежности (Кн) или коэффициент запаса. Причина в том, что отсечка не всегда равна указанному показателю, то есть возможна определенная погрешность. Поэтому использование коэффициента позволяет получить более надежный результат. Для старого оборудования Кн составляет от 1,25 до 1,4. Для новой техники применяется коэффициент 1,1, так как такие автоматы работают с большей точностью.

Опасность зануления в квартире

Скачки напряжения опасны как для людей, так и для бытовой техники в квартирах. В многоквартирных домах одной из квартир достанется низкое напряжение, а другой — высокое. Если в розетке квартиры случится обрыв нулевого проводника, при следующем включении электроустановки (например, бойлера) человека ударит током.

Особенно зануление опасно в двухпроводной системе. К примеру, при проведении электромонтажных работ электрик может заменить нулевой проводник на фазный. В электрощитах эти жилы далеко не всегда обозначены определенным цветом. Если замена произойдет, электрическое оборудование окажется под напряжением.

По нормативам Правил установки электроустановок на бытовом уровне зануление не разрешается для использования в бытовых целях именно по причине его небезопасности. Зануление эффективно только для защиты больших объектов производственного назначения. Однако, несмотря на запрет, некоторые люди решаются на установку зануления в собственном жилье. Происходит это либо по причине отсутствия иных методов решения проблемы, либо из-за недостаточности знаний по данному предмету.

Зануление в квартире технически осуществимо, но эффективность такой защиты непредсказуема, как и возможные негативные последствия. Далее рассмотрим ряд ситуаций, которые возникают при наличии зануления квартире.

Зануление в розетках

В некоторых случаях защиту электроприборов предлагают выполнить путем перемычки клеммы розеточного рабочего нуля на защитный контакт. Такие действия противоречат пункту 1.7.132 ПУЭ, поскольку предполагают задействование нулевого провода двухпроводной электросети в качестве как рабочего, так и защитного нуля одновременно.

На вводе в жилое помещение чаще всего расположено устройство, предназначенное для коммутации фазы и нуля (двухполюсный прибор или так называемый пакетник). Коммутация нуля, используемого как защитный проводник, не допускается. Иными словами, запрещено использовать в качестве защиты проводник, электроцепь которого включает коммутационный аппарат.

Опасность защиты с применением перемычки в розетке состоит в том, что корпуса электроустановок в случае повреждения нуля (независимо от участка) попадают под фазное напряжение. Если нулевой проводник обрывается, электроприемник перестает функционировать. В этом случае провод кажется обесточенным, что провоцирует на необдуманные действия со всеми вытекающими последствиями.

Обратите внимание! При обрыве нуля источником опасности становится любая техника в квартире или в частном доме.

Перепутаны местами фаза и ноль

При проведении электромонтажных работ в двухпроводном стояке своими руками существует немалая вероятность путаницы между нулем и фазой.

В домах с двухпроводной системой жилы кабелей лишены отличительных признаков. При работе с проводами в этажном щитке электрик может попросту ошибиться, перепутав фазу и ноль местами. В результате корпуса электроустановок попадут под фазное напряжение.

Отгорание нуля

Обрыв нуля (отгорание нуля) часто случается в зданиях с плохой проводкой. Чаще всего проводка в таких домах проектировалась, исходя из 2 киловатт на единицу жилья. На сегодняшний день электропроводка в домах старого типа не только износилась физически, но и не способна удовлетворить возросшее количество бытовой техники.

При обрыве нуля дисбаланс возникает на трансформаторной подстанции, от которой питается многоквартирное здание. Перекос возможен в общем электрическом щите здания или в этажном щитке дома. Следствием этого станет беспорядочное понижение напряжения в одних квартирах и повышение — в других.

Низкое напряжение губительно для некоторых видов электробытовой техники, в том числе кондиционеров, холодильников, вытяжек и прочих аппаратов, оснащенных электрическими двигателями. Высокое напряжение представляет опасность для всех видов электроустановок.

Альтернатива занулению

В подсистеме TN-S зануление защитного проводника PE осуществляется лишь на одном участке — на контуре заземления трансформаторной подстанции или электрогенератора. В этой точке разделяется PEN-проводник, и далее защита и рабочий ноль нигде не встречаются.

В такой схеме энергоснабжения заземление и зануление органично взаимодействуют, создавая условия для высокой электробезопасности. Однако в системах, где нейтраль изолирована (IT, TT), зануление не используется. Электрическое оборудование, работающее в рамках системы TT и IT, заземляется за счет собственных контуров. Так как система IT предполагает подачу питания только специфическим потребителям, рассматривать такой способ организации защиты в жилых домах не имеет смысла. Единственная альтернатива неправильному, а потому опасному занулению шины PE — система TT. Особенно актуальна такая система, потому что переход на технически прогрессивные системы TN-S, TN-C-S технически и финансово затруднен для домов, чей возраст превышает 20 – 25 лет.

Электрическая сеть, построенная по стандарту TT, призвана обеспечивать качественную защиту от попадания под напряжение нетоковедущих частей. Все работы по организации зануления должны осуществляться в соответствии с нормами, указанными в пункте 1.7.39 Правил установки электроустановок.

Выполнение заземления и зануления электроустановок

Обязательным условием безопасного функционирования электроприборов и различного оборудования является качественное заземление и зануление. Такая работа выполняется самостоятельно, что позволяет избежать выхода из строя техники из-за ее перенапряжения и коротких замыканий в сети. Заземление и зануление электроустановок выполняется с учетом особенностей оборудования, что предупредит его преждевременный выход из строя.

Определение понятий

Под заземлением принято понимать использование специальных конструкций, которые соединяют электропроводку дома или отдельные приборы с землёй. Благодаря наличию такой защиты прикосновение к поверхностям, которые находятся под напряжением, не приведет к летальному исходу, а удар тока будет минимальным. Изготавливается защита с электрооборудованием, имеющим изолированную нейтраль. Заземляющие устройства могут выполняться целой группой проводников, соединяющих с землей токопроводящие элементы.

Заземление электрооборудования также увеличивает аварийные токи замыкания, что необходимо в тех случаях, когда имеющаяся защита срабатывает при попадании под напряжение нетоковедущих частей. Это позволяет предупредить выход оборудования из строя при замыканиях, неквалифицированном ремонте и вмешательстве в электросети. Сегодня принято выделять несколько разновидностей заземления:

  • рабочий тип обеспечивает бесперебойную работу электрооборудования в штатном и аварийном режиме;
  • защитный тип обеспечивает безопасность электроустановок, предупреждая пробой на корпус и рабочую поверхность токоведущих проводов;
  • грозозащитный тип отводит молнию от зданий, уводя разряд в землю, предупреждает повреждение электрооборудования и возгорание строений.

Принято также различать искусственно изготовленное и естественное заземление. Первое выполняется для защиты сооружений и электроприборов от повышенного напряжения. Такие устройства состоят из металлического стержня, провода, труб некондиционного типа и стальных уголковых приспособлений. Естественное заземление также изготовлено человеком, однако изначально оно не предназначается для защиты от повышенного напряжения. В качестве него можно рассматривать железобетонные сооружения, трубопроводы, обсадные трубы и т. д.

Зануление также обеспечивает необходимую защиту электрооборудования, предупреждая его выход из строя из-за замыканий и перенапряжения в сети. Такой вид работ отличается от заземления принципом монтажа и назначением. Зануление подразумевает подключение токопроводящих элементов к корпусу электроприбора или металлическим деталям. Для обеспечения безопасности обязательно соединение с нейтралью, которая является источником трехфазного пониженного напряжения.

Основной задачей зануления является защита электрооборудования и рабочего персонала от поражения током за счёт срабатывания автоматического коммутационного оборудования. Принцип работы такой защиты заключается в создании искусственных коротких замыканий при попадании тока на корпус техники или в случаях пробоя изоляции. Возникновение короткого замыкания приводит к срабатыванию:

  • предохранителей;
  • автоматических выключателей;
  • специальной защиты от короткого замыкания.

Заземление отличается от зануления применением специального оборудования, которое использует нейтраль и за счёт коротких замыканий разрывает цепь, предупреждая серьёзное поражение электрическим током. Особенностью зануления является необходимость высокой мощности тока нулевого провода, за счёт которого происходит короткое замыкание. Только в этом случае можно обеспечить стопроцентную вероятность защиты от поражения электричеством при наличии проблем в электроснабжении. Если мощности нулевого провода и токов короткого замыкания недостаточно, это приводит к появлению повышенного напряжения в электрооборудовании.

Выбор технологии

Планируя электрозащиту дома, многие из нас задумываются о выполнении дополнительной защиты электроснабжения. Однако домовладельцы не всегда понимают, в чем разница заземления и зануления. Основными различиями являются:

  • при заземлении избыточный ток отводится в землю, а при выполнении зануления напряжение сбрасывается в щитке на ноль;
  • заземление считается наиболее эффективным способом защиты человека от поражения электротоком.
Сделать заземление проще, чем зануление. В последнем случае потребуется помощь специалиста, который должен рассчитать оптимальные показатели нулевого тока и лишь после этого можно будет обеспечить правильность работы защитного оборудования.

К выполнению заземления чаще всего прибегают владельцы частных домов, а вот обладателям квартир в многоэтажках требуется делать зануление, для чего дополнительно устанавливают УЗО и аналогичные устройства, предупреждающие поражение током и повреждение работающих электроприборов. При правильном устройстве защиты можно полностью исключить опасность поражения электротоком, а различная техника и приборы будут полностью защищены от вероятных скачков напряжения и замыканий в сети.

Для обеспечения качественной защиты при занулении необходимо учитывать фазность приборов и выполнять сложные расчёты. Самостоятельно провести такую работу не представляется возможным. Только опытный электрик правильно спланирует подключение, установит соответствующие защитные приборы и проведет качественное зануление.

Выполненное заземление не будет зависеть от разности приборов, поэтому его проще обустроить самостоятельно, даже не имея каких-либо профессиональных навыков. Сбросить лишнее напряжение в землю намного безопаснее, чем монтировать дополнительные приспособления, которые отводят ток на щиток.

Сегодня в продаже имеются уже готовые комплекты для заземления частного дома. Потребуется только заглубить на несколько метров в землю металлический контур, подключить к нему фазу со щитка, что и позволит обеспечить максимальную безопасность используемых электроприборов. Можно подобрать различные комплекты, которые подходят для дачи или полноразмерного частного дома, отличаются своей конструкцией, способом подключения и максимально возможной нагрузкой.

В последние годы отмечается тенденция, когда полноценное зануление выполняется на производстве и предприятиях, где требуется обеспечить повышенную электробезопасность эксплуатируемым приборам и промышленному оборудованию. Обычные же домовладельцы в целях защиты от поражения током обустраивают простейшее заземление, сделать самостоятельно которое не составит особого труда.

Разновидности защитных систем

Основные требования к заземлению и занулению описаны в ГОСТе, что упрощает выполнение такой работы и стандартизирует используемые устройства. Защитные системы отличаются способом обустройства, принципом работы и используемым дополнительным оборудованием.

Система TN-C была разработана в Германии еще в начале прошлого века. Такая защита предусматривает использование единого кабеля с PE проводником и нулевым проводом. Недостатком этой системы заземления является появление избыточного напряжения при нарушении корпуса оборудования и отгорания нуля. Несмотря на имеющиеся недостатки, TN-C пользуется сегодня популярностью благодаря простоте в реализации.

Системы заземления TN-S и TN-C-S используют два провода, которые отходят от щитка и идут в землю. Контур выполняется в виде сложной металлической конструкции, что полностью исключает вероятность поражения током и выход из строя электроприборов при наличии проблем с электроснабжением. Эта схема получилась чрезвычайно удачной, она пользуется популярностью и обустраивается на дачах и в частных домах.

Заземление по типу TT основывается на соединении контура электроустановки с металлическими элементами, находящимися под землёй. Такая схема не получила сегодня должного распространения из-за сложности в реализации, а также возможных перепадов напряжения в сети.

Разновидность защиты OT подразумевает передачу лишнего напряжения на корпус и в землю с нейтрали, которая изолирована от грунта и подключена к приборам с большим сопротивлением. Такая схема получила распространение при использовании электрического оборудования, которому требуются стабильность и повышенная безопасность.

Популярные способы зануления

Зануление PNG отличается простотой конструкции, что объясняется совмещением защитных и нулевых проводников. К недостаткам этой системы безопасности относятся повышенные требования к взаимодействию проводникового сечения ее потенциалов. PNG широко используется при необходимости зануления асинхронных агрегатов, работающих в трехфазных сетях.

Наибольшую популярность сегодня получили модифицированные системы зануления электроустановок, которые питаются от однофазной сети. В них используется общий совмещенный PEN проводник, соединяющийся с глухозаземленной нейтралью. После такого соединения происходит разделение кабелей PE и N, которые далее подключаются к корпусу или аналогичным приборам защиты. Преимуществом такой технологии зануления является ее универсальность, возможность использования в однофазной и трехфазной сети, а также простота конструкции и полная безопасность.

Заземление и зануление электроустановок позволяет защитить технику от скачков напряжения и коротких замыканий. Зануление подразумевает использование специального оборудования, позволяющего перенаправить лишнее напряжение на щиток. Такая защита используется преимущественно на промышленных предприятиях и объектах, где требуется повышенная безопасность работы оборудования. Владельцы частных домов могут самостоятельно выполнить заземление, что позволит им защитить себя и используемые электроприборы от замыканий и перепадов в сети.

Заземление и зануление электроустановок, разновидности (TN-C,TN-S,TN-C-S,TT,TI), достоинства и недостатки

Любая электроустановка состоит не только из проводников электрического тока. Они помещаются в корпуса и оболочки, закрыты кожухами. Между токоведущими частями корпусами, в которых они находятся или на которых расположены, размещаются изоляционные материалы.

Все изоляторы подвержены способности повреждаться. При этом они теряют свои свойства и начинают проводить электрический ток. Потенциал рабочих частей электроустановки, находящихся под напряжением, проникает через место повреждения на токопроводящие корпуса и оболочки. При прикосновении к ним человека последний получает опасный для жизни удар электрическим током.

Способы защиты от опасных потенциалов

Ситуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека.

Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением.

Чтобы исключить риск поражения электротоком, нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен.

Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением.

Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление.

Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди.

Система заземления TN-C

В этой конструкции нет ничего нового. Она была такой долгие годы.

Для питания потребителей в ней используется 4 провода. Три из них – фазные, один – нулевой. По последнему протекает рабочий ток нагрузки. Но он же используется и для реализации защитных целей, соединяясь с контуром заземления нейтрали силового трансформатора, питающего электроустановки. К нему же присоединяются и корпуса электрооборудования. Называется он проводником PEN. Из-за того, что в нем сочетаются функции защиты и транспортировки рабочего тока к месту назначения, он получил название «совмещенный проводник».

В итоге реализуются обе задачи: ток замыкания на землю высок – отключение поврежденного участка происходит достаточно быстро. К тому же при повреждении малое сопротивление PEN-проводника шунтирует тело прикоснувшегося к корпусу человека, имеющее сопротивление порядка килоома. Большая часть тока стекает в землю.

Но по PEN-проводнику протекает рабочий ток нагрузки. Контактные соединения от этого могут нарушиться, соединение – стать ненадежными или прерваться вовсе.

Так исчезает столь необходимая связь с заземляющим устройством.

Даже, если имеется повторное заземление PEN-проводника на вводе в здание.

Мало того, наличие тока в этом проводнике приводит к возникновению потенциала, увеличивающегося по мере удаления от точки связи с контуром заземления.

А при обрыве проводника PEN картина и вовсе ужасающая. Потенциал на корпусах за местом обрыва может теоретически достигнуть и 220 В.

Добавим ко всему этому технологически трудную реализацию соединения корпусов некоторых электроприемников с PEN. Как заземлить корпус электроплитки, подключаемой к сети через розетку?

Развитие бытовых электроприборов, требующих применения защитных мер по электробезопасности, привело к усовершенствованию системы TN-C. Подробнее о системе TN-C можно почитать в отдельной статье.

Система заземления TN-S

Отличие от предыдущей рассмотренной системы заземления в том, что функции рабочего-нулевого и защитного проводника разделены в разных физических проводниках. Нулевой рабочий (N) – проводит ток нагрузки, нулевой защитный (РЕ) – подключается к контуру заземления.

В результате происходит полное избавление от потенциала на корпусах, появляющихся в «особо отдаленных районах» электрической сети, а также – при обрывах проводников. Максимум, что грозит при отсутствии целостности проводника РЕ – отсутствие защиты. Но оборваться у него шансов немного – ток-то по нему не протекает, с чего бы вдруг потеряться выполненным по всем электрическим правилам контактным соединениям?

Поскольку сечение РЕ-проводников в составе кабельных линий обычно оказывается равным сечению фазных, упростилась задача присоединить их к корпусам любого электрооборудования.

Даже к заземляющему контакту розетки. Что позволило распространить защитные меры безопасности на все бытовые электроприборы: на ту же электроплитку, в частности.

Правда, в силовые кабельные линии добавилась лишняя жила. Ну что же – за безопасность надо платить.

Все вновь монтируемые электроустановки теперь, как правило, выполняются по этой системе заземления.

Подробнеео системе TN-S можно почитать в отдельной статье.

Система заземления TN-C-S.

Существенной проблемой при реализации системы TN-S является то, что реконструкция электроустановок и строительство новых происходит зачастую без реконструкции самой трансформаторной подстанции. Обычно переделывается какая-то ее часть, начиная от распределительного щита на вводе до последнего потребителя. До этого щитка система заземления неизбежно сохраняет старую конструкцию.

Эта проблема заранее решена тем же самым пунктом ПУЭ, описывающим переходной вариант системы заземления, обозначенный, как TN-C-S. В нем нетронутая реконструкцией часть электроустановки вполне себе официально не меняет своей структуры, оставаясь то же TN-C. А вот с некоторой точки распределительная сеть выполняется по новым правилам.

Суть в разделении проводника PEN на два: рабочий и защитный.

Выполняется это во вводном распределительном устройстве. В нем устанавливается две распределительных шинки: N и РЕ. Проводник PEN в обязательном порядке присоединяется к РЕ, а между самими шинками монтируется перемычка.

Подробнее о системе TN-C-S можно почитать в отдельной статье.

Почему к РЕ?

Если перемычка между шинами оборвется (этого нельзя исключать ни в коем случае), то при таком способе соединения нулевая рабочая шина потеряет связь с нейтралью электроустановки. При этом возможны тяжелые последствия для электрооборудования – но соединение с защитной шиной не пострадает, люди останутся в безопасности.

К тому же не заметить сей факт обрыва невозможно. Его сразу побегут искать.

При обратной же схеме коммутации обрыв перемычки заметят разве что при плановых измерениях целостности защитной цепи. А за это время люди останутся без защиты – корпуса «повиснут в воздухе». Хорошо бы, если так.

Предоставленная сама себе сеть из соединенных между собой защитных проводников таит не меньшую опасность, чем при обрыве PEN-проводника система TN-C.

Блоки питания бытовой аппаратуры (компьютеров или стиральных машин, к примеру) и полупроводниковые ПРА люминесцентных ламп при отсутствии соединения их корпусов с заземляющим устройством выдают на них потенциал порядка 110 В через конденсаторы входного помехоподавляющего фильтра блока питания. Он распространяется по всей сети, появляясь на прочих металлических частях, соединенных с РЕ-проводником.

Не стоит забывать о том, что эта система унаследовала от TN-C ее главные недостатки: потенциал на PEN-проводнике и опасные напряжения на нем при его обрыве. Главный метод борьбы с ними – собственный контур повторного заземления, вывод от которого присоединяется к шине РЕ вводного щитка.

Но есть и другие системы заземления, использующиеся в частных случаях для защиты людей.

Система заземления ТТ

В предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ.

Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами.

Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником.

Мерой же для защитного отключения служит обязательная установка УЗО у потребителя.

Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время.

Подробнеео системе TT можно почитать в отдельной статье.

Система заземления IT

А здесь нулевой проводник отсутствует вовсе, так как эта система – с изолированной нейтралью. Подключение нагрузки возможно только на линейные напряжения сети.

Ничего опасного для потребителя при возникновении повреждения одной фазы на корпус не происходит. Ток замыкания на землю ничтожен и не принесет организму особого вреда.

А для ликвидации опасных по величине токов все линии защищают УЗО в обязательном порядке.

Но для фиксации замыканий на землю в таких сетях устанавливаются специальные элементы – реле утечки. При его срабатывании повреждение требуется активно поискать. А при возникновении второго замыкания участок сети с повреждением подлежит немедленному отключению.

Отличия зануления от заземления, их схемы и область применения

Чем отличается заземление от зануления? Специалисты разобрались с этим вопросом. Все это — защитные меры от пиковых токов. Предусматривают работу по недопущению поражения электричеством человека и бытовых приборов. Названия разные, но все это — системы защиты.

Чтобы понять, в чем разница между заземлением и занулением, нужно знать назначение и принцип работы электрических устройств.

Принцип действия

Заземляющий контур электрической цепи – система проводов, соединяющая каждого потребителя, в обслуживаемой цепи, со специальным заземляющим контуром здания. При пробое на корпус прибора или утечке тока с поврежденной проводки, ток проходит по проводам к заземлителю.

Сопротивление заземления, как правило, выполняется меньше, чем сопротивление всей цепи. Поэтому ток течет по «легкому» пути и отводится с корпусов оборудования.

Занулением называется выполнение электрического соединения токопроводящих корпусов приборов с глухозаземленной нейтралью. При возникновении пиковых значений тока, его потенциал отводится, с помощью шины зануления, в специальную щитовую или на трансформаторную будку.

Главное его назначение – в случаях пробоев и утечек напряжения на корпус оборудования, вызывается короткое замыкание, сгорают предохранители или срабатывают автоматические размыкатели цепи.

Это и есть главное отличие заземления от зануления. Заземляющий контур принимает на себя токи КЗ, зануление вызывает срабатывание предохранительных устройств.

Разберем подробнее работу систем защиты от воздействия электрического тока.

Особенности заземляющего устройства

Основной целью заземляющего контура является понижение потенциала при пробое на корпус и коротком замыкании, до безопасного значения.

При этом, на корпусе оборудования понижается напряжение и сила тока, до безопасного уровня. На производстве заземляют корпуса электрооборудования, зданий и помещений от воздействия атмосферных токов.

При монтаже контура, в сети трехфазного тока не более 1000 В, применяют изолированную нейтраль. При больших уровнях напряжения сети, монтируется система с разными режимами нейтрали.

Контур заземления – это целая система, включающая в себя:

  • заземлитель;
  • заземляющие горизонтальные проводники;
  • подводящие провода.

Заземлитель подразделяют на искусственный и естественный.

При возможности следует использовать естественный заземлитель:

  • подземные трубопроводы водоснабжения. Но в этом случае, необходимо оборудовать трубопровод защитой от блуждающих токов;
  • подключаются на металлоконструкции цехов и помещений;
  • стальная или медная оплетка кабеля;
  • трубопроводы в скважине.

По нормам ПУЭ запрещено подключать заземляющий контур на трубы отопления и с пожароопасными материалами.

При искусственном оснащении, заземляемое оборудование предохраняется путем изготовления контура в виде равностороннего треугольника из металлических штырей или уголков.

Для щелочной и кислой почвы, рекомендуется использовать медный, оцинкованный заземлитель. Для изготовления контура в виде треугольника, необходимо углубиться в землю на 70 см.

Нельзя устанавливать групповые заземлители в пробуренные отверстия. Их необходимо забить в месте разметки, на глубину, не менее 2-х метров. Затем, соединяют заземлители в единую конструкцию с помощью отрезков стальной полосы.

Корпуса каждого прибора должны обязательно подключаться к системе защиты. При этом, нельзя подключать несколько потребителей последовательно, каждое устройство обязано обустраиваться линией подключения.

Теперь о главном – значение уровня сопротивления контура. В него суммируется сопротивления каждого прибора цепи и его проводов.

При расчете сопротивления контура, следует учитывать уровень значения грунта, размеры и глубину забивания заземлителей. Необходимо учитывать температурные особенности региона обустройства контура.

Помните – при жаркой погоде, место установки следует заливать водой, почва при высыхании меняет уровень сопротивления.

При обслуживании сетей до 1000. В и мощности оборудования свыше 100 кВА – сопротивление контура не более 10 Ом. В бытовых сетях оптимальным значением будет 4 Ома. Напряжение при прикосновении должно быть меньше 40 В. Сети свыше 1000 В защищаются устройством с сопротивлением не более 1 Ома.

Это некоторые особенности и принцип действия заземления. Более подробно, вы можете ознакомиться в статьях по этой теме на сайте.

Особенности и принцип действия зануления

Назначение зануления — метод защитного устройства позволяет провести подключение корпусов оборудования и других деталей из металлов с нейтралью (нулевой защитный проводник). В условиях с заземленным защитным проводником и напряжением в сети не более 1000 В, используется схема зануления.

При пробое фазного тока на корпусе электроприборов и оборудовании происходит КЗ фазы. При этом, срабатывают автоматы защитного отключения тока и цепь размыкается. Этим и отличаются две защитные системы.

К приборам зануления относят:

  • плавкий предохранитель;
  • автомат отключения тока;
  • встроенные в пускатели, тепловые реле;
  • контактор с тепловой защитой.

Возникла ситуация пробоя фазного напряжения. При этом от корпуса электроустановки ток проходит по нейтрали на обмотку трансформатора. Затем, от него по фазе — на предохранитель. Плавкие предохранители сгорают от пиковых значений тока, в электрическую цепь прекращается подача напряжения.

При этом, ноль беспрепятственно проводит ток, позволяя сработать защите. Его прокладывают в безопасном месте, запрещается оснащать его дополнительными выключателями и другими устройствами.

Значение уровня проводимости провода фазы должно быть наполовину больше нулевого проводника. Как правило, в этом случае используют стальные пластины, оболочки кабеля и другие материалы.

Зануляющие проводники проверяют на исправность при сдаче работ по подключению и проводке электроэнергии в здании, а также, через определенное количество времени, при пользовании электрической схемой.

Не менее одного раза в период 5 — летнего срока, производятся замеры значений сопротивления всей цепи фазного и нулевого проводника на корпусах самого дальнего оборудования от щита электропроводки, а также самого мощного оборудования в помещении.

Защитное зануление, в некоторых случаях, может выполнять работу защитного отключения. При этом, отличаются эти 2-е защитных системы тем, что в случае защитного отключения цепи, его можно использовать в любых условиях, при различных режимах заземляющего проводника, показателей напряжения цепи. В таких сетях можно обойтись и без провода нулевого подключения.

Расчет зануления необходимо производить с учетом всех условий работы и принципа его действия.

Защитное отключение выполняют с использованием защитной системы, которая отключает электрооборудование автоматически. При возникновении аварийных ситуаций и угроз поражения и нанесения электротравм человеку, к таким ситуациям можно отнести:

  • короткое замыкание фазного провода на корпус;
  • повреждение изоляции электрической проводки;
  • неисправности на заземляющем контуре;
  • нарушения целостности зануляющих проводников.

Эта защитная система нередко используется при невозможности провести защитные системы заземления и зануления. Но на ответственных участках, возможна установка защитного отключения и как дополнительный контур защиты человека и оборудования от поражения токами утечки и короткого замыкания.

При этом, их подразделяют, в зависимости от величины тока на входе и изменений реакции защитных устройств, на несколько схем:

  • наличия напряжения на корпусе оборудования;
  • силу тока при замыкании на провод земли;
  • напряжения или силу тока в нулевом проводнике;
  • уровня напряжения на фазе относительно значения на проводе земли;
  • устройства для постоянного или переменного тока;
  • устройства комбинированные.

Все системы защиты и отключения подачи тока в сеть оснащаются автоматическими выключателями. В их конструкции предусмотрена установка специального оборудования защитного отключения. При этом, период времени для отключения сети не должен превышать 2-е десятые секунды.

В заключение разберем вопрос, который может задать начинающий электрик.

Взаимозаменяемость защитных систем

Можно ли установить зануление вместо заземления? На этот вопрос любой специалист ответит «да», но только в промышленном здании.

В жилом помещении применять такую схему защиты следует в очень редких случаях, и только в нежилых помещениях. Это обусловлено, в первую очередь, с неравномерной нагрузкой на провод фазы и нейтрали.

При работе, на провода каждой фазы поступает одинаковая нагрузка, но по нейтрали общей цепи проходит достаточно малый ток. Каждому известно, что нельзя касаться фазы, но можно выполнять работу с нолем под нагрузкой.

При этом, сечение нулевого провода меньше провода фазы. При долгом использовании он окисляется на скрутках, нарушается слой изоляции при нагреве, в худшем случае он просто отгорит. При этом, напряжение фазы подходит к щитовой, затем, через провод ноля идет к потребителю. Корпуса приборов находятся под напряжением, повышается возможность поражения человека током.

Как советуют некоторые умельцы в Интернете, можно подвести к каждому бытовому прибору провода системы зануления, но это повлечет за собой значительные траты на проводку и последующий ремонт. Поэтому занулять источники в жилых помещениях нельзя.

Лучше в электрощите установить устройство защитного отключения и спокойно пользоваться бытовыми приборами. Каждое защитное устройство выполняет свое предназначение, при правильном расчете, монтаже и его использовании.

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Система заземления TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

Система заземления TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

в чем разница, ⚡ отличия и требования

Безопасность – главное требование, которому должен отвечать любой электроприбор. При отсутствии грамотной защиты малейшая пробоина в проводе может спровоцировать появление электрического потенциала на кожухе устройства. При касании к такому аппарату произойдет удар током.

Расчет фундамента

Попробуйте новый продукт

Избежать этого поможет соединение открытых металлических отводов с землей или нулевым кабелем. Однако в чем разница между заземлением и занулением знают не многие. В этом нужно разобраться, прежде чем приступать к монтажу какого-либо оборудования.

Что такое заземление?

Заземлением называют намеренное подключение открытых частей электроприборов к отдельному отводу, непосредственно контактирующему с землей. В результате этого происходит падение напряжения на корпусе аппарата. Основная часть тока отводится в почву.

Чаще заземлитель представляет собой конструкцию из металлических штырей, вбитых в почву на одинаковом расстоянии друг от друга. Они соединяются между собой стальной лентой. Размеры такой установки зависят от особенностей электроприбора, который планируется эксплуатировать.

Заземляющая конструкция соединяется с шиной и посредством проводников заводится в распределительный щиток дома. Шина – металлическая полоса, оснащенная клеммниками. К ней подсоединяются проводники от каждого электрического прибора.

Выделяют три типа заземления:

  1. Рабочее. Обеспечивает бесперебойную работу электроприборов. Применяется в штатном или аварийном режиме.

  2. Защитное заземление. Предотвращает травмирование человека электрическим током.

  3. Молниезащитное. Помогает отводить импульсные токи, попадающие на прибор в результате удара молнии.

Конструкция, состоящая из штырей, вкапываемых в землю, именуется искусственным заземлением. К естественной защите относят трубопроводы, элементы зданий из железобетона, обсадные магистрали и прочие элементы, контактирующие с грунтом.

В качестве заземлителя нельзя использовать трубы, по которым транспортируются взрывоопасные и горючие вещества, а также детали из алюминия, оболочки кабелей.

Схемы подключений

Существует пять основных схем создания защитного заземления.

Схема

Название

Особенности

TN-C

Характерной чертой этого способа подключения стало объединение нулевых проводников в единый PEN проводник. PEN проходит от подстанции и разводится на пару разных кабелей PE и N перед конечным потребителем. Такая система легко монтируется и предотвращает появление короткого замыкания.

TN-S

Ток поступает к потребителю посредстом пяти проводов 3-фазной и трех проводов однофазной сети. Три из пяти проводящих источников имеют силовую функцию. Два остальных являются нейтральными.

TN-C-S

Производится разделение PEN на PE и N в определенной зоне цепи. Чаще они разводятся в щитке постройки. Такая схема надежно предохраняет от короткого замыкания, удара молнии. Для схемы характерен низкий уровень защиты от разрыва нулевого проводника. Отключение напряжения с помощью автоматики организовать не удастся.

TT

Эта схема гарантирует повышенный уровень безопасности. Она собирается по принципу четырех проводников, три из которых находятся под напряжением и совмещены под углом 120 градусов друг к другу. Последний проводник нулевой.

IT

Эта схема применяется для сетей, напряжение в которых превосходит 1000 В. Она создает защиту посредствам высокого сопротивления. Система позволяет продолжительную эксплуатацию даже в аварийном режиме.

В современных домах чаще реализуются схемы TN-C-S и TN-S. Они обеспечивают высокую степень безопасности. В старых постройках заземление нередко вовсе отсутствует. Его придется организовывать самостоятельно.

Любые работы с электрикой должен проводить человек, имеющий соответствующее образование и допуск. Человеку без опыта и знаний нельзя самостоятельно вносить какие-либо изменения. Это чревато выходом из строя всей техники или пожаром.

Что представляет собой зануление?

Занулением именуют систему, при которой все, не находящиеся под напряжением токопроводящие детали оборудования, подключают к нейтрали. Она предотвращает повреждения в результате короткого замыкания.

При контакте провода, имеющего напряжение, с зануленным кожухом агрегата образуется большая сила тока. Это провоцирует срабатывание автомата-предохранителя, отключающего подачу питания на агрегат.

В качестве нейтрального проводника в однофазной электрической цепи можно использовать третью жилу кабеля. Причем у фазы и ноля должно оказаться минимальное сопротивление. Только так защитная аппаратура сработает.

Применение системы зануления целесообразно в случаях:

  1. Трехфазная сеть с переменным током и заземленным нулем.

  2. Сеть с постоянным током и заземленной средней точкой.

  3. Оборудование с глухозаземленной нейтралью.

В квартирах подобные системы не применяются. Это угрожает жизни и здоровью людей, а также работоспособности техники. При внезапном повреждении нулевого проводника, человека ждет удар электрическим током.

Схема подключения

Нейтральный проводник связывается с нейтралью трансформатора, имеющей надежное заземление. Нейтраль вместе с трехфазной линией заводится в помещение. Ее разводят по всем имеющимся щиткам. Далее от нее берется рабочий ноль, выдающий однофазное напряжение.

Защитное зануление формируется отдельным нулем в щитке. В схеме подключения не должны присутствовать аппараты коммутации, к примеру, рубильники. Чтобы избежать негативных последствий при повреждении нулевого проводника каждые 200 метров цепи монтируются дополнительные узлы защиты. На них сопротивление не должно превосходить отметку в 30 Ом.

В чем разница между заземлением и занулением?

Заземление и зануление имеют идентичную функцию – защита человека и животного от воздействия электрического тока. Но между двумя понятиями есть существенные различия:

  1. При заземлении ток отводится в почву. Напряжение в сети уменьшается, но не до нуля. Минимальный ток в системе все же остается. Зануление же позволяет экстренно отключить подачу питания на прибор.

  2. Заземление не связано с фазами электроприборов. При организации зануления строго соблюдаются правила подключения.

  3. Отличие зануления и заземления и в сфере их применения. Первое подходит для эксплуатации в глухозаземленных нейтралях. Заземление же применяется в цепях, имеющих изолированную нейтраль. Подобную систему монтируют для оборудования, напряжение которого превосходит 1000 В.

  4. Зануление подходит для промышленности, а в жилых домах его устанавливают крайне редко. Заземление же лучший способ обезопасить жителей квартир.

Зазамеление и зануление одинаково хорошо защищают технику от повреждений. А вот с точки зрения безопасности для человека первый вариант считается более эффективным.

Дополнительным различием становится возможность самостоятельного монтажа. Соблюдая все технические требования и нормы безопасности, заземление можно выполнить своими руками. Для этого достаточно иметь сварочный аппарат, металлические прутки и достаточный уровень знаний. Зануление же сможет выполнить только высококвалифицированный электрик.

Заземление отличается от зануления и методикой подключения. Это наглядно видно по схемам.

Технические требования

Расположение элементов защитного заземления и зануления определяются еще на стадии разработки схемы электропроводки. При этом к системам предъявляется ряд требований:

  1. При использовании трансформатора, напряжение которого составляет 380 В, возможно подключение только одного потребителя электричества.

  2. При мощности оборудования менее 1000 Вт и наличии глухозаземленного нулевого проводника монтаж зануления обязателен.

  3. Оборудование с мощностью свыше 1000 Вт должно быть оснащено заземлением нулевого кабеля для предотвращения травм рабочих при пробое изоляции проводов.

  4. Для аппаратуры, эксплуатирующейся на улице, монтаж заземления и зануления обязателен.

  5. В 3х-фазной цепи требуется дополнительная защита от пробоя тока. Ее устанавливают в нулевом проводнике.

Монтаж защитных конструкций требуется для любой техники, напряжение постоянного тока которой свыше 380 Вт, а переменного 440 Вт. Только так эксплуатация аппаратуры окажется безопасной.

Одновременное создание зануления и заземления необходимо для любой техники мощностью выше 1300 Вт. Подобной защитой оснащаются ванны и поддоны душевых кабин, подвесные потолки.

Что делать, если в доме нет заземления?

Если здание слишком старое или электропроводка в нем спроектирована неверно, то заземление может полностью отсутствовать. Эксплуатация в таких домах аппаратов с высокой мощностью, например, бойлеров, стиральных машин, холодильников и прочих, небезопасна. Единственный выход из такой ситуации – самостоятельно создать защиту.

В частном доме это сделать несложно, достаточно вывести на улицу шину и подсоединить к ней конструкцию из трех штырей, вкопанных в землю. В многоэтажном строении работы окажутся гораздо сложнее. Можно установить распаечные коробки на каждом этаже и к ним уже подводить заземление. Контур нельзя устанавливать на дорожном покрытии, его лучше отвести в клумбу. Представитель каждой квартиры сможет впоследствии подключиться к общей шине и провести заземление в свое жилье.

Частые ошибки

Неопытные мастера в попытке все работы провести самостоятельно часто совершают грубые ошибки. Очевидным становится тот факт, что заземлителем не может служить рабочий ноль. Есть те, кто пытается обеспечить отвод напряжения посредствам труб отопления или системы водоподведения. Делать это целесообразно только, если система полностью сделана из металла и гарантировано контактирует с землей.

На практике в многоэтажных зданиях часто встречаются участки со вставками из полипропилена. Да и трубопровод может и вовсе не соприкасаться с почвой. В результате подключения к такой системе соседи получат сильнейший удар током.

Видео о заземлении и занулении

Лучше разобраться, в чем разница между заземлением и занулением, понять схемы их подключения и особенности поможет небольшой видеоролик.

Создание правильной системы заземления – гарантия безопасности использования всех электроприборов. Лучше доверить эту работу профессионалам. Ценой недостатка знаний и навыков в этой области может стать человеческая жизнь.


Чем отличается заземление от зануления схема


Заземление и зануление: в чем разница

Для безопасной работы на различных электоустановках и проводниках используется соединение открытых металлических отводов с землей и подключение сети к нулевому кабелю. Но немногие начинающие мастера точно знают, чем отличается заземление и зануление электроустановок и электрооборудования.

Определение заземления

Заземление – это умышленное подключение открытых частей электрического оборудования, которые находятся под напряжением, к специальному заземляющему отводу, шине или другому защитному оборудованию. Это может быть арматура в земле, часть электроустановки и другие приспособления. Такой подход, согласно ПУЭ, является обязательной мерой преднамеренной защиты как жилого, так и нежилого фонда. Это же гласят правила и требования ГОСТ 12.1.030-81 ССБТ (электробезопасность и система стандартов безопасности труда).

Фото — схема

Практически в каждом современном доме установлена схема заземления TN-C-S или TN-S. Но в зданиях старой постройки заземление зачастую вообще отсутствует, поэтому владельцам квартиры в таких постройках приходится своими силами организовывать землю. Такая система называется TN-C. Выполняется при помощи подключения отвода к заземляющему контуру, который может располагаться непосредственно в земле у здания или возле трансформаторной будки.

Рисунок TN-C

Теоретически, такую модернизацию проводки может организовать специальная монтажная компания, но практикуется это редко. Чаще к щитку на этаже (в многоквартирном доме) подводится земля, и уже к ней подключаются остальные провода.

  1. Если фаза попадает на открытый металлический отвод любого электрического устройства, то в нем появляется напряжение. Это же случается, если, к примеру, нарушена изоляция кабеля. Человеческое тело – отличный проводник тока, если Вы дотронетесь к такому отводу, то получите сильный удар током. Заземление поможет избежать это;
  2. Блуждающие токи уходят в заземляющий проводник, этим гарантируется охрана жизни;
  3. В особенности опасно напряжение, которое попадает на радиаторы отопления. В таком случае, все батареи в доме становятся проводниками тока. Но если установлена земля, то все напряжение уйдет по проводнику.
Фото — вариант земли

Если нет возможности провести полноценный заземляющий контур, тогда используются другие способы. К примеру, сейчас очень распространено подключение переносных заземляющих штырей (портативные шины). Их действие никак не отличается от стандартного стационарного отвода, но при этом они гораздо практичнее по своему функционалу.

Фото — переносная шина

Назначение зануления

Иногда зануление и заземление путают друг с другом, так в чем разница между ними? Зануление применяется по ПУЭ только для промышленных установок и не является гарантом безопасности. Если фаза попадает на открытую часть устройства, то ток не уходит. После этого происходит сопряжение двух фаз, и, как следствие, короткое замыкание. Нулевой проводник необходим для быстрого реагирования дифференциального защитного автомата на КЗ, но не для защиты человека от поражения током. Поэтому его принято использовать только на производстве, где требуется быстрое отключение питания в случае аварийной ситуации.

Фото — схема зануления

Нужно ли делать зануление в частном доме или квартиры? Нет, это необязательно, и даже чревато различными негативными последствиями. Скажем, если нулевой провод сгорит, то большее количество электрических устройств, к которым он был подключен, сломается из-за чрезвычайно высокого скачка напряжения. Стоит помнить, что Ваша безопасность не пострадает, если вместе с занулением обустроить также заземление, установить УЗО и защитный выключатель.

Фото — принцип работы зануления

Как установить зануление, чтобы устройство, подключенное к нему, не сгорело:

  1. Нужно использовать трехжильный провод с изоляцией. Одна жила отведена для фазы, вторая для нуля, третья для заземления;
  2. Земля подключается в самом конце электромонтажных работ на корпус безопасного проводника к заземляющему контуру и т. д. Наиболее практичен специальный заземляющий отвод у щита;
  3. В целях безопасности обязательно устанавливаются различные выключатели питания и прочие защитные установки.

Видео: в чем разница зануления и заземления

Главное отличие

Самое главное, что нужно запомнить: схемы зануления и заземления имеют различное защитное действие. Ноль гарантирует быструю реакцию на изменение потенциалов или утечку тока для обеспечивающих защиту установок. Соответственно, при высоком напряжении обеспечивается отключение всех потребителей энергии: осветительных приборов, компьютера и других машин (в том числе, станков, трансформаторов).

Фото — отличие зануления и заземления

Заземлением же обеспечивается выравнивание потенциалов и защита от поражения током. Земля чаще применяется в домашних условиях, её монтаж можно легко сделать своими руками. Но здесь нет гарантии, что предохранители быстро отреагируют на утечку. Оптимальным вариантом для повышения гарантии безопасности является совместное применение зануления и заземления сетей и открытых частей машин.

Перед установкой любого из этих вариантов защиты, нужно обязательно получить разрешение на проведение работ. Также дополнительно проводится расчет защитного проводника, подведение к каждому потребителю в жилище земли и установка защитного оборудования.

Разница между заземлением и заземлением со сравнительной таблицей

Одно из основных различий между заземлением и заземлением состоит в том, что при заземлении токоведущая часть соединяется с землей, тогда как при заземлении нетоковедущие части соединяются с землей. Другие различия между ними объясняются ниже в виде сравнительной таблицы.

Содержание: Заземление V / S Заземление

Сравнительная таблица

Основа для сравнения Заземление Заземление
Определение Токоведущая часть соединена с землей. Корпус оборудования заземлен.
Расположение Между нейтралью оборудования и землей Между корпусом оборудования и землей, расположенной под поверхностью земли.
Символ
Нулевой потенциал Нет Есть
Защита Защита оборудования энергосистемы. Защитите человека от поражения электрическим током.
Приложение
Обеспечьте обратный путь к току. Отводит электрическую энергию в землю.
Типы Три (сплошное, резистивное и реактивное заземление) Пять (трубное, пластинчатое, стержневое заземление, заземление через отвод и ленточное заземление)
Цвет провода Черный Зеленый
Используйте Для балансировки несбалансированной нагрузки. Во избежание поражения электрическим током.
Примеры Нейтраль генератора и силового трансформатора заземлена. Корпус трансформатора, генератора, двигателя и т. Д. Заземлены.

Определение заземления

При заземлении токоведущие части напрямую соединены с землей. Заземление обеспечивает обратный путь для тока утечки и, следовательно, защищает оборудование энергосистемы от повреждений.

Когда в оборудовании возникает неисправность, ток во всех трех фазах оборудования становится несимметричным. Заземление отводит ток короткого замыкания на землю и, следовательно, уравновешивает систему

Заземление имеет несколько преимуществ, например, исключает перенапряжение, а также разряжает перенапряжение на землю. Заземление обеспечивает большую безопасность оборудования и повышает надежность обслуживания.

Определение заземления

«Заземление» означает соединение нетоковедущей части оборудования с землей.Когда в системе возникает неисправность, возрастает потенциал обесточенной части оборудования, и когда любой человек или бродячие животные коснутся корпуса оборудования, они могут получить ток.

Заземление отводит ток утечки на землю и, следовательно, защищает персонал от поражения электрическим током. Он также защищает оборудование от ударов молнии и обеспечивает путь разряда для разрядника, разрядника и других устройств.

Заземление достигается путем соединения частей установки с землей с помощью заземляющего проводника или заземляющего электрода в тесном контакте с почвой, размещенной на некотором расстоянии ниже уровня земли.

Ключевые различия между заземлением и заземлением
  1. Заземление определяется как соединение нетоковедущей части, такой как корпус оборудования или корпуса, с землей. При заземлении токоведущая часть, например нейтраль трансформатора, напрямую соединена с землей.
  2. Для заземления используется провод черного цвета, а для заземления зеленого цвета — провод.
  3. Заземление уравновешивает несимметричную нагрузку, а заземление защищает оборудование и людей от поражения электрическим током.
  4. Заземляющий провод помещается между нейтралью оборудования и землей, в то время как при заземлении заземляющий электрод помещается между корпусом оборудования и заземляющей ямой, которая находится под землей.
  5. При заземлении оборудование физически не связано с землей, и ток не равен нулю на земле, тогда как при заземлении система физически связана с землей и имеет нулевой потенциал.
  6. Заземление создает путь для нежелательного тока и, следовательно, защищает электрооборудование от повреждений, в то время как заземление снижает высокий потенциал электрического оборудования, вызванный неисправностью, и, таким образом, защищает тело человека от поражения электрическим током.
  7. Заземление подразделяется на три типа. Это твердое заземление, заземление по сопротивлению и заземление по реактивному сопротивлению. Заземление может быть выполнено пятью способами: заземление трубопровода, пластинчатое заземление, стержневое заземление, заземление через кран и ленточное заземление.
Технические характеристики заземляющих электродов
  1. Электрод заземления нельзя размещать вблизи здания, система установки которого заземлена на расстоянии более 1,5 м.
  2. Сопротивление заземляющего провода не должно быть более 1 Ом.
  3. Проволока, используемая для электрода и цепи, должна быть из одного материала.
  4. Электроды следует располагать вертикально так, чтобы они касались слоев земли.

Размер жилы не должен быть меньше 2,6 мм. 2 или половина проволоки, используемой для электропроводки. Для заземления и заземления используется неизолированный медный провод. Зеленая 6 THHN (провод с термопластичным покрытием с высоким тепловыделением) и медная проволока различных размеров, например 2,4,6,8 и т.также используются для заземления.

.

Разница между соединением, заземлением и заземлением

Введение:
  • Одно из самых непонятых и запутанных понятий — это разница между соединением, заземлением и заземлением. Связывание — это более ясное слово по сравнению с заземлением и заземлением, но между заземлением и заземлением есть небольшая разница.
  • «Заземление» и «Заземление» — это фактически разные термины для , выражающие одну и ту же концепцию .Заземление в системе электропроводки сети — это проводник, который обеспечивает путь к земле с низким импедансом для предотвращения появления опасного напряжения на оборудовании. Заземление чаще используется в стандартах Великобритании, Европы и большинства стран Содружества (IEC, IS), а термин «заземление» используется в стандартах Северной Америки (NEC, IEEE, ANSI, UL).
  • Мы понимаем, что заземление необходимы, и знаем, как это сделать, но у нас нет кристально четкой концепции для этого.Нам нужно понимать, что на самом деле есть две разные вещи, которые мы делаем для одной и той же цели, которую мы называем заземлением или заземлением.
  • Заземление — это связь нашего источника электричества с землей (обычно через соединение с каким-то стержнем, вбитым в землю, или другим металлом, который имеет прямой контакт с землей).
  • Заземленные цепи машин должны иметь эффективный обратный путь от машин к источнику питания, чтобы функционировать должным образом (здесь — нейтральная цепь).
  • Кроме того, нетоковедущие металлические компоненты в системе, такие как шкафы для оборудования, корпуса и конструкционная сталь, должны быть электрически соединены между собой и должным образом заземлены, чтобы между ними не могло существовать потенциальное напряжение. Однако проблемы могут возникнуть, когда термины, такие как «соединение», «заземление» и «заземление», меняют местами или путают в определенных ситуациях.
  • В системе распределения питания типа TN, в США NEC (и, возможно, в других сферах): оборудование заземляется для пропускания тока повреждения и отключения защитного устройства без электризации корпуса устройства.Нейтраль — это путь возврата тока для фазы. Эти заземляющий провод и нейтральный провод соединены вместе и заземлены на распределительном щите, а также на улице, но цель состоит в том, чтобы на заземленную землю не протекал ток, кроме случаев кратковременного повреждения. Здесь мы можем сказать, что на практике заземление и заземление почти одинаковы.
  • Но в системе распределения питания типа TT (в Индии) нейтраль заземляется только (здесь это фактически называется заземлением) на источнике распределения (на распределительном трансформаторе), а четыре провода (нейтраль и трехфазный) передаются потребителю.А на стороне потребителя все корпуса электрооборудования подключаются и заземляются в помещениях потребителя (здесь это называется заземлением). Потребитель не имеет права смешивать нейтраль с землей в своем помещении, здесь заземление отличается от практики.
  • Но в обоих вышеупомянутых случаях заземление и заземление используются для одной и той же цели. Давайте попробуем разобраться в этой терминологии по очереди.

Связь:
  • Соединение — это просто соединение двух электрических проводников вместе.Это могут быть два провода, провод и труба, или это могут быть два Оборудования.
  • Соединение должно выполняться путем соединения всех металлических частей, которые не должны пропускать ток во время нормальной работы, с приведением их к одинаковому электрическому потенциалу.
  • Связывание гарантирует, что эти две соединенные детали будут иметь одинаковый электрический потенциал. Это означает, что мы не сможем накапливать электроэнергию в одном оборудовании или между двумя разными устройствами. Между двумя соединенными телами не может быть тока, потому что у них одинаковый потенциал.
  • Само по себе склеивание ничего не защищает. Однако, если одна из этих коробок заземлена, не может быть накопления электроэнергии. Если заземленная коробка соединена с другой коробкой, другая коробка также имеет нулевой электрический потенциал.
  • Защищает оборудование и человека, уменьшая ток между частями оборудования при различных потенциалах.
  • Основной причиной соединения является безопасность персонала, поэтому кто-то, прикоснувшись к двум частям оборудования одновременно, не получит шока, став путем выравнивания, если они окажутся под разными потенциалами.
  • Вторая причина связана с тем, что произойдет, если фазовый провод может коснуться внешней металлической части. Соединение помогает создать обратный путь с низким сопротивлением к источнику. Это вызовет протекание большого тока, что, в свою очередь, вызовет срабатывание прерывателя. Другими словами, соединение позволяет выключателю отключиться и тем самым устранить повреждение.
  • Соединение с заземлением широко используется для обеспечения того, чтобы все проводники (человек, поверхность и продукт) имели одинаковый электрический потенциал.Когда все проводники имеют одинаковый потенциал, разряда не произойдет.

Заземление:
  • Заземление означает соединение мертвой части (то есть части, которая не проводит ток в нормальных условиях) с землей, например, рамы электрооборудования, корпуса, опоры и т. Д.
  • Цель заземления — свести к минимуму риск поражения электрическим током при прикосновении к металлическим частям при наличии неисправности. Обычно для обозначения этого используется зеленый провод.
  • В условиях неисправности нетоковедущие металлические части электроустановки, такие как рамы, ограждения, опоры, ограждения и т. Д., Могут иметь высокий потенциал относительно земли, так что любой человек или бродячие животные, прикоснувшиеся к ним или приближающиеся к ним, будут разность потенциалов, которая может привести к протеканию тока через тело человека или животного такой ценности, которая может оказаться фатальной.
  • Чтобы избежать этого, нетоковедущие металлические части электрической системы подключаются к общей массе земли с помощью системы заземления, состоящей из заземляющих проводов, для безопасного отвода токов короткого замыкания на землю.
  • Заземление выполнено путем соединения металлической системы с землей. Обычно это достигается путем введения заземляющих стержней или других электродов глубоко внутрь земли.
  • Заземление предназначено для обеспечения безопасности или защиты электрического оборудования и человека путем разряда электрической энергии на землю.

Заземление:
  • Заземление означает соединение токоведущей части (то есть части, которая проводит ток в нормальных условиях) с землей, например нейтралью силового трансформатора.
  • Заземление выполняется для защиты оборудования энергосистемы и обеспечения эффективного обратного пути от машины к источнику питания. Например, заземление нейтральной точки трансформатора, подключенного звездой.
  • Заземление относится к токоведущей части системы, например нейтрали (трансформатора или генератора).
  • Из-за молнии, скачков напряжения в линии или непреднамеренного контакта с другими линиями высокого напряжения в проводах системы распределения электроэнергии может возникнуть опасно высокое напряжение.Заземление обеспечивает безопасный альтернативный путь вокруг электрической системы вашего дома, что сводит к минимуму ущерб от таких происшествий.
  • Обычно для обозначения этого используется черный провод.
  • Все электрические / электронные схемы (AC & DC) нужен опорный потенциал (ноль вольт), который называется основанием для того, чтобы сделать возможным протекание тока от генератора к нагрузке. Заземление может или не может быть заземлено. При распределении электроэнергии он заземляется либо в точке распределения, либо на стороне потребителя, но не заземлен в автомобиле (например, все электрические цепи транспортных средств имеют заземление, подключенное к шасси и металлическому корпусу, которые изолированы от земли через шины).Из-за падения напряжения в проводке может существовать напряжение между нейтралью и землей, поэтому нейтраль не обязательно должна иметь потенциал земли.
  • В правильно сбалансированной системе фазные токи уравновешивают друг друга, так что общий ток нейтрали также равен нулю. Для отдельных систем это невозможно полностью, но мы стремимся приблизиться к совокупности. Такая балансировка обеспечивает максимальную эффективность вторичной обмотки распределительного трансформатора
  • .

Микроразница между заземлением и заземлением:
  • Нет большой разницы между заземлением и заземлением, оба значения «Подключение электрической цепи или устройства к земле». Это служит различным целям как стекать нежелательные токи, чтобы обеспечить опорное напряжение для цепей, нуждающихся в один, чтобы свинцовой молнии от хрупкого оборудования. Хотя между заземлением и заземлением есть небольшая разница.
(1) Разница в терминологии:
  • В США используется термин «заземление», а в Великобритании — термин «заземление».
(2) Балансировка нагрузки и безопасности:
  • Земля является источником нежелательных токов, а также иногда является обратным путем для основного тока.При этом заземление выполняется не для обратного пути, а только для защиты чувствительного оборудования. Это альтернативный путь с низким сопротивлением для тока.
  • Когда мы вынимаем нейтраль для трехфазного несимметричного соединения и отправляем ее на землю, это называется заземлением. Заземление выполняется для уравновешивания несбалансированной нагрузки. Между оборудованием и заземляющей ямой используется заземление, чтобы избежать поражения электрическим током и повреждения оборудования.
(3) Защита оборудования против безопасности человека:
  • Заземление предназначено для защиты элементов схемы всякий раз, когда высокое напряжение передается громами или любыми другими источниками, в то время как заземление является общей точкой в ​​цепи для поддержания уровней напряжения.
  • Заземление используется для обеспечения безопасности человеческого тела в условиях неисправности, в то время как заземление (как нейтральное заземление) используется для защиты оборудования.
  • Заземление — профилактическая мера, а заземление — только обратный путь
  • Заземляющий провод обеспечивает обратный путь для тока короткого замыкания, когда фазный провод случайно касается заземленного объекта. Это элемент безопасности системы электропроводки, и мы никогда не ожидаем увидеть протекание тока через заземляющий проводник во время нормальной работы.
  • Не заземляйте нейтраль во второй раз, когда она заземлена либо на распределительном трансформаторе, либо на главной сервисной панели со стороны потребителя.
  • Заземление действует как нейтраль. Но нейтраль не может действовать как земля.
(4) Нулевой потенциал системы по сравнению с нулевым потенциалом цепи:
  • Заземление и заземление относятся к нулевому потенциалу, но система, подключенная к нулевому потенциалу, отличается от оборудования, подключенного к нулевому потенциалу.Если нейтральная точка генератора или трансформатора подключена к нулевому потенциалу, то это называется заземлением , . В то же время, если корпус трансформатора или генератора подключен к нулевому потенциалу, это называется заземлением .
  • Термин «Заземление» означает, что цепь физически подключена к земле и имеет нулевой потенциал по отношению к земле (земле), но в случае «заземления» цепь физически не подключена к земле, но ее потенциал равен нулю (где токи алгебраически равны нулю) относительно другой точки, которая также известна как «Виртуальное заземление».”
  • Земля имеет нулевой потенциал, тогда как нейтраль может иметь некоторый потенциал. Это означает, что нейтраль не всегда имеет нулевой потенциал по отношению к земле. При заземлении у нас есть опорный потенциал нулевого напряжения относительно земли, в то время как при заземлении у нас есть опорный потенциал нулевого напряжения для цепи . Когда мы подключаем два различных силовых цепей в системе распределения электроэнергии, мы хотим иметь тот же ноль вольт ссылку, чтобы мы соединить их и основания вместе.Этот общий эталон может отличаться от потенциала земли.

Незаконная практика обмена Назначение заземляющего провода
  • Нейтральный провод при подключении к сети является обязательным в целях безопасности. Представьте, что человек с 4-го этажа здания использует заземляющий провод (который заземлен в подвале в подвале) в качестве нейтрального для питания своих фонарей. Другой человек со 2-го этажа имеет обычную установку и использует нейтраль для той же цели. Нейтральный провод также заземляется на уровне земли (согласно практике США нейтраль заземляется (заземляется) в здании, а согласно индийской практике она заземляется (заземляется) на распределительном трансформаторе).Однако заземляющий провод (нейтральный провод) имеет гораздо меньшее электрическое сопротивление, чем заземляющий провод (заземление) , что приводит к разнице электрического потенциала (т. Е. Напряжения) между ними. Это напряжение представляет серьезную опасность для любого, кто прикасается к заземляющему проводу (металлический корпус оборудования), поскольку он может иметь несколько десятков вольт.
  • Второй вопрос — законность. Использование заземляющего провода вместо нейтрали делает вас вором энергии, так как счетчик использует только фазу и нейтраль для регистрации потребления энергии.Многие потребители совершают кражу энергии, используя заземляющий провод в качестве нейтрального провода в счетчике энергии.

Заключение:
  • Земля — ​​это источник нежелательных токов, а также обратный путь для основного тока. При этом заземление выполняется не для обратного пути, а только для защиты чувствительного оборудования. Это альтернативный путь с низким сопротивлением для тока. Земля используется для безопасности человеческого тела в условиях неисправности, в то время как заземление (в качестве нейтрального заземления) используется для защиты оборудования.
Нравится:

Нравится Загрузка …

Связанные

О компании Jignesh.Parmar (B.E, Mtech, MIE, FIE, CEng)
Джигнеш Пармар завершил M.Tech (Power System Control), B.E (Electric). Он является членом Института инженеров (MIE) и CEng, Индия. Членский номер: M-1473586. Он имеет более чем 16-летний опыт работы в сфере передачи, распределения, обнаружения кражи электроэнергии, технического обслуживания и электротехнических проектов (планирование-проектирование-технический обзор-координация-выполнение).В настоящее время он является сотрудником одной из ведущих бизнес-групп в качестве заместителя менеджера в Ахмедабаде, Индия. Он опубликовал ряд технических статей в журналах «Электрическое зеркало», «Электрическая Индия», «Освещение Индии», «Умная энергия», «Промышленный Электрикс» (австралийские энергетические публикации). Он является внештатным программистом Advance Excel и разрабатывает полезные базовые электрические программы Excel в соответствии с кодами IS, NEC, IEC, IEEE. Он технический блоггер и знает английский, хинди, гуджарати, французский языки.Он хочет поделиться своим опытом и знаниями и помочь техническим энтузиастам найти подходящие решения и обновить свои знания по различным инженерным темам.

.

Разница между соединением и заземлением

Соединение и заземление

Склеивание — это прочное соединение металлических частей для образования токопроводящей дорожки, обеспечивающей безопасное электрическое соединение. Склеивание обычно выполняется для защиты от поражения электрическим током. Любое намеренное или случайное соединение между электрической цепью или прибором и землей называется заземлением. Заземление гарантирует, что все металлические части электрической цепи, с которыми может контактировать человек, соединены с землей, обеспечивая тем самым нулевое напряжение.

Два или более токопроводящих объекта требуются для соединения Bonding, которое обычно выполняется с помощью проводника. Заземление, также известное как заземление, представляет собой особый тип соединения, когда токопроводящие объекты соединяются с землей с помощью хорошего проводника. Эти проводники обычно представляют собой провода или стержни. Заземление не влияет на нормальную работу электрической системы.

Соединение обеспечивает безопасность в случае тока короткого замыкания. Если человек коснется металла электрического устройства во время неисправности и в то же время коснется металлического объекта, подключенного к земле, он обязательно получит удар электрическим током.Но если все металлические объекты соединить вместе, они окажутся безопасными, поскольку будут иметь одинаковый потенциал, что полностью устранит возможность поражения электрическим током.

Склеивание и заземление в институциональных, коммерческих и промышленных зданиях очень важно. Для правильной работы в цепях машин должен быть предусмотрен обратный путь, начинающийся от машин к источнику питания. Кроме того, нетоковедущие, но металлические компоненты должны быть электрически соединены, чтобы исключить потенциал напряжения между ними.

Возьмем, к примеру, ситуацию, когда краска наносится на стальную пластину с помощью системы распыления с помощью ацетонового носителя. В этой ситуации необходимо надлежащее заземление и склеивание. Когда краска проходит мимо сопла пистолета-распылителя, она создает статический заряд, из-за которого ацетон в конечном итоге вызывает образование горючих паров в области окраски. Пистолет-распылитель прикреплен к металлической пластине, которая, в свою очередь, прикреплена к земле, чтобы избежать воспламенения паров.

Само по себе соединение ничего не защищает. Но если одна из коробок заземлена, запас электроэнергии невозможен. Если заземленная коробка подключена ко второй коробке, электрический потенциал второй коробки равен нулю.

Люди часто путают заземление и соединение. Будь то соединение с заземлением или заземляющее соединение, цель электромонтажа дома состоит в том, чтобы рядом с проводами не было металлических коробок или других проводящих материалов, поскольку это становится электрически нежизнеспособным (горячим).Лучше всего их заземлить, чтобы не допустить поражения электрическим током при прикосновении к ним ничего не подозревающего человека.

РЕЗЮМЕ:
1. Соединение — это прочное соединение металлических частей для образования проводящего пути, в то время как заземление — это любое намеренное или случайное соединение между электрической цепью или прибором и землей. части электрической цепи, с которыми может контактировать человек, соединены с землей, что обеспечивает нулевое напряжение.
3. Заземление достигается с помощью провода, а заземление — с помощью стержня.
4. Соединение обеспечивает безопасность при токе короткого замыкания, а заземление не оказывает реального влияния на работу электрической системы.
5. Сама по себе склейка ничего не защищает, но если одна из ящиков заземлена, запас электроэнергии невозможен.

Для получения дополнительной информации: безопасно работать с легковоспламеняющимися жидкостями.

: Если вам понравилась эта статья или наш сайт.Пожалуйста, расскажите об этом. Поделитесь им с друзьями / семьей.

Cite
Luzy R. «Разница между соединением и заземлением». DifferenceBetween.net. 5 декабря 2009 г.

.

Разница между комбинационной и последовательной схемами (со сравнительной таблицей)

Решающее различие между комбинационной и последовательной схемами состоит в том, что результат комбинационной схемы зависит только от входа, присутствующего в данный момент, в то время как в последовательной схеме вывод логики зависит не только на последнем вводе, но также и на более ранних выводах. В схеме комбинационной логики нет обратной связи, но когда дело доходит до схемы последовательной логики, обратная связь является важной частью схемы.Таким образом, генерируемый результат учитывает как настоящие, так и прошлые результаты.

Содержание: комбинационная схема против последовательной схемы

    1. Таблица сравнения
    2. Определение
    3. Ключевые отличия
    4. Заключение
Сравнительная таблица
Основа для сравнения Комбинационная схема Последовательная схема
Basic Выход определяется текущим состоянием входов. Как текущий вход, так и выход в прошлом состоянии используются для идентификации выхода.
Объем памяти Данные не хранятся. Может хранить небольшой объем данных.
Приложение Используется в сумматорах, кодировщиках, мультиплексорах и т. Д. Триггер и защелки.
Часы Схемы не полагаются на часы. Часы используются для выполнения функций запуска.
Обратная связь Обратная связь не требуется. Требуется обратная связь.

Определение комбинационной схемы

Комбинационная схема состоит из связанного набора нескольких вентилей, которые выдают выходной сигнал, специфичный для входа в этот момент. Базовые И, ИЛИ и НЕ или универсальные вентили И-НЕ и ИЛИ-ИЛИ являются фундаментальными строительными блоками комбинационной схемы. Как показано на приведенной ниже схеме комбинационной схемы, выходные линии сразу же следуют за входными линиями.Одним из типичных примеров комбинационной схемы является декодер, который используется для преобразования данных двоичного кода в данные десятичного кода.

В этих схемах выходной сигнал, сгенерированный в то время, будет зависеть от входа в конкретное время. Существует три разновидности комбинационных логических схем — арифметические и логические функции, передача данных и преобразователи кода. В состав арифметических и логических схем входят сумматоры, вычитатели, компараторы, PLD и т. Д.Точно так же цепи передачи данных — это мультиплексоры, демультиплексоры, кодеры, декодеры и так далее. BCD и 7 сегментов — это схемы преобразователя кода.

Обычно это комбинационная схема, состоящая из n двоичных входов и m двоичных выходов. Он реализует важнейшие функции цифрового компьютера.

Значимые характеристики комбинационной схемы

  • Таблица истинности : генерирует число m двоичных выходных сигналов для набора из 2 n входных сигналов.
  • Графический символ : Показывает связанный план ворот.
  • Булевы уравнения : Выходные сигналы выражаются в форме логической функции входных сигналов.
Определение последовательной цепи

Последовательная схема — это класс схем, в которых результат зависит как от текущего входа, так и от прошлых выходов. Особенностью этой схемы является то, что состояние выхода изменяется в соответствии с последовательностью вставки входа.Это означает, что последовательные схемы содержат объем памяти для хранения немедленных результатов. Например, он может запомнить, какой логический уровень 0 или 1 подключен к его входу, а также использовать этот факт на выходе. Это запоминающее устройство может состоять из простого логического элемента ИЛИ.

Существуют различные устройства, реализующие последовательные схемы, такие как защелки, триггеры и регистры. Эти входные данные изменяются из одного из двух состояний. Последовательные схемы делятся на две категории: синхронные и асинхронные схемы.Схема считается синхронной, когда внутреннее состояние машины изменяется в определенное время, управляемое часами.

Ключевые различия между комбинационной и последовательной схемами

  1. Как упоминалось выше, комбинационные схемы используют последний вход для генерации выхода, тогда как последовательный вход определяет выход данного входа, учитывая также предыдущий выход.
  2. Комбинационная схема не имеет возможности хранить данные.В отличие от последовательных схем, можно хранить определенный объем данных.
  3. Последовательные схемы в основном используются в триггерах, защелках и регистрах. Напротив, комбинационные схемы используются в основных устройствах, таких как сумматоры, вычитатели, кодеры и так далее.
  4. В комбинационной схеме не используются часы. Напротив, последовательные схемы реализуют часы для выполнения функций запуска.
  5. Последовательная схема требует обратной связи для своего функционирования.И наоборот, комбинационная схема не требует обратной связи.
Заключение

Устройства, построенные по комбинационной схеме, не требуют для своей работы предыдущего выхода. С другой стороны, последовательной схеме требуются предыдущие выходы для ее функционирования и получения точных результатов.

.

Понимание различий между соединением, заземлением и заземлением

Невозможно переоценить важность соединения и заземления в коммерческих, промышленных и общественных зданиях. Заземленные цепи машин должны иметь эффективный обратный путь от машин к источнику питания для правильной работы. Кроме того, нетоковедущие металлические компоненты на объекте, такие как шкафы для оборудования, кожухи и конструкционная сталь, должны быть электрически соединены между собой, чтобы между ними не могло существовать потенциал напряжения.Выгоды для владельца здания многочисленны — максимальная защита оборудования, устранение опасности поражения электрическим током, увеличение времени безотказной работы и снижение затрат за счет отказа от дорогостоящего обслуживания оборудования. Однако проблемы могут возникнуть, когда термины, такие как «соединение», «заземление» и «заземление», меняют местами или путают в определенных ситуациях.

Заземление — это соединение металлической системы с землей, как правило, с помощью заземляющих стержней или других подходящих заземляющих электродов. NEC запрещает заземление через изолированные заземляющие стержни как единственное средство заземления оборудования.Тем не менее, некоторые производители чувствительного оборудования фактически поощряют эту практику в своих руководствах по установке, чтобы сократить количество обращений в службу поддержки, «не обнаруженных», связанных с ошибками машины и перезагрузкой.

Иллюстрация

Понимание различий между соединением / заземлением и заземлением лучше всего проиллюстрировать на примере. Производитель литых компонентов заменял вышедшие из строя печатные платы на компьютеризированном станке с числовым программным управлением (ЧПУ).После грозы система самодиагностики машины иногда регистрировала проблему с компонентами. Машина не запускалась, задерживая дневной производственный цикл. Специалисты завода по электронике выявили и заменили вышедшие из строя печатные платы, а затем вернули станок с ЧПУ в работу. Однако ремонт и производственные потери в каждом случае обходились в тысячи долларов.

Вызванный для устранения проблемы, персонал организации инженерных служб крупного производителя электрораспределительного оборудования заметил, что, хотя на заводе был заземлен станок с ЧПУ в соответствии с инструкциями производителя по установке, заземление явно нарушало NEC.Это очевидное противоречие демонстрирует тревожный факт: некоторые методы заземления, разработанные для уменьшения ошибок данных в чувствительных машинах, могут фактически нарушать нормы и стандарты заземления, вызывая повреждение оборудования и создавая угрозы безопасности. Также важно отметить, что противоречивые требования можно преодолеть, но никогда не ставя под угрозу безопасность сотрудников.

Ключевые понятия и термины

Понимание разницы между соединением / заземлением и заземлением требует неявного понимания нескольких важных понятий и терминов, в том числе изложенных ниже.

Безопасное заземление и работа машины

Проблема, с которой сталкивается завод в этом примере, не является чем-то необычным. Производители чувствительных машин обнаружили, что изолированные заземляющие стержни могут уменьшить количество неприятных проблем, таких как перезагрузка, ошибки данных и периодические отключения. Это уменьшение связано с уменьшением количества переходных процессов напряжения или «шума» на заземляющем стержне по сравнению с обычной системой заземления здания. Из-за уменьшения количества ошибок данных, связанных с заземляющим стержнем, некоторые производители включают изолированные заземляющие стержни в свои инструкции по установке.Некоторые даже подразумевают, что гарантия на машину не будет соблюдаться, если заземляющий стержень не будет установлен.

Однако во время грозы или замыкания на землю изолированный заземляющий стержень становится помехой, создавая опасность поражения электрическим током для сотрудников и повышая потенциал чувствительных компонентов машины. На рисунке 1 показаны чрезвычайно большие переходные напряжения, которые могут возникать между приведенными в действие заземляющими стержнями из-за токов молнии и сопротивления земли. Хотя замыкания на землю в самой машине могут не потреблять достаточно тока для срабатывания устройств защиты от сверхтоков, они могут создавать опасность прикосновения для сотрудников.

Статья 250.54 NEC 2008 специально запрещает использование изолированных заземляющих стержней или заземления в качестве единственного средства заземления оборудования, хотя некоторые использовали другие разделы NEC для обоснования такой практики. «Справочник NEC» предоставляет следующие комментарии, связанные со ст. 250,6 (нежелательные токи):

«Увеличение использования электронного управления и компьютерного оборудования, чувствительного к паразитным токам, заставило проектировщиков установки искать способы изолировать электронное оборудование от воздействия таких паразитных циркулирующих токов.Циркулирующие токи в заземляющих проводниках оборудования, металлических кабельных каналах и строительной стали создают разность потенциалов между землей и нейтралью электронного оборудования.

«Неопытные люди часто рекомендуют изолировать электронное оборудование от всего остального силового оборудования, отсоединив его от заземления силового оборудования. В этом корректирующем действии средства заземления оборудования удаляются или неметаллические прокладки устанавливаются в металлическую систему кабельных каналов вопреки фундаментальным принципам безопасного заземления, изложенным в требованиях ст.250. Электронное оборудование затем заземляется на землю, изолированную от общей земли системы питания. Изоляция оборудования таким образом создает разность потенциалов, которая может привести к поражению электрическим током. Ошибка усугубляется тем, что такая изоляция не устанавливает низкоомный обратный путь от замыкания на землю к источнику питания, который необходим для срабатывания устройства защиты от сверхтока ».

Соединение / заземление в сравнении с заземлением

Изолированные соединения с землей не требуются для чувствительной работы машины.Проблемы возникают, когда перепутаны соединения / заземление оборудования и заземление. В США термин «заземление» используется для обозначения как минимум пяти или более систем, связанных с заземлением, в том числе:

• Тип системы. Это относится к средствам, с помощью которых устанавливаются зависимости напряжения источника питания. Источники питания делятся на четыре основные категории: трансформаторы, генераторы, электрические сети и статические преобразователи энергии. Эти системы могут быть сконфигурированы как звезда или треугольник, и способ их сопряжения с системой заземления определяет тип системы.Наиболее распространенным типом трехфазной системы является глухозаземленная звезда, которая устанавливается путем подключения проводника с надлежащим номиналом (также известного как основная или системная перемычка) от клеммы X0 источника (обычно трансформатора) к системе заземления. .

• Заземление оборудования. Наилучшим способом заземления оборудования является проложить заземляющий провод подходящего размера по тому же маршруту, что и силовой и нейтральный проводники, от источника к машине. NEC допускает использование металлических кабелепроводов и других заменителей, но некоторые отраслевые эксперты считают, что эти системы менее эффективны, и их следует избегать.

• Заземляющий электрод (заземление). Этот термин относится к способу подключения системы заземления объекта к земле. Наиболее распространенным заземляющим электродом для небольших объектов является металлический стержень заземления, но системы заземления для больших зданий могут — и должны — быть более сложными и включать средства, с помощью которых можно периодически проверять и тестировать эти системы. Система заземляющих электродов, закапанная в землю или заключенная в бетон, а затем забытая, часто является источником возрастающих проблем по мере старения здания и износа заземляющих электродов.

• Снижение грозы. На некоторых объектах используются молниеотводы (также известные как молниеотводы) для направления ударов молнии в сторону от силового оборудования, но эти устройства часто подключаются к системе заземления таким образом, что они имеют противоположный эффект — непреднамеренное попадание энергии молнии в конструкции объекта сталь, обмотки низковольтных трансформаторов и, как следствие, чувствительные строительные нагрузки.

• Заземление опорного сигнала. Чувствительные электронные машины полагаются на систему заземления для передачи сигналов малой величины.Поэтому часто бывает важно обеспечить несколько путей заземления, а не полагаться на один заземляющий проводник оборудования между источником питания и чувствительной нагрузкой. Это гарантирует, что паразитные напряжения в системе заземления поддерживаются значительно ниже уровня, при котором их можно спутать с чувствительными опорными сигналами машины. Лучшее руководство по заземлению опорного сигнала — это стандарт IEEE 1100-2006, «Рекомендуемая практика для питания и заземления электронного оборудования».

Обратите внимание, что заземление не требуется для чувствительной работы машины.Например, современные летательные аппараты оснащены чувствительными компьютерами и электронными устройствами, которые корректно работают без привязки к земле. Они полагаются на соединенную металлическую систему — каркас самолета, обшивку, конструктивные опоры, дорожки качения и заземляющие проводники — как основу для заземления. Если в этой связанной системе повышается напряжение относительно земли, все машины на борту испытывают это повышение вместе. В результате машины не видят разницы потенциалов по отношению друг к другу.Как только самолет приземляется, любое напряжение между самолетом и землей должно быть снято с помощью электрода, который проходит в обход резиновых шин.

Устранение проблемы

Непосредственным решением проблемы незаконного заземления стержня на примере завода (рис. 2 ) было устранение опасности поражения электрическим током. Это было сделано путем подключения заземляющего проводника (1/0 меди) от заземляющего стержня к ближайшей части системы заземления здания — в данном случае к конструкционной стали. Это соединение устранило потенциал удара во время шторма, уменьшив сопротивление между заземляющим стержнем и системой заземления здания.

Следующим шагом было устранение ошибок проводки и установка заземляющего провода от источника к станку с ЧПУ ( Рис. 3 ). Основной причиной того, что изолированный заземляющий стержень был эффективным в уменьшении проблем с эксплуатацией, была связанная система здания, которая испытывала скачки напряжения, наложенные на нее из-за ошибок проводки. Одной из распространенных ошибок является неправильное подключение нейтральных проводов к шинам заземления или заземляющих проводов к нейтральным шинам. Эта ошибка позволяет нейтральным токам протекать по связанной системе, тем самым создавая переходные процессы напряжения.Нейтральные провода разрешается подключать к соединенной системе только на служебном входе или к понижающему трансформатору (который NEC называет отдельно производным источником). Обратите внимание на рис. 2, что на заводе перед станком с ЧПУ были установлены как регулятор напряжения, так и устройство подавления шума. Эти устройства часто применяются для решения неприятных проблем в работе, вызванных переходными процессами в системе заземления. Однако устройства подавления не являются панацеей. Фактически, они иногда не нужны, когда сначала устраняются проблемы с проводкой и заземлением.

После того, как ложный заземляющий стержень был подключен к остальной части связанной системы, необходимо было решить эксплуатационные проблемы, которые включали исправление ошибок проводки, выявленных при обследовании площадки. Для примера установки этих шагов было достаточно. В других ситуациях вам следует обратиться к следующему контрольному списку:

1. Подключите заземляющий стержень к соединенной системе и установите заземляющий провод от источника питания к чувствительной нагрузке, чтобы устранить угрозу безопасности и обеспечить эффективный путь возврата при замыкании на землю.

2. Исправьте ошибки проводки и заземления в системе питания, обслуживающей чувствительную машину.

3. Установите понижающий трансформатор (т. Е. Отдельно производный источник) для обслуживания только технологической машины. Подключите новую нейтраль к точке заземления на стороне нагрузки трансформатора.

4. Все оставшиеся проблемы в работе, вероятно, вызваны контурами заземления связи. Контуры заземления, которые создаются посредством проводки связи между чувствительными машинами, питаемыми от разных источников питания, могут потребовать более сложных схем коррекции, таких как оптическая изоляция.

Следующий шаг

Таким образом, завод в примере установил обрабатывающий станок с ЧПУ в соответствии с рекомендациями производителя. К сожалению, эти рекомендации включали требование о том, чтобы отдельный заземляющий стержень служил единственным средством заземления оборудования. Хотя такая практика может уменьшить количество ошибок данных в чувствительных технологических машинах, она нарушает NEC, создает опасность поражения электрическим током для сотрудников и вызывает разность потенциалов, которая может повредить чувствительные электронные компоненты.

Инженеры-электрики и подрядчики могут помочь клиентам избежать подобных ситуаций, предоставив проактивные консультации в этой области. Лучшее место для начала — собрать как можно больше информации — из NEC 2008 года, семинаров / конференций, проверенных производителей электрического оборудования и онлайн-источников. Обладая этими знаниями, у вас есть еще одна причина обратиться к клиенту и решить критически важный вопрос.

Рэй, P.E., является директором компании Schneider Electric’s Square D Engineering Services, Роли, штат Нью-Йорк.C. С ним можно связаться по телефону [email protected] . Ватерер является научным сотрудником компании Schneider Electric Square D Engineering Services, Норкросс, штат Джорджия. С ним можно связаться по телефону [email protected]


Боковая панель: Знание — сила

Инженер-электрик или подрядчик, который разбирается в различных элементах надлежащих систем заземления, соединения и заземления, лучше всего может проконсультировать клиентов по надлежащей практике в этой области.Хорошее понимание требований NEC также может помочь вам заработать репутацию человека, с которым можно связываться по любым вопросам, связанным с подключением / заземлением. Такой опыт также может привести к будущему бизнесу.

Типы систем заземления в соответствии со стандартом IEEE

Заземление (заземление) — это система электрических цепей, подключенных к земле, которая функционирует, когда ток утечки может разрядить электричество в землю.

Согласно Стандарту 142 ™ 2007 Института инженеров по электротехнике и радиоэлектронике (IEEE), цель системы заземления:

  1. Ограничьте величину напряжения на землю в допустимых пределах
  2. Обеспечьте путь для прохождения тока, который может обеспечить обнаружение возникновения нежелательной взаимосвязи между системным проводом и землей.Это обнаружение приведет к срабатыванию автоматического оборудования, которое определяет подачу напряжения от проводника.

В соответствии со стандартами IEEE система заземления делится на:

  1. TN-S (Terre Neutral — отдельный)
  2. TN-C-S (Terre Neutral — комбинированный — раздельный)
  3. ТТ (Дабл Терре)
  4. TN-C (Neutral Terre — комбинированный)
  5. IT (Изолированная земля)

Терре происходит от французского языка и означает земля.

Первая буква обозначает соединение между землей и источником питания, а вторая буква показывает соединение между землей и электронным оборудованием, на которое подается электричество. Значение каждой буквы следующее:

  • T (Terra) = прямое соединение с землей.
  • I (Изоляция) = Нет соединения с землей (даже при высоком импедансе)
  • N (нейтраль) = подключение напрямую к нейтральному кабелю питания (если этот кабель также заземлен в источнике питания)
  1. TN-S (Terre Neutral — отдельный)

В системе TN-S нейтральная часть источника электроэнергии соединена с землей в одной точке, так что нейтральная часть установки потребителя напрямую подключена к нейтральному источнику электроэнергии.Этот тип подходит для установок, близких к источникам электроэнергии, например, для крупных потребителей, у которых есть один или несколько трансформаторов высокого / низкого напряжения для собственных нужд и если установка / оборудование находится рядом с источником энергии (трансформаторы).

  1. TN-C-S (Terre Neutral — комбинированный — раздельный)

Система TN-C-S имеет нейтральный канал от основного распределительного оборудования (источника питания), подключенный к земле и заземленный на определенном расстоянии вдоль нейтральных каналов, ведущих к потребителям, обычно называемый защитным множественным заземлением (PME).В этой системе нейтральный проводник может функционировать для восстановления тока замыкания на землю, который может возникнуть на стороне потребителя (установки), обратно к источнику питания. В этой системе установка оборудования у потребителя только соединяет землю с клеммой (каналом), обеспечиваемой источником питания.

  1. TT (Дабл Терре)

В системе ТТ нейтральная часть источника электроэнергии не связана напрямую с заземлением нейтрали на стороне потребителя (установка оборудования).В системах ТТ потребители должны обеспечивать собственное заземление, а именно путем установки заземляющего электрода, подходящего для данной установки.

  1. TN-C (Neutral Terre — комбинированный)

В системе TN-C нейтральный канал главного распределительного оборудования (источника питания) подключен непосредственно к нейтральному каналу потребителя и корпусу установленного оборудования.

В этой системе нейтральный провод используется в качестве защитного проводника, а комбинация нейтральной и заземляющей боковых рамок оборудования известна как проводник PEN (защитное заземление и нейтраль).

Эта система не предназначена для проводов диаметром менее 10 мм. 2 или переносного оборудования. Это связано с тем, что при возникновении короткого замыкания по PEN-проводнику одновременно проходит ток дисбаланса фаз, гармонический ток третьего уровня и его кратные.

Чтобы уменьшить воздействие на оборудование и живые существа вокруг оборудования, при применении системы TN-C провод PEN должен быть подключен к нескольким электродным стержням для заземления на установке.

  1. IT (Изолированная земля)

Из первой буквы (I) ясно, что в этом типе IT-системы нейтраль изолирована (не соединена) с землей. Точка PE не подключена к нейтральному каналу, а напрямую подключена к заземлению.

В своем применении нейтральная точка IT-системы на самом деле не изолирована от земли, но все же связана с импедансом Zs, который имеет очень высокое значение от 1000 до 3000 Ом.Это служит для ограничения уровня перегрузки по напряжению при наличии помех в системе.

TT IT TN-S TN-C TN-C-S
Полное сопротивление контура замыкания на землю Высокая Самый высокий Низкий Низкий Низкий
Предпочтительно УЗО Есть НЕТ Дополнительно Дополнительно
Требуется заземляющий электрод на объекте Есть Есть Дополнительно
PE проводник стоимость Низкий Низкий Самый высокий Наименее Высокая
Риск выхода из нейтрального положения Высокая Самый высокий Высокая
Безопасность Сейф Менее безопасный Самый безопасный Наименее безопасный Сейф
Электромагнитные помехи Наименее Наименее Низкий Высокая Низкий
Риски безопасности Высокое сопротивление контура (ступенчатое напряжение) Двойная неисправность, перенапряжение Нейтраль оборвана Нейтраль оборвана Нейтраль оборвана
Преимущества Безопасность и надежность Непрерывность работы, стоимость Самый безопасный Стоимость Безопасность и стоимость

Не стесняйтесь обращаться к нам по адресу marketing @ phoenixcontact.com.sg, чтобы узнать больше!

Все о системах электрического заземления

В этом блоге мы рассмотрим необходимость системы электрического заземления, ее важность, типы заземленной системы, общие методы и факторы, влияющие на установку заземленной системы, советы по безопасности и т. Д. Проще говоря, этот блог посвящен системе электрического заземления.

Земля — ​​это обычная точка возврата электрического потока. Система заземления — это резервный путь, который имеет альтернативный путь для электрического тока, протекающего на землю из-за любого риска в электрической системе до того, как произойдет возгорание или поражение электрическим током.

Проще говоря, «заземление» означает, что для прохождения электричества в землю был проложен путь с низким сопротивлением. «Заземленное» соединение включает соединение между электрическим оборудованием и землей через провод. После правильного подключения это обеспечивает вашим устройствам и приборам безопасное место для разряда избыточного электрического тока. Это потенциально предотвратит ряд рисков для электрического оборудования. Провод заземления в розетке — это, по сути, предохранительный клапан.

Мы только что запустили нашу серию Power Systems Engineering Vlog , и в этой серии мы собираемся поговорить о всевозможных различных исследованиях и комментариях по разработке энергетических систем.Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, , и получите от этого пользу.

Национальный электротехнический кодекс определяет заземление как «проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или каким-либо проводящим телом, которое служит вместо земли». NEC также заявляет, что «земля не должна использоваться в качестве единственного заземляющего проводника оборудования». (NEC) ограничивает напряжение от молнии, скачков напряжения в сети и контакта с линией более высокого напряжения с помощью заземляющих проводов оборудования.

Заземление электрической системы — это разумный и самый простой способ сделать всю систему более безопасной и обеспечить защиту от колебаний в электросети. Система должна быть идеально заземлена, если вы хотите иметь безопасную и надежную сеть и избегать рисков для жизни людей.

Необходимость заземленной системы в электрической сети:

Некоторые люди, особенно в крупномасштабных жилых или коммерческих проектах, думают, что установка системы заземления и любых дополнительных конструкций из электрических материалов будет сложной и трудоемкой, если будет выполнено своевременное техническое обслуживание.Это чрезвычайно опасная практика, которая может привести к поражению электрическим током в случае короткого замыкания внутренней проводки в приборе.

По словам Джона Гриззи Грзивача, почетного профессора Национального учебного института OSHA: «Большинство несчастных случаев и смертельных случаев, связанных с контактом с линией, являются результатом отсутствия соответствующих средств индивидуальной защиты, изолированного покрытия линии или надлежащего заземления. »

Общие риски незаземленной электрической системы — это поражение электрическим током и возгорание, поскольку электрический ток всегда проходит через путь с низким сопротивлением.Рабочие на рабочем месте подвергаются более высокому риску, когда незаземленное устройство разряжает избыточное электричество. В результате электричество передается человеку, причинившему травму или ведущему к смерти. Вероятность неисправности в незаземленной системе очень высока. Чтобы обеспечить максимальную защиту человека и электрического оборудования, убедитесь, что ваша система заземлена.

Как правило, системы питания подключаются к земле через емкость между линиями и землей, и нет прямого физического соединения между какими-либо линиями питания и землей.

Типы заземленных систем:

Ниже перечислены три важных типа систем заземления.

  • Незаземленные системы
  • Системы с заземлением через сопротивление
  • Системы с глухим заземлением

Когда система электроснабжения работает и нет преднамеренного подключения к земле, это называется незаземленной системой. Хотя эти системы были нормальными в 40-х и 50-х годах, они все еще используются сегодня.

В незаземленной системе ток замыкания на землю незначителен, поэтому его можно использовать для снижения риска поражения людей электрическим током. При возникновении неисправности два провода должны пропускать ток, который был назначен для трех проводов: повышение тока и напряжения вызовет нагрев и приведет к ненужному повреждению электрической системы.

Поскольку ток замыкания на землю незначителен, поиск любой неисправности становится очень трудным и трудоемким процессом. Альтернативные издержки отказа в незаземленной системе чрезвычайно высоки.

Системы с заземлением через сопротивление:

Заземление через сопротивление — это когда в системе электроснабжения имеется соединение между нейтралью и землей через резистор. Здесь резистор используется для ограничения тока короткого замыкания через нейтраль.

Существует два типа резистивного заземления: заземление с высоким сопротивлением и заземление с низким сопротивлением.

Заземление с высоким сопротивлением: Ограничьте ток замыкания на землю до <10 ампер.

Заземление с низким сопротивлением: Ограничивает ток замыкания на землю в пределах от 100 до 1000 ампер.

Системы заземления с высоким сопротивлением (HRG) обычно используются на заводах и фабриках, где текущая работа процессов вмешивается в случае неисправности.

С другой стороны, системы заземления с низким сопротивлением (LRG) используются в системах среднего напряжения 15 кВ или менее и срабатывают защитные устройства при возникновении неисправности.

Системы с глухим заземлением:

Твердое заземление означает, что система электроснабжения напрямую подключена к земле, и в цепи нет преднамеренного добавления импеданса.Эти системы могут иметь большой ток замыкания на землю, поэтому повреждения легко обнаруживаются.

Обычно используется в промышленных и коммерческих энергосистемах. Есть резервные генераторы на случай, если в результате неисправности производственный процесс остановится.

Общие методы для систем электрического заземления:

Заземляющие пластины изготовлены из меди или оцинкованного железа (GI) и помещаются вертикально в землю в яме (заполненной слоями древесного угля и соли) глубиной более 10 футов.Для более высокой системы электрического заземления необходимо поддерживать влажность земли вокруг системы заземляющих пластин.

Национальный электротехнический кодекс требует, чтобы плиты заземления имели площадь поверхности не менее 2 футов, контактирующую с окружающей почвой. Черные металлы должны иметь толщину не менее 0,20 дюйма, а цветные материалы (медь) должны быть толщиной не менее 0,060 дюйма.

Трубки и стержни заземления:

Труба из оцинкованной стали (смесь соли и древесного угля) укладывается вертикально в почву путем просверливания для подключения заземляющих проводов.Длина и диаметр трубы в основном зависит от типа почвы и электроустановки (силы тока). Влажность почвы будет определять длину трубы для укладки в землю.

Медный стержень с оцинкованной стальной трубой вставляется вертикально в землю. Это очень похоже на заземление трубы. Здесь стержни имеют форму электродов, поэтому сопротивление земли снижается до определенного значения. Национальный электротехнический кодекс (NEC) требует, чтобы длина приводных штанг была не менее 8 футов, а длина 8 футов должна находиться в непосредственном контакте с почвой.

Фактор, влияющий на установку системы заземления:

Ниже перечислены факторы, которые влияют на работу любого заземляющего электрода:

  • Материал, используемый в системе заземления
  • Заземляющий электрод (длина или глубина, диаметр, количество заземляющих электродов)
  • Почва (тип, влажность, температура, удельное сопротивление, количество соли)
  • Проектирование наземной системы
  • Расположение котлована

Важность заземления электрических токов:

Защита от перегрузки:

На электрическом рабочем месте, когда по какой-либо причине происходит чрезмерный скачок напряжения, в системе вырабатывается электричество высокого напряжения, вызывающее поражение электрическим током и пожар.В этом сценарии существенно помогает заземленная система, вся эта избыточная электроэнергия уходит в землю. Эта простая форма защиты от перенапряжения потенциально может спасти рабочих, электрические приборы, данные и устройства, а не повредить все, что подключено к электрической системе.

Стабилизация напряжения:

Заземленная система гарантирует, что цепи не будут перегружены и не будут работать, за счет распределения нужного количества мощности между источниками напряжения. Земля обеспечивает общую точку отсчета для стабилизации напряжения.

Защита от поражения электрическим током:

Общие риски незаземленной электрической системы — это серьезное поражение электрическим током или возгорание. В худшем случае незаземленная система вызывает возгорание, повреждение оборудования, потерю данных и травмы или смерть персонала. Заземленная система обеспечивает бесчисленные преимущества, устраняет опасность поражения электрическим током, защищает оборудование от напряжения, предотвращает электрические пожары, снижает затраты на ремонт оборудования и время простоя, снижает уровень электрического шума (колебания электрического сигнала).

В электрической системе поддержание заземления должно быть приоритетом для безопасности. Чтобы обеспечить безопасность сотрудников и рабочих мест, повсюду соблюдаются меры предосторожности. Некоторые советы по безопасности упомянуты ниже:

  • Перед тем, как начать, ознакомьтесь с правилами электробезопасности (см. OSHA 29 CFR 1910.269 (a) (3) и .269 (c))
  • Соединение с заземлением должно быть установлено первым и удалено в последнюю очередь при удалении заземления (OSHA 29CFR 1910.269 (n) (6)).
  • Убедитесь, что рабочее место электрооборудования оборудовано датчиками напряжения, токоизмерительными клещами и тестерами розеток.
  • Используйте устройство защиты от перенапряжения для отключения электропитания на рабочем месте при возникновении неисправности, устройства защиты кабеля для пола для предотвращения срабатывания на рабочем месте и прерыватели цепи замыкания на землю для всех розеток для предотвращения поражения электрическим током.
  • Выберите правильное оборудование при заземлении электрической системы. Помните, что ваше оборудование настолько сильное, насколько самое слабое в системе.
  • Убедитесь, что рабочие знают, как правильно использовать каждый инструмент, особенно при работе с постоянным электрическим током.
  • Используйте автоматический выключатель или предохранитель с соответствующим номинальным током.
  • Регулярная чистка наземных комплектов продлевает срок их службы и увеличивает безопасность.
  • Никогда не используйте оборудование с изношенными шнурами, поврежденной изоляцией или сломанными вилками.
  • Осматривайте, обслуживайте и организуйте ремонт проводов в местах, где они входят в металлическую трубу, прибор или в местах, где кабели, проложенные в стене, входят в электрическую коробку.

ВЫВОД:

Система электрического заземления обеспечивает безопасность персонала и оборудования при работе на линии. Помните, что обесточенная линия просто активируется в мгновение ока, поэтому электрическая система должна быть надежно заземлена в любое время.

Проверенный опыт нашей команды сертифицированных профессиональных инженеров поможет в оценке вашей системы и предоставит самые современные решения по заземлению для защиты вашей энергосистемы.Мы тесно сотрудничаем с нашими клиентами в сборе данных, моделировании системы, моделировании наихудших условий и отклонений, построении ступенчатого и контактного потенциалов и предоставлении рекомендаций в соответствии с последними промышленными стандартами.

Если у вас остались вопросы о системах заземления или наших услугах, оставьте их в комментариях ниже, и мы поможем вам ответить.

Три различных типа заземления

Сегодня я собираюсь дать вам краткий обзор трех различных типов систем заземления, которые важны.

Базовое представление системы заземления

Этими тремя системами являются:

  1. Незаземленные системы
  2. Системы с заземлением через сопротивление
  3. Системы с глухим заземлением

Я уже немного говорил о том, что такое заземление, в том числе дал краткий обзор того, почему мы это делаем и для чего оно используется. Если вы еще не читали эту статью, прочтите ее, прежде чем продолжить.
Прочитали, что такое заземление? Хорошо, давайте перейдем к теме сегодняшнего дня.

«Эй, подожди», — можете подумать вы: «Мы только что закончили читать о том, как важно заземление для безопасности! Зачем нам незаземленные системы? » Ответ заключается в том, что у нас не должно быть на самом деле иметь незаземленные системы, но они существуют, и у них есть свои цели.
Видите ли, незаземленная система — это не на самом деле незаземленная. Электрически ваша система соединена с землей через емкость между линиями и землей, так что вы можете сказать, что это система с заземленной емкостью .Мы называем это просто незаземленным из-за условностей и потому, что нет прямого физического соединения между какой-либо из ваших линий электропередач и землей.

Преимущества

У незаземленной системы есть несколько преимуществ. Во-первых, поскольку ваша система никогда физически не связана с землей, у вас будет незначительный ток замыкания на землю. Например, в 3-фазной системе, поскольку весь ток замыкания на землю является емкостным, когда у вас есть одно замыкание на землю в незаземленной системе, ток и напряжение, которые вы потеряете, незначительны и вместо этого переносятся. двумя другими строками.Это позволяет вам беспрепятственно продолжать работу во время одиночного замыкания на землю.
Другим большим преимуществом является то, что из-за незначительного тока замыкания на землю можно использовать специальные незаземленные системы, чтобы минимизировать риск поражения людей электрическим током. Отличным примером может служить медицинское оборудование в больнице: пациент напрямую подключен к аппарату, и в случае неисправности электричество могло бы пройти через пациента в землю. Поскольку в незаземленной системе током замыкания на землю пренебрежимо мало, ток питания не будет проходить от устройства через пациента в землю.

Недостатки

Конечно, недостатки незаземленной системы очевидны. Если есть неисправность, вы теперь используете два провода, чтобы пропустить ток, который был отведен для трех проводов: увеличение тока и напряжения приведет к увеличению тепла, а дополнительное тепло приведет к гораздо более быстрому износу вашей изоляции. Изношенная изоляция может привести к ненужному повреждению вашей электрической системы, особенно двигателей.
Другим большим недостатком незаземленной системы является то, что обнаружение неисправностей невероятно сложно и требует много времени.Каждую линию необходимо тестировать индивидуально, что является очень медленным процессом, полностью прерывающим обслуживание. Альтернативные издержки отказа в незаземленной системе очень высоки.
Незаземленные системы были нормой в 40-х и 50-х годах, но поскольку их недостатки перевешивают преимущества в большинстве сценариев, сегодня вы не увидите слишком много новых незаземленных систем.

Заземление через сопротивление — это соединение между нейтралью и землей через резистор. Этот резистор используется для ограничения тока короткого замыкания через нейтральную линию: если ваше напряжение не меняется, то ваш ток зависит от размера резистора в соответствии с законом Ома (V = IR).

Преимущества перед незаземленными системами

Поскольку ток в нейтрали контролируется, а не незначителен, системные перенапряжения также контролируются. Этот пониженный ток и пониженное перенапряжение означают пониженное тепловыделение, что сводит к минимуму износ вашей электрической системы. Это особенно важно для обеспечения безопасности ваших двигателей, поскольку пониженный ток не повредит магнитное железо двигателя (ремонт дорогостоящий). Сниженные токи также снижают риск поражения электрическим током и опасности дугового разряда / взрыва.
Существует два типа резистивного заземления: заземление с высоким сопротивлением и заземление с низким сопротивлением.

Заземление с высоким сопротивлением

Заземление с высоким сопротивлением обычно используется для ограничения тока замыкания на землю до <10 ампер. Низкий ток замыкания на землю также означает, что, как и в случае с незаземленной системой, вы можете продолжать работу системы при одном замыкании на землю. Низкий ток обычно не вызывает срабатывания защитных устройств во время одиночного замыкания на землю.
В целом, вы хотите использовать заземление с высоким сопротивлением, когда вам нужен низкий ток короткого замыкания и все же вы хотите работать с одним замыканием. Заземление с высоким сопротивлением обычно наблюдается при модернизации ранее незаземленных систем в дополнение к новым системам.

Заземление с низким сопротивлением

Заземление с низким сопротивлением обычно ограничивает ток замыкания на землю в пределах от 100 до 1000 ампер. Это дает то же преимущество, что и заземление с высоким сопротивлением, в том, что вы можете контролировать ток замыкания на землю, что означает, что вы можете спроектировать свою систему так, чтобы выдерживать токи без повреждений.Система заземления
с низким сопротивлением позволяет отключать ваши защитные устройства при возникновении неисправности. Их цель состоит в том, чтобы немедленно отключить питание цепи, и поэтому, в отличие от систем заземления с высоким сопротивлением, система заземления с низким сопротивлением не будет поддерживать работу во время одиночного замыкания линии на землю.
Заземление с низким сопротивлением также снижает перенапряжение и используется в системах среднего напряжения 15 кВ или меньше, обычно там, где используются большие генераторы / двигатели.

Надежное заземление — это то, что вы получаете, когда подключаете систему напрямую к земле без какого-либо сопротивления.Заземление обычно подключается к системе в нейтральной точке, например, нейтральной клемме генератора или трансформатора.

Плюсы и минусы

Прочное заземление, как и резистивное заземление, может значительно снизить перенапряжения в вашей электрической системе. Однако системы с глухим заземлением могут иметь большой ток замыкания на землю. В результате системы с глухим заземлением не могут работать при замыкании на землю (поскольку весь ток в системе идет от замыкания на землю).
Твердое заземление имеет два основных применения:

  • В системах с напряжением 600 В или ниже можно использовать твердое заземление, если нет необходимости поддерживать работу неисправной цепи.
  • В системах с напряжением 15 кВ или выше, твердое заземление может использоваться, если по какой-либо причине желательны высокие токи замыкания на землю, например, быстрое обнаружение замыкания на землю (поскольку большой ток наверняка приведет к срабатыванию защитных устройств).
  • Вы можете использовать незаземленные системы, если хотите, чтобы ток замыкания на землю был незначительным.
  • Резистивное заземление предлагает преимущества незаземленных систем без риска больших перенапряжений.
  • Прочное заземление снижает перенапряжения, но имеет высокие токи замыкания на землю.

В конце концов, тип заземления, который вы используете для своей системы, будет зависеть от того, какой тип заземления лучше всего соответствует вашим потребностям и бюджету.

Связанные

Вы заземлены: Заземление электрической системы

Заземление электрической системы означает, что один системный проводник подключен к земле (земля по определению), и устанавливается ссылка на землю от системы.Установка и эксплуатация незаземленной системы означает, что никакая ссылка на землю от проводников системы не устанавливается, кроме как через емкость. Национальный электротехнический кодекс (NEC) Раздел 250.30 содержит специальные правила для заземленных и незаземленных отдельно производных систем.

На землю или нет

С первых лет использования электроэнергии было много дискуссий и даже жарких споров о преимуществах заземленных операционных систем по сравнению с незаземленными.Код Code указывает пользователям, нужно ли заземлять систему. Как указано в разделах 250.20, 250.21 и 250.22 последовательно, определенные электрические системы должны быть заземлены, некоторые системы могут быть заземлены, а другие системы не могут быть заземлены. Часть II статьи 250 устанавливает требования к заземлению электрической системы. Заземленные системы подключаются к земле таким образом, чтобы ограничивать напряжение, создаваемое линиями высокого напряжения, скачками напряжения в сети, грозами и т. Д.Заземление системы также устанавливает связь с землей от системы и стабилизирует напряжение относительно земли во время нормальной работы.

Во время аномальных событий, таких как скачок напряжения в сети или удар молнии, потенциал системы и потенциал на токопроводящих оболочках системы будут пытаться увеличиваться на время аномального события. Событие замыкания на землю пытается вызвать повышение потенциала заземленного оборудования и систем на время возникновения неисправности или до тех пор, пока устройство максимального тока не размыкает цепь.Заземление помогает ограничить эти наземные потенциалы во время аномальных событий. Системное заземление — это процесс установления соединения от одного системного проводника (часто нейтрального) к земле (земле). Следовательно, когда система заземлена, один провод системы надежно заземлен; через импедансное устройство, резистор или катушку индуктивности; или каким-либо другим способом. Подключение к земле осуществляется через провод заземляющего электрода, установленный в соответствии с частью III статьи 250.

Преимущества и недостатки Незаземленного

Незаземленные системы часто задаются и устанавливаются на промышленных объектах, где требуется непрерывность питания для сборочных линий и других непрерывных процессов, которые могут быть повреждены или могут вызвать травмы, если первое замыкание фазы на землю приведет к прерыванию мощность системы. Выбор установки и эксплуатации этого типа системы определяется характером процесса, рабочими характеристиками процесса и желаемым оператором / владельцем метода работы.Если датчики заземления устанавливаются в незаземленных системах, датчики для таких систем должны располагаться как можно ближе к источнику питания. Перечисленное оборудование для обнаружения заземления доступно для использования в незаземленных системах.

Функционально, первое замыкание фазы на землю в незаземленной системе не вызовет срабатывания устройства максимального тока, поэтому обеспечивается непрерывное обслуживание. Однако важно, чтобы персонал, контролирующий систему, реагировал на сигнал тревоги, исследовал первое состояние заземления и устранял его.Если первое условие между фазой и землей не устранено и второе замыкание фазы на землю возникает на другой фазе, результатом является одновременное короткое замыкание между фазой и короткое замыкание фазы на землю. События такого типа в некоторых случаях могут привести к значительному простою и разрушению оборудования.

Недостатками незаземленной системы является то, что состояние первого замыкания фазы на землю может быть трудным для обнаружения и может потребовать значительного количества исследований и времени.Напряжение относительно земли в незаземленной системе теоретически равно 0 вольт (В), потому что нет заземления ни от одного системного проводника. Но в таких системах могут присутствовать различные уровни распределенной емкости утечки. Уровни напряжения между фазой и землей могут возникать в результате эффектов емкостной связи цепей, питаемых такими системами.

Выключатели для незаземленных сетей

Напряжение относительно земли для незаземленных систем поясняется определением «напряжение относительно земли», которое указывает, что напряжение относительно земли заземленной системы — это напряжение между данным проводником и той точкой или проводником цепи, которая заземлена.

Например, в однофазной системе 120/240 В напряжение между любым незаземленным фазным проводом и землей составляет 120 В. Однако для незаземленных систем наибольшее напряжение между данным проводником и любым другим проводником цепи также является напряжением между фазой и землей.

Например, в трехфазной трехпроводной системе, имеющей треугольник, 480 В, межфазное напряжение составляет 480 В. Это напряжение (480) также является напряжением между фазой и землей для этой системы, согласно определению.Установка автоматических выключателей в таких системах требует понимания обозначенных номиналов напряжения, таких как выключатели, отмеченные прямым номиналом напряжения (240, 480, 600 и т. Д.), По сравнению с номинальным напряжением (600/347, 480/277, 240 /). 120 и так далее). За дополнительными сведениями обратитесь к Разделу 240.85.

Методы заземления на критически важных объектах

% PDF-1.6 % 586 0 объект > / Метаданные 623 0 R / Контуры 113 0 R / Страницы 583 0 R / StructTreeRoot 117 0 R / Тип / Каталог / Viewer Настройки >>> эндобдж 604 0 объект > / Шрифт >>> / Поля [] >> эндобдж 623 0 объект > поток Ложь 11.08.582018-09-12T16: 18: 38.961-04: 00 Библиотека Adobe PDF 15.0Eatonc72bc7f170616d29240018ee6313f81cd929051d497229Adobe InDesign CC 13.1 (Macintosh) 2018-09-12T14: 23: 54.000-05: 002018-09-12.000T15: 2320 -11T15: 25: 41.000-04: 00application / pdf2018-09-12T16: 22: 12.040-04: 00

  • Eaton
  • Способы заземления на критически важных объектах
  • Способы заземления на критически важных объектах
  • xmp.id:5a67ae88-d4ad-46b9-9f05-937ca1dcfd88xmp.сделал: 07801174072068118DBBAB668637C198proof: pdfuuid: ff07ad53-7a3f-44da-8514-2df9b78ebe95xmp.iid: ed244e25-d635-4e44-9b41-9e548f67a780xmp.did: 07801174072068118DBBAB668637C198defaultxmp.did: 886738FBB5CEE21192DD8F08ADAD9468
  • convertedAdobe InDesign CC 13,1 (Macintosh) 2018-09-11T14: 25 : 41.000-05: 00от приложения / x-indesign к приложению / pdf /
  • Библиотека Adobe PDF 15.0false
  • eaton: таксономия продуктов / системы управления-распределения-питания среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-5-15kv-36-wide
  • eaton: таксономия продукции / распределительные устройства среднего напряжения / распределительные устройства среднего напряжения / vacclad-w-27-kv-42-wide-arc-устойчивые-металлические-плакированные-распределительные устройства среднего напряжения
  • eaton: таксономия продукции / распределительные-распределительные устройства среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-38-kv-42-wide-arc-устойчивое-металлическое-плакированное-распределительное устройство среднего напряжения
  • eaton: таксономия продукции / распределительные-системы-распределения-среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-38-kv-42-wide-metal-clad-med-voltage-switchgear
  • eaton: ресурсы / технические ресурсы / заметки по применению
  • eaton: language / en-us
  • eaton: таксономия продукции / распределительные-системы-распределения-среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-5-kv-26-широкая-узкая-конструкция-металлическая-оболочка-распределительное устройство среднего напряжения
  • eaton: вкладки поиска / тип содержимого / ресурсы
  • eaton: страна / северная америка / сша
  • eaton: таксономия продукции / распределительные устройства среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-27-kv-36-wide-metal-clad-med-voltage-switchgear
  • eaton: таксономия продукции / распределительные-системы-распределения-среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-5-15-kv-36-wide-arc-устойчивые-металлические-плакированные-среднего напряжения -распределитель
  • конечный поток эндобдж 113 0 объект > эндобдж 583 0 объект > эндобдж 117 0 объект > эндобдж 118 0 объект > / A3> / A5> / A6> / A7> / Pa0> / Pa1> / Pa10> / Pa13> / Pa14> / Pa16> / Pa17> / Pa2> / Pa20> / Pa3> / Pa4> / Pa5> / Pa6> / Pa7> / Pa8 >>> эндобдж 119 0 объект > эндобдж 120 0 объект > эндобдж 121 0 объект > эндобдж 122 0 объект [161 0 R 162 0 R 163 0 R 164 0 R 164 0 R 164 0 R 164 0 R 164 0 R 165 0 R 166 0 R 166 0 R 166 0 R 166 0 R 166 0 R 168 0 R 169 0 R 169 0 R 169 0 R 169 0 R 169 0 R 579 0 R 578 0 R 576 0 R 575 0 R 573 0 R 572 0 R 570 0 R 569 0 R 567 0 R 566 0 R 564 0 R 563 0 R 561 0 R 560 0 R 171 0 R 172 0 R 172 0 R 172 0 R 172 0 R 551 0 R 550 0 R 549 0 R] эндобдж 123 0 объект [NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 177 0 R 178 0 R 178 0 R 178 0 R 179 0 R 546 0 R 545 0 R 543 0 R 542 0 R 540 0 R 539 0 R 539 0 R 181 0 R 534 0 R 533 0 R 531 0 R 530 0 R 530 0 R 528 0 R 527 0 R 527 0 R 527 0 R 522 0 R 521 0 R 520 0 R 185 0 R 186 0 R 186 0 R 186 0 R 517 0 R 186 0 R 186 0 R 186 0 R 187 0 R 187 0 R 187 0 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 516 0 R 515 0 R 514 0 R 512 0 R 510 0 R 511 0 R 510 0 R 508 0 R 507 0 R 190 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 502 0 R 501 0 R 500 0 R 194 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 196 0 R 196 0 R 196 0 R 196 0 R 196 0 R 196 0 R 196 0 R 196 0 196 руб. 0 196 руб. 0 197 0 руб. 197 0 руб. 197 0 руб. 197 0 руб. 197 0 руб. 198 0 руб. 198 0 руб. 198 0 руб. 198 0 руб. 198 0 руб. 198 0 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 497 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R19 эндобдж 124 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null 201 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 496 0 R 495 0 R 494 0 R 205 0 R 206 0 206 0 R 206 0 R 206 0 R 206 0 R 206 0 R 206 0 R 491 0 R 490 0 R 489 0 R 487 0 R 485 0 R 486 0 R 485 0 R 481 0 R 480 0 R 480 0 R 480 0 R 479 0 R 479 0 R 478 0 R 478 0 R 473 0 R 472 0 R 471 0 R 469 0 R 470 0 R 464 0 R 463 0 R 462 0 R 461 0 456 руб. 455 0 руб. 454 0 руб. 453 0 руб. 448 0 руб. 447 0 руб. 446 0 руб. 445 0 пр. 434 0 руб. 433 0 руб. 433 0 пр. 433 0 руб. 433 0 руб. 211 0 руб. 211 0 руб. 211 0 руб. 211 0 R 211 0 R 211 0 R 213 0 R 213 0 R 213 0 R 430 0 R 429 0 R 427 0 R 426 0 R 424 0 R 423 0 R 421 0 R 420 0 R 215 0 R 215 0 R 215 0 R 215 0 R 215 0 R 215 0 R 215 0 R 216 0 R 216 0 R 216 0 R 216 0 R 216 0 R 216 0 R 414 0 R 413 0 R 411 0 R 412 0 R 411 0 R 219 0 R 219 0 219 0 R 219 0 R 219 0 R 220 0 R 220 0 R 220 0 R 220 0 R 408 0 R 407 0 R 406 0 R 406 0 R] эндобдж 125 0 объект [NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null ноль null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null 223 0 R 224 0 R 224 0 R 224 0 R 225 0 R 225 0 R 225 0 R 225 0 R 226 0 R 227 0 R 227 0 R 227 0 R 227 0 R 228 0 R 228 0 R 228 0 R 228 0 R 228 0 R 228 0 R 228 0 R 228 0 R 403 0 R 402 0 R 401 0 R 398 0 R 397 0 R 396 0 R 393 0 R 392 0 R 391 0 235 0 R 236 0 R 236 0 R 236 0 R 236 0 R 388 0 R 387 0 R 386 0 R 239 0 R 240 0 R 240 0 R 240 0 R 240 0 R 240 0 R 240 0 R 241 0 R 383 0 R 382 0 R 382 0 R 380 0 R 358 0 R 358 0 R 379 0 R 378 0 R 378 0 R 376 0 R 375 0 R 375 0 R 373 0 R 372 0 R 372 0 R 370 0 R 369 0 R 367 0 R 366 0 R 366 0 R] эндобдж 126 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null ноль null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 354 0 R 344 0 R 344 0 R 344 0 R 353 0 R 352 0 R 352 0 R 350 0 349 р. 349 0 р. 245 0 р. 245 0 р. 245 0 р. 245 0 р. 245 0 р. 246 0 р. 246 0 р. 246 0 р. 246 0 р. 247 0 р. 247 0 р. 341 0 р. 340 0 р. 338 0 р. 339 0 R 338 0 R 335 0 R 334 0 R 332 0 R 333 0 R 332 0 R 252 0 R 252 0 R 255 0 R 256 0 R 256 0 R 256 0 R 256 0 R 257 0 R 257 0 R 257 0 R 257 0 R 257 0 R 257 0 R 257 0 R 257 0 R 258 ​​0 R 258 ​​0 R 258 ​​0 R 329 0 R 328 0 R 327 0 R 324 0 R 323 0 R 322 0 R 263 0 R 264 0 R 264 0 R 264 0 R 264 0 R 264 0 R] эндобдж 127 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null ноль null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 267 0 R 268 0 R 268 0 R 268 0 R 319 0 R 318 0 R 316 0 R 315 0 R 315 0 R 270 0 R 270 0 R 270 0 R 270 0 R 270 0 R 311 0 R 310 0 R 309 0 R 309 0 R 273 0 R 273 0 R 273 0 R 273 0 R 273 0 R 274 0 R 274 0 R 274 0 R 274 0 R 274 0 R 274 0 R 274 0 R 306 0 R 305 0 R 304 0 R 304 0 R 279 0 R 279 0 R 279 0 R 279 0 R 279 0 R 279 0 R 279 0 279 0 R 280 0 R 280 0 R 281 0 R 281 0 R 281 0 R 281 0 R 282 0 R 282 0 R 282 0 R 301 0 R 300 0 R 300 0 R 298 0 R 297 0 R 295 0 R 294 0 R] эндобдж 128 0 объект [NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null ноль null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 129 0 R 130 0 R 130 0 R 130 0 R 130 0 R 130 0 R 130 0 R 131 0 R 131 0 R 131 0 R 131 0 R 132 0 R 133 0 R 132 0 R 134 0 R 135 0 R 136 0 R 137 0 R 137 0 R 138 0 R 139 0 R 140 0 R 141 0 R 142 0 R 143 0 R 144 0 R 145 0 R 146 0 R 147 0 R 148 0 R 149 0 R 150 0 R 151 0 R 151 0 R 151 0 152 0 R 153 0 R 154 0 R 155 0 R 156 0 R 157 0 R] эндобдж 129 0 объект > эндобдж 130 0 объект > эндобдж 131 0 объект > эндобдж 132 0 объект > эндобдж 133 0 объект

    В чем разница между заземлением и заземлением

    Заземление и заземление — это два похожих случая.Однако есть несколько пунктов, описывающих разницу между заземлением и заземлением. Принципиальное различие между заземлением и заземлением состоит в том, что при заземлении цепь с нулевыми потенциальными характеристиками физически соединена с землей. Однако в заземляющем соединении, хотя оно физически не связано с землей, его потенциал по-прежнему равен нулю.

    Еще одно принципиальное различие между заземлением и заземлением заключается в том, что при заземлении части, по которым не проходит ток, соединяются с землей.При заземлении часть, проводящая ток, соединяется с землей.

    В следующих частях сначала будут представлены определения и спецификации заземления. Затем будут перечислены все различия между заземлением и заземлением.

    Определение заземления

    Краткое определение заземления — это соединение нетоковедущих компонентов устройств с землей. Это метод защиты от несправедливых ударов электричества, которые могут нанести вред инструментам, помимо жизни.Следовательно, понятие электрического потенциала должно быть идентифицировано.

    В случае какого-либо дефекта в системе электрический потенциал нетоковедущих элементов оборудования увеличивается. В этих случаях кто-то может быть поражен электрическим током, если он коснется корпуса оборудования. Заземление отводит ток утечки на землю. Таким образом мы будем защищены от поражения электрическим током.

    Он также защищает наши жилые устройства от молнии и ее последствий. Чтобы получить надлежащее заземление, мы должны соединить монтажные детали с землей с помощью заземляющего провода или электрода.Этот объект помещают в почву на небольшом расстоянии от земли.

    Заземление — это комплекс защитных действий для металлических предметов, которые не относятся к цепи и не имеют прямого контакта с ними, хотя в случае какой-либо неисправности генерируется напряжение.

    Заземление снижает это напряжение. Его действенная роль заключается в предотвращении возникновения условий, опасных для электрических устройств и способных спасти жизни людей, которые с ними работают.

    Система заземления (Артикул: circuitglobe.com )

    Элементы заземления

    Типы заземляющих проводов в зависимости от их материала могут быть полосами, трубками, стержнями, арматурой в бетоне или некоторыми другими подземными сооружениями.

    Другой способ классифицировать эти провода может заключаться в том, как проводник помещен в землю; по горизонтали, вертикали или по углу.

    В зависимости от среды, в которой устанавливаются стержни, существует два типа: в земле и в основании объекта.

    Что касается материала заземления, можно добавить, что он обычно изготавливается из оцинкованного чугуна, меди или железа, покрытого медью.

    Определение заземления

    Заземление аналогично заземлению для изоляции электрических устройств от несчастных случаев, связанных с током. Основной провод присоединяется к источнику питания для подключения устройства, а другая часть проложена под землей. В этой системе часть, по которой проходит ток, подключена непосредственно к земле.

    Заземление обеспечивает обратный путь для тока утечки и, следовательно, защищает устройства энергосистемы от разрушения. Если в системе возникает неисправность, ток во всех трех отдельных фазах становится несбалансированным. Заземление обеспечивает высокий уровень безопасности устройств и повышает надежность электрической системы.

    Другими словами, заземление охватывает методы защиты некоторой части схемы, которая обеспечивает требуемую функцию или рабочие характеристики схемы.

    Заземление может осуществляться прямым или косвенным способом. Метод, при котором выполняется прямое подключение системы заземления, — это прямое заземление. Косвенное заземление осуществляется через импеданс при подключении к комплекту.

    Система заземления (Ссылка: circuitglobe.com )

    Элементы заземления

    Заземление молний обеспечивает установку защиты от токов при возникновении атмосферных разрядов.Он должен ограничивать напряжение на стержне, которого достигает молния. Это позволяет избежать повторения нежелательных волн в электрических цепях.

    Заземление и заземление выполняются аналогично. Все части этих двух могут быть соединены оцинкованной железной лентой. Установка заземления для защиты от молнии включает молниеприемники, токоотводы и заземляющие электроды.

    Часто молниеотводы содержат полосы из оцинкованного железа. Полоса расположена таким образом, что может создать электрическую сеть с наиболее закрытыми участками объекта.Кроме того, если в соответствующей области есть металлические компоненты, при условии, что они имеют соответствующие размеры, они используются в качестве молниеотводов. Так как их электропроводность и тепловые характеристики подходят.

    Полосы токоотвода обычно изготавливаются из оцинкованной стали, и при соблюдении определенных условий их можно заменить металлическими элементами, размещенными на здании. С их помощью происходит отвод тока через систему заземления к земле.Система заземления содержит электропроводящие компоненты, которые находятся в прямом контакте с землей.

    Для всех цепей, включая переменный и постоянный, в качестве эталона требуется нулевой потенциал. Это земля. Земля может быть заземлена, а может и не быть. В системе распределения электроэнергии действие заземления происходит в точках распределения или в пунктах назначения.

    Однако в транспортных средствах он не заземлен, так как их электрические цепи с помощью шин заземлены и соединены с корпусом, изолированным от земли.

    Нейтраль не обязательно должна иметь потенциал земли. Это связано с тем, что напряжение в проводке может упасть, и может возникнуть напряжение нейтрали относительно земли.

    В качестве метода заземления в последние годы широкое распространение получил метод заземления фундамента. В этом методе к арматуре в фундаменте здания прикрепляется электрическая оцинкованная полоса.

    Компоненты заземляющего электрода (Ссылка: electric-engineering-portal.com )

    Разница между заземлением и заземлением

    Есть несколько аспектов, которые можно использовать для объяснения разницы между заземлением и заземлением.В этом разделе мы рассмотрим эти случаи.

    Разница между заземлением и заземлением в определении

    Заземление определяется так, что точка установки, относящаяся к цепи, соединяется с землей. Следовательно, цепь гальванически связана с землей.

    Напротив, заземление описывается таким образом, что земля соединяется с точкой установки, которая не принадлежит цепи. Таким образом, он не подключается к цепи гальванически.Однако в случае пробоя изоляции избежать этого соединения не удастся.

    Защита от молнии помогает управлять токами молнии, создаваемыми атмосферным демпфированием. С этой защитой можно справиться путем присоединения молниеотвода к стержням. Установка либо отсоединяется, либо подключается к системе защиты, то есть к заземлению или заземлению.

    Разница между заземлением и заземлением в приложении

    Еще одно различие между заземлением и заземлением связано с целями их установки.Использование системы заземления предназначено для обеспечения безопасности пользователей электрических устройств. Но основная цель системы заземления — защитить энергосистему. Другими словами, роль заземления заключается в защите людей и электрического оборудования от ударов, а заземление уравновешивает и дисбалансирует нагрузки.

    Роль молнии в создании опасного напряжения (ссылка: electric-engineering-portal.com )

    На рисунке ниже вы можете увидеть разрушительный эффект отсутствия системы заземления для здания с электрическим оборудованием, с которым работает человек.

    Как отсутствие системы заземления приводит к несчастному случаю для пользователя электрического устройства (Ссылка: Happyho.com )

    Разница между заземлением и заземлением в методе эксплуатации

    Заземление выводит нежелательный ток по пути, чтобы защитить электрические устройства от повреждений. Но заземление снижает большой потенциал электрических приборов, возникших в результате неисправности. Следовательно, он может защитить человека от поражения электрическим током.

    Короче говоря, система заземления является профилактической, но заземление — это обратный путь.

    Разница между заземлением и заземлением в типе подключения

    Еще одно различие между заземлением и заземлением — это компоненты, подключенные к земле. В системе заземления нетоковедущие элементы, такие как корпус, заземлены. Следовательно, заземление относится к соединению мертвых частей системы, таких как корпуса, опоры и рамы, с землей.

    С другой стороны, части, по которым протекает ток, подключены к земле непосредственно в системе заземления.Таким образом, заземление относится к подключению токоведущих частей системы, таких как нейтраль генератора, к земле.

    При заземлении система не соединена с землей. Более того, текущий потенциал на земле не равен нулю. Но в системе заземления есть физическое соединение с землей. Следовательно, его потенциал равен нулю.

    И заземление, и заземление относятся к нулевому потенциалу, но дело в том, что подключенная система с нулевым потенциалом отличается от оборудования, подключенного к нулевому потенциалу.Это система заземления, когда нейтральная точка устройства подключена к нулевому потенциалу. Однако, когда корпус устройства подключен к нулевому потенциалу, это называется заземлением.

    Разница между заземлением и заземлением в цвете провода

    Для заземления цвет используемого провода черный. При заземлении провод зеленого цвета.

    Разница между заземлением и заземлением при установке проводов

    Провод заземления находится между землей и нейтралью устройства.При заземлении электрод устанавливают между корпусом оборудования и земляной ямой под землей.

    Например, при заземлении нейтраль генератора соединяется с землей. Но при заземлении корпус генератора или двигателя соединяется с землей.

    Разница между заземлением и заземлением в классификации

    Есть три типа заземления:

    • Сопротивление заземления
    • Жесткое заземление
    • Реактивное заземление

    Заземление подразделяется на три типа:

    • Заземление трубы
    • Штанговое заземление
    • Пластина заземления
    • Ленточное заземление
    • Заземление через кран

    Разница между заземлением и заземлением в обозначениях цепей

    На следующих рисунках вы можете увидеть символы, обозначающие заземление.

    Обозначение заземления (Ссылка: circuitglobe.com )

    Символ заземления (Ссылка: circuitglobe.com )

    Разница между заземлением и заземлением в Эксплуатация Непрерывность

    Система молниезащиты устанавливается для импульсных условий молнии. Вот почему это называется импульсным заземлением. В результате заземление работает непрерывно во время работы системы, тогда как система защиты от последствий молнии активна только во время перенапряжения.Следовательно, система заземления выполняет свои функции при пробое изоляции.

    Разница между заземлением и заземлением в Терминология

    Из-за присущего им сходства между двумя структурами во многих местах концептуальные различия между ними игнорируются, и им дается только системное имя на основе терминологии. Например, в США используется заземление, а в Великобритании — заземление.

    По этой ссылке вы можете посмотреть видео о сравнении заземления и заземления.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *