Схемы по электрике: Электрические схемы для начинающих электриков — советы электрика

Содержание

Электрические схемы для начинающих электриков — советы электрика

Как читать электрические схемы

Источник: https://electric-220.ru/news/kak_chitat_ehlektricheskie_skhemy/2017-04-01-1217

Уроки электричества: азы для начинающих электриков, сила тока и напряжение, как рассчитать

При выходе из строя какого-нибудь электроблока правильным решением будет вызвать специалиста, который быстро устранит проблему.

Если такой возможности нет, уроки для электриков помогут самостоятельно устранить ту или иную поломку.

При этом стоит помнить о технике безопасности, дабы избежать серьезных увечий.

Техника безопасности

Правила безопасности нужно выучить наизусть — это сохранит здоровье и жизнь при устранении проблем с электричеством. Вот самые важные азы электрики для начинающих:

  • Первые работы с сетями лучше всего проводить под присмотром опытного электрика.
  • Не рекомендуется работать с высоким напряжением одному. Рядом всегда должен кто-то быть, кто подстрахует в случае проблем — обесточит сеть, вызовет экстренные службы и окажет первую помощь.
  • Все работы следует проводить с обесточенными сетями. Также нужно убедиться, что никто не подключит электричество во время монтажа.

Для выполнения монтажных работ необходимо приобрести датчик (индикатор фазы), похожий на отвертку или шило. Это устройство позволяет найти провод, находящийся под напряжением — при его обнаружении на датчике загорается индикатор. Приборы работают по-разному, например, когда пальцем прижат соответствующий контакт.

Дело в том, что иногда проводку прокладывают неправильно — автомат на входе отключает только один провод, не обесточивая всю сеть. Такая ошибка может привести к печальным последствиям, ведь человек надеется на полное отключение системы, в то время как некоторый участок может все еще быть активным.

Виды цепей, напряжение и сила тока

Электрические цепи могут быть связаны параллельно либо последовательно. В первом случае электрический ток распределяется по всем цепям, которые соединяются параллельно. Получается, что суммарная единица будет равна сумме тока в любой из цепей.

Параллельные соединения имеют одинаковое напряжение. В последовательной комбинации ток переходит из одной системы в другую. В итоге в каждой линии протекает одинаковый ток.

Не имеет смысла останавливаться на технических определениях напряжения и силы тока (А). Гораздо понятнее будет пояснение на примерах. Так, первый параметр влияет на то, насколько хорошо нужно изолировать различные участки.

Обратите внимание

Чем оно больше, тем выше вероятность того, что в каком-то месте случится пробой. Из этого следует, что высокому напряжению необходима качественная изоляция.

Оголенные соединения необходимо держать подальше друг от друга, от других материалов и от земли.

Более мощное напряжение несет большую угрозу для жизни. Но не стоит полагать, будто низкое абсолютно безопасно. Опасность для человека зависит и от силы тока, которая проходит через организм.

А этот параметр уже напрямую подчиняется сопротивлению и напряжению. При этом сопротивление организма связано с сопротивлением кожи, которое может меняться в зависимости от морального и физического состояния человека, влажности и многих других факторов.

Бывали случаи, когда человек умирал от удара током всего 12 вольт.

Кроме того, в зависимости от силы тока подбираются различные провода. Чем выше A, тем толще нужен провод.

Переменная и постоянная величины

Когда электричество только зарождалось, потребителям поставляли постоянный ток. Однако выяснилось, что стандартную величину 220 вольт практически невозможно передать на большое расстояние.

С другой стороны, нельзя подводить тысячи вольт — во-первых, это опасно, во-вторых, тяжело и дорого изготавливать приборы, работающие на таком высоком напряжении. В результате было решено преобразовывать напряжение — до города доходит 10 вольт, а в дома уже попадает 220. Преобразование происходит при помощи трансформатора.

Что касается частоты напряжения, то она составляет 50 Герц. Это значит, что напряжение меняет свое состояние 50 раз в минуту.

Важно

Оно стартует с нуля и вырастает до отметки в 310 вольт, затем падает до нуля, затем до -310 вольт и опять поднимается до нуля. Все работа протекает в циклическом ключе.

В таких случаях напряжение в сети равняется 220 вольт — почему не 310, будет рассказано дальше. За границей встречаются разные параметры — 220, 127 и 110 вольт, а частота может быть 60 герц.

Мощность и другие параметры

Электрический ток необходим для выполнения какой-либо работы, например, для вращения двигателя или нагрева батарей. Можно вычислить, какую работу он совершит, умножая силу тока на напряжение. Например, электронагреватель, имеющий 220 вольт, и обладающий мощностью 2.2 кВт, будет расходовать ток в 10 А.

Стандартное измерение мощности происходит в ваттах (Вт). Электрический ток силой 1 ампер с напряжением 1 вольт может выделить мощность 1 ватт.

Вышеприведенная формула используется для обоих видов тока. Однако вычисление первого имеет некоторую сложность, — необходимо умножить силу тока на U в каждую единицу времени. А если учесть, что у переменного тока все время меняются показатели напряжения и силы, то придется брать интеграл. Поэтому было применено понятие действующего значения.

Переменный и постоянный ток имеет амплитудное и действующее состояние. Амплитудный параметр — максимальная единица, до которой может подниматься напряжение. Для переменного вида амплитудное число равняется действующему, умноженному на √ 2. Этим объясняются показатели напряжения 310 и 220 В.

Закон Ома

Следующим понятием в основах электрики для начинающих является закон Ома. Он утверждает, что сила тока равна напряжению, поделенному на сопротивление. Этот закон действует как для переменного тока, так и для постоянного.

Сопротивление измеряют в омах. Так, сквозь проводник с сопротивлением 1 ом при напряжении 1 вольт проходит ток 1 ампер. Закон Ома порождает два интересных следствия:

  • Если известна A, протекающая через систему, и сопротивление цепи, то можно вычислить мощность.
  • Мощность также можно посчитать, зная действующее сопротивление и U.

При этом для определения мощности берется не напряжение сети, а U, примененное к проводнику. Получается, если какой-либо прибор включен в систему через удлинитель, то действие будет применено как к прибору, так и к проводам удлинительного устройства. В результате провода будут нагреваться.

Однако основные проблемы заключаются не в самом проводе, а в различных местах соединения. В этих точках сопротивление бывает в десятки раз выше, чем по периметру провода. Со временем в результате окисления сопротивление может лишь повышаться.

Особенно опасными являются места соединения различных металлов. В них процессы окисления проходят гораздо быстрее. Самые частые зоны соединений:

  • Места скручивания проводов.
  • Клеммы выключателей, розеток.
  • Зажимные контакты.
  • Контакты в распределительных щитках.
  • Вилки и розетки.

Поэтому при ремонте первым делом стоит обратить внимание на эти участки. Они должны быть доступными для монтажа и контроля.

Выполняя вышеописанные правила, можно самостоятельно решать некоторые бытовые вопросы, связанные с электрикой в доме. Главное — помнить о технике безопасности.

Источник: https://220v.guru/elementy-elektriki/lampy/uroki-dlya-elektrikov-osnovy-elektrichestva.html

Электрика для начинающих

В наше время каждый желающий может ознакомиться с азами электрики, даже не покидая пределов своего дома.

Начать это увлекательное занятие лучше всего со знакомства с упрощённой электрической схемой разводки и подключения выключателей, розеток и осветительных приборов в вашей собственной квартире.

Совет

Подобные схемы относятся к стандартным проектным решениям и широко применяются при электроснабжении типовых промышленных и жилых помещений, а также при временном подключении к питающей электросети ряда строительных объектов.

Первым (в то же время самым крупным и наиболее важным) элементом в длинной цепочке оборудования типовой квартирной электропроводки является электрический щиток, к которому через защитный автомат (или пробковый предохранитель) подводится питание от основного распределительного щитка, расположенного на подъездной площадке. В состав квартирного щитка входят, как правило, электросчётчик, несколько автоматических выключателей, устройство защитного отключения (УЗО), крепёжная DIN-рейка и ещё ряд вспомогательных шин. Именно с такого вводного щитка и организуется электроснабжение всех комнат в вашей квартире.

Несколько линии электропитания (их количество зависит от числа комнат и мощности электрических нагрузок), состоящие из двух проводов – фазного и нулевого (или из трех, если есть линия заземления), через предназначенные для них автоматические выключатели разводятся по отдельным комнатам квартиры.

Разводка электропроводки по всей квартире проводится путём организации ответвлений от основной линии проводки, которые необходимы для подключения отдельных потребителей – электрического звонка, групп штепсельных розеток или выключателей.

Для этих целей используются монтажные распределительные коробки, представляющие собой пластмассовые стаканы, снабжённые входными и выходными отверстиями для проводов и крышкой. Внутри коробок размещены специальные винтовые зажимы для подключения коммутируемых установочных проводов.

Но как правило провода в коробке просто скручиваются (так называемая скрутка) и изолируются друг от друга (обычно обматываются изолентой или термоусадочной трубкой).

Рекомендуется также использовать зажимы (у нас большое распространение получили зажимы Wago), либо соединительные зажимы СИЗ (колпачки с пружинкой внутри).

Следует отметить, что все внутриквартирные потребители электроэнергии (звонки, различные осветители вкупе с выключателями, бытовые приборы, кондиционеры и т.п.), подключаются к квартирной проводке параллельно.

При подобной схеме подключения неисправность или отключение одного из этих потребителей не вызовет «обесточивания» остальных приборов, которое неизбежно в случае их последовательного соединения.

Обратите внимание

Примером последовательного соединения отдельных элементов электрической проводки является соединение любого осветительного прибора и его выключателя.

Таким образом, линии электропроводки подводятся сначала к расположенным в каждой комнате распределительным коробкам и только после них расходятся по отдельным нагрузкам (осветительным приборам с выключателями, к розеткам и т.п.).

Из схемы подключения выключателей и ламп мы видим, что к распределительной коробке подходят и от неё ответвляются фазные провода (красного цвета) и нулевые провода (синего цвета). Именно отходящий фазный провод (ни в коем случае ни нулевой!) должен подключаться к одному из контактов выключателя.

Нулевой же провод должен идти на общий контакт ламп, из которых состоит светильник. Провода, отходящие от выключателя (на рисунке – зелёного цвета) подводятся к общему контакту каждой из двух групп ламп рассматриваемого светильника.

Обратите внимание – на рисунке изображён вариант двухклавишного выключателя с двумя группами ламп и вариант одноклавишного выключателя.

Подключение розеток после распредкоробки производится более простым способом – фазовый и нулевой проводники (и заземление если есть) подсоединяются напрямую к соответствующим (произвольно выбранным) контактам самой розетки. Пара этих проводников от уже подключённой розетки ведётся ко второй, а, в случае необходимости – и к третьей розетке (такое вид соединения называется соединение «шлейфом»).

Очень важно учесть тот факт, что при параллельной схеме подключения потребителей не допускается увеличивать их общее количество выше определённого значения.

При параллельном питании каждый вновь добавленный электроприбор (новая розетка) увеличивает нагрузку на общую для всей квартиры часть электропроводки.

Важно

При предельном значении суммарного тока в цепи (в случае, когда все приборы будут включены) обязательно сработает устройство защиты по максимальному току – тот самый автоматический выключатель на щитке, от которого запитывается данная линия. Он просто отключит эту ветку от общей цепи питания квартиры.

Если ваш автомат подобран неправильно (имеет завышенное значение тока срабатывания по перегрузке), то последствия могут оказаться куда более плачевными – провода могут просто не выдержать силы проходящего по ним тока и от перегрева загореться. Вот почему так важно научиться правильно выбирать автоматический выключатель для каждой линии нагрузки и точно рассчитывать сечение проводов, работающих в этих линиях.

Как правило при типичной квартирной разводке на линии освещения закладывают медный провод сечением 1.5мм2, а на розеточные линии 2.5мм2.

Источник: http://cxem.net/electric/electric38.php

Электротехника для начинающих

Главная > Теория > Электротехника для начинающих

Электричество применяется во многих областях, оно окружает нас практически повсюду. Электроэнергия позволяет получать безопасное освещение дома и на работе, кипятить воду, готовить пищу, работать на компьютере и станках.

Вместе с тем, обращаться с электричеством необходимо уметь, иначе можно не только получить травмы, но и нанести вред имуществу.

Как правильно прокладывать проводку, организовывать снабжение объектов электричеством, изучает такая наука, как электротехника.

Зачем нужно знать электротехнику

Понятие электричества

Все вещества состоят из молекул, которые, в свою очередь, состоят из атомов. У атома есть ядро и движущиеся вокруг него положительно и отрицательно заряженные частицы (протоны и электроны).

При нахождении двух материалов рядом друг с другом между ними возникает разность потенциалов (у атомов одного вещества электронов всегда меньше, чем у другого), что приводит к появлению электрического заряда – электроны начинают перемещаться от одного материала к другому. Так возникает электричество.

Другими словами, электричество – это энергия, возникающая в результате перемещения отрицательно заряженных частиц из одного вещества в другое.

Что такое электричество

Скорость перемещения может быть разной. Чтобы движение было в нужном направлении и с нужной скоростью, используются проводники. Если движение электронов по проводнику осуществляется только в одном направлении, такой ток называется постоянным.

Если же направление перемещения с определенной частотой меняется, то ток будет переменным. Самым известным и простым источником постоянного тока является батарейка или автомобильный аккумулятор. Переменный ток активно используется в бытовом хозяйстве и в промышленности.

На нем работают практически все устройства и оборудование.

К сведению. Движением электрической энергии можно управлять. Способы такого управления изучает курс «Основы электротехники», который необходим всем электрикам, чтобы правильно проложить проводку в доме, не допустить пожара или травм в период работ.

Что изучает электротехника

Радиотехника для начинающих

Данная наука знает практически все об электричестве. Изучить ее необходимо всем, кто хочет получить диплом или квалификацию электрика. В большинстве учебных заведений курс, на котором изучают все, что связано с электроэнергией, называется «Теоретические основы электротехники» или, сокращенно ТОЭ.

Данная наука получила развитие в XIX веке, когда был изобретен источник постоянного тока, и появилась возможность строить электрические цепи. Дальнейшее развитие электротехника получила в процессе новых открытий в области физики электромагнитных излучений. Чтобы без проблем осваивать науку в настоящее время, необходимо иметь знания не только в области физики, но также химии и математики.

В первую очередь, на курсе ТОЭ изучаются основы электричества, дается определение тока, исследуются его свойства, характеристики и направления применения. Далее изучаются электромагнитные поля и возможности их практического использования. Завершается курс, как правило, изучением устройств, в которых используется электрическая энергия.

Предмет изучения электротехники

Чтобы разобраться с электричеством, не обязательно поступать в высшее или среднее учебное заведение, достаточно воспользоваться самоучителем или пройти видеоуроки «для чайников».

Полученных знаний вполне хватит, чтобы разобраться с проводкой, заменить лампочку или повесить люстру дома. Но, если планируется профессионально работать с электричеством (например, в должности электромонтера или энергетика), то соответствующее образование будет обязательным.

Оно позволяет получить специальный допуск на работу с приборами и устройствами, работающими от источника тока.

Основные понятия электротехники

Изучая электричество для начинающих, главное разобраться с тремя основными терминами:

  • Сила тока;
  • Напряжение;
  • Сопротивление.

Под силой тока понимается количество электрического заряда, протекающего через проводник с определенным сечением за единицу времени. Другими словами, количество электронов, которые переместились из одного конца проводника в другой за некоторое время.

Сила тока является самой опасной для жизни и здоровья человека. Если взяться за оголенный провод (а человек – это тоже проводник), то электроны пройдут через него.

Чем больше их пройдет, тем больше будут повреждения, поскольку в процессе своего движения они выделяют тепло и запускают различные химические реакции.

Однако чтобы ток шел по проводникам, между одним и другим концом проводника должно быть напряжение или разность потенциалов. Причем она должна быть постоянной, чтобы движение электронов не прекращалось. Для этого электрическую цепь обязательно замыкают, а на одном конце цепи обязательно ставят источник тока, который обеспечивает в цепи постоянное движение электронов.

Электрическая цепь

Совет

Сопротивление – это физическая характеристика проводника, его способность к проведению электронов. Чем ниже сопротивление проводника, тем большее количество электронов по нему пройдет за единицу времени, тем выше сила тока. Высокое сопротивление, наоборот, уменьшает силу тока, но влечет за собой нагревание проводника (если напряжение достаточно высоко), что может привести к возгоранию.

Подбор оптимальных соотношений между напряжением, сопротивлением и силой тока в электрической цепи является одной из основных задач электротехники.

Электротехника и электромеханика

Сварочные работы для начинающих

Электромеханика является разделом электротехники. Она изучает принципы функционирования устройств и оборудования, которые работают от источника электрического тока. Изучив основы электромеханики, можно научиться ремонтировать различное оборудование или даже проектировать его.

В рамках уроков по электромеханике, как правило, изучаются правила преобразования электрической энергии в механическую (каким образом функционирует электродвигатель, принципы работы любого станка и так далее). Также исследуются и обратные процессы, в частности, принципы действия трансформаторов и генераторов тока.

Предмет изучения электромеханики

Таким образом, без понимания того, как составляются электрические цепи, принципов их функционирования и других вопросов, которые изучает электротехника, осваивать электромеханику невозможно.

С другой стороны, электромеханика является более сложной дисциплиной и носит прикладной характер, поскольку результаты ее изучения применяются непосредственно при конструировании и ремонте машин, оборудования и различных электрических устройств.

Безопасность и практика

Осваивая курс электротехники для начинающих, необходимо уделить особое внимание вопросам безопасности, поскольку несоблюдение определенных правил может привести к трагическим последствиям.

Первое правило, которому необходимо следовать, – обязательно знакомиться с инструкцией. У всех электроприборов в руководстве по эксплуатации всегда имеется раздел, который посвящен вопросам безопасности.

Важно! Выполнение рекомендаций позволит избежать травм и нанесения вреда имуществу.

Второе правило заключается в контроле состояния изоляции проводников. Все провода обязательно должны покрываться специальными материалами, не проводящими электричество (диэлектриками).

Если изоляционный слой нарушен, в первую очередь, следует его восстановить, иначе возможно нанесение вреда здоровью.

Кроме того, работу в целях безопасности с проводами и электрооборудованием следует производить только в специальной одежде, которая не проводит электричество (резиновые перчатки и диэлектрические боты).

Третье правило состоит в использовании для диагностики параметров электросети только специальных приборов. Ни в коем случае не стоит делать этого голыми руками или пробовать «на язык».

Обратите внимание! Пренебрежение данными элементарными правилами является основной причиной травм и несчастных случаев в работе электриков и электромонтеров.

Правила безопасности при работе с электричеством

Советы начинающим

Чтобы получить начальное представление об электричестве и принципах работы устройств с его применением, рекомендуется пройти специальный курс или изучить пособие «Электротехника для начинающих». Подобные материалы разработаны специально для тех, кто пытается с нуля освоить данную науку и получить необходимые навыки для работы с электрооборудованием в быту.

Советы начинающим электрикам

В пособии и видеоуроках подробно рассказывается, как устроена электрическая цепь, что такое фаза, а что такое ноль, чем отличается сопротивление от напряжения и силы тока и так далее. Отдельное внимание уделяется технике безопасности, чтобы избежать травм при работе с электроприборами.

Конечно, изучение курсов или чтение пособий не позволит стать профессиональным электриком или электромонтером, но решить большинство бытовых вопросов по итогам освоения материала будет вполне по силам.

Обратите внимание

Для профессиональной работы требуется уже получение специального допуска и наличие профильного образования. Без этого выполнять должностные обязанности запрещается различными инструкциями.

Если же предприятие допустит человека без необходимого образования к работе с электрооборудованием, и он получит травму, руководитель понесет серьезное наказание, вплоть до уголовного.

Видео

Источник: https://elquanta.ru/teoriya/ehlektrotekhnika-dlya-nachinayushhikh.html

Основы теоретической электротехники для начинающих

Сейчас без электричества невозможно представить жизнь. Это не только свет и обогреватели, но и вся электронная аппаратура начиная с самых первых электронных ламп и заканчивая мобильными телефонами и компьютерами.

Их работа описывается самыми разными, иногда очень сложными формулами.

Но даже самые сложные законы электротехники и электроники в основе своей имеют законы электротехники, которые в институтах, техникумах и училищах изучает предмет «Теоретические основы электротехники» (ТОЭ).

Основные законы электротехники

  • Закон Ома
  • Закон Джоуля — Ленца
  • Первый закон Кирхгофа
  • Второй закон Кирхгофа

Закон Ома — с этого закона начинается изучение ТОЭ и без него не может обойтись ни один электрик.

Он гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению Это значит, что чем выше напряжение, поданное на сопротивление, электродвигатель, конденсатор или катушку (при соблюдении других условий неизменными), тем выше ток, протекающий по цепи.

И наоборот, чем выше сопротивление, тем ниже ток.

Закон Джоуля — Ленца. С помощью этого закона можно определить количество тепла, выделившегося на нагревателе, кабеле, мощность электродвигателя или другие виды работ, выполненных электрическим током.

Этот закон гласит, что количество тепла, выделяемого при протекании электрического тока по проводнику, прямо пропорциональна квадрату силы тока, сопротивлению этого проводника и времени протекания тока.

С помощью этого закона определяется фактическая мощность электродвигателей, а также на основе этого закона работает электросчётчик, по которому мы платим за потреблённую электроэнергию.

Первый закон Кирхгофа. С его помощью рассчитываются кабеля и автоматы защиты при расчёте схем электроснабжения. Он гласит, что сумма токов, приходящих в любой узел равна сумме токов, уходящих из этого узла. На практике приходит один кабель из источника питания, а уходит один или несколько.

Второй закон Кирхгофа. Применяется при подключении нескольких нагрузок последовательно или нагрузки и длинного кобеля. Он также применим при подключении не от стационарного источника питания, а от аккумулятора. Он гласит, что в замкнутой цепи сумма всех падений напряжений и всех ЭДС равна 0.

Специалисты рекомендуют знать характеристики и распиновки vga-разъемов.

С чего начать изучение электротехники

Лучше всего изучать электротехнику на специальных курсах или в учебных заведениях. Кроме возможности общаться с преподавателями, вы можете воспользоваться материальной базой учебного заведения для практических занятий. Учебное заведение также выдаёт документ, который будет необходим при устройстве на работу.

Если вы решили изучать электротехнику самостоятельно или вам необходим дополнительный материал для занятий, то есть много сайтов, на которых можно изучить и скачать на компьютер или телефон необходимые материалы.

Видеоуроки

В интернете есть много видеоматериалов, помогающих овладеть основами электротехники. Все видеоролики можно как смотреть онлайн, так и скачать с помощью специальных программ.

Видеоуроки электрика — очень много материалов, рассказывающих о разных практических вопросах, с которыми может столкнуться начинающий электрик, о программах, с которыми приходится работать и об аппаратуре, устанавливаемой в жилых помещениях.

Основы теории электротехники — здесь находятся видеоуроки, наглядно объясняющие основные законы электротехники Общая длительность всех уроков около 3 часов.

  1. Основы электротехники, ноль и фаза, схемы подключения лампочек, выключателей, розеток. Виды инструмента для электромонтажа;
  2. Виды материалов для электромонтажа, сборка электрической цепи;
  3. Подключение выключателя и параллельное соединение;
  4. Монтаж электрической цепи с двухклавишным выключателем. Модель электроснабжения помещения;
  5. Модель электроснабжения помещения с выключателем. Основы техники безопасности.

Книги

Самым лучшим советчиком всегда являлась книга. Раньше необходимо было брать книгу в библиотеке, у знакомых или покупать. Сейчас в интернете можно найти и скачать самые разные книги, необходимые начинающему или опытному электромонтёру.

В отличие от видеоуроков, где можно посмотреть, как выполняется то или иное действие, в книге можно держать рядом во время выполнения работы.

В книге могут быть справочные материалы, которые не поместятся в видеоурок (как в школе — учитель рассказывает урок, описанный в учебнике, и эти формы обучения дополняют друг друга).

Есть сайты с большим количеством электротехнической литературы по самым разным вопросам — от теории до справочных материалов. На всех этих сайтах нужную книгу можно скачать на компьютер, а позже читать с любого устройства.

Например,

mexalib — разного рода литература, в том числе и по электротехнике

книги для электрика — на этом сайте много советов для начинающего электротехника

электроспец — сайт для начинающих электриков и профессионалов

Библиотека электрика — много разных книг в основном для профессионалов

Онлайн-учебники

Кроме этого, в интернете ест онлайн-учебники по электротехнике и электронике с интерактивным оглавлением.

Это такие, как:

Начальный курс электрика — учебное пособие по электротехнике

Основы электротехники — базовые понятия

Электроника для начинающих — начальный курс и основы электроники

Техника безопасности

Главное при выполнении электротехнических работ, это соблюдение техники безопасности. Если неправильная работа может привести к выходу из строя оборудования, то несоблюдение техники безопасности — к травмам, инвалидности или летальному исходу.

Главные правила — это не прикасаться к проводам, находящимся под напряжением, голыми руками, работать инструментом с изолированными ручками и при отключении питания вывешивать плакат «не включать, работают люди». Для более подробного изучения этого вопроса нужно взять книгу «Правила техники безопасности при электромонтажных и наладочных работах».

Источник: https://instrument.guru/elektronika/osnovy-teoreticheskoj-elektrotehniki-dlya-nachinayushhih.html

Советы начинающему электрику

Использование электричества сегодня позволяет решать огромное количество задач. Это приводит к тому, что многие начинают интересоваться данным явлением и изучать его досконально.

В данном процессе может возникать множество трудностей, которые довольно сложно решить. Поможет в этом сайт http://vse-elektrichestvo.

ru/poleznye-sovety/xitrosti-elektrika, где собрано множество полезных советов для начинающих.

Основные моменты

Чтобы стать хорошим электриком, необходимо придерживаться нескольких основных правил:

  1. В первую очередь следует ознакомиться с основами. Изучите теорию электричества, чтобы понять основные процессы, происходящие в таких системах.
  2. Старайтесь практиковаться у опытных специалистов. Это поможет вам получить определенные навыки и научит вас работать в «боевых» условиях.
  3. Обязательно читайте специальную литературу и изучайте рынок новых материалов или методик в данной сфере.

Полезная информация

Для начинающего электрика важно понимать некоторые элементарные вещи:

  • Выбор соответствующего сечения кабеля к определенному устройству выполняется по простому правилу. Для этого следует учитывать простой закон напряжения «Мощность=НапряжениеСилу тока». Согласно данной формуле можно вычислить все основные параметры, которые вы знаете или вам нужно определить. Затем с помощью специальных таблиц можно уже подбирать сечение кабелей и других продуктов.
  • Прокладка электрических проводов должна выполняться только горизонтально или под углом в 90 градусов. Не разрешается использовать другие способы. При этом желательно делать отступ от стены или потолка около 20 см. Если в комнате присутствуют трубы, то от них нужно удалять кабель на расстояние до 40 см.
  • Щитки необходимо монтировать на высоте около 1,2 м (размер конструкции 0,6 м) и на уровне 1 м, когда щит превышает ранее указанные габариты. При этом следует соблюдать небольшое расстояние между отдельными элементами, чтобы обеспечить оптимальную вентиляцию системы.
  • Используйте для защиты электрических систем специальные устройства УЗО, которые позволяю контролировать утечки тока и при необходимости отключать все механизмы.

Путь к настоящему электрику длительный и лежит сквозь постоянную практику и усовершенствование навыков. Постарайтесь получать удовольствие от этой работы и вы станете настоящим профессионалом.

РЕКОМЕНДАЦИИ ДЛЯ НАЧИНАЮЩЕГО ЭЛЕКТРИКА смотрим в видео:

Источник: http://postroyka.org/sovetyi-nachinayushhemu-elektriku/

Электрика своими руками от А до Я

Сегодня нет той сферы деятельности человека, где бы не применялось электричество.  Оно просто окружает человечество в повседневной жизни. Без него уже нельзя представить цивилизованную жизнь.

Что бы отлично разбираться и понимать, как работает электричество от а до я – необходимо пройти курс обучения по дисциплине «Электротехника», при этом потратив уйму времени.

Важно

Но для того, чтобы знать о базовых принципах электричества необходимы общие понятия о законах электротехники и советы электрика.

И тогда, электрика своими руками станет такой же доступной, как сделать полку или повесить картину.

Общие понятия

Электричество – это физический процесс движения свободных электронов. Используется только «прирученное» человеком электричество, при котором движение электронов по проводам происходит только в нужном направлении, и оно бывает двух видов:

  • постоянного тока;
  • переменного тока.

Этот упорядоченный физический процесс и дает – свет, тепло, вращение моторов, работу наших смартфонов и многое другое.

Постоянный ток

Использует во всех бытовых приборах с электроникой от телевизора и компьютера до вашего сотового телефона. Наиболее распространенными источниками постоянного тока служат:

  • батарейки;
  • аккумуляторы;
  • блоки питания от сети переменного тока 220 В.

Переменный ток

Вырабатывается промышленным способом на электростанциях и поступает через систему распределения в квартиры. От него работают холодильники, электрические плиты, блоки питания бытовых приборов, лампы освещения и многое другое.

Промышленно вырабатывается трехфазный ток, а в квартиры поступает его производная – однофазный ток с номинальным напряжением 220 В. Однофазный ток передается по двум проводам – один из которых фаза, обозначаемая, как «L», второй – ноль «N».

Приборы безопасности

Стоит четко знать, что электрический ток и напряжение невозможно увидеть или услышать. Вот тут в помощь советы электрика.

Совет: Прежде чем начинать ремонтировать действующую электропроводку, необходимо воспользоваться специальными приборами для определения наличия напряжения. И вот основные:

  • индикаторная отвертка;
  • однополюсные или двухполюсные указатели напряжения;
  • электрические щупы;
  • электронные сигнализаторы напряжения.

Если нет под рукой такого прибора, то можно воспользоваться хитростью электрика и изготовить пробник из двух проводов, патрона и лампочки накаливания. Замкнув один провод на металлический корпус щита – вторым проводом можно искать фазу.

Электропроводка

Все электричество работает по принципу передачи энергии от источника (электростанция) по проводам к потребителю (лампочка, холодильник и т. д.). Для того, чтобы подключить лампочку или розетку необходим двухжильный провод – фаза и ноль.

Провода представляют собой металлическую жилу, изготовленную из меди или алюминия, покрытую по всей длине защитной пластиковой изоляцией.

 Провода с двумя, тремя и более жилами покрывают поясной изоляцией и уже называют электрическим кабелем. Провода выпускаются определенных сечений, имеют стандартизированный ряд: 1,5; 2,5; 4; 8; 10 и т.

д. Размер сечения жил указывается в квадратных миллиметрах.

Цветовая маркировка проводов

Для облегчения электромонтажных работ, а также в целях безопасности были унифицированы требования ПУЭ и евростандарта. Так каждая жила имеет свой цвет согласно функциональной принадлежности. Регламент маркировки определяет:

  • PE — нулевой защитный проводник – желтого цвета с зеленой полосой или как чередование желтых и зеленых полос;
  • N — нулевой рабочий проводник (нейтраль) — голубого цвета;
  • L — фазный провод — красного, коричневого, серого или белого цвета.

Здесь же, пригодятся советы электрика, которые вы найдете только в технической литературе:

  1. Имейте в виду, что ранее в СССР существовала другая цветовая маркировка, где черным цветом обозначалась глухо заземлённая нейтраль, белым цветом – рабочий ноль, фазы А-В-С соответственно имели цвета желтый, зеленый и красный.
  2. Электрические кабели, купленные в магазине или найденные при ремонте в существующей проводке, могут не иметь «правильную» цветовую маркировку, а иногда провода и вовсе будут белыми. Используйте секреты электрика: купите цветные кембрики или разных цветов изоленту для правильного обозначения жил.

Выбор сечения провода

При передаче электрической энергии через провода происходит неизбежная потеря ее незначительной части, которая проявляется в выделении тепла. Чем больше используемая мощность, подводимая по проводам к потребителю, тем больше понадобиться сечение провода.

Любой токопроводящий материал имеет удельное сопротивление, так, например, у медных проводов оно почти в 1,5 раза меньше, у алюминиевых.

Что бы, не утруждаться вычислениями и не искать таблицы – нужны простые советы электрика и тогда, запомнив несколько несложных значений можно с легкостью подобрать необходимое сечение провода для дома или гаража.

Так как, суммарная мощность всех электроприборов в квартире, частном доме или на даче не превышает 3 кВт, то можно руководствоваться, что в 1 фазной сети на 1 кВт мощности приходиться сила тока примерно 5,0 А. А для 3 фазной сети на 1 кВт надо сила тока примерно 2,0 А.

В частности, для электроводонагревателя мощностью в 1,5 кВт понадобиться провод с медным проводником в 1,5 мм2.

Источник: http://vseobelektrike.com/

Электрические схемы для начинающих электриков, ProРемонт

Главная > Электрика > Электрические схемы для начинающих электриков

Электрические схемы – это вид технического документа, которым пользуются все, кто сталкивается с электричеством — от начинающих электриков до профессионалов.

Для их правильного составления необходимо владеть некоторым набором знаний и знать стандарты, которые относятся к оформлению рисунка.

Чтобы полностью освоить это направление необходимо потратить немало времени, но для понимания на уровне начинающего электрика, достаточно знать основные правила.

Электросхемы для начинающих электриков

Существует 8 основных правил, которые позволят в течении короткого времени освоить рисование простых электрических схем.:

  • Правило1. Присвоенные элементам номера должны идти в строго возрастающем порядке. То есть, если на схеме имеются резисторы R1, R2, R3, а также конденсаторы C1, C2, С3, запрещается менять их последовательность либо пропускать что-то при записи.
  • Правило 2. Присвоение любого номера должно производиться в порядке возрастания слева-направо и сверху-вниз. Изменение поочередности разрешено только в тех случаях, когда это необходимо для обозначения проходящего сигнала и т.д.
  • Правило 3. Обозначения должны находиться рядом с названиями элементов (справа или сверху). Не допускается их пересечение любыми другими линиями или составляющими схемы.
  • Правило 4. Линии связи всегда должны быть выполнены в виде горизонтальных или вертикальных отрезков. Желательно минимизировать их изломы и пересечения. В случае, если этого избежать невозможно необходимо придерживаться угла в 90 градусов.
  • Правило 5. Толщина связных линий напрямую зависит от формата и размера чертежа. Граничные пределы – от 0.2 до 1 мм, а наиболее оптимальные – от 0.3 до 0.4 мм. В пределах одной схемы они должны иметь точные одинаковые толщины. В случае необходимости выделить какую-то определенную группу допускается использования линий различной толщины.
  • Правило 6. Все графические изображения, которые передают реальные элементы на схеме, должны быть нарисованы в точном соответствии с нормативными требованиями либо, если этого вынуждает схема, повернутыми на угол кратный 90 градусам.
  • Правило 7. При обозначении номинальных показателей элементов, допускается упрощение (L2, C5 и т.д.)
  • Правило 8. Расстояние между линиями различного назначения должно быть не меньше 5 мм.

Всех этих правил будет достаточно для того, чтобы овладеть рисованием схем на начальном уровне. Для более сложных изображений вводятся дополнительные требования и стандарты.

Пособие для начинающего электрика

На сегодняшний день существует огромное количество ресурсов, на которых каждый желающий сможет получить базовые знания по электротехнике, а также углубить уже имеющиеся. Особенно полезны такие курсы, как электрика для начинающих видео – уроки. В них не только рассказывается теоретический материал, но и демонстрируется, как применить его на практике.

Также большую роль в освоении профессии электрика является умение чертить схемы, ведь именно по ним производятся все монтажные и ремонтные работы. Для этого необходимо освоить такое направление, как черчение, а также более узкую его специализацию – составление электросхем.

Для получения этих знаний лучше всего воспользоваться услугами специальных курсов или образовательных учреждений, но для старта достаточно просто освоить пособие «Электрика для начинающих – схемы». Комплексный подход в изучении физики, черчения и электротехники, а также постоянная практика позволят стать настоящим профессионалом своего дела.

Похожие записи

Источник: https://0410kv.ru/kv12/elektricheskie-sxemy-dlya-nachinayushhix-elektrikov-proremont/

Содержание:

Каждая электрическая схема состоит из множества элементов, которые, в свою очередь, также включают в свою конструкцию различные детали. Наиболее ярким примером служат бытовые приборы.

Даже обычный утюг состоит из нагревательного элемента, температурного регулятора, контрольной лампочки, предохранителя, провода и штепсельной вилки. Другие электроприборы имеют еще более сложную конструкцию, дополненную различными реле, автоматическими выключателями, электродвигателями, трансформаторами и многими другими деталями.

Обратите внимание

Между ними создается электрическое соединение, обеспечивающее полное взаимодействие всех элементов и выполнение каждым устройством своего предназначения.

В связи с этим очень часто возникает вопрос, как научится читать электрические схемы, где все составляющие отображаются в виде условных графических обозначений. Данная проблема имеет большое значение для тех, кто регулярно сталкивается с электромонтажом. Правильное чтение схем дает возможность понять, каким образом элементы взаимодействуют между собой и как протекают все рабочие процессы.

Виды электрических схем

Для того чтобы правильно пользоваться электрическими схемами, нужно заранее ознакомиться с основными понятиями и определениями, затрагивающими эту область.

Любая схема выполняется в виде графического изображения или чертежа, на котором вместе с оборудованием отображаются все связующие звенья электрической цепи. Существуют различные виды электрических схем, различающиеся по своему целевому назначению.

В их перечень входят первичные и вторичные цепи, системы сигнализации, защиты, управления и прочие. Кроме того, существуют и широко используются принципиальные и монтажные электрические схемы, однолинейные, полнолинейные и развернутые.

Каждая из них имеет свои специфические особенности.

К первичным относятся цепи, по которым подаются основные технологические напряжения непосредственно от источников к потребителям или приемникам электроэнергии. Первичные цепи вырабатывают, преобразовывают, передают и распределяют электрическую энергию.

Они состоят из главной схемы и цепей, обеспечивающих собственные нужды. Цепи главной схемы вырабатывают, преобразуют и распределяют основной поток электроэнергии. Цепи для собственных нужд обеспечивают работу основного электрического оборудования.

Через них напряжение поступает на электродвигатели установок, в систему освещения и на другие участки.

Вторичными считаются те цепи, в которых подаваемое напряжение не превышает 1 киловатта. Они обеспечивают выполнение функций автоматики, управления, защиты, диспетчерской службы. Через вторичные цепи осуществляется контроль, измерения и учет электроэнергии. Знание этих свойств поможет научиться читать электрические схемы.

Полнолинейные схемы используются в трехфазных цепях. Они отображают электрооборудование, подключенное ко всем трем фазам. На однолинейных схемах показывается оборудование, размещенное лишь на одной средней фазе. Данное отличие обязательно указывается на схеме.

Важно

На принципиальных схемах не указываются второстепенные элементы, которые не выполняют основных функций. За счет этого изображение становится проще, позволяя лучше понять принцип действия всего оборудования.

Монтажные схемы, наоборот, выполняются более подробно, поскольку они применяются для практической установки всех элементов электрической сети.

К ним относятся однолинейные схемы, отображаемые непосредственно на строительном плане объекта, а также схемы кабельных трасс вместе с трансформаторными подстанциями и распределительными пунктами, нанесенными на упрощенный генеральный план.

В процессе монтажа и наладки широкое распространение получили развернутые схемы с вторичными цепями. На них выделяются дополнительные функциональные подгруппы цепей, связанных с включением и выключением, индивидуальной защитой какого-либо участка и другие.

Обозначения в электрических схемах

В каждой электрической цепи имеются устройства, элементы и детали, которые все вместе образуют путь для электрического тока. Они отличаются наличием электромагнитных процессов, связанных с электродвижущей силой, током и напряжением, и описанных в физических законах.

В электрических цепях все составные части можно условно разделить на несколько групп:

  1. В первую группу входят устройства, вырабатывающие электроэнергию или источники питания.
  2. Вторая группа элементов преобразует электричество в другие виды энергии. Они выполняют функцию приемников или потребителей.
  3. Составляющие третьей группы обеспечивают передачу электричества от одних элементов к другим, то есть, от источника питания – к электроприемникам. Сюда же входят трансформаторы, стабилизаторы и другие устройства, обеспечивающие необходимое качество и уровень напряжения.

Каждому устройству, элементу или детали соответствует условное обозначение, применяющееся в графических изображениях электрических цепей, называемых электрическими схемами. Кроме основных обозначений, в них отображаются линии электропередачи, соединяющие все эти элементы.

Участки цепи, вдоль которых протекают одни и те же токи, называются ветвями. Места их соединений представляют собой узлы, обозначаемые на электрических схемах в виде точек. Существуют замкнутые пути движения тока, охватывающие сразу несколько ветвей и называемые контурами электрических цепей.

Самая простая схема электрической цепи является одноконтурной, а сложные цепи состоят из нескольких контуров.

Большинство цепей состоят из различных электротехнических устройств, отличающихся различными режимами работы, в зависимости от значения тока и напряжения. В режиме холостого хода ток в цепи вообще отсутствует. Иногда такие ситуации возникают при разрыве соединений. В номинальном режиме все элементы работают с тем током, напряжением и мощностью, которые указаны в паспорте устройства.

Все составные части и условные обозначения элементов электрической цепи отображаются графически. На рисунках видно, что каждому элементу или прибору соответствует свой условный значок. Например, электрические машины могут изображаться упрощенным или развернутым способом. В зависимости от этого строятся и условные графические схемы.

Для показа выводов обмоток используются однолинейные и многолинейные изображения. Количество линий зависит от количества выводов, которые будут разными у различных типов машин. В некоторых случаях для удобства чтения схем могут использоваться смешанные изображения, когда обмотка статора показывается в развернутом виде, а обмотка ротора – в упрощенном.

Таким же образом выполняются и другие условные обозначения электрических схем.

Изображения трансформаторов также осуществляются упрощенным и развернутым, однолинейным и многолинейным способами. От этого зависит способ отображения самих устройств, их выводов, соединений обмоток и других составных элементов.

Например, в трансформаторах тока для изображения первичной обмотки применяется утолщенная линия, выделенная точками.

Для вторичной обмотки может использоваться окружность при упрощенном способе или две полуокружности при развернутом способе изображения.

Графические изображения других элементов:

  • Контакты. Применяются в коммутационных устройствах и контактных соединениях, преимущественно в выключателях, контакторах и реле. Они разделяются на замыкающие, размыкающие и переключающие, каждому из которых соответствует свой графический рисунок. В случае необходимости допускается изображение контактов в зеркально-перевернутом виде. Основание подвижной части отмечается специальной незаштрихованной точкой.
  • Выключатели. Могут быть однополюсными и многополюсными. Основание подвижного контакта отмечается точкой. У автоматических выключателей на изображении указывается тип расцепителя. Выключатели различаются по типу воздействия, они могут быть кнопочными или путевыми, с размыкающими и замыкающими контактами.
  • Плавкие предохранители, резисторы, конденсаторы. Каждому из них соответствуют определенные значки. Плавкие предохранители изображаются в виде прямоугольника с отводами. У постоянных резисторов значок может быть с отводами или без отводов. Подвижный контакт переменного резистора обозначается в виде стрелки. На рисунках конденсаторов отображается постоянная и переменная емкость. Существуют отдельные изображения для полярных и неполярных электролитических конденсаторов.
  • Полупроводниковые приборы. Простейшими из них являются диоды с р-п-переходом и односторонней проводимостью. Поэтому они изображаются в виде треугольника и пересекающей его линии электрической связи. Треугольник является анодом, а черточка – катодом. Для других видов полупроводников существуют собственные обозначения, определяемые стандартом. Знание этих графических рисунков существенно облегчает чтение электрических схем для чайников.
  • Источники света. Имеются практически на всех электрических схемах. В зависимости от назначения, они отображаются как осветительные и сигнальные лампы с помощью соответствующих значков. При изображении сигнальных ламп возможна заштриховка определенного сектора, соответствующего невысокой мощности и небольшому световому потоку. В системах сигнализации вместе с лампочками применяются акустические устройства – электросирены, электрозвонки, электрогудки и другие аналогичные приборы.

Как правильно читать электрические схемы

Принципиальная схема представляет собой графическое изображение всех элементов, частей и компонентов, между которыми выполнено электронное соединение с помощью токоведущих проводников.

Она является основой разработок любых электронных устройств и электрических цепей.

Поэтому каждый начинающий электрик должен в первую очередь овладеть способностями чтения разнообразных принципиальных схем.

Совет

Именно правильное чтение электрических схем для новичков, позволяет хорошо усвоить, каким образом необходимо выполнять соединение всех деталей, чтобы получился ожидаемый конечный результат. То есть устройство или цепь должны в полном объеме выполнять назначенные им функции.

Для правильного чтения принципиальной схемы необходимо, прежде всего, ознакомиться с условными обозначениями всех ее составных частей. Каждая деталь отмечена собственным условно-графическим обозначением – УГО. Обычно такие условные знаки отображают общую конструкцию, характерные особенности и назначение того или иного элемента.

Наиболее ярким примером служат конденсаторы, резисторы, динамики и другие простейшие детали.

Гораздо сложнее работать с полупроводниковыми электронными компонентами, представленными транзисторами, симисторами, микросхемами и т.д. Сложная конструкция таких элементов предполагает и более сложное отображение их на электрических схемах.

Например, в каждом биполярном транзисторе имеется минимум три вывода – база, коллектор и эмиттер. Поэтому для их условного изображения требуются особые графические условные знаки. Это помогает различить между собой детали с индивидуальными базовыми свойствами и характеристиками.

Каждое условное обозначение несет в себе определенную зашифрованную информацию. Например, у биполярных транзисторов может быть совершенно разная структура – п-р-п или р-п-р, поэтому изображения на схемах также будут заметно отличаться.

Рекомендуется перед тем как читать принципиальные электрические схемы, внимательно ознакомиться со всеми элементами.

Условные изображения очень часто дополняются уточняющей информацией. При внимательном рассмотрении, можно увидеть возле каждого значка латинские буквенные символы. Таким образом обозначается та или иная деталь.

Это важно знать, особенно, когда мы только учимся читать электрические схемы. Возле буквенных обозначений расположены еще и цифры. Они указывают на соответствующую нумерацию или технические характеристики элементов.

Что такое электрическая схема | Электрика в квартире, ремонт бытовых электроприборов

Просмотров 60 Опубликовано Обновлено

В данной статье мы постараемся выяснить, что же такое электрическая схема, и каково ее назначение.

В общепринятом выражении схемой можно назвать документ, включающий в себя составные части какого-либо устройства (изделия), а с помощью условных обозначений на схемах наглядно показываются связи между этими составными частями.

Электрическая схема – это своего рода тот же документ, где обозначены электрические связи между составными частями электроустройства. Т.е. главное назначение электрической схемы – это понятие принципа работы того или иного электроустройства или электроцепи.

Наличие электросхемы дает возможность:

  • выполнять монтаж (сборку) установки (цепи) в соответствии с схемой;
  • осуществлять сверку со схемой при монтаже (для исключения ошибок) и пусконаладочных работах;
  • выполнять диагностику и устранять неисправности при ремонтных работах.

Электрические схемы можно разделить на несколько типов. В зависимости от типа схемы, технические сведения об устройстве и принципе его работы могут быть полными или общими.

Типы электросхем

  • структурные;
  • функциональные;
  • принципиальные;
  • монтажные.

Существуют строгие нормативы, регламентирующие выполнение (черчения) электрических схем. На сегодняшний день таким документом является ГОСТ 2.702-2011, он обязателен для всех типов электросхем.

Структурная электрическая схема

Данная электросхема дает представление о принципе действия устройства (электроустановки) и об основных его функциональных узлах (частях) лишь в общих чертах.
Работа над проектом, чаще всего, начинается именно с этой схемы. Изображение функциональных узлов (частей) выполняется в виде прямоугольников или условных графических изображений. Их реальное расположение при этом не принимается во внимание. Связи между узлами изображаются линиями, а направление протекания электрических процессов – стрелками на этих линиях. Так же на схеме указывают технические параметры функциональных частей в виде поясняющих надписей.

структурная электрическая схема

Функциональная электрическая схема

Электросхема очень похожа на структурную схему. Основное отличие заключается в том, что функциональная схема более детально показывает принцип работы устройства (изделия, установки).
На данной электрической схеме досконально показываются происходящие процессы между функциональными узлами (частями).

функциональная электрическая схема

Принципиальная электрическая схема

Это самая распространенная электрическая схема из всех типов схем, она дает наиболее полное представление о работе всех электроцепей установки. На ней показываются все электрические и магнитные связи между функциональными частями и компонентами электроустановки. Принципиальная электросхема может быть как общей, так и однолинейной. Однолинейная схема проста по восприятию и очень широко применяется в электроэнергетике.

принципиальная электрическая схема

Монтажная электрическая схема

Данная электросхема показывает реальное расположение узлов и агрегатов электрической установки, а также связи между ними (электрические кабели и провода). В монтажной схеме применяется буквенно-цифровое обозначение всех элементов электрической цепи (электрические аппараты, соединения и т.д.) и нумерация проводов и кабелей. После монтажа электроустановки (электроцепи) эта нумерация сохраняется и наносится на провода посредством бирок или цифровых маркеров. Схема используется для непосредственного производства работ или для изготовления изделия.

Монтажная схема иногда носит другое название – схема соединений или схема подключения.

монтажная электрическая схема

Другие типы электрических схем

Стоит отметить, что существует еще несколько типов электросхем. Поговорим о них вкратце.

Топологическая схема (схема расположения) – показывается расположение составных частей (элементов) электроустройства. Также на схеме может указываться расположение устройства или объекта на местности (например, подстанции). Для лучшего восприятия топологическая схема часто выполняется в виде трехмерной модели. Расположение составных частей на схеме соответствует действительному расположению частей объекта в конструкции или на местности.

Мнемоническая схема – такой тип схемы выполняется в виде плаката, на котором показывается реальное состояние коммутационных аппаратов (их действующее положение) на управляемом ими объекте. Основное применение таких схем – диспетчерские пункты на объектах электроэнергетики. Значение мнемонических схем постепенно снижается благодаря повсеместному внедрению компьютеризированных систем управления контролем и сигнализацией.

Кабельные планы – это схема (чертеж) расположения электрических кабелей и проводов с указанием их маркировки.

Сама по себе электрическая схемы мало что дает, если человек не умеет ее правильно читать. О том как правильно читать электрические схемы можно узнать здесь. Особенно это относится к электрическим принципиальным схемам – такие схемы бывают весьма сложными и громоздкими и на их изучение может понадобиться много времени.

Чтобы читать принципиальную схему необходимо знать и понимать принцип действия отдельных приборов, элементов, аппаратов и узлов. Разобравшись в том, как связаны между собой все эти части схемы, можно понять как, собственно, функционирует схема. Другими словами, зная основы построения схем и разбираясь в протекающих там электрических процессах, можно научиться понимать, как работает электроустановка и другое электрооборудование, не пользуясь при этом специальным описанием (мануалом).

ТОП-10 программ-помощников электрику. Программы для проектирования электрики

Есть много программ, которые облегчают работу электрика. С их помощью можно составить схему проводки дома или квартиры, рассчитать необходимое количество материалов и их параметры, спроектировать щиток, провести трассировку электронных плат и многое другое. В этой статье мы рассмотрим популярные приложения для электриков на платной и бесплатной основе.

Платные программы для электриков

1. sPlan

Эта многофункциональная и простая программа используется для моделирования схем разводки электропроводки и трассировки электронных плат.

sPlan удобно использовать. Нужный элемент достаточно переместить мышкой из панели инструментов слева в рабочую область. Щелкнув правой клавишей мыши на элементе можно указать необходимые свойства. Программный пакет включает множество готовых библиотек электронных компонентов, а также имеет функцию добавления своих шаблонов. Созданную схему можно сохранить или распечатать на принтере. В новой редакции программы добавлена функция печати больших форматов на обычном принтере – программа автоматически разбивает чертёж для печати на формате А4.

Официально приложение выпускается только на английском языке. Интерфейс интуитивно понятен, поэтому даже без знания языка разобраться не составит труда. Русификаторы к этой программе и множество библиотек можно легко найти в интернете. Помните: неофициальные дополнения к приложению не гарантируют качественного перевода и нормальной работы приложения.

Стоимость sPlan около 50$. Существует также бесплатная версия, но в ней отключены функции сохранения и печати файлов, поэтому её можно использовать только для ознакомления.

2. КОМПАС-Электрик

Это приложение к программе КОМПAС-3D или КОМПАС-График, разработанное для проектирования электрических схем различной сложности.  Программа широко используется профессиональными электриками на территории стран СНГ. Она содержит большие библиотеки электронных компонентов с учётом требований ЕСКД и ГОСТов. Также можно загружать свои шаблоны элементов.

Приложение состоит из двух компонентов: базы данных и редактора схем и отчётов. Помимо схем, есть возможность создавать спецификации и таблицы.

Программа на русском языке. Выпускается на платной основе. Для ознакомления и выполнения разовых работ можно скачать бесплатную демо-версию. Она позволяет работать в программе с небольшими ограничениями в течение месяца.

3. Eagle (Easily Applicable Graphical Layout Editor)

Это пакет программ для составления принципиальных электрических схем и трассировки печатных плат. Приложение включает в себя три основных компонента:

— Schematic Module – позволяет создавать электросхемы с использованием стандартных элементов;

— Layout Editor – помогает пользователю вручную создавать чертежи печатных плат;

— Autorouter – предназначен для автоматической трассировки печатных плат.

Пакет приложений выпускается на английском языке. В интернете можно найти русификаторы и дополнения к программе, но это не гарантирует корректной работы приложения в дальнейшем.

Программа выпускается на платной основе, но есть также бесплатная программа с некоторыми ограничениями. Для использования в быту вполне будет достаточно установки бесплатной версии.


4. AutoCAD Electrician

Это приложение к одной из популярных чертёжных программ AutoCAD.

Эта программа имеет большое количество встроенных библиотек и функций. Есть возможность создавать сразу несколько проектов с совместным доступом разных пользователей.

Для корректной работы требуется выполнить множество настроек, но это в дальнейшем значительно облегчает работу.

Уникальная особенность приложения состоит в наличии интеллектуальной системы, которая может анализировать проект, отслеживать возможные ошибки проектировщика и исправлять их.

Программа довольно дорогая и сложная, поэтому используется в основном профессиональными электриками. Для ознакомления с приложением предоставляется бесплатная демо-версия на 30 дней.


5. Microsoft Visio

Это графический редактор от компании Microsoft. Это приложение идёт в составе пакетных офисных приложений Microsoft Office. Оно позволяет создавать несложные электрические схемы.

Для построения электросхем существует специальная библиотека шаблонов. Также можно добавить свои шаблоны или скачать дополнительные библиотеки из интернета. Это существенно расширит возможности создания схем.

Приложение совместимо с Microsoft Word. Это помогает создавать различные описания и инструкции с иллюстрациями схем.

Схемы больших форматов можно распечатать на стандартном принтере. Для этого достаточно произвести соответствующую настройку печати. Приложение автоматически разобьет схему на отдельные части соответствующие формату А4.


Бесплатные программы электрикам

Помимо платных программ для электриков есть также немало бесплатных. Их возможности уступают платным, но для выполнения отдельных работ вполне подходят.

1. «Электрик»

Эта приложение довольно функциональное и удобное в использовании. С его помощью вы сможете:

— определить мощность прибора по значению тока или же вычислить объём потребляемого тока однофазным или трёхфазным потребителем известной мощности;

— вычислить необходимое количество кабеля для прокладки электросети;

— рассчитать токи короткого замыкания;

— произвести расчет токов по указанному сечению провода с учётом условий прокладки и эксплуатации;

— определить значение потерь напряжения;

— произвести расчет заземляющего контура и многое другое.


2. «1-2-3 схема»

Это бесплатная программа для построения схемы электрощитка. Отличительной особенностью приложения является большая библиотека автоматов и релейной защиты различных видов. Также имеется возможность распечатать наклейки для обозначения элементов в электрощитке.


3. KiCad

Программа с открытым исходным кодом для составления электронных схем и трассировки электронных плат. Программа состоит из трёх составляющих:

— менеджер проектов позволяет устанавливать параметры создаваемых проектов;

— eeschema – редактор электросхем позволяет компоновать схемы различной сложности и редактировать различные компоненты;

— pcbnew – редактор печатных плат.

Приложение имеет широкий функционал и большой набор библиотек. Это позволяет выполнять проекты высокой сложности. Особенностью приложения является сложный интерфейс с которым тяжело разобраться без прочтения инструкции.

Приложение поддерживает французский, английский,  немецкий, португальский, испанский, чешский, польский, русский и многие другие языки. Благодаря open-source и стараниям многих программистов с территории СНГ, программа была адаптирована по ГОСТ.


4. XCircuit

Программа разработана в США программистом Тимом Эдвардсом и была создана для быстрого проектирования электрики. Приложение имеет библиотеку готовых шаблонов популярных элементов, которые можно использовать при составлении схем. Однако более сложных и редко используемых элементов там нет. Также следует отметить особенность библиотек программы – каждый элемент расположен в отдельном файле.

Отдельно отметим непривычный интерфейс приложения, который можно освоить только опытным путём. Всплывающих подсказок к иконкам нет.

. TinyCAD

Программа с открытым исходным кодом (open-source) создана в США программистом Мэттом Пайном. Это редактор схем с более чем 40 библиотеками различных электрических компонентов. Для быстрого нахождения нужного элемента в базе программы предусмотрена строка поиска. Программа полностью на английском языке и все элементы разработаны по американским стандартам. На форумах любителей электроники можно найти библиотеки адаптированные под стандарты стран СНГ.

Это перечень самых популярных программ для электриков. Каждая из них имеет свои особенности, достоинства и недостатки. Выбирайте  для себя программу, в зависимости от выполняемых задач и выдвигаемых требований.

Оцените новость:

★ Схемы по электрике | Информация

Пользователи также искали:

электрические, как читать однолинейные, электромонтажные, монтажные, принципиальные электрические, электрические схемы как читать, как читать однолинейные схемы электроснабжения, электромонтажные схемы, как читать электрические схемы и создавать электронные устройства, электрические схемы обозначения, монтажные схемы электрооборудования, принципиальные электрические схемы для начинающих, электрические схемы онлайн, схемы по электрике, схемы электрика, схемы, электрика, схем, электрик, схема электрики, схема, электрики, схема по электрике, электрике, электрику, схемы электрик, схему по электрике, схемы электрики, схем по электрике, схему электрики,

Схемы подключения электрики | Master-tok

Master-tok > Схемы подключения электрики

Схемы подключения электрики в Черкассах — выключатели, датчики. Подключим любое оборудование!

Устанавливаем проходные выключатели, при необходимоси с прокладкой дополнительного провода. Проходные выключатели в некоторых случаях это просто необходимость, а в большей степени это очень удобно. Что это такое и как он работает? Проходной выключатель (он-же перекидной, дублирующий или переключатель) внешне мало чем отличается от обычного выключателя – это большее количество контактов. Одно клавишный проходной выключатель (переключатель) …

Читать далее

Устанавливаем датчики движения любых конфигураций, также осуществляем их настройку на чувствительность. Устанавливаем проводные датчики движения и беспроводные датчики движения. Какие датчики движения устанавливаем. СМК (сигнализатор магнито-контактный) – датчики открытия. Устанавливается на любые открывающиеся, откатные, отдвижные конструкции и изделия. Инфракрасные извещатели — или объемники, датчик движения. Реагирует на тепло, т.е. инфракрасное излучение, исходящее от людей и …

Читать далее

Схему подключения УЗО (устройства защитного отключения) следует подбирать для каждой электрической сети в отдельности. Наиболее удобным местом для установки УЗО в квартире или в доме на даче является место рядом со счетчиком электрической энергии, то есть устройство должно находиться в непосредственной близости от источника электропитания. УЗО необходимо подключать вместе с автоматическим выключателем. Допустим, можно поставить …

Читать далее

Мы качественно и профессионально установим и подключим электрический щит в городе Черкассы. Для того, чтобы составить электрическую схему  щита учтем все особенности электропроводки квартиры или частного дома. Грамотно подойдем к вашим потребностям учитывая все требования электрификации. Основные факторы, которые влияет на просчет электрической схемы  щита это: Суммарная потребляемая мощность Потребляемая мощность каждой отходящей электрической группы …

Читать далее

Электромонтажные работы проводимые нами всегда качественные и доступные. Мы сможем помочь в расчете мощности автоматов (автоматических выключателей) и в их монтаже. Как выбрать автомат? Что нужно учитывать? первое, при выборе автомата его мощность, определяется суммарная мощность подключаемых на постоянной основе к защищаемой автоматом проводке/сети нагрузок. Полученная суммарная мощность увеличивается на коэффициент потребления, определяющий возможное временное …

Читать далее

 

Как читать автомобильные электросхемы — примеры, объяснения

Выход из строя электронных компонентов современного автомобиля может приводить к его полному обездвиживанию. Хорошо, если это случилось у вашего дома или работы, но если такое случается на трассе или на природе — такая поломка может обойтись вам крайне дорого: как в плане денег, так и в плане потерянного времени и даже (надеюсь до такого не дойдет) здоровья!

Почему полезно разбираться в автоэлектрике

Даже если у вас не технический склад ума или ваш доход позволяет вам не задумываться о таких мирских мелочах — замена обычного сгоревшего предохранителя в долгом пути позволит вам значительно облегчить жизнь. Я уж не говорю о тех случаях, когда сервисмэны, не желая разбираться в проблеме вашего автомобиля, призывают вас менять все датчики подряд, тратя на эту «карусель» значительные суммы денег (что кстати иногда не гарантирует положительного результата). По-этому, я предлагаю вам не сдаваться раньше времени и попробовать самостоятельно диагностировать поломку вашего автомобиля, а для этого было бы неплохо иметь под рукой электрические схемы, и самое главное — уметь их читать и понимать.

Электросхемы? — разберется даже школьник!

Встретив впервые принципиальную электрическую схему автомобиля, я понял, что принципы ее построения и обозначение на ней элементов — стандартизированы, и те элементы, которые присутствуют во всех автомобилях — обозначаются одинаково, независимо от производителя автомобиля. Достаточно один раз разобраться, как читать такие электросхемы, и вы с легкостью сможете понимать, что на ней изображено, даже если вы впервые видите конкретную схему от конкретного автомобиля и даже ни разу не лазили к нему под капот.

Графические обозначения элементов схемы могут слегка отличаться, к тому же бывают черно-белые варианты исполнения и цветные. Но буквенное обозначение везде одинаково. Помимо принципиальных электрических схем полезно иметь схемы, на которых обозначено физическое расположение (в пространстве) на кузове различных жгутов, разъемов и точек заземления — это поможет вам быстро отыскать их. Итак, давайте взглянем на примеры таких схем, а потом приступим к описанию их элементов.

Пример принципиальной электрической схемы автомобиля


На принципиальной схеме не указано физическое взаимное расположение элементов, а лишь показано, как эти элементы связаны друг с другом.  Важно понимать, что если два элемента на такой схеме изображены рядом друг с другом — на самом кузове они могут быть совершенно в разных местах.

Схематическое расположение электрических компонентов на кузове


Такая схема несет другой тип информации: трассировка кабельных кос и приблизительное расположение разъемов на кузове.

Трехмерная точная схема расположения электрических компонентов автомобиля

Встречаются и такие схемы, на которых уже точно показано, как и куда проходят кабельные трассы в кузове автомобиля, а также точки заземления.

Стандартные элементы принципиальной схемы автомобиля

Приступим же, наконец, к рассмотрению элементов схемы и научимся ее читать.

Стандартные цепи питания и соединение элементов

Цепи питания — элементы схемы передающие ток, изображаются линиями: в верхней части схемы изображены цепи с положительным потенциалом («плюс» аккумулятора), а внизу — с нулевым, т.е. земля (или «минус» аккумулятора).

Цепь 30 — идет от плюсовой клеммы аккумулятора, 15 — от аккумулятора через замок зажигания — «Зажигание 1»Цепь под номером 31 — заземление

Некоторые провода также имеют цифровое обозначение в месте подключения к устройству, это цифровое обозначение позволяет не прослеживая цепь определить откуда он идет. Эти обозначение объединены в стандарте DIN 72552 (часто используемые значения):


Для удобства, соединения между элементами на цветных схемах изображены разными цветами, соответствующими цветам проводов, а на некоторых схемах также указывается сечение провода. На черно-белых схемах цвета соединений обозначаются буквами:

Иногда можно встретить пустую окружность в узле — это означает, что данное соединение зависит от комплектации автомобиля, линии при этом, как правило, подписаны.

Обозначение разъемов на электросхеме — коннекторы

Пин №2 разъема С301 соединяется с пином №9 разъема С104, который, в свою очередь, идет в пин №3 разъема С107

Провода в автомобильной электропроводке соединяются несколькими способами, и один из них — разъемы (Connector). Обозначаются разъемы буквой «С» и порядковым номером. На рисунке слева вы видите схематическое изображение соединений участков провода через разъемы. Вообще, правильнее говорить не «пин №2», а «терминал №2», если встретите в схеме такое понятие, то теперь будете знать, что это порядковый номер соединения (контакта) в разъеме.

 

Ну а на этом рисунке видно, как нумеруются контакты в разъемах и как правильно их считать, чтобы узнать где какой пин. Контакты нумеруются со стороны «мамы» с верхнего угла слева на право построчно. Со стороны «папы», соответственно, зеркально.

 

Кстати, на многих форумах автомобильные разъемы почему-то называют «фишками», в гугле по поводу такой «этимологии» никакой информации нет. Если вы знаете или догадываетесь, откуда пошло такое название, пишите в комментариях, не стесняйтесь.

Соединение проводов в автомобиле — соединительные колодки (Splice)

Помимо разъемов (Connectors) провода в автомобиле соединяются при помощи пакета перемычек или соединительных колодок ( в электросхемах на английском — Splice). Обозначаются соединительные колодки, как вы видите на рисунке, буквой «S» и порядковым номером, например: S202, S301.

В некоторых электросхемах есть отдельное описание каждой колодки и расписано назначение проводов, подводимых к ней. Главная отличительная особенность колодки (Splice) от разъема (Connector) в том, что соединяется группа проводов: есть один входящий провод и группа исходящих потребителей, как правило, это шины питания.

Обозначение предохранителей на электросхемах

Еще один элемент электрической схемы, передающий энергию — предохранитель.  Предохранители в автомобиле имеют два обозначения: Ef — предохранитель в моторном отсеке (engine fuse) и F (fuse) — предохранитель в салоне автомобиля. Как и во всех других случаях, после обозначения идет порядковый номер предохранителя и номинал тока ( в Амперах), на который он рассчитан. Все предохранители расположены рядом — в блоках предохранителей и реле.

Обозначение автомобильных реле: распиновка, контакты

Автомобильное реле имеет обычно 4 или 5 контактов, которые имеют стандартную нумерацию (но бывают и случаи, когда нумерация не совпадает). Два контакта при этом являются управляющими: 85 и 86, а остальные коммутируют контакты, по которым проходят значительные токи. Реле,  как и предохранители, располагаются, в основном, в блоках под капотом и в салоне, но бывают случаи навесного монтажа реле в любом непредсказуемом месте, особенно при самостоятельной установке кем-либо.

Условные обозначения автомобильных датчиков на схемах

  1. Датчик холостого хода (ДХХ)
  2. Электронный блок управления (ЭБУ) двигателем
  3. Датчик температуры охлаждающей жидкости
  4. Датчик положения дроссельной заслонки (ДПДЗ)
  5. Датчик абсолютного давления воздуха во впускном коллекторе  (ДАД)
  6. Датчик давления в системе кондиционирования
  7. Датчик температуры воздуха во впускном коллекторе

На схеме выше представлены далеко не все датчики, которые могут быть в автомобиле. Условное обозначение датчиков также может отличаться, но все они обычно подписаны, как и все другие элементы, преобразующие энергию в электрической сети автомобиля.

Условные обозначение сложных элементов на автомобильных схемах — примеры схем

Теперь рассмотрим, как на электрической схеме обозначены более сложные и не стандартные элементы, такие как: стартер, катушка зажигания и другие и приведем несколько примеров схем, на которых они изображены.  В различных схемах изображение таких элементов может меняться, но элементы всегда подписаны и интуитивно понятно нарисованы, по-этому, ниже будут приведены только некоторые из них, иначе эта статья растянется надолго.

  1. Аккумуляторная батарея (АКБ)
  2. Замок зажинагия
  3. Комбинация приборов
  4. Выключатель
  5. Стартер
  6. Генератор

Если вы помните школьный курс физики, то найдете на схеме, представленной выше, уже знакомые обозначения, например: электромотор, диод, ключ, элемент питания, лампа накаливания. Эти, знакомые почти каждому, условные обозначения помогают понять смысл и назначение приборов в бортсети автомобиля, преобразующих электроэнергию.

 

  1. Катушка зажигания
  2. Электронный блок управления двигателем (ЭБУ)
  3. Датчик положения коленчатого вала

На этой схеме уже появляется такой более сложный элемент схемы как — блок управления или контроллер. Каждый элемент сети автомобиля, имеющий микросхемы или транзисторные ключи в своем составе, помечается значком с изображением транзистора. Обращаю ваше внимание на то, что в данном примере выше, изображены далеко не все выводы ЭБУ — только те, которые нужны именно на этой схеме. На схемах ниже вы так же встретите изображение ЭБУ.

 

  1. Блок управления двигателем (ЭБУ)
  2. Октан-корректор
  3. Электромотор (в данном случае — бензонасос)
  4. Датчик концентрации кислорода

На этой схеме еще раз изображен ЭБУ, но уже с другими выводами, кстати, по нарисованным ключам на ЭБУ можно понять, какую функцию в данном случае выполняет контроллер: замыкает данные линии на землю, то есть запитывает элементы, подключенные к этим проводам и плюсовой клемме АКБ.



  1. Электромагнитный клапан рециркуляции отработавших газов
  2. Двухходовой клапан
  3. Гравитационный клапан
  4. Комбинация приборов
  5. Электронный блок управления двигателем
  6. Датчик скорости

На данном примере схемы мы встречаемся с изображением клапанов, прошу обратить внимание, что у двухходового клапана контакты пронумерованы, в отличие от остальных. На изображении датчика скорости изображен транзистор, значит в элементе присутствует полупроводниковый элемент.

  1. Переключатель наружного освещения
  2. Переключатель указателей поворота
  3. Переключатель корректора фар
  4. Корректор левой фары
  5. Левая фара автомобиля
  6. Корректор правой фары
  7. Правая фара автомобиля

На данной схеме изображены элементы управления освещением автомобиля. У таких сложных переключателей как замок зажигания или переключатель наружного освещения имеется набор контактов, между которыми в различных положениях переключателя коммутируется ток. На схеме прекрасно видно, в каком режиме переключателя какие контакты соединяются.

Автоэлектрика? Проще простого!

Итак, мы рассмотрели с вами самые распространенные элементы электрических схем автомобилей, посмотрели как они изображаются на схемах и какие ключевые особенности при этом присутствуют. Искренне надеюсь, что эта статья научила вас чему-нибудь или даже выручила вас в сложной ситуации с поломкой автомобиля. Если у вас появились вопросы, было бы здорово, если вы их напишете в комментариях под этой статьей. Всем огромной удачи на дорогах и увидимся в следующих статьях об автоэлектрике!

Принципиальные и монтажные схемы освещения в квартире и доме

На рисунке внизу показано, как наружная обойма цоколя лампы подключена к рабочему нулю N, а удаленный контакт — к фазе L.

При монтаже электропроводки схем освещения следует соблюдать правила использования цветовой разметки изоляции для каждой магистрали. Она в дальнейшем значительно облегчит поиск неисправностей и выполнение доработок. Каждый проводник L, N и РЕ на всем протяжении квартиры должен быть одного цвета. Принято использовать проводники с желто-зеленой изоляцией для защитного нуля, голубой — для рабочего N, а оставшуюся, например, красную или белую — для фазы L.

Такая принципиальная схема довольно проста, но в распределительной коробке РК могут возникнуть сложности с подключением проводов к клеммам. Дело в том, что внутри РК собираются провода из четырех кабелей от квартирного щитка, выключателя, светильника и магистрали к следующему светильнику.

Провод, идущий от выключателя к осветительному устройству, относится к фазному. Хотя в данном кабеле для фазы уже применен красноватый провод. Поэтому понадобиться использовать тот, который имеет голубий расцветка, но его невозможно перепутывать с рабочим нулем. Чтобы достичь желаемого результата на изоляцию одевают кембрик красноватого цвета либо бирку с надписью. Данный проводник подключают на доп клемму ДК, которая при включенном выключателе располагается под потенциалом фазы.

Эта схема обширно всераспространена, ее рекомендовано повсевременно повторять для любого осветительного прибора без конфигураций. Это облегчит вероятную работу по поиску образующихся дефектов в электрической цепи и исполнение добавочных включений. 

При этом методе в одно отверстие у клеммы возможно подключить 3 электропровода, хотя надлежит учитывать немного особенностей их соединения. В случае если сечение проводника для освещения обычное в 1,5мм2, то его диаметр составляет 1,4 мм. Для 3-х таковых жил необходим внутренний диаметр отверстия не менее, чем 3,3 мм, но лучше 4.

Все 3 жилы нужно пропустить под два крепежных винта и тесно обжать для создания надежного электрического контакта.

В случае если до вставки в отверстие сделать крепкую скрутку жил, то плоскость их соприкосновения возрастет, обеспечив наименьшее переходное противодействие в месте контакта. Этим исключается излишний нагрев проводов от огромных нагрузок. В случае если есть шанс сварить электропровода опосля скрутки, то от нее отказываться не стоит.

Таковой метод соединения самый верный. В данном случае колодка используется исключительно для фиксации проводов снутри разветвительной коробки и возможно заворачивать лишь один крепежный винт, но все жилы вставляются с одной стороны.

Используя сварку, возможно прирастить количество коммутируемых жил 1,5мм2 до 4 в отверстии с поперечником 4 мм. В случае если клеммная колодка жестко прикреплена внутри разветвительной коробки, то соединительные концы возможно просовывать через внутреннее отверстие трубки так, чтоб наружу малость выступали сваренные концы жил повторяющий вид наплавленных шариков. Их разрешается не изолировать.

Но идеальнее всего для надежности их упрятать и прикрыть слоем изоляции.

Схема включения осветительных приборов через двух клавишный выключатель

В люстрах с несколькими лампочками традиционно делят осветительные приборы на 2 группы. Это разрешает делать разную освещенность комнаты, используя свет от одной либо другой части схемы или двух совместно. На любую группу ламп накаливания действует своя кнопка двухпозиционного выключателя.


В данной схеме пригодится четырехжильная электропроводка от разветвительной коробки к выключателю и люстре. На схеме показано, что для коммутации проводов в РК понадобиться применять 2 добавочные клеммы ДК1 и ДК2, через которые отступающая фаза от выключателя подается на удаленные контакты ламп накаливания.
Тут также фаза L подводится к выключателю так, чтоб использовать два его контакта, а ноль от собственного электропровода соединяется впрямую со всеми патронами осветительных приборов и выводится на цоколь лампочки.
Схема для монтажа клемм в разветвительной коробке схожа на осмотренную раньше, но в ней добавлена очередная клемма — сейчас их стало 5. 

К одному отверстию колодки подходит наибольшее число жил — 3. Это позволяет использовать колодки с внутренним поперечником 3,3 мм.
В случае если применять для соединения жил сварку, то количество жил, вставляемых в некую клемму, возрастет до 4. Им будет нужно внутренний диаметр отверстия от 4 мм.

Схема включения осветительного прибора для освещения коридора

Тут рассматривается вариант управления источником света при помощи 2-ух выключателей, находящихся на значимом удалении между собой. В данной схеме применяют простые двухклавишные либо особые «проходные» электровыключатели или тумблеры с групповыми контактами.
Лампочка зажигается либо гаснет при конкретном сочетании кнопок у двух выключателей. Серьезной фиксации их положения нет. Зато освещением можно управлять с хоть какого конца помещения.


От разветвительной коробки с клемм К1 и К2 к любому выключателю следует четырехжильный кабель. Фаза на осветительный прибор подается через клемму К3 от РК в последствии коммутаций выключателями.
Монтажная схема разветвительной коробки состоит из 6 клемм.


Тут разрешается использовать клеммы с внутренним диаметром от 3,3 мм поскольку наибольшее количество объединяемых жил не превосходит 3-х. Но ежели применять сварку проводников, то монтаж понадобиться вести с одной стороны и количество клемм возрастет до 7. При этом в отдельных местах электропровода понадобиться сваривать по 4 и применять для них клеммы с внутренним диаметром от 4 мм.

Для коммутаций РЕ проводника будет нужно применять 2 клеммы.
Повышенное число клемм имеет возможность востребовать бо́льшие габариты разветвительной коробки.

Схема включения осветительного прибора для освещения коридора с управлением от импульсного реле

Система реле разрешает делать переключения света средством импульсной подачи фазного потенциала на клемму S, расположенную на его корпусе. В последствии первого импульса, прибывающего от нажатия хоть какой клавиши, реле подключит фазу L на клемму С, соединенную через клемму К3 с удаленным контактом лампы осветительного прибора. При втором импульсе реле снимает напряжение со своей выходной клеммы и лампочка угасает.
Клавиши нужно использовать с самовозвратом от пружин. Располагать их возможно в местах на большом удалении. Достаточно комфортно включать свет при входе в спальную комнату из коридора, а выключать клавишей у прикроватной тумбочки в пределах изголовья.


Импульсные реле имеют все шансы быть исполнены с различным корпусом, который уготован для крепления на Din рейку снутри квартирного щитка либо установку в разветвительной коробке.
Две клавиши управления светом подключаются параллельно. Это упрощает монтаж и подготовку трасс под кабель, который обязан иметь 3 жилы: две для работы и одну для защиты РЕ проводником.
При размещении реле внутри ответвительной коробки нужно изучить габариты всех приборов и предугадать удачный доступ к ним для работы.
Монтажная схема электропроводки для такового освещения показана на рисунке. При ее применении возможно минимизировать площадь поперечного сечения проводов, объединяющих друг от друга клеммы клавиш, до 0,35 мм2. Они надежно вынесут нагрузку, образующуюся при подаче потенциала фазы на клемму S импульсного реле.


Иногда сможет появиться надобность управления светом из нескольких мест, к примеру, освещением входа в дом с улицы и из комнат. Чтобы достичь желаемого результата достаточно подключить вдоль несколько клавиш так, как показано на иллюстрации ниже.

Монтажная схема для этого случай будет иметь следующий вид.

В зависимости от той ли иной ситуации и смотря на потребности управлять светом можна из любой точки помещения и любым количеством (групами) осветительных точек в помещение.

С помощью суточных таймеров и фотореле можна ограничить работу осветительных приборов в дневное время суток тем самым секономить на случайно невыключеном выключателе.


Понимание схем — Технические статьи

Если вы хотите лучше понять, как читать схемы, это полезное руководство даст вам фору.

Дизайн каждой новой электрической платы начинается с идеи. Затем эта идея определяется словами и диаграммами в спецификации. Любой может зайти так далеко, но следующий шаг требует фундаментального понимания принципиальных схем.

Схема

— это мост между концептуальным электрическим дизайном и физической реализацией печатной платы в сборе, или PCBA.

Цепь лома

Схема

преследует две основные цели. Во-первых, они сообщают о замысле дизайна. Для специалиста в области электротехнического проектирования схемы должны четко передавать цель конструкции. Во-вторых, они существуют, чтобы направлять и управлять разводкой печатной платы.

Чтобы хорошо начать разбираться в схемах, вы должны понимать некоторые основные вещи: символы компонентов, позиционные обозначения (REFDES), цепи и выходы.

Условные обозначения (REFDES)

Ссылочные обозначения

представляют собой уникальные идентификационные метки для каждого физического компонента, и они многое говорят о компонентах, к которым они относятся.

Правильное использование REFDES сообщает схемному считывателю тип компонента и количество символов на компонент. Хотя существуют стандартные символы, обозначающие различные типы электрических компонентов, которые мы обсудим далее, не все схемы соответствуют всем этим стандартам.

В случае, когда каждый пассивный компонент показан в виде общего блока с выводами, префиксы позиционного обозначения могут многое рассказать вам о типе компонента, который представляет собой символ.Условные обозначения также служат ссылкой на спецификацию материалов (BOM). В спецификации указан номер детали каждого компонента в вашей конструкции PCBA, и он указывает, в каких местах должна быть установлена ​​эта деталь, посредством REFDES.

Стандартный отраслевой формат для позиционных обозначений включает буквенный код, указывающий тип компонента, за которым следует уникальный номер.

BT = аккумулятор J = разъем R = резистор
C = конденсатор K = реле S или SW = переключатель
D = диод L = индуктор T = трансформатор
F = предохранитель P = разъем U = интегральная схема
H = оборудование Q = Транзистор Y = кристалл

Мы укажем REFDES для каждого компонента, как мы обозначим их символы ниже.

Обозначения компонентов

Обозначения компонентов на схеме представляют физические компоненты, которые будут припаяны к печатной плате (PCB) в процессе сборки. Иногда они также могут представлять собой структуры печатной платы, такие как переходные отверстия или контрольные точки.

Обозначения компонентов часто представляют собой стандартную форму или рисунок, который указывает, к какому типу электрических компонентов они относятся, хотя иногда они представляют собой не что иное, как прямоугольник со штырями. Резисторы, конденсаторы, катушки индуктивности, диоды и транзисторы имеют стандартные символы, которые мы кратко рассмотрим ниже.

Обозначения компонентов всегда имеют один или несколько контактов, к которым можно выполнить электрические соединения. Каждый вывод условного обозначения имеет номер, соответствующий чертежу физического компонента. Один или несколько символов могут использоваться для обозначения одного электрического компонента. Компоненты с большим количеством контактов часто представлены несколькими схемными символами просто для удобства чтения схем.

В случае части, определяемой несколькими символами, каждый разделенный символ, который относится к одному и тому же физическому компоненту, имеет один и тот же позиционный обозначение.

Обычно используемые условные обозначения
Резистор

Резисторы — чрезвычайно распространенные электрические компоненты. В США они обычно отображаются в виде зигзагообразной линии, хотя в международном стандарте они отображаются в виде прямоугольника.

Американские (вверху) и международные (внизу) символы для резисторов

Резисторы

обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «R».

Конденсатор

Конденсаторы тоже очень распространены. Они показаны в виде двух линий, разделенных зазором, что свидетельствует об их основной конструкции из двух заряженных пластин, разделенных диэлектриком. Два символа первичного конденсатора неполяризованы и поляризованы.

Поляризованные конденсаторы обозначаются изогнутой линией (для обозначения отрицательной клеммы) и / или знаком плюс (для обозначения положительной клеммы).

Обозначения конденсаторов.Показаны неполяризованный конденсатор слева и три варианта поляризованного конденсатора.

Конденсаторы

обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «C».

Индуктор

Катушки индуктивности, такие как резисторы и конденсаторы, являются основными пассивными компонентами, используемыми в электрических цепях. Индукторы показаны в виде серии кривых, представляющих их основную конструкцию. Индукторы проще всего сконструировать из обмотки проволоки вокруг некоторого материала сердечника.

Обозначение индуктора

Катушки индуктивности

обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «L».

Диод

Диоды — это электрические компоненты, которые пропускают ток только в одном направлении. Существует множество типов диодов. Например, стабилитроны не пропускают обратный ток, пока обратное напряжение диода не достигнет определенного заданного уровня.

Обозначение диода

Светоизлучающий диод (LED) излучает свет, когда через него течет ток в прямом направлении. Диод Шоттки устроен так, что работает аналогично простому диоду, но переключается быстрее и имеет меньшее прямое падение напряжения.

Обозначение стабилитрона

Обозначение диода Шоттки

Диоды обозначены на схемах позиционным обозначением (REFDES), начинающимся с буквы «D» или «Z» (для стабилитронов).«LED» иногда используют для светодиодов.

Транзистор
Транзисторы

похожи на электрические переключатели, в которых напряжение смещения или ток в одной области включает ток, протекающий через основные клеммы.

Существует два основных типа транзисторов: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET).

Проще говоря, BJT — это устройства с управляемым током, в которых ток, протекающий через штырь базы или выходящий из нее, включает больший ток через штыри коллектора и эмиттера.

Символы BJT

Также упрощенно, полевые транзисторы представляют собой устройства, управляемые напряжением, где напряжение на выводе затвора включает ток через выводы стока и истока. Для транзисторов используется множество чертежей, на которых указано различное количество деталей внутренних компонентов.

Символы полевого транзистора

Транзисторы обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «Q».«M» иногда используется для устройств MOSFET. «Т» иногда используется неправильно, и этого следует избегать.

Для получения более подробной информации о BJT, FET, IGBT и многом другом, ознакомьтесь с нашей статьей, посвященной схематическим обозначениям для транзисторов.

Переменные резисторы

Переменные резисторы, такие как потенциометры и реостаты, представляют собой резисторы, которые изменяют сопротивление в соответствии с настройками пользователя. Двухконтактные переменные резисторы показаны в виде резистора со стрелкой поперек него, а потенциометры (с тремя выводами) добавляют стрелку, указывающую сбоку от символа резистора.

Обозначение реостата

Обозначение потенциометра

Резисторы, зависящие от напряжения, или варисторы, похожи на переменный резистор, но с линией поперек него вместо стрелки.

Обозначение варистора

Специальные резисторы на схемах чаще всего обозначаются условным обозначением (REFDES), начинающимся с буквы «R», хотя иногда используются «VR» (для переменных резисторов или потенциометров) или «RV» (для варисторов).

Интегральная схема

Интегральные схемы — это целые электрические схемы, созданные из полупроводникового материала в одном корпусе. Интегральные схемы — это процессоры, память, операционные усилители и регуляторы напряжения, которые выглядят как квадраты или прямоугольники, установленные на печатной плате.

Интегральные схемы показаны в виде коробки или набора коробок с маркированными контактами для питания, входов и выходов.

Интегральные схемы обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «U», а иногда и с буквы «IC».

Кристалл / Осциллятор / Резонатор

Все три из них обеспечивают стабильную выходную частоту при включении в цепь. Кристаллы, генераторы и резонаторы — это не одно и то же, они имеют разные характеристики и требуют разных схем поддержки, но их основные цели схожи.

Символ кристалла

Кристаллы и генераторы обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «Y».Иногда используется «X»; это письмо также является универсальным для компонентов, не относящихся к другой категории.

Цифровые логические ворота

Существует много цифровых логических вентилей — больше, чем можно подробно описать в этом обзоре. Полное объяснение цифровой логики и множества различных типов логических вентилей см. На странице учебника AAC о цифровых сигналах и вентилях.

Логические вентили

продаются как интегральные схемы, поэтому на схемах они обозначены позиционным обозначением (REFDES), начинающимся с буквы «U» или иногда «IC», как и другие интегральные схемы.

Операционный усилитель

Операционные усилители и компараторы имеют множество полезных функций в схемах, и на схемах они показаны в виде боковых треугольников с входом (+) и (-), а иногда и с выводами питания и заземления.

Символ операционного усилителя

Схема операционного усилителя с двумя источниками питания (слева) и конфигурация с одним источником питания (справа) с обозначенными контактами питания и заземления

Операционные усилители и компараторы обозначены на схемах позиционными обозначениями (REFDES), начинающимися с буквы «U» или иногда «IC», как и другие интегральные схемы.Кроме того, операционные усилители иногда используют REFDES, начинающиеся с «OP».

Разъем / Заголовок

Разъемы и заголовки — это места, где другие цепи или кабели подключаются к цепи, описанной схемой. Существует большое разнообразие типов и ориентаций соединителей, и они также представлены на схемах с помощью большого количества символов.

Иногда схематические символы представляют собой простые прямоугольники, а иногда схематические символы представляют собой рисунки, которые выглядят как физические соединители, которые они представляют.

Условные обозначения разъемов

Разъемы и заголовки чаще всего обозначаются на схемах условным обозначением (REFDES), начинающимся с буквы «J» или буквы «P».

Переключатель
Переключатели

обычно обозначаются схематическим символом, который представляет тип переключателя и количество полюсов / ходов и штырей.

Символы переключателей

Коммутаторы

обозначены на схемах условным обозначением (REFDES), начинающимся с букв «SW».

Аккумулятор

Батареи показаны схематическим обозначением, состоящим из длинной и короткой линий, которые вместе представляют один элемент батареи. На практике большинство схематических символов батареи изображаются как две ячейки, независимо от того, сколько ячеек фактически содержит батарея.

Символ батареи

Батареи обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «B».

Трансформатор

Трансформаторы обычно обозначаются схематическим обозначением, которое символически представляет принцип работы трансформатора. Это похоже на две параллельные катушки индуктивности, между которыми есть что-то среднее, обычно линия или две.

Трансформаторы

обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «T».

Предохранитель / PTC

Предохранители или PTC ( p ositive t em temperature c oefficient device) — это устройства защиты цепи, которые «перегорают» (перегорают) или резко увеличивают сопротивление в случае протекания через них слишком большого тока.

Предохранители

обычно показаны на схемах с символом, который выглядит как боковая буква «S».

Обозначение предохранителя

Предохранители

обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «F».

PTC обычно отображаются в виде прямоугольника с линией, проходящей через него по диагонали; тот же символ используется для термисторов PTC.

Символы PTC

PTC обозначены на схемах ссылочным обозначением (REFDES), начинающимся с буквы «R», «VR» или «PTC».

Некомпонентные символы

На схемах есть и другие символы, которые не представляют физические компоненты. Некоторые символы представляют собой физические структуры, которые должны быть встроены в саму печатную плату, например контрольные точки или монтажные отверстия.

Символы контрольных точек

Другие условные обозначения обозначают шины питания или заземления.

Обозначение заземления

Другие условные обозначения используются для соединения между различными страницами схемы, с метками, указывающими, частью какой электрической сети они являются.

Некомпонентные символы часто не имеют позиционных обозначений. Некоторые из них будут иметь условные обозначения (REFDES), начинающиеся с букв «TP» (контрольные точки), «MH» (монтажные отверстия) или «X» (общий универсальный код для типов, не указанных в иных случаях).

Для получения более подробной информации о некоторых символах, обсуждаемых в этой статье, ознакомьтесь с трактовкой Робертом Кеймом схематических символов для пассивных компонентов.

Сети

На языке схем и печатных плат цепи — это электрические соединения, проводимые печатной платой.Цепи выглядят как линии, соединяющие выводы символа компонента с другими выводами или цепями.

При рисовании схем рекомендуется маркировать важные цепи, чтобы их можно было четко идентифицировать при размещении на печатной плате. Если две цепи не нарисованы как соединенные, но имеют одинаковую метку, они будут рассматриваться как физически соединенные программным обеспечением захвата схемы, так что при экспорте проекта в инструмент компоновки печатной платы они будут одной и той же цепью.

Изображение схемы с двумя цепями, которые не нарисованы соединенными, но помечены одинаково, поэтому физически связаны, в данном случае «STEPM_R_EN»

Рекомендуется использовать специальные символы для отображения сетевых подключений к другим страницам или частям той же страницы, когда они не отображаются как подключенные.Это внутристраничные (внутри страницы) или межстраничные (между страницами) символы соединения.

Разъемы межстраничные

Для удобства чтения хорошие схемы избегают перекрытия цепей везде, где это возможно, но это не всегда возможно. Когда две цепи соединяются, большинство инструментов для рисования схем добавляют точку или круг соединения. Отсутствие точки соединения означает, что две цепи не соединены, а просто проходят друг над другом. Более продвинутые инструменты схематического рисования показывают перемычку, чтобы было еще более ясно, что две цепи не связаны.

Связанные сети

Несоединенные сети (с проводным переходом)

Важные выходные данные: список цепей и спецификация

Список соединений

Самый важный вывод схемы — список соединений. Этот файл или набор файлов является основным входом для программного обеспечения компоновки печатной платы, и он используется разработчиками компоновки для управления размещением и разводкой всех схем на плате.

Форматы списка цепей

различаются, но обычно они определяют в довольно простой форме каждый компонент или символ в схеме и каждое соединение (сеть) между ними.Если вы назвали свои цепи в схеме, эти имена цепей появятся в списке соединений как точки соединения между частями. Если вы не назвали цепь, средство вывода списка цепей сгенерирует для нее имя.

Обычно список соединений будет содержать несколько таблиц: в одной перечислены части и их имена, в другой перечислены имена цепей и их соединения и т. Д. Списки соединений также могут использоваться для включения дополнительной информации, необходимой для моделирования цепей SPICE. См. Здесь несколько простых примеров вывода списка соединений.

Спецификация (Спецификация)

Другой важный вывод схемы — это спецификация или спецификация. Результатом спецификации является электронная таблица или база данных, которая сопоставляет все REFDES в схеме с физическим компонентом и номером детали.

Существует множество форматов вывода спецификации, в зависимости от того, насколько сложна ваша схема и база данных деталей, и какой тип вывода вам нужен. В самом простом случае у вас может быть список условных обозначений, на каждом из которых указан номер детали производителя.

Снимок экрана с выходными данными спецификации OrCAD

Более сложные спецификации будут включать внутренние номера деталей вашей компании, количество деталей, используемых в нескольких местах, несколько номеров деталей поставщиков, которые могут использоваться для данной детали, и т. Д. Спецификация содержит информацию, необходимую для создания схемы и ее фактического построения. в сборку.


Схемы — это гораздо больше, чем просто эти ключевые вещи.Целые отрасли и карьеры строятся вокруг схематического проектирования и сборки печатных плат. Но понимание этих пяти вещей поможет вам лучше понять самые важные основы построения схем.

Вы просматриваете схему и нуждаетесь в помощи по чему-то, не описанному в этой статье? Расскажите нам об этом в комментариях, и мы можем составить статью, чтобы помочь!

Общие сведения о электрических чертежах




Голы

1.Распознавайте символы, часто используемые на схемах двигателей и управления.

2. Прочтите и постройте лестничные диаграммы.

3. Прочтите электрические схемы, однолинейные и блок-схемы.

4. Ознакомьтесь с клеммными соединениями для различных типов. моторов.

5. Прочтите информацию, содержащуюся на паспортных табличках двигателя.

6. Ознакомьтесь с терминологией, используемой в цепях двигателей.

7. Ознакомьтесь с принципами работы ручных и магнитных пускателей двигателей.

При работе с двигателями используются разные типы электрических чертежей. и их схемы управления. Чтобы облегчить создание и чтение электрические чертежи, используются определенные стандартные символы.

Для чтения чертежей электродвигателя необходимо знать как значение символов и как работает оборудование.

Этот раздел поможет вам понять использование символов в электрических рисунки. В разделе также объясняется моторная терминология и поясняется это с практическим применением.


ЧАСТЬ 1 Символы — сокращения — лестничные диаграммы

Символы двигателя

Цепь управления двигателем может быть определена как средство подачи питания к и отключение питания от двигателя. Символы, используемые для обозначения различные компоненты системы управления двигателем можно рассматривать как тип технической стенографии.

Использование этих символов способствует упрощению схемотехнических схем. и легче читать и понимать.

В системах управления двигателями символы и соответствующие линии показывают, как цепи соединены друг с другом. К сожалению, не все электрические и электронные символы стандартизированы. Вы найдете немного разные символы, используемые разными производителями. Также символы иногда выглядят ничего похожего на настоящую вещь, поэтому вам нужно узнать, что означают символы. FGR. 1 показаны некоторые типичные символы, используемые в принципиальных схемах двигателей.

Сокращения терминов двигателя

Аббревиатура — это сокращенная форма слова или фазы.Заглавные буквы используются для большинства сокращений. Ниже приводится список некоторых сокращения, обычно используемые в принципиальных схемах двигателей.

Переменный ток Якорь ARM АВТО автоматический выключатель BKR COM общий Реле управления CR Трансформатор тока CT DC постоянный ток DB динамическое торможение Поле FLD FWD вперед GRD заземление Мощность в лошадиных силах L1, L2, L3 Соединения линии электропередачи Концевой выключатель LS MAN ручной двигатель MTR Пускатель двигателя M NEG отрицательный NC нормально замкнут NO нормально разомкнутый OL реле перегрузки PH фаза PL контрольная лампа POS положительная мощность PWR PRI первичная кнопка PB

REC выпрямитель REV обратный RH реостат SSW предохранительный выключатель SEC вторичный 1-фазный однофазный соленоид SOL SW-переключатель T1, T2, T3 клеммные соединения двигателя 3-фазный трехфазный трансформатор с выдержкой времени TD

Лестничные схемы двигателей

На чертежах управления двигателем

представлена ​​информация о работе схемы, устройства. расположение оборудования и инструкции по подключению.Символы, используемые для представления переключатели состоят из узловых точек (мест, где друг друга), контактные полосы и специальный символ, который идентифицирует конкретный тип переключателя, как показано в FGR. 2.

Хотя устройство управления может иметь более одного набора контактов, только Используемые в схеме контакты представлены на контрольных чертежах.

Для установки, обслуживания и ремонта используются различные схемы и чертежи управления. и устранение неисправностей в системах управления двигателем.К ним относятся лестничные диаграммы, электрические схемы, линейные схемы и блок-схемы. «Лестничная диаграмма» (считается некоторыми в виде схематической диаграммы) фокусируется на электрическом функционировании цепи, а не физическое расположение устройства. Например, два кнопки остановки могут физически находиться на противоположных концах длинного конвейера, но электрически рядом на лестничной диаграмме.

Лестничные диаграммы, например, показанная в FGR. 3, нарисованы двумя вертикальные линии и любое количество горизонтальных линий.Вертикальные линии (называемые рельсами) подключаются к источнику питания и обозначаются как линия 1 (L1) и линия 2 (L2). Горизонтальные линии (называемые ступенями) соединяются через L1 и L2 и содержат схему управления.

Лестничные диаграммы предназначены для чтения, как книгу, начиная с вверху слева и читать слева направо и сверху вниз.

Поскольку лестничные диаграммы легче читать, они часто используются при трассировке. через работу цепи.Большинство программируемых логических контроллеров (ПЛК) используют концепцию лестничных диаграмм в качестве основы для своего программирования. язык.


FGR. 1 Символы управления двигателем.


FGR. 2 Переключите компоненты символа.


FGR. 3 Типовая лестничная диаграмма.


FGR. 4 Электропроводка двигателя и цепи управления.

Большинство лестничных диаграмм иллюстрируют только однофазную цепь управления. подключен к L1 и L2, а не к трехфазной цепи питания мотор.FGR. 4 показана схема подключения силовой цепи и цепи управления.

На схемах, включающих проводку силовых цепей и цепей управления, вы можете увидеть: как тяжелые, так и легкие проводники. Жирные линии используются для силовая цепь с более высоким током и более светлые линии для более слаботочной цепь управления.

Показаны проводники, которые пересекаются друг с другом, но не имеют электрического контакта. пересекающимися линиями без точки.

Проводники, которые входят в контакт, обозначены точкой на стыке.В большинстве случаев управляющее напряжение получается напрямую от источника питания. цепи или от понижающего управляющего трансформатора, подключенного к источнику питания. схема.

Использование трансформатора позволяет снизить напряжение (120 В переменного тока) для управления. цепи при питании цепи питания трехфазного двигателя с повышенным напряжение (480 В переменного тока) для более эффективной работы двигателя.

Лестничная диаграмма дает необходимую информацию для упрощения следования последовательность работы схемы.

Это отличный помощник в поиске и устранении неисправностей, поскольку он наглядно показывает, эффект, который открытие или закрытие различных контактов оказывает на других устройствах в схема. Все переключатели и релейные контакты классифицируются как обычные. открытый (NO) или нормально закрытый (NC). Позиции, изображенные на диаграммах, электрические характеристики каждого устройства, которые будут обнаружены, когда куплен и не подключен ни в какую цепь. Иногда это называют как «готовое» или обесточенное состояние.Это важно чтобы понять это, потому что он также может представлять положение обесточивания в цепи. Обесточенное положение относится к положению компонента. когда цепь обесточена или в цепи нет напряжения. Эта точка отсчета часто используется в качестве отправной точки в анализе. работы схемы.


FGR. 5 Идентификация катушек и связанных контактов.

Обычный метод, используемый для идентификации катушки реле и задействованных контактов им — поместить букву или буквы в круг, представляющий катушка (FGR.5). Каждый контакт, которым управляет эта катушка, будет иметь буква катушки или буквы, написанные рядом с символом контакта.

Иногда при наличии нескольких контактов, управляемых одной катушкой, число добавляется к письму для обозначения контактного номера. Хотя там являются стандартными значениями этих букв, большинство диаграмм содержат список ключей показать, что означают буквы; обычно они взяты из названия устройства.

Нагрузка — это компонент цепи, имеющий сопротивление и потребляющий электрическую энергию. питание подается от L1 к L2.Катушки управления, соленоиды, звуковые сигналы и пилот огни являются примерами нагрузок. Должно быть включено хотя бы одно загрузочное устройство на каждой ступеньке лестничной диаграммы. Без загрузочного устройства управление устройства будут переключать разомкнутую цепь на короткое замыкание между L1 и L2. Контакты от устройств управления, таких как переключатели, кнопки, и реле считаются не имеющими сопротивления в замкнутом состоянии. Связь контактов параллельно с нагрузкой также может привести к короткому замыканию когда контакт замыкается.Ток в цепи будет минимальным. сопротивление через замкнутый контакт, замыкая нагрузку под напряжением.

Обычно нагрузки размещаются в правой части лестничной диаграммы рядом с к L2 и контактам с левой стороны рядом с L1. Одно исключение из этого Правило — размещение нормально замкнутых контактов, контролируемых устройство защиты двигателя от перегрузки. Эти контакты нарисованы справа сторона катушки стартера двигателя, как показано на FGR.6. Когда две и более загрузки должны быть запитаны одновременно, они должны быть подключены в параллельно. Это гарантирует, что полное линейное напряжение от L1 и L2 будет появляются при каждой загрузке. Если нагрузки подключены последовательно, ни один получит все необходимое для правильной работы сетевое напряжение. Отзывать что при последовательном соединении нагрузок приложенное напряжение делится между каждая из нагрузок. При параллельном подключении нагрузок напряжение на каждая нагрузка одинакова и равна приложенному напряжению.

Управляющие устройства, такие как переключатели, кнопки, концевые выключатели и давление переключатели управляют нагрузками. Обычно подключаются устройства, запускающие нагрузку. параллельно, а устройства, останавливающие нагрузку, подключаются последовательно. За например, несколько пусковых кнопок, управляющих одним и тем же пускателем двигателя. катушка будет подключена параллельно, а несколько кнопок останова будут подключены последовательно (FGR.7). Все устройства управления идентифицированы с соответствующей номенклатурой для устройства (например,г., стоп, старт). Точно так же все нагрузки должны иметь аббревиатуры для обозначения тип нагрузки (например, M для катушки стартера). Часто дополнительный числовой суффикс используется для различения нескольких устройств одного типа. За Например, цепь управления с двумя пускателями двигателя может идентифицировать катушки как M1 (контакты 1-M1, 2-M1 и т. д.) и M2 (контакты 1-M2, 2-M2 и т. д.).


FGR. 6 Нагрузки размещены справа, а контакты слева.


FGR. 7 Стопорные устройства подключаются последовательно, а пусковые устройства подключаются параллельно.


FGR. 8 Лестничная диаграмма с подробным описанием номеров ступеней.

По мере увеличения сложности схемы управления ее лестничная диаграмма увеличивается в размере, что затрудняет чтение и поиск контактов контролируются какой катушкой. «Нумерация звеньев» используется для помощи в чтении и понимании больших лестничных диаграмм. Каждая ступенька обозначена лестничная диаграмма (ступеньки 1, 2, 3 и т. д.).), начиная с верхней ступени и чтение вниз. Ступеньку можно определить как полный путь от L1 до L2, содержащий нагрузку. FGR. 8 иллюстрирует маркировку каждой ступени в линейная диаграмма с тремя отдельными ступенями:

• Путь для ступени 1 завершается нажатием кнопки реверса, цикл кнопка запуска, концевой выключатель 1LS и катушка 1CR.

• Путь для ступени 2 завершается с помощью кнопки реверса, реле контакт 1CR-1, концевой выключатель 1LS и катушка 1CR.Обратите внимание, что ступень 1 и ступень 2 идентифицируются как две отдельные ступени, даже если они управляют одним и тем же нагрузка. Причина в том, что либо кнопка запуска цикла, либо контакт реле 1CR-1 завершает путь от L1 до L2.

• Путь для ступени 3 завершается через контакт реле 1CR-2 к и соленоид SOL A.

«Числовые перекрестные ссылки» используются вместе с нумерация звеньев для нахождения вспомогательных контактов, управляемых катушками в цепь управления.Иногда вспомогательные контакты не находятся в непосредственной близости на лестничной диаграмме к катушке, контролирующей их работу. Чтобы найти эти контакты, номера звеньев указаны справа от L2 в скобках. на звене катушки, контролирующей их работу.

В примере, показанном в FGR. 9:

• Контакты катушки 1CR появляются в двух разных местах на линии. диаграмма.

• Цифры в скобках справа от линейной диаграммы обозначают расположение линии и тип контактов, контролируемых катушкой.

• Цифры в скобках для нормально разомкнутых контактов имеют без специальной маркировки.

• Номера, используемые для нормально замкнутых контактов, обозначаются подчеркиванием. или завышение числа, чтобы отличить их от нормально разомкнутых контактов.

• В этой схеме катушка управляющего реле 1CR управляет двумя наборами контактов: 1CR-1 и 1CR-2. Это показано цифровым кодом 2, 3.

Для правильного подключите проводники цепи управления к их компонентам в цепи.Метод, используемый для идентификации проводов, зависит от производителя. FGR. 10 иллюстрирует один метод, в котором каждая общая точка в цепи присвоен справочный номер:

• Нумерация начинается со всех проводов, подключенных к стороне L1 устройства. блок питания обозначен номером 1.

• Продолжение в верхнем левом углу диаграммы со звеном 1, новый номер назначается последовательно для каждого провода, пересекающего компонент.

• Электрически общие провода обозначены одинаковыми номерами.

• После того, как был назначен первый провод, напрямую подключенный к L2 (в в этом случае 5) все остальные провода, напрямую подключенные к L2, будут помечены. с таким же номером.

• Количество компонентов в первой строке лестничной диаграммы определяет номер провода для проводников, напрямую подключенных к L2.


FGR. 9 Числовая система перекрестных ссылок.


FGR. 10 Нумерация проводов.


FGR. 11 Альтернативная идентификация проводки с документацией.


FGR. 12 Представление механических функций.


FGR. 13 Заземление управляющего трансформатора: (а) управляющий трансформатор правильно заземлен на сторону L2 цепи; (б) управляющий трансформатор неправильно заземлен на стороне L1 цепи.

FGR. 11 иллюстрирует альтернативный метод присвоения номеров проводов.При использовании этого метода все провода, напрямую подключенные к L1, обозначаются 1, а все подключенные к L2 обозначены 2. После всех проводов с 1 и 2 отмечены, остальные номера присваиваются в последовательном порядке начиная с верхнего левого угла диаграммы.

Преимущество этого метода в том, что все провода подключаются напрямую. до L2 всегда обозначаются как 2. Лестничные диаграммы могут также содержать серию описаний, расположенных справа от L2, которые используются для документирования функция схемы, управляемая устройством вывода.

Пунктирная линия обычно указывает на механическое соединение. Не делают ошибка чтения ломаной линии как части электрической цепи. В FGR. 12 вертикальные пунктирные линии на кнопках прямого и обратного хода указывают, что их нормально замкнутые и нормально разомкнутые контакты механически связаны. Таким образом, нажатие на кнопку откроет один набор контактов. и закройте другой. Пунктирная линия между катушками F и R указывает что эти два механически заблокированы.Следовательно, катушки F и R не могут одновременное закрытие контактов благодаря механическому блокирующему действию устройства.

Когда управляющий трансформатор должен иметь одну из вторичных линий заземлен, заземление должно быть выполнено так, чтобы случайное заземление в цепи управления не запустит двигатель или не сделает кнопку остановки или управление не работает. FGR. 13a иллюстрирует вторичный элемент управления. трансформатор должным образом заземлен на сторону L2 цепи.Когда цепь исправна, вся цепь слева от катушки M является Незаземленная цепь (это «горячая» нога). Путь неисправности к земле в незаземленной цепи вызовет короткое замыкание, вызывая предохранитель управляющего трансформатора разомкнут. FGR. 13b показывает ту же схему неправильно заземлен на L1. В этом случае короткое замыкание на массу на слева от катушки M возбудит катушку, неожиданно запустив двигатель. Предохранитель не сработает, чтобы размыкать цепь и нажимать стопор, но тонна не обесточила бы катушку М.Повреждение оборудования и травмы персонала было бы очень вероятно. Понятно, что выходные устройства должны быть подключены напрямую к заземленной стороне цепи.

ЧАСТЬ 1 ВИКТОРИНА

1. Определите, что означает термин «цепь управления двигателем».

2. Почему символы используются для обозначения компонентов на электрических схемах?

3. Электрическая цепь содержит три контрольных лампы. Что приемлемо можно ли использовать символ для обозначения каждого источника света?

4.Опишите базовую структуру принципиальной электрической схемы.

5. Линии используются для обозначения электрических проводов на схемах.

а. Чем провода, по которым проходит большой ток, отличаются от проводов, нести слабый ток?

г. Как провода, которые пересекаются, но не соединяются электрически, дифференцируются из тех, которые подключаются электрически?

6. Контакты кнопочного переключателя размыкаются при нажатии кнопки. К какому типу кнопки это относится? Почему?

7.Катушка реле с маркировкой TR содержит три контакта.

Какую приемлемую кодировку можно использовать для идентификации каждого из контактов?

8. Ступенька на лестничной диаграмме требует наличия двух нагрузок, каждая из которых рассчитана на полное линейное напряжение, запитывается, когда переключатель замкнут. Какая связь нагрузок необходимо использовать? Почему?

9. Одним из требований для конкретного двигателя является то, что шесть значений давления выключатели должны быть замкнуты до того, как двигатель будет запущен.Какие связи переключателей надо использовать?

10. Маркировка проводов на нескольких проводах электрического панели проверяются и обнаруживают, что имеют тот же номер. Что это значит?

11. Пунктирная линия, обозначающая механическую функцию электрического диаграмма ошибочно принята за проводник и подключена как таковая. Какие два типа проблем, к которым это могло привести?


ЧАСТЬ 2 Электромонтажные однолинейные блок-схемы

Электрические схемы


FGR.14 Типовая электрическая схема пускателя двигателя.

Этот материал и связанные с ним авторские права являются собственностью и используются с разрешения Schneider Electric.

Электрические схемы используются для демонстрации двухточечной проводки между компонентами. электрической системы, а иногда и их физического отношения друг к другу. Они могут включать идентификационные номера проводов, присвоенные проводникам в лестничная диаграмма и / или цветовое кодирование. Катушки, контакты, двигатели и как показано в фактическом положении, которое можно было бы найти на установке.Эти схемы полезны при подключении систем, потому что соединения могут делаться именно так, как показано на схеме. Схема подключения дает необходимая информация для фактического подключения устройства или группы устройств или для физического отслеживания проводов при поиске и устранении неисправностей. Тем не мение, По такому рисунку сложно определить работу схемы.


FGR. 15 Прокладка проводов в кабелях и коробах.


FGR.16 Электромонтаж с внутренними подключениями магнитного пускателя опущено.

Схемы подключения представлены для большинства электрических устройств. FGR. 14 иллюстрирует типовая электрическая схема, предусмотренная для пускателя двигателя. На диаграмме показано, как можно точнее, фактическое расположение всех составных частей устройства. Открытые клеммы (отмечены открытым кружком) и стрелки представляют собой соединения, сделанные пользователем. Обратите внимание, что жирные линии обозначают цепь питания, а более тонкими линиями показана схема управления.

Прокладка проводов в кабелях и трубопроводах, как показано в FGR. 15, является важной частью электрической схемы. Схема компоновки кабелепровода указывает начало и конец электропроводки и показаны приблизительные путь, пройденный любым каналом при переходе от одной точки к другой. Интегрированный с рисунком такого рода — это кабелепровод и спецификация кабеля, которые сводит в таблицу каждый канал по количеству, размеру, функциям и услугам, а также включает количество и размер проводов, проложенных в кабелепроводе.

На электрических схемах показаны подробности реальных подключений. Редко они попытаться показать полную информацию о монтажной плате или оборудовании. В схема подключения FGR. 15, приведенный к более простому виду, показан на FGR. 16 без внутренних соединений магнитного пускателя. Провода заключенные в кабелепровод C1, являются частью силовой цепи и рассчитаны на текущее требование двигателя. Провода, заключенные в кабелепровод C2, являются частью цепи управления нижнего напряжения и рассчитаны на текущие требования управляющего трансформатора.


FGR. 17 Комбинированная разводка и лестничная схема.


FGR. 18 Однолинейная схема моторной установки.


FGR. 19 Однолинейная схема системы распределения электроэнергии.

Электрические схемы часто используются вместе с лестничными диаграммами для упростить понимание процесса управления. Примером этого является проиллюстрировано в FGR. 17. На схеме подключения показаны питание и управление. схемы.

Включена отдельная лестничная диаграмма цепи управления, чтобы более четкое понимание его работы. Следуя лестничной диаграмме видно, что контрольная лампа подключена так, что она будет гореть всякий раз, когда стартер находится под напряжением.

Силовая цепь для ясности опущена, так как ее можно проследить. легко на монтажной схеме (жирные линии).

Однолинейные схемы

Однолинейная диаграмма (также называемая однострочной) использует символы вместе с одна линия, чтобы показать все основные компоненты электрической цепи.Немного производители оборудования для управления двигателем используют однолинейный рисунок, например тот, что показан в FGR. 18, как дорожная карта в изучении моторного контроля инсталляции. Установка сведена к максимально простой форме, тем не менее, он по-прежнему показывает основные требования и оборудование в цепи.

Энергетические системы — это чрезвычайно сложные электрические сети, которые могут географически распространяться на очень большие территории. По большей части они также трехфазные сети — каждая силовая цепь состоит из трех проводов и все устройства, такие как генераторы, трансформаторы, выключатели и разъединители и Т. Д.установлен во всех трех фазах. Эти системы могут быть настолько сложными, что полная стандартная схема, показывающая все соединения, непрактична. В этом случае использование однолинейной схемы — это краткий способ сообщение базовой компоновки компонента энергосистемы. FGR. 19 показана однолинейная схема малой системы распределения электроэнергии. Эти типы диаграмм также называют схемами «стояка мощности».

Блок-схемы

Блок-схема представляет основные функциональные части сложных электрических / электронных системы блоками, а не символами.Отдельные компоненты и провода не показаны. Вместо этого каждый блок представляет электрические цепи, которые выполнять определенные функции в системе. Функции, которые выполняют схемы написаны в каждом блоке.

Стрелки, соединяющие блоки, указывают общее направление тока пути.

FGR. 20 показана блок-схема частотно-регулируемого электродвигателя переменного тока. Частотно-регулируемый привод регулирует скорость двигателя переменного тока, изменяя частота, подаваемая на двигатель.Привод также регулирует выходную мощность. напряжение пропорционально выходной частоте, чтобы обеспечить относительно постоянное соотношение (вольт на герц; В / Гц) напряжения к частоте, если требуется характеристиками двигателя переменного тока для создания соответствующего крутящего момента. В Функция каждого блока резюмируется следующим образом:

• На выпрямительный блок подается трехфазное питание частотой 60 Гц.

• Блок выпрямителя — это схема, которая преобразует или выпрямляет трехфазную Напряжение переменного тока в напряжение постоянного тока.

• Блок инвертора — это схема, которая инвертирует или преобразует вход постоянного тока. напряжение обратно в напряжение переменного тока.

Инвертор состоит из электронных переключателей, которые переключают напряжение постоянного тока. включение и выключение для получения регулируемой выходной мощности переменного тока с желаемой частотой и напряжение.


FGR. 20 Структурная схема частотно-регулируемого привода переменного тока.

ЧАСТЬ 2 ВИКТОРИНА

1. Каково основное назначение электрической схемы?

2.Помимо цифр, какой еще метод можно использовать для идентификации провода на схеме подключения?

3. Какую роль может играть электрическая схема в поиске неисправностей двигателя? схема управления?

4. Перечислите фрагменты информации, которые, скорее всего, можно найти в канале. и перечень кабелей для установки двигателя.

5. Объясните цель использования электрической схемы двигателя вместе с с лестничной схемой цепи управления.

6. Каково основное назначение однолинейной схемы?

7. Каково основное назначение блок-схемы?

8. Объясните функцию выпрямительного и инверторного блоков переменной частоты. Привод переменного тока.


ЧАСТЬ 3 Клеммные соединения двигателя

Классификация двигателей

Электродвигатели были важным элементом нашей промышленной и коммерческая экономика более века.

Большинство используемых сегодня промышленных машин приводится в действие электродвигателями. Отрасли перестанут функционировать, если не будут должным образом спроектированы, установлены, и обслуживаемые системы управления двигателем. В целом моторы классифицируются в зависимости от типа используемой мощности (переменного или постоянного тока) и принципа действия двигателя операции. «Генеалогическое древо» моторных типов довольно обширно, как показано вверху следующей страницы:

В США Институт инженеров по электротехнике и радиоэлектронике (IEEE) устанавливает стандарты моторного тестирования и методологий тестирования, в то время как Национальная ассоциация производителей электрооборудования (NEMA) готовит стандарты характеристик двигателя и классификации.

Дополнительно должны быть установлены двигатели в соответствии со Статьей 430. Национального электротехнического кодекса (NEC).

Подключение двигателя постоянного тока

В промышленных приложениях используются двигатели постоянного тока, поскольку соотношение скорости и крутящего момента можно легко варьировать. Двигатели постоянного тока имеют регулируемую скорость. плавно спускаемся до нуля, сразу после чего разгон в обратном направление. В аварийных ситуациях электродвигатели постоянного тока могут подавать более пяти раз. номинальный крутящий момент без остановки.Динамическое торможение (энергия, генерируемая двигателем постоянного тока подается на резисторную сетку) или рекуперативного торможения (двигатель постоянного тока энергия возвращается в источник питания двигателя постоянного тока) может быть получено с двигателями постоянного тока в приложениях, требующих быстрой остановки, что устраняет необходимость в или уменьшение размеров механического тормоза.

FGR. 21 показаны символы, используемые для обозначения основных частей прямого составной двигатель постоянного тока.



FGR. 21 Детали составного двигателя постоянного тока.

Вращающаяся часть двигателя называется якорем; стационарный часть двигателя называется статором, который содержит серию обмотка возбуждения и шунтирующая обмотка возбуждения. В машинах постоянного тока A1 и A2 всегда указывают выводы якоря, S1 и S2 указывают последовательные выводы возбуждения, а Fl и F2 обозначают выводы шунтирующего поля.

Это вид возбуждения поля, обеспечиваемый полем, который отличает один тип двигателя постоянного тока от другого; конструкция арматуры не имеет отношения к моторной классификации.Есть три основных типа двигателей постоянного тока, классифицируемых по способу возбуждения поля как следует:

• В шунтирующем двигателе постоянного тока (FGR. 22) используется шунт со сравнительно высоким сопротивлением. обмотка возбуждения, состоящая из множества витков тонкой проволоки, соединенных параллельно (шунт) с арматурой.

• В последовательном двигателе постоянного тока (FGR. 23) используется последовательное поле с очень низким сопротивлением. обмотка, состоящая из очень небольшого количества витков толстого провода, соединенных последовательно с арматурой.

• Составной двигатель постоянного тока (FGR. 24) использует комбинацию шунтирующего поля (многие витков тонкой проволоки) параллельно якорю, а последовательное поле (несколько витков толстой проволоки) последовательно с якорем.


FGR. 22 Стандартные шунтирующие соединения двигателя постоянного тока для вращения против часовой стрелки и вращение по часовой стрелке.


FGR. 23 Стандартные соединения двигателя постоянного тока для вращения против часовой стрелки и вращение по часовой стрелке.


FGR.24 стандартных соединения постоянного (кумулятивного) двигателя для счетчика часов Мудрое и вращение по часовой стрелке. Для дифференциального соединения, обратное S1 и S2.

Все соединения, показанные на рисунках 22, 23 и 24, выполнены против часовой стрелки. и вращение по часовой стрелке лицом к концу, противоположному приводу (конец коллектора). Одна из целей нанесения маркировки на клеммы двигателей в соответствии с к стандарту, чтобы помочь в установлении соединений, когда предсказуемое вращение направление обязательно.Это может быть тот случай, когда неправильное вращение может привести к небезопасной эксплуатации или повреждению. Маркировка клемм обычно используется пометить только те клеммы, к которым необходимо подключать извне схемы.

Направление вращения двигателя постоянного тока зависит от направления магнитное поле и направление тока в якоре. Если либо направление поля или направление тока, протекающего через якорь реверсируется, двигатель вращается в обратном направлении.Тем не мение, если оба этих фактора поменять местами одновременно, двигатель будет продолжайте вращаться в том же направлении.

Подключение двигателя переменного тока

Асинхронный двигатель переменного тока является доминирующей технологией двигателей, используемых сегодня, что составляет более 90 процентов установленной мощности электродвигателей. Индукция двигатели доступны в однофазной (1?) и трехфазной (3?) конфигурациях, размерами от долей лошадиных сил до десятков тысяч Лошадиные силы.Они могут работать с фиксированной скоростью — обычно 900, 1200, 1800, или 3600 об / мин — или быть оснащенным регулируемым приводом.

Наиболее часто используемые двигатели переменного тока имеют конфигурацию с короткозамкнутым ротором. (FGR.25), названный так из-за вставленной в него алюминиевой или медной беличьей клетки. внутри железных пластин ротора. Нет физического электрического подключение к беличьей клетке. Ток в роторе индуцируется вращающееся магнитное поле статора.

Роторные модели, в которых витки проволоки вращают обмотки ротора, также доступны. Это дорого, но обеспечивает больший контроль над двигателем. эксплуатационные характеристики, поэтому их чаще всего используют для особого крутящего момента приложений для ускорения и для приложений с регулируемой скоростью.


FGR. 25 Трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.


FGR. 26 Асинхронный двигатель переменного тока с разделением фаз.


FGR.27 Соединения статора двухфазного двигателя с двойным напряжением.

ПОДКЛЮЧЕНИЯ ДЛЯ ОДНОФАЗНЫХ ДВИГАТЕЛЕЙ

Большинство однофазных асинхронных двигателей переменного тока сконструированы в дробном исполнении. мощности для источников питания от 120 до 240 В, 60 Гц. Хотя там это несколько типов однофазных двигателей, они в основном идентичны кроме средств запуска. «Двухфазный двигатель» наиболее широко используется для приложений со средним запуском (FGR.26). Операция сплит-двигателя кратко описывается следующим образом:

• Двигатель имеет пусковую и основную или рабочую обмотки, которые находятся под напряжением. при запуске мотора.

• Пусковая обмотка создает разность фаз для запуска двигателя. и отключается центробежным переключателем при приближении к рабочей скорости. Когда двигатель достигает примерно 75 процентов своей номинальной скорости при полной нагрузке, пусковая обмотка отключена от цепи.

• Мощность двигателя с расщепленной фазой составляет примерно ½ лошадиных сил. Популярные приложения включают вентиляторы, нагнетатели, бытовую технику, такую ​​как стиральные машины и сушилки, и инструменты, такие как небольшие пилы или сверлильные станки, к которым нагрузка прилагается после двигатель набрал свою рабочую скорость.

• Двигатель можно реверсировать, переставив провода к пусковой обмотке. или основной обмотки, но не к обеим. Обычно отраслевой стандарт поменять местами провода пусковой обмотки

В двухфазном двигателе с двойным напряжением (FGR.27) ходовая обмотка разделен на две части и может быть подключен для работы от 120-вольтной или источник 240 В. Две обмотки подключаются последовательно при работе. от источника 240 В и параллельно для работы на 120 В.

Пусковая обмотка подключается к линиям питания низкого напряжения. и по одной линии до середины ходовых обмоток для высокого напряжения. Это гарантирует, что все обмотки получат 120 В, на которые они рассчитаны. работать в.Чтобы изменить направление вращения разветвителя с двумя напряжениями фазного двигателя, поменяйте местами два провода пусковой обмотки.

Двигатели с двойным напряжением подключаются к требуемому напряжению следующим образом: схема подключения на паспортной табличке.

Номинальная мощность двухфазного двигателя с двумя напряжениями составляет 120/240 В. любого типа двигателя с двойным напряжением, более высокое напряжение предпочтительнее, когда возможен выбор между напряжениями. Мотор использует столько же мощности и производит такое же количество лошадиных сил при работе от питание 120 В или 240 В.Однако, поскольку напряжение увеличивается вдвое с 120 В до 240 В ток уменьшается вдвое. Работа двигателя на этом пониженном уровень тока позволяет использовать проводники цепи меньшего диаметра и снижает потери мощности в линии.


FGR. 28 Двигатель с постоянным разделением конденсаторов.

Во многих однофазных двигателях конденсатор используется последовательно с одним из статоров. обмотки для оптимизации разности фаз между пусковой и рабочей обмотками для запуска.Результат — более высокий пусковой крутящий момент, чем при расщепленной фазе. мотор может производить. Есть три типа конденсаторных двигателей: конденсаторные. пуск, при котором фаза конденсатора находится в цепи только при пуске; постоянно разделенный конденсатор, в котором конденсаторные фазы в цепи как для запуска, так и для работы; и двухзначный конденсатор, в котором — разные значения емкости для запуска и работы. Перманентный раскол конденсаторный двигатель, изображенный на FGR.28, постоянно использует конденсатор соединены последовательно с одной из обмоток статора. Эта конструкция ниже по стоимости, чем двигатели с конденсаторным пуском, которые включают переключение конденсаторов системы. Установки включают компрессоры, насосы, станки, воздушные кондиционеры, конвейеры, воздуходувки, вентиляторы и другие сложные для запуска приложения.

ПОДКЛЮЧЕНИЯ ТРЕХФАЗНЫХ ДВИГАТЕЛЕЙ

Трехфазный асинхронный двигатель переменного тока является наиболее распространенным двигателем, используемым в коммерческих и промышленное применение.

Однофазные двигатели большей мощности обычно не используются, потому что они неэффективны по сравнению с трехфазными двигателями. Кроме того, однофазные двигатели не запускаются самостоятельно на своих рабочих обмотках, в отличие от трехфазных моторы.

Двигатели переменного тока большой мощности обычно бывают трехфазными.

Все трехфазные двигатели имеют внутреннюю конструкцию с рядом отдельных намотанные катушки. Независимо от количества отдельных катушек, индивидуальные катушки всегда будут подключены вместе (последовательно или параллельно) для получения трех отдельные обмотки, которые называются фазой A, фазой B и фазой С.Все трехфазные двигатели подключены таким образом, чтобы фазы были подключены друг к другу. конфигурация звезды (Y) или треугольника (?), как показано на FGR. 29.

ПОДКЛЮЧЕНИЯ ДВУХНАПРЯЖНЫХ ДВИГАТЕЛЕЙ


FGR. 29 Подключение электродвигателя трехфазной звездой и треугольником.

Обычной практикой является производство трехфазных двигателей, которые могут быть подключены работать на разных уровнях напряжения.

Наиболее распространенное номинальное напряжение для трехфазных двигателей — 208/230/460. В.Всегда проверяйте характеристики двигателя или паспортную табличку на предмет надлежащего напряжения. номинал и схема подключения для способа подключения к источнику напряжения.

FGR. 30 иллюстрирует типичную идентификацию терминала и подключение. таблица для девятипроводного трехфазного двигателя с двойным напряжением, соединенным звездой. Один конец каждой фазы внутренне постоянно подключен к другим фазам.

Каждая фазная катушка (A, B, C) разделена на две равные части и соединена последовательно для работы с высоким напряжением или параллельно для работы с низким напряжением операция.Согласно номенклатуре NEMA, эти отведения имеют маркировку от T1 до Т9. Высоковольтные и низковольтные соединения приведены в прилагаемых таблица соединений и клеммная колодка двигателя. Тот же принцип серии Применяется (высоковольтное) и параллельное (низковольтное) подключение катушек для трехфазных двигателей с двойным напряжением, соединенных звездой-треугольником. Во всех случаях обратитесь к электросхеме, поставляемой с двигателем, чтобы убедиться в правильности подключения. для желаемого уровня напряжения.

Прод. к части 2 >>

Руководство по принципиальным схемам для начинающих »Школы электротехники

Первый взгляд на принципиальную схему может сбить с толку, но если вы умеете читать карту метро, ​​вы можете читать и схемы. Цель та же: добраться из точки А в точку Б. Буквально цепь — это путь, по которому течет электричество. Если вы знаете, что искать, это станет вашей второй натурой. Вначале вы просто будете их читать, но со временем вы начнете создавать свои собственные.Это руководство покажет вам несколько общих символов, которые вы обязательно встретите в своей будущей электротехнической карьере.

Язык схемотехники

Во-первых, давайте посмотрим на некоторые термины, которые вам необходимо знать:

  • Напряжение : Измеренное в вольтах (В) напряжение — это «давление» или «сила» электричества. Обычно это обеспечивается батареей (например, батареей 9 В) или «электросетью», розетки в вашем доме работают от 120 В. Розетки в других странах работают от другого напряжения, поэтому в поездках вам понадобится преобразователь.
  • Ток : Ток — это поток электричества или, более конкретно, поток электронов. Он измеряется в амперах (амперах) и может течь только при подключенном источнике напряжения.
  • Сопротивление : Измеряется в Ом (R или Ω), сопротивление определяет, насколько легко электроны могут проходить через материал. Такие материалы, как золото или медь, называются проводниками , поскольку они легко допускают движение (низкое сопротивление). Пластик, дерево и воздух являются примерами изоляторов , препятствующих движению электронов (высокое сопротивление).
  • DC (постоянный ток) . Постоянный ток — это непрерывный ток в одном направлении. Постоянный ток может течь не только через проводники, но и через полупроводники, изоляторы и даже через вакуум.
  • AC (переменный ток) . В переменном токе ток периодически меняется в двух направлениях, часто образуя синусоидальную волну. Частота переменного тока измеряется в герцах (Гц) и обычно составляет 60 Гц для электричества в жилых и деловых целях.

Схема

А теперь самое интересное.Получение степени инженера-электрика, а затем получение работы в поле означает, что вы увидите много-много этих схем. Важно точно понимать, что с ними происходит. Хотя они могут (и будут) быть очень сложными, это лишь некоторые из распространенных графиков, на которые вы можете опираться.

Начинаешь понимать? Это основы, и они могут даже показаться вам очевидными или интуитивно понятными, например, провода и подключены ли они. Всякий раз, когда вы определяете свою конкретную область электротехники, вы можете увидеть более сложные диаграммы и символы.Вы также узнаете, что в разных странах используются разные символы. Например, из двух обозначений резисторов, представленных выше, первый используется в США, а второй — в Европе. Вы также узнаете о различных символах, используемых для переключателей, других источников питания, индукторов, счетчиков, ламп, светодиодов, транзисторов, антенн и многого другого.

Обдумывая, какая программа по электротехнике подходит именно вам, важно помнить об основах этой области. Как упоминалось ранее, эти символы и схемы будут повсюду.Чем раньше вы познакомитесь со словесным и графическим языками инженерии, тем более подготовленными вы будете к получению ученой степени. Если вы хотите увидеть больше: 1) это означает, что вы на правильном пути; 2) считайте эту таблицу своей цифровой шпаргалкой.

Введение в электрические схемы — Услуги по передаче технологий

Принципиальная схема — это чертеж, на котором физические компоненты показаны в их надлежащих положениях в системе, но не обязательно в их фактическом физическом расположении.Электрические схемы — это наиболее часто используемые чертежи. Блок-схема, однолинейная схема, элементарная диаграмма и схема подключения следуют в порядке от очень широкого до очень конкретного. Эти диаграммы предназначены для иллюстрации системы с помощью очень простых чертежей, а затем проработаны до необходимых деталей. Цель этой организации — облегчить работу; например, проблема может быть выделена в блок, прослежена по однолинейной схеме, а затем устранена с помощью монтажной схемы.

Ниже приведены наиболее распространенные типы электрических схем:

Блок-схема — Блок-схема показывает основные компоненты электрических или механических взаимосвязей в блочной, квадратной или прямоугольной форме. Линии между блоками представляют связи между системами или компонентами. В схемах электрических блоков одна линия может представлять один провод или группу проводов. Блок-схема представляет систему в целом, показывая общую работу и расположение основных компонентов.

Одиночная схема — Одиночная или однолинейная диаграмма указывает с помощью одиночных линий и стандартных символов пути, соединения и составные части электрической цепи или систем цепей. Он дает общее представление о том, как работает часть электрической системы с точки зрения физических компонентов схемы.

Элементарная диаграмма — Элементарная диаграмма или схема — это рисунок, который находится между однолинейными диаграммами и схемами электрических соединений.Они используются для демонстрации подключения приборов и электрических устройств управления в простейшей лестничной или схематической форме. Элементарные схемы отражают управляющую проводку, необходимую для выполнения операции и последовательности операций, описанных в логических схемах.

Схема подключения — Схема подключения обычно используется для систем поиска и устранения неисправностей. На электрических схемах показано взаимное расположение различных компонентов оборудования, а также то, как каждый проводник подключен в цепи.Эти схемы подразделяются на две категории: внутренние схемы, показывающие проводку внутри устройства, как на схеме записывающего устройства, поставляемой поставщиком, и внешние схемы, которые показывают проводку от компонента к остальной системе.

Электрические схемы и схемы — инструментальные средства

Чтобы читать и интерпретировать электрические схемы и схемы, необходимо понимать основные символы и условные обозначения, используемые на чертеже. В этой статье основное внимание уделяется тому, как электрические компоненты представлены на схемах и схемах.

Символика

Чтобы читать и интерпретировать электрические схемы и схемы, читатель должен сначала хорошо разбираться в том, что представляют собой многие символы. В этой главе обсуждаются общие символы, используемые для обозначения многих компонентов электрических систем. После усвоения эти знания должны позволить читателю успешно понять большинство электрических схем и схем.

Следующая информация предоставляет подробные сведения об основных символах, используемых для обозначения компонентов в схемах и схемах электрической передачи, коммутации, управления и защиты.

Рисунок 1 Основные символы трансформатора

Трансформаторы

Основные символы для различных типов трансформаторов показаны на Рисунке 1 (A). На рис. 1 (B) показано, как изменен основной символ трансформатора для обозначения конкретных типов и применений трансформатора.

Помимо самого символа трансформатора, иногда используются метки полярности для обозначения протекания тока в цепи. Эта информация может использоваться для определения фазового соотношения (полярности) между входными и выходными клеммами трансформатора.Метки обычно отображаются в виде точек на символе трансформатора, как показано на Рисунке 2.

Рисунок 2 Полярность трансформатора

На первичной стороне трансформатора точка указывает ток на входе; на вторичной стороне точка указывает текущий выход.

Если в данный момент ток течет в трансформатор на точечном конце первичной катушки, он будет выходить из трансформатора на отмеченном пунктиром конце вторичной катушки. Ток через трансформатор, использующий точечные символы, показан на рисунке 2.

Переключатели

На рисунке 3 показаны наиболее распространенные типы переключателей и их символы. Термин «полюс», используемый для описания переключателей на Рисунке 3, относится к количеству точек, в которых ток может поступать на переключатель.

Показаны однополюсные и двухполюсные переключатели, но у переключателя может быть столько полюсов, сколько требуется для выполнения своей функции. Термин «ход», используемый на рисунке 3, относится к количеству цепей, которые каждый полюс переключателя может замкнуть или контролировать.

Рисунок 3 Переключатели и символы переключателей

На рисунке 4 представлены общие символы, которые используются для обозначения автоматических переключателей, и поясняется, как символ указывает состояние переключателя или срабатывание.

Рисунок 4 Коммутатор и символы состояния коммутатора

Предохранители и выключатели

На рисунке 5 показаны основные символы предохранителей и автоматических выключателей для однофазных систем.

Помимо графического символа, на большинстве чертежей рядом с символом также указан номинал предохранителя. Рейтинг обычно выражается в амперах.

Рисунок 5 Обозначения предохранителей и автоматических выключателей

Когда в трехфазных системах используются предохранители, прерыватели или переключатели, трехфазный символ объединяет однофазный символ в трех экземплярах, как показано на рисунке 6.

Также показан символ съемного выключателя, который представляет собой стандартный символ выключателя, помещенный между набором шевронов. Шевроны обозначают точку, в которой выключатель отключается от цепи при удалении.

Рисунок 6 Обозначения трехфазного и съемного выключателя

Реле, контакты, соединители, линии, резисторы и прочие электрические компоненты

На рисунке 7 показаны общие символы для реле, контактов, разъемов, линий, резисторов и других различных электрических компонентов.

Рисунок 7 Общие символы электрических компонентов

Крупные компоненты

Символы на рисунке 8 используются для обозначения более крупных компонентов, которые можно найти на электрической схеме или схеме. Детали, используемые для этих символов, будут отличаться при использовании в системных схемах.

Обычно количество деталей отражает относительную важность компонента для конкретной диаграммы.

Рисунок 8 Крупные общие электрические компоненты

Типы электрических схем или схем

Есть три способа показать электрические цепи.Это электрические схемы, принципиальные и графические схемы. Два наиболее часто используемых — это электрическая схема и принципиальная схема.

Использование этих двух типов диаграмм сравнивается в таблице 1.

Графическая диаграмма обычно не используется в инженерных приложениях по причинам, указанным в следующем примере. На рисунке 9 представлен простой пример сравнения схематической диаграммы с графическим эквивалентом.

Как можно видеть, графическая версия не так полезна, как схематическая, особенно если вы пытались получить достаточно информации для ремонта схемы или определения ее работы.

Рисунок 9 Сравнение электрической схемы и графической схемы

На рис. 10 показан пример взаимосвязи между принципиальной схемой (рис. 10А) и схемой электрических соединений (рис. 10В) для воздухоосушителя. Более сложный пример, электрическая схема автомобиля, показан в формате электрической схемы на рисунке 11 и в схематическом формате на рисунке 12.

Обратите внимание, что на схеме подключения (рисунок 11) используются как графические изображения, так и схематические символы.На схеме (рис. 12) отсутствуют все графические изображения, а электрическая система изображена только в виде символов.

Рисунок 10 Сравнение электрической схемы и схемы подключения

Рисунок 11 Схема электрических соединений автомобиля

Рисунок 12 Схема электрической цепи автомобиля

При работе с большой системой распределения электроэнергии используется особый тип схематической диаграммы, называемый отдельной электрической линией, чтобы показать всю или часть системы.На диаграмме этого типа показаны основные источники питания, выключатели, нагрузки и защитные устройства, что дает полезный общий вид потока мощности в большой системе распределения электроэнергии.

На одиночных линиях распределения электроэнергии, даже если это трехфазная система, каждая нагрузка обычно представлена ​​только простым кружком с описанием нагрузки и ее номинальной мощностью (потребляемая мощность в рабочем состоянии). Если не указано иное, обычно используются киловатты (кВт). На рисунке 13 показана часть системы распределения электроэнергии на атомной электростанции.

Рисунок 13 Пример однолинейного электрического подключения

Как читать электрические схемы судов

Существуют различные типы диаграмм, которые пытаются показать, как электрическая цепь работает на корабле. Символы используются для обозначения различных элементов оборудования.

Судостроитель предоставляет полный комплект судовых электрических схем.

Важно, чтобы вы изучили эти схемы, чтобы иметь возможность читать и понимать их со знанием дела, а также использовать их в качестве помощи при обнаружении электрических неисправностей.

Как читать блок-схему корабля

Судовая электрическая блок-схема в упрощенной форме показывает основные взаимосвязи элементов в системе, а также то, как судовая система работает или может эксплуатироваться. Такие диаграммы часто используются для изображения систем управления и других сложных взаимосвязей.

На рисунке показаны основные функции реле максимального тока (OCR), используемого для защиты. Его принципиальная схема показывает один из способов реализации общей функции распознавания текста.

Диаграммы, подобные этой, показывают функцию каждого блока, но обычно не дают никакой информации о компонентах в каждом блоке или о том, как блоки на самом деле связаны между собой.

Как читать схему судовой системы

Судовая Системная диаграмма показывает основные особенности судовой системы и ее границы, не обязательно показывая причинно-следственные связи. Основное использование — это иллюстрация способов работы с системой. Детали опущены, чтобы сделать схему как можно более ясной и легкой для понимания.

Как читать и понимать электрические схемы корабля

Принципиальная схема полностью показывает функционирование цепи.

Все основные части и соединения изображены с помощью графических символов, расположенных так, чтобы максимально ясно показать работу, но без учета физического расположения различных элементов, их частей или соединений.

Электрические соединения для пускателя двигателя наглядно показаны в простейшем виде.

Наиболее важным моментом является то, что не делается попыток показать подвижные контакты реле или контактора вдоль катушки, которая их управляет (там, где они фактически физически расположены). Вместо этого катушка и связанные с ней контакты обозначаются общим числом или буквой.

Несмотря на то, что существуют международные соглашения относительно символа, который будет использоваться для обозначения электрических компонентов, вы должны быть готовы встретить различные символы, представляющие один и тот же компонент.

Использование судовой принципиальной схемы должно позволить читателю понять работу схемы, проследить каждую последовательность в операции с момента запуска операции (например,грамм. нажатием кнопки пуска) до финального действия (д.9. запуск двигателя).

Если оборудование не работает правильно, считыватель может проследить последовательность операций, пока не дойдет до операции, которая не удалась.

Компоненты, участвующие в этой неисправной операции, затем могут быть исследованы, чтобы найти подозрительный элемент.

Нет необходимости проверять другие компоненты, о которых известно, что они работают правильно и не влияют на неисправность, поэтому работа упрощается.

Принципиальная схема является важным инструментом для поиска неисправностей в бортовой электросистеме.

TinyCAD скачать | SourceForge.net

Полное имя

Телефонный номер

Название работы

Промышленность

Компания

Размер компании Размер компании: 1 — 2526 — 99100 — 499500 — 9991,000 — 4,9995,000 — 9,99910,000 — 19,99920,000 или более

Получайте уведомления об обновлениях для этого проекта.Получите информационный бюллетень SourceForge. Получайте информационные бюллетени и уведомления с новостями сайта, специальными предложениями и эксклюзивными скидками на ИТ-продукты и услуги.

Да, также присылайте мне специальные предложения о продуктах и ​​услугах, касающихся:
Программное обеспечение для бизнеса Программное обеспечение с открытым исходным кодом Информационные технологии Программирование Аппаратное обеспечение

Вы можете связаться со мной через:
Электронная почта (обязательно) Телефон SMS

Я согласен получать эти сообщения от SourceForge.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *