Утеплитель между блоком и облицовочным кирпичом
Эффективный утеплитель между стеной и облицовочным кирпичом
Теплопотери являются серьезной проблемой для любого жилого дома. Потеря тепла осуществляется через дверные и оконные проемы, крышу, фундамент и, конечно, стены. Суммарно именно стены обеспечивают максимальный отток тепла из помещения, поэтому различные технологии, которые могли бы сократить затраты на обогрев, пользуются спросом. Проще всего грамотно утеплить фасад — сделать это с помощью облицовочного утеплителя.
Характерные особенности кирпичных стен
По своим свойствам кирпич отличается от других строительных материалов. Стоит отметить следующее:
- Кирпичи могут быть как полно-, так и пустотелыми — выбор материала напрямую зависит от от эксплуатационных факторов: средняя температура в регионе, нагрузка на фундамент, выбранный вариант теплоизоляции.
- Также учитывается формат кладки кирпича. Самый распространенный вариант — это сплошная кладка, такой способ наиболее простой.
- Как вариант, теплоизоляционный материал может укладываться между двумя слоями строительного материала. Такая многослойная конструкция состоит из несущей стены из пеноблоков, слоя теплоизоляции и облицовочного слоя — воздушное пространство между теплоизоляцией и облицовочным слоем обеспечивает необходимую циркуляцию воздуха.
- Поскольку кирпич обладает хорошими шумоизолирующими свойствами, то дополнительная шумоизоляция для кирпичного фасада не нужна.
Преимущества утепления между блоком и кирпичом
Основное преимущество трехслойной кладки с облицовочным утеплителем под облицовочным кирпичом состоит в экономичности — стоимость дома из газобетонных блоков с обкладкой из кирпича будет существенно дешевле, чем здание выполненное полностью из этого строительного материала. При этом внешний вид такого дома остаётся на высоте, а вложения минимальны.
Что касается эксплуатационных характеристик, то можно отметить:
- хорошая звукоизоляция;
- длительный срок службы;
- прочное здание;
- визуальная эстетика.
Стоит уточнить, что все эти преимущества доступны только в том случае, если укладка стройматериалов выполнена правильно, в противном случае в воздушном проеме будет скапливаться конденсат, что приведет к скорому разрушению кладки и утеплителя из-за температурного расширения жидкости.
Виды теплоизоляционных материалов
На рынке можно приобрести следующие варианты утепляющих материалов:
Минеральная вата из минеральных волокон отличается хорошими теплосберегающими свойствами. Методика изготовления представляет собой разбивание расплавленных минералов — это может быть как стекло, так и шлак или базальт. Приготовленный в центрифуге материал из тонких минеральных нитей отличается низкой плотностью и фактически представляет собой воздушную подушку, которая отличается низким уровнем теплопередачи.
Пенополистирол изготавливается из жидкого полистирола, который насыщается пузырьками воздуха. Он может продаваться как пластинами, так и в виде круглых гранул.
За счёт закрытоячеистой структуры такой материал меньше боится влаги, но пожаробезопасность существенно ниже, чем у минваты. При высокой температуре пенопласт начинает плавиться и полностью выгорает, а кладка при этом может даже не повредиться.
Насыпные утеплители также подойдет для теплоизоляции при обустройстве трехслойной кладки вместо установки блоков крошка засыпается во внутренние колодцы. В качестве основы выступает керамзит, шлак и любой другой материал, который позволяет создать структуру с большим содержанием воздуха. Такой вариант существенно доступнее, чем использование готовых листов утепляющих материалов, но по эффективности значительно хуже. Это обусловлено низкими показателями теплозащиты керамзита, шлака. Дробленые материалы также гигроскопичны, что подразумевает необходимость обустройства хорошей гидроизоляции — в противном случае вода повышает теплопроводность и разрушает слои кирпича и газобетона.
Выбираем утеплитель для кирпичных стен
При выборе облицовочного утеплителя необходимо познакомиться с рекомендуемым перечнем вариантов, соответствующих СНиП:
- Учитываем показатель теплопроводности — слой теплоизоляции должен обеспечить защиту микроклимата помещений при минимальных температурах, свойственных для этого региона. На упаковке производитель должен указать теплоизолирующие характеристики материала, что позволяет высчитать необходимую толщину слоя утеплителя с учетом зимних температур.
- Хорошие показатели паропроницаемости — вода, поступающая в утеплитель, не должна накапливаться внутри него. В противном случае его теплоизоляционные качества резко снижаются.
- Огнестойкость — также очень важный показатель, который обеспечивает пожарную безопасность, слой утеплителя способен создать огнезащитную прослойку в фасаде здания.
Технология утепления и облицовки стен
Для того чтобы утеплить стены снаружи здания вовсе не обязательно быть профессиональным строителем, главное в точности соблюдать рекомендации.
Подготовка инструмента и материалов
Выбор материалов для утепления дома диктуется местным климатом. Определившись с утеплителем, можно выбирать инструменты — это может быть угольник, строительный уровень, кельма, зубчатая гладилка и пр.
Подготовка стены
Перед началом работ необходимо подготовить фасад к монтажу. Для этого кладка очищается от пыли и грязи, также необходимо заделать трещины и выровнять при необходимости поверхность кладки. После этого мы обрабатываем фасад грунтовкой.
Необходимо позаботиться о выравнивании стен потому, что после монтажа утеплителя получившиеся на месте трещин пустоты могут стать местом деформации утеплителя — для этого достаточно небольшого механического воздействия. Также на ямки и бугорки плотно приклеить утеплитель не получится.
Утепление стены
Технология трехслойной кладки с утеплителем и облицовочным кирпичом содержит следующие этапы:
- Выкладываем внутреннюю стену — в этом нет ничего сложного, поскольку технология кладки такая же, как и кладка любой несущей стены. Для нее выбираются либо газобетонные блоки, либо полнотелый кирпич. Толщина к прямой зависит от минимальных зимних температур в местности и может составлять как 1, так и 1,5 кирпича.
- Следующий этап — выкладка наружной стены облицовкой. Ее выполняют таким образом, чтобы между стенами образовался зазор — в него вкладывается теплоизоляционный материал. Если используются гранулы, то для них формируются колодцы. Для прочности стены соединяются между собой связями, выполненными из арматуры и высечки. Как вариант, можно сделать кирпичную перевязку через определенные промежутки.
- Гидроизоляция — важный этап, который позволит защитить утеплитель от влаги, которая неизбежно проникает в слой кирпича. В качестве изолятора от влаги можно использовать плотную плёнку или рубероид.
- Засыпной теплоизоляционный материал высыпают в нишу, как только высота стены достигает 1 м. Если используется рулонный или листовой облицовочный утеплитель, то он крепится к внутренней стене — для этого используются «грибы» с пластиковой шляпкой большого диаметра. Закрепив утеплитель, закрываем его внешней облицовочной кладкой.
- Для нормального газообмена необходимо каждые 0,5-1 м оставлять вентиляционные продухи — так называются вертикальные швы между кирпичами, которые намеренно не заполняются раствором.
Как показывает практика, трехслойная кладка позволяет добиться сразу нескольких результатов и существенно улучшает эксплуатацию здания в зимний период.
Сделать ее можно и своими руками, но лучше обратиться к профессионалам, поскольку ошибки в техпроцессе нивелируют все преимущества такого варианта утепления фасада.
Сообщества › Строительство (и всё что с ним связано) › Блог › Выбор утеплителя между газоблоком и облицовочным кирпичом.
Доброго времени суток, товарищи.
Плавно подхожу к возведению стен дома для постоянного проживания. Основной материал стен- газобетонный блок 625*250*300 фирмы Калужский газобетон, сибирский элемент, марки D500. Облицовка кирпичом, 65-ый, производитель так же наш Калужский, Воротынский кирпичный завод.
Понимаю, что тема огромная и может вызвать много комментов и холиваров. Прошу коротко и емко( если это возможно в строительстве- работал в этой отрасли, правда начальником службы охраны труда) высказать свои соображения.
Пока я склоняюсь к обычному пенопласту(белый), но не самый хрупкий, а чуть более крепкий, он подороже, но уже не распадается на маленькие шарики при более менее сильном нажатии. Планирую вставлять 2 плиты по 50мм со сдвигом, для того чтобы избежать образования швов. То есть общая толщина утеплителя 100мм.
Комментарии 113
Да запросто
Будут деньги — заходите (с)
Комментарии к комментариям :
1. ЭППС и ППС — паронепроницаемый материал, по сути — очень похоже, разница в плотности и прочности
2. вентзазор min 40мм, max 60мм
3. пустые швы для подсоса воздуха не горизонтальные, а вертикальные, через два кирпича в двух нижних рядах, а еще над окнами и дверьми
4. пустые швы в районе подшивки кровли для выхода воздуха из вентзазора — запрещено категорически, межстенный вентзазор должен переходить в кровельный зазор по контробрешетке и совместно эвакуироваться через конек кровли
5. минвата в вентзазор — плотностью не менее 120-150 кг/м3 — иначе просядет и улетит вместе с воздухом
6. не слушай жену и тещу — гиблое это дело, у них мозг не так, как у нас устроен )))
Спрашивай, помогу соседу )))
Мда …
Все смешалось в доме Облонских … (с)
Дружище, ты не правильно представляешь себе механизм работы многослойной стены
Не будем вдаваться в дискуссии о материале стен, газоблок — не лучший вариант — у него больше недостатков, чем достоинств, но тем не менее — что есть, то есть
Коротко о принципах :
Для того, что бы стена оставалась “здоровой” — сухой и теплой — водяной пар должен перемещаться в стене в обеих направлениях — внутрь и наружу — при изменении температуры и влажности воздуха
1. за счет парциального давления водяной пар изнутри дома перемещается по газоблоку в наружную сторону
2. дойдя до границы газоблока, он должен куда то эвакуироваться
И куда же ?
Тут есть два варианта :
а) если поставить за газоблоком полистирол — паронепроницаемый материал — деваться пару некуда, он заперт в газоблоке и испарение влаги будет идти только во внутрь и то, при условии, что ты не наклеишь виниловые обои
Кроме того, ты не сможешь обеспечить 100% примыкание газоблока и полистирола, а значит будет воздушный зазор
А если есть зазор — в нем однозначно будет образовываться конденсат со всеми вытекающими
Ты получаешь мокрую стену, кроме того сам газоблок — крайне гигроскопичный материал, он охотно впитывает влагу и крайне неохотно ее выводит, добавлю еще, что при увлажнении газоблок резко теряет свою и так не выдающуюся прочность
б) если поставить каменную вату — паропроницаемый материал — водяной пар переместиться в нее из газоблока
Опять же вопрос примыкания утеплителя и газоблока остается актуальным, надо обеспечить хорошее их примыкание, но это уже не так критично, как в варианте с полистиролом
3. рассматриваем дальше только вариант б), ибо вариант а) — это полная жопа
Итак — пар в утеплителе, куда дальше ?
А тут опять два варианта :
в) в облицовочный кирпич
Опять же не получится обеспечить качественное прилегание облицовки и утеплителя — опять воздушный зазор и сборник конденсата
А облицовочный кирпич крайне не любит влаги — в зимний период он промерзает насквозь и если он насыщен влагой, то будет отслаиваться лещадками и внутри и снаружи Кроме того — облицовочная кладка в полкирпича самостоятельно стоять не может — ей надо держаться за несущую стену гибкими связями
г) в вентзазор между каменной ватой и облицовочным кирпичом для удаления водяного пара
Вот тогда мы получаем теплую и сухую стену, за счет вывода влаги в вентзазор изнутри, при этом обеспечивая сохранность облицовки и удаление из нее влаги, полученной с внешней стороны
4. Вентзазор в стенах должен конструктивно соединяться с вентзазором по контррейке в кровле в одну систему эвакуации, а для создания тока водуха в межстенном пространстве надо внизу кладки облицовки предусмотреть отверстия для забора воздуха
Есть множество ньюансов — материал гибких связей, плотность каменной ваты и прочее — но все решаемо
Сложно ?
Да, но экономия на материале стен должна быть чем то компенсирована
А косячить, заранее устраивая себе кучу проблем — не дело
Я это сделал в прошлом году )))
Спрашивай — проконсультирую
Принято!
Огромное спасибо за конкретный развернутый, четко по делу ответ!
Тут в комментах ниже кто то писал, что пенополистерол( обычный пенопласт) имеет открытоячеистую структуру в отличии от экструзионного… То есть обычный пропускает пар, а экструзионный нет… Немного это смутило, так как я читал, что не пропускает обычный пенопласт ничего.
Вентзазор между утеплителем и внешней облицовкой я оставлю, это самой собой. Как правило не замазывают горизонтальные швы в первом ряду облицовочной кладки и в последнем в районе стыка с крышей, как раз Вы и написали! То есть обеспечивают этим конвекцию потока, тяга воздуха по простому))
Осталось убедить жену, что базальтовая вата повышенной плотности лучше пенопласта… Ей мама сказала, что ее знакомый проложил пенопласт и дом летом прохладный, а зимой очень теплый…
Замешайте керамзит с жидким раствором, и закидайте в промежуток между блоком и облицовкой. Раствору только мало надо, чтобы керамзит в нём только обмазался. Затвердеет — схватится.
Ты смотрел характеристику теплопередачи керамзитобетона, керамзита и просто бетона? Толк от керамзитобетона только в весе.
при проектировании точка росы где? если не в утеплителе, то не надо переживать. а вообще лучше сыпать пенопласт крошки, они заполняют на 100% все свободные места (в отличии от целых листов у которых полно пазух около кладочной сетки) удачи бро)
Вряд ли вы меня послушаете, но советую подумать над материалом стен… Ведь если изотерма проходит через утеплитель, тепло передача стен не имеет значения. И газобетон можно заменить керамзитобетоном, или кирпичом…
Материал уже куплен, менять что то координально не будем уже. А вот утеплитель выбрать и технологию его укладки — это пока еще доступно так как кладку еще не начинали.
Приглядитесь к мокром фасаду. Ну его на фиг этот облицовочный кирпич. Я раньше мокрый фасад в серьёз не воспринимал. Но у меня на виду здания, с ним, которым по 10 с лишним лет. И он в замечательном состоянии. А облицовка кирпичом выйдет по деньгам, как материалы основных стен. Ну и утеплитель в нем замурован навсегда. Если только это не засыпной перлит.
Вы считали сколько стОит хороший мокрый фасад? Дороже лицевого кирпича!
По теме. Начинаем строить дом по такой-же схеме. И думали над таким-же вопросом, в итоге, оставляем просто воздушную прослойку. Минвата рассыпется лет за 10, жить в термосе из пенопласта тоже не охото, грибок гарантирован. Воздух лучший изолятор, решили так.
Воздух лучший изолятор, когда нет конвенции…Поэтому его заключают в капсулы, которые ограничивают эту самую конвенцию. А у вас одна большая камера. На всякий случай под софитами оставьте место для возможной засыпки того же гранулированного пенопласта, или перлита. Дырки денег не стоят.
оставим, но для наших широт такой стены вполне достаточно, можно конечно и метровую сделать, но нет смысла, лучше полноценный второй этаж и хорошее утепление потолка с окнами.
Сиавь блоки в кирпич, а не в половину.
Лучше однородной стены ни чего нет.
Если газобетон обкладывать пенопластом, надо зазор оставлять для продухи. А так или минвату по рейкам класть.
Правила облицовки стен дома из газобетона кирпичом
Газобетон – это строительный материал, который становится все более актуальным при возведении жилых помещений. Столь востребованным он стал за счет повышенной теплоемкости, небольшой массы и отсутствием необходимости заливать мощный фундамент. Однако, материал пористый и боится влаги, поэтому для защиты от негативного воздействия окружающей среды, следует использовать облицовочные материалы. Облицовка дома из газобетона кирпичом – это более подходящий способ, для тех кто еще не выбрал вид отделки для фасада.
Плюсы и минусы газобетонной стены, облицованной кирпичом
Самый выгодный материал, которым можно облицевать газобетон – это кирпич. Преимущества выбора именно его? Рассмотрим плюсы:
- Надежная защита от агрессивного воздействия: снег, дождь.
- Гарантия качественной звукоизоляции внутри помещения.
- Презентабельный фасад.
- Способность противостоять абсолютно любым явлениям природы, за счет высокой прочности конструкции.
- Газобетонные стены наделены паропроницаемостью, а значит, отделка должна иметь точно такое же свойство, которому прекрасно соответствует кирпич.
- Кирпич увеличивает срок службы жилого помещения.
- Отличная морозостойкость и механическая прочность.
Как и других материалов, у газобетонных стен есть некоторые недостатки, которые весьма значительны:
- Если укладка газоблоков будет с воздушным зазором, то в полости стены будет образовываться конденсат, что станет причиной утраты свойств блока намного раньше.
- Необходимость производить дополнительные деньги на покупку облицовочных материалов.
Способы облицовки стен кирпичом
Как оказалось, разработано три варианта облицовки газоблочных стен, где используется кирпич: плотно к стенам, с воздушным за зазором, как трехслойная стена. Все они отличаются между собой по конструкции и методу укладывания кирпича. Остановимся подробнее на каждом.
Вплотную к стене
Этот метод редко пользуется спросом, т.к. актуален только для не отапливаемых помещений. Если такой способ реализовать в сооружениях с отоплением, то теплый воздух, стремясь уйти на улицу, будет образовывать конденсат, что послужит толчком к разрушению стены с внешней стороны.
Нельзя жестко соединять кирпич и газоблоки, потому как у них совершенно разный коэффициент теплоотдачи, т.е. в жару или на сильном холоде они подвержены неодинаковому расширению, а это, в скором времени, послужит причиной порчи кладки стены.
С воздушным зазором без вентиляции
Данный способ облицовывания считается долговечным, потому как повышает теплоизоляцию стен. Учтите, что способ актуален для сооружений без отопления, потому как этом варианте кладки не предусмотрена вентиляция, как следствие, скопившийся конденсат будет накапливаться в самой нижней части стены над фундаментом. Строители рекомендуют в участке между кирпичом и газоблоком укладывать слой теплоизоляции.
Трехслойная стена с вентилируемым пространством
Такая кладка считается самой оптимальной в отношении повышенного срока эксплуатации и технических характеристик стройматериалов. Трехслойный вариант представляет собой: первый слой – газоблоки, второй – пространство для вентиляции, третий – кладка кирпича. Создать подобную стену не просто, потому как это очень сложный процесс, где нужны умения правильно производить расчеты.
Формируется кирпичная стена, где требуется проделать сквозные отверстия, служащие вентиляцией. Существует определенная формула: на 10 квадратных метров делается 35 квадратных сантиметров отверстий в любом порядке (диаметр отверстия 1 сантиметр). Строители рекомендуют делать отверстия в швах между кирпичами.
Нижние отверстия стоит делать с уклоном на уличную сторону, чтобы образуемый конденсат вытекал на улицу.
Есть еще технология создания вентиляционных коробов. Суть в том, что вертикальные швы между кирпичами расположенными рядом не заливают раствором, а вставляют в них пластиковые коробки со специальными отверстиями. Это требуется для беспрепятственной циркуляции воздуха, а через вышеуказанные отверстия выходит влага.
Когда подходит очередь укладки утеплителя, надо подбирать такой, чтобы он не напитывался влагой и был дышащим. Пример такового – базальтовая вата.
Утепление газоблоков с обкладкой из облицовочного кирпича
Дом из газобетона с облицовкой кирпичом следует обязательно утеплить. Это необходимо не только для идеального сохранения тепла в здании, но и для повышения характеристик эксплуатации. Итак, существует несколько вариантов утеплителя и каждый стоит рассмотреть отдельно:
- Керамзит – представляет собой насыпной утеплитель, в состав которого входят гранулы обожженной глины.
- Минеральная вата – включает в себя минеральные волокна. Строители рекомендуют отдавать предпочтение тому варианту, что производится в плитах. Важно: минеральная вата быстро пропитывается влагой, а значит, ей нужна гидроизоляция.
- Базальтовая вата – в ее основу включены волокна горных пород. Утеплитель отличается высокой стойкостью к огню и влаге, прекрасно пропуская через себя воздух. Такая вата – это удобный вариант для заполнения открытого пространства между двумя стенами.
- Пенофол – это синтетический фольгированный материал. Он имеет маленькую толщину, что очень актуально, когда между обшивкой и стеной слишком маленький проход.
- Пенополистирол –бюджетный вариант, но в тоже время он не пропитывается влагой. Форма выпуска – плиты, за счет чего легко прикрепляется на стену. Интересно то, что это самый популярный материал при утеплении газоблоков.
Существует определенный порядок монтажа утеплителя, зависящий от типа материалов. Все виды, за исключением керамзита, монтируются перед тем, как делать облицовку. Вату и пенопласт фиксируют при помощи специальных дюбелей-зонтиков из пластмассы. При теплоизоляции керамзитом, его при необходимости можно досыпать в процессе создания облицовки.
Чтобы не было швов между составляющими частями теплоизоляции, их заделывают при помощи герметика или монтажной пены.
Технология устройства облицовки
Технология формирования облицовки немного отличается и зависит от того, в каком здании она создается – в новом или в эксплуатирующемся. Стоит рассмотреть каждый из более детально.
При строительстве нового сооружения
Фундамент кладется по всей толщине строящейся стены, т.е. для кирпича и газоблока. Гидроизоляция цоколя делается также для всей стены. Далее можно будет начинать класть стены. Что класть в первую очередь, решайте сами: кирпич, газоблок или все одновременно. Но кирпичная кладка обладает большим количеством швов по высоте, но надо понимать, что они заметно толще, а вот блоки вообще можно укладывать на клей. Так возникает разница усадок, но она не значительна, если говорится не о сооружениях, где много этажей.
Крепление газобетона и кирпича при облицовке нового здания
Крепление облицовочного кирпича к газобетону делается с использованием обычной арматуры. Изготовить ее можно самому из прутка или проволоки необходимого диаметра. Кроме этого, для этих целей подходит стальная лента. Но во всяком случае нужно обращать внимание на следующие моменты:
- Сумма величин площадей поперечного сечения арматуры не больше половины квадратного сантиметра на квадратный метр новой кладки.
- Количество арматурных изделий на квадратный метр – 3-5 штук.
- Возле углов или проемов на расстоянии 20-25 см надо делать еще ряд, шаг которого составляет 25-30 см.
Вместо связей можно взять и заводские изделия, которые одновременно предусматривают крепление утеплителя.
При установке связей нужно обеспечивать качественную анкеровку – т.е их положено погружать в раствор чередуя ее, примерно, на расстоянии 10 диаметров.
Облицовка внешних стен эксплуатирующегося здания
В такой ситуации нужно возводить еще один фундамент под кладку. Без разницы, какой тип будет выбран, главное, чтобы он справился с дополнительной нагрузкой, т.е. выдержал стены, перекрытия, кровлю и т.д., которые уже удерживает фундамент.
При формировании такой облицовки, связи закрепляются на дюбеля. В стене лучше сделать сквозные отверстия и монтировать прутья шайбами с внутренней части. Прутья можно крепить в слепые отверстия. Старайтесь не заливать стандартный раствор, для такого случая подойдет клей на базе эпоксидной смолы.
Для крепления подходят самоанкерующиеся болты, потому как они практически мгновенно и достаточно качественно крепятся в блоках из газобетона и швах, расположенных между ними.
Рекомендации по облицовке
Облицовка кирпичом газобетонных блоков – это сложная работа, состоящая из трех этапов, которые стоит рассмотреть более подробно:
- Заливка фундамента.
- Подбор кирпича.
- Формирование кирпичной кладки.
Закладка фундамента
Это основной момент, который нужно продумать изначально, т.е. еще до старта строительства. Здесь необходимо учесть три нюанса: ширина газоблока, утеплителя и кирпича для облицовки. Обязательное условие – облицовывание не должно свешиваться с краев, т.е. ширина фундамента должна складываться из трех вышеуказанных компонентов.
Выбор кирпича
Газоблок необходимо облицовывать кирпичом, монтируемый на его ширину, иными словами, на половинку кирпича. Материал изготовления бывает пустотелый, клинкерный, полнотелый и силикатный. Чаще всего на практике берется клинкерный или пустотелый кирпич. Первый способ обходится намного дороже, но и положительных качеств у него не мало:
- высокопрочный при сжатии;
- клинкер по морозостойкости намного лучше, чем обычный лицевой кирпич;
- привлекательный внешний вид;
- низкое поглощение воды (5%), по сравнению с обычным кирпичом (около 13%).
Укладка кирпича
Завершающий этап облицовки, включающий в себя несколько этапов, где много важных моментов. Чтобы надежно защитить фундамент от конденсата, следует делать укладку на слой рулонной гидроизоляцию. Остальные ряды кладутся на заранее подготовленный раствор так, чтобы швы в предыдущем ряду плотно заполнялись. Для кладки понадобится металлический пруток, диаметр которого 0,8-1 см. Размещают снаружи. Аналогичный пруток используется при создании вертикального шва.
youtube.com/embed/o_G_hltF0IU?feature=oembed» src=»»/>На сформированный ряд выкладывается раствор и кладется следующий кирпич. При движении ряда не забывайте вдоль него продвигать пруток.
Помните, что на несколько рядов требуется делать армировку. Для формирования подойдет синтетическая сетка, которую позволяется разрезать на полосы шириной 8 см. По мере застывания раствора, может понадобиться расшивка швов. Сначала их наполняют раствором, а после его образования, делается расшивка при помощи специального инструмента.
голоса
Рейтинг статьи
Рекомендации начинающим строителям
На нашем заводе выпускается обширная номенклатура материалов для возведения наружных и внутренних стен зданий — силикатный кирпич, блоки из ячеистого бетона (газобетон) и керамические поризованные блоки, а также разные виды железобетонных изделий, таких как железобетонные сваи, фундаментные блоки, пустотные плиты перекрытия различных геометрических размеров и форм, сопутствующие товары, например строительный песок с доставкой, каркасные изделия и т. д., т.е. материалы, необходимые практически для любого вида строительства.
Несмотря на такое разнообразие выпускаемой продукции, мы наибольшее предпочтение отдаем домам, возведенным из полнотелого силикатного кирпича или блоков. Почему?
Потому, что построенные из них здания являются наиболее прочными, долговечными и тёплыми, а проживание в них комфортным. Раньше, до введения СНиП 23-02-2003 «Тепловая защита зданий» наружные стены зданий делались, как правило, однородными (кирпич, керамзитобетон), сочетая в себе несущие и теплоизолирующие функции. В результате повышения норм сопротивления теплопередаче появилась необходимость разделить несущие и теплоизолирующие функции элементов стены. Несущие функции возлагаются теперь на традиционные, более прочные материалы (кирпич, бетон), в качестве теплоизолирующих материалов предлагается использовать такие высокоэффективные теплоизоляторы, как пенопласт, минераловатные и другие утеплители, легкие бетоны.
Теплота кирпича, притом любого, даже суперпоризованного меркнет по сравнению с теплотой современных утеплителей, поэтому наружные стены лучше выполнить из полнотелого кирпича, но хорошо утеплить. Для наглядности приводим «Заключение по результатам теплотехнических испытаний кирпичной кладки» выполненное «Центральной аналитической лабораторией по энергосбережению в строительном комплексе». В выводах «Заключения по результатам теплотехнических испытаний кирпичной кладки» указано, что для получения сопротивления теплопередаче кладки Rо=3,34 м2С/Вт ( для климатического пояса с нормальным режимом эксплуатации, куда относится г. Казань и близлежащие районы Rо должно быть не менее 3,36 м2С/Вт), необходимо выполнить стену толщиной 770 мм. из сверхпорирозованной керамики на теплом растворе. А что мы сегодня нередко видим на строительных площадках:
Рис. кладки.
Вариант I. Если стена выкладывается из сверхпоризованного материала пустотностью от 45 до 55 %, облицовка выполняется из кирпича толщиной 12 см. пустотностью до 30 % и вся кладка выполняется на обычном растворе, то, кладка выполненная таким образом будет держать тепло внутри здания в 2-2,5 раза хуже, чем положено по нормативам.
Вариант II. Ещё хуже, по следующим причинам:
- В качестве несущей стены использованы поризованные блоки толщиной всего 25 см., при такой толщине, по-настоящему несущими могут быть только стены из плотных материалов.
- Если в качестве утеплителя использован пенопласт толщиной 5 см., то высока вероятность образования конденсата между несущей стеной и пенопластом, так как утеплитель толщиной 5 см. не обеспечивает необходимый уровень теплозащиты здания; кроме этого, такая стена не «дышит», и поэтому, при строительстве такого дома необходимо предусмотреть хорошую вентиляцию помещений. Если в качестве утеплителя использована минеральная вата, то тёплый и влажный воздух из помещения проходит через несущую стену и утеплитель и частично упирается в наружный слой облицовки с образованием конденсата на границе облицовки и утеплителя.
- Отсутствует вентиляционный зазор между облицовкой и утеплителем, в результате утеплитель увлажняется, и теплотехнические характеристики ограждающей конструкции существенно ухудшаются.
Если в первом варианте у Вас просто увеличиваются расходы на отопление, то второй вариант является абсолютно безграмотным, сделанным по незнанию или с целью получения дополнительной прибыли.
Сегодня на рынке появилось множество новых видов материалов, которые являются и несущими и теплоизоляционными. Отчасти, в первом приближении, это так, но не всегда. Здесь кроется определенная уловка, предлагая как бы «два в одном», потому что, для увеличения несущих способностей здания надо повышать плотность и прочность стеновых материалов, что соответственно приводит к уменьшению теплоизоляционных качеств и наоборот, т.е. эти два понятия являются, как бы взаимоисключающими и поэтому надо выбирать, что для Вас важнее: чтобы здание получилось крепким или теплым, или и то и другое. Приведём еще один довод в пользу строительства крепких стен. В последние годы много зданий строятся из газобетона и поризованной керамики с последующим утеплением снаружи. Это совершенно не правильный подход. Потому, что, каркас здания должен быть крепким, а утеплитель теплым. А накладывая одно теплое на другое мы теряем прочность и надежность здания. Если строить из вышеуказанных материалов, то надо просто выдержать необходимую толщину стены и не применять дополнительное утепление, так как они без того являются теплоизоляционными материалами. А если утеплять наружные стены, то лучше всего построить крепкое здание толщиной 250-380 мм. из полнотелого силикатного кирпича, потому что, он прочный, прекрасно анкеруется, имеет очень высокую морозостойкость (значит долговечен и не боится влаги), имеет высокую паропроницаемость (значит в этом здании будут комфортные условия проживания), не крошится, и не «фонит», т.е. в радиационном отношении является наиболее чистым материалом — при допустимом значении содержания удельной эффективной активности естественных радионуклидов не более 370 Бк/кг. , фактическое значение составляет всего 28,80 Бк/кг., в то же время у многих других мелкоштучных материалов данный показатель приближается к предельным показателям.
Мы также облицовку зданий предлагаем выполнять из полнотелого цветного силикатного кирпича. Почему? Потому, что в них нет пустот (если есть, то они несквозные и при кладке укладываются вверх дном), потому, что средняя прочность такого кирпича составляет 200 кг/см2 и выше, а при такой прочности морозостойкость составляет более 100 циклов. Потому, что при облицовке здания кирпичом высокой пустотности, в пустоты кирпича с наружной стороны попадает влага, в зимнее время она замерзает и разрушает наружную стенку кирпича. На этот счёт было ряд указаний Министерства строительства с запретом на применение лицевого кирпича с пустотностью выше 11%, при этом, технологические пустоты на постели кирпича должны были отступать от края кирпича не менее, чем на 30мм. Но, это условие не всегда выполняется. Мало того, что пустоты отступают от края меньше чем на 30 мм., многие строители делают в таких кладках глубокую расшивку, создавая тем самым, дополнительные условия для последующего разрушения облицовки здания. В некоторых выполненных таким образом зданиях уже через 5-8 лет эксплуатации наступает аварийное состояние наружной облицовки.
На сей счет, некоторые наши оппоненты могут возразить: облицовка из полнотелого силикатного кирпича то же разрушается. Да так, если неправильно сделаны отливы и по стене течёт вода. В таком случае разрушается кладка из любого кирпича или камня.
Какой же материал выбрать в качестве утеплителя? Ассортимент современных теплоизоляционных материалов велик:
- пенополистиролы (обычный и экструдированный).
- пенополиуретан.
- пеноизол.
- минеральная вата.
- один из новых видов утеплителя «Шелтер» и другие.
Независимо от названия, желательно, чтобы утеплитель частично или полностью соответствовал следующим требованиям: не впитывал влагу, не разламывался на мелкие кусочки и не осыпался, не горел, не слеживался, восстанавливался после проминания, быть долговечным и иметь хорошие теплоизоляционные свойства.
В большинстве случаев теплоизоляционные плиты укладываются в два слоя; 1-й слой делается из плит меньшей плотности для ровного заполнения неровностей кирпича, второй наружный слой выполняется из более жестких плит плотностью 75-150 кг/м3. Если укладывать в один слой, то необходимо применять утеплители большей плотности, т.е. 75-150 кг/м3, но, в любом случае, толщина слоя утеплителя должна быть не менее 10 см. Так как, подвальная, цокольная часть и нижние ряды кладки здания в наибольшей степени подвержены воздействию влаги, для их утепления желательно применить экструдированный пенополистирол или другие утеплители, которые не боятся влаги. Важно знать, что материалы с более низким коэффициентом паропроницаемости целесообразно располагать в конструкции со стороны помещения, а более высокой со стороны улицы, т.е. по мере движения влажного воздуха от внутренней поверхности стены к наружной, слои конструкции должны обладать возрастающей воздухопроницаемостью в противном случае, на пути движения из помещения на улицу, на границе с теплоизоляционным материалом может конденсироваться влага.
Для сравнения ниже приводим значения сопротивления воздухопроницанию слоёв конструкций согласно приложения С — СНиП 23-02-2003 «Тепловая защита зданий» таблица 1., а также показатели паропроницаемости согласно приложения 3 СНиП II-3 -79 таблица 2:
Таблица 1.
Материалы и конструкции | Толщина слоя, мм. | Сопротивление воздухопроницанию Rф, (м2*ч*Па)/кг. |
---|---|---|
1. Бетон сплошной (без швов) | 100 | 20000 |
2.Газосиликат сплошной (без швов) | 140 | 21 |
3. Кирпичная кладка из сплошного кирпича на цементно-песчанном растворе толщиной в один кирпич и более | 250 и более | 18 |
4. Картон строительный (без швов) | 1,3 | 64 |
5. Обшивка из обрезных досок, соединенных в шпунт | 20-25 | 1,5 |
6. Обои бумажные обычные | — | 20 |
7. Пенобетон автоклавный (без швов) | 100 | 2000 |
8. Пенополистирол | 50-100 | 80 |
9. Плиты минераловатные жесткие | 50 | 2 |
10. Штукатурка цементно-песчаным раствором по каменной или кирпичной кладке | 15 | 373 |
Таблица 2.
Материалы и конструкции | Паропроницаемость мг/(м*ч*Па). |
---|---|
1. Железобетон | 0,03 |
2. Газосиликат сплошной | 0,2 |
3. Кладка из силикатного полнотелого кирпича | 0,11 |
4. Картон | 0,06 |
5. Дерево – сосна, ель | 0,06 |
6. Обои бумажные обычные | 0,06 |
7. Газобетон автоклавный | 0,2 |
8. Пенополистирол | 0,05 |
9. Плиты минераловатные | 0,3-0,6 |
10. Цементно-песчаный раствор | 0,09 |
Как видно из вышеуказанных таблиц, по мере движения влажного воздуха от внутренней стены к наружной, т.е. от штукатурного слоя и кирпича к слою утеплителя, паропроницаемость слоёв увеличивается, а сопротивление воздухопроницанию уменьшается, тем самым обеспечивается хороший микроклимат в помещении.
Рассмотрим вкратце наиболее распространенных три варианта наружного утепления несущих стен:
1. Вариант — трёхслойная стена с кирпичной облицовкой.
Технология кладки с утеплителем
- Кладка облицовочного слоя до уровня связей.
- Монтаж теплоизоляционного слоя, чтобы верх его был выше облицовочного слоя на 5-10 см.
- Кладка несущего слоя до следующего уровня связей. Установка связей, протыкая их через утеплитель, если горизонтальные швы несущего и облицовочного слоев стены, в которых ставятся связи, не совпадают более, чем на 2 см в несущем слое кирпичной кладки, связи размещают в вертикальном шве
- Кладка по одному ряду кирпича в несущей части стены и облицовочном слое.
Эта конструкция состоит из трёх слоёв: несущей стены, облицовки из кирпича и утеплителя, который расположен между ними. Несущая и облицовочная стены опираются на единый фундамент. Потому фундамент для такой трёхслойной стены необходимо выполнить с учётом толщины утеплителя, вентзазора и облицовочного слоя.
Для вентиляции воздушного зазора вертикальные швы в кладке нижнего ряда облицовки не заполняют раствором из расчёта 75 см2 на каждые 20 м2 поверхности стены. Верхние продухи предусматривают в карнизной части стены.
При облицовке стен кирпичом важно обеспечить долговечность слоя утеплителя, применив самые качественные утеплители. При малоэтажном строительстве утепление наружной стены и кладку кирпичной облицовки можно выполнить вторым этапом после завершения кладки основной стены. В этом случае будет гарантировано качество утепления, так как обеспечивается визуальный контроль за креплением утеплителя к несущей стене и за отсутствием щелей между плитами утеплителя. Если кладка несущей стены и облицовки ведутся одновременно, то они между собой связываются специальными стеклопластиковыми связями. По вертикали связи располагают с шагом 600 мм. (высота плиты утеплителя), по горизонтали — 500 мм., при этом количество связей на 1 м2 глухой стены – не менее 4 шт. На углах здания, по периметру оконных и дверных проемов 6-8 шт. на м2. Кладку кирпичной облицовки продольно армируют кладочной сеткой по вертикали не более 1000-1200 мм.
Преимущества
- красивый и респектабельный внешний вид;
- высокая долговечность при условии правильного проектирования и квалифицированного монтажа конструкции.
Недостатки
- большая трудоемкость возведения;
2. Вариант с устройством навесного вентилируемого фасада.
Навесной вентилируемый фасад представляет собой сборную конструкцию, состоящую непосредственно из облицовки – фиброцементных плит, керамогранита, алюминиевых композитных панелей, натурального камня, сайдинга, профлиста и др.) и подоблицовочного каркаса (кронштейнов, направляющих). отличающихся по декоративным свойствам, качеству и цене. Подоблицовочный каркас предназначен для надежного крепления к внешней стене здания облицовочных плит и термоизоляции таким образом, чтобы между стеной и утеплителем остался вентилируемый воздушный зазор, предохраняющий несущие стены от образования конденсата. Внешняя облицовка вентилируемых фасадов защищает от осадков, механических воздействий и выполняет декоративную роль. Утеплитель перекрывает несущую стену строения и обеспечивает сохранение тепла по всей площади фасадов. Для достижения высокой долговечности навесного вентилируемого фасада подоблицовочный каркас и кляммеры должны быть изготовлены из высококачественных и имеющих достаточную толщину материалов.
Преимущества:
- возможность использования различных облицовочных материалов, как по цене, так и по качеству.
- широкая возможность цветовых комбинаций.
- монтаж фасадной системы в любое время года.
Недостатки:
- необходима высокая квалификация монтажников.
- такие системы получили распространение относительно недавно, поэтому они ещё не прошли испытания временем.
3. Вариант – облицовка декоративной штукатуркой (мокрый фасад).
При отделке дома мокрым фасадом достигаются те же результаты по теплозащите здания, что и при первых двух вариантах. Особенность — его ценовая доступность, так как стоимость работ за м2 формируется из стоимости утеплителя, клеевых составов и декоративной отделки, материалов весьма доступных, особенно с учетом возможности выбора самых разных по цене материалов.
Но данная технология имеет и некоторые недостатки, связанные, прежде всего с требованиями соблюдения определенных условий при выполнении работ. Это:
- соблюдение температурного режима, так как работы можно проводить при температуре окружающей среды выше 5 °C и ниже 30 °C;
- высокие риски. Есть немалая вероятность появления трещин, отслаивания и т.п.
И, наверное, не будет лишним добавить самое главное: независимо от того, какой материал применяется для строительства, какой способ утепления , все работы необходимо выполнять грамотно и качественно с учётом существующих нормативно-технических документов; вести постоянный контроль за ходом выполнения строительно-монтажных работ, ибо на сегодняшний день, еще не придуманы такие системы строительства, которые бы работали в автоматическом режиме без участия руководителей и специалистов.
Приложение: Заключение теплотехнических испытаний кирпичной кладки, выполненной центральной аналитической лабораторией по энергосбережению в строительном комплексе ЦАЛЭСК №12-06 от 8.02.2006г. Заказчик; ООО «Керамика – синтез» дочернее предприятие ООО «КЗССМ».
Утепление стен пенопластом
В этой статье мы поговорим об утеплении стен дома пенопластом, не затрагивая утепление стен методом оштукатуриваемого фасада.
Стены являются ограждающими конструкциями. Их правильно проведённая теплоизоляция является неотъемлемой частью строительства дома. До 60-80% теплопотерь происходит именно через стены дома. Дороговизна затрат на отопление заставляет задуматься об организации правильного проведения теплоизоляции стен(до 40% от стоимости коммунальных платежей). Устройство данного вида теплоизоляции можно осуществить своими руками.
Достоинства применения пенопласта
Высокие показатели теплоизоляции
Простота монтажа
Лёгкость самого материала
Дешевизна
Лёгкость перевозки
Есть и недостатки, такие как низкая паро- и воздухопроницаемость, устраняется устройством принудительной вытяжной вентиляции. Также необходима хорошая гидроизоляция материала в стене.
Трёхслойная кирпичная кладка
Это самая распространённая разновидность стены. Конструктивно она выглядит так:
1 слой — внутренняя кирпичная, монолитная, газобетонная или шлакоблочная стена , которая является несущей стеной для кровли и межэтажных перекрытий здания.
2 слой — пенопласт в качестве утеплителя кирпичной кладки. Это средний слой, он кладётся между первым и третьим слоем – внутренней и наружней стенами. В холодные сезоны устраняет промерзание внутренней стены дома.
И наконец, 3 слой – наружняя кирпичная стена. Она выполняет функцию дополнительной защиты от промерзания и неблагоприятных воздействий окружающей среды и декоративную функцию.
Схема утепления пенопластом трёхслойной кирпичной кладки:
- Наружняя стена — облицовочный кирпич.
- Утеплитель – слой пенопласта толщиной , определяемой проектом здания.
- Слой грунтовки глубокого проникновения и слой монтажного клеевого состава.
- Кирпич полнотелый.
- Армирующая рамка из проволоки диаметром 4мм, класса Вр1 или связи.
- Штукатурный слой.
- Слой финишной шпаклёвки.
Преимущества использования пенопласта в трёхслойной кирпичной кладке
Пенопласт позволяет облегчить вес и уменьшить толщину стены за счёт уменьшения объёма используемого кирпича и также уменьшить общую стоимость применяемых материалов.
Сведение к минимуму потерь тепла.
Значительное снижение уровня шума.
Не допускается смещение «точки росы»-то есть точки конденсации пара внутрь помещений.
Технология устройства трёхслойной кирпичной кладки с пенопластом
- Внутренняя кирпичная стена
- Пенопласт
- Наружняя кирпичная стена
- Связи
Внутренняя кирпичная выполняется обычно из полнотелого красного керамического кирпича . Кладка выполняется на песчано-цементном растворе толщиной 1,5 или 2 кирпича. Наружняя кирпичная стена делается из облицовочного кирпича 120 мм.
Что такое “Продухи”? Их устройство.
Трёхслойная кирпичная кладка бывает двух типов: с воздушным зазором и без него. Первый тип эффективнее, так как позволяет полностью удалять влагу из конструкции в атмосферу. Зазор увеличивает общую толщину стены.
Продухи-это отверстия внизу и вверху стены с воздушным зазором шириной 20-50 мм для вентиляции. Через них парообразная влага выходит из стены.
- Зазор 20мм
- Низ стены
- Верх стены
Размер продухов примерно 75 см2 на 20 м2 площади стены. Нижние продухи служат ещё и для отвода воды, а не только для вентиляции.
Продухи создаются путём укладки на ребро щелевого кирпича или оставлением небольших промежутков между укладываемыми кирпичами.
Связи. Их установка.
Внутренняя и наружняя стены прикрепляются к друг другу с помощью армирующей рамки из проволоки или, что более современно, стеклопластиковыми или базальтовыми связями диаметром 4,5 – 6 мм. Также они обладают малой теплопроводностью по сравнению с металлом.
Эти связи также фиксируют утеплитель. Он просто на них накалывается.. Связи устанавливаются в стены с заглублением на 60-90 мм на дистанции 600 мм друг от друга горизонтально и 500 мм вертикально, в среднем 5 шт/м2.
Дополнительно на стержни крепятся фиксирующие шайбы.
Швы между плитами перевязываются и устанавливаются вплотную, чтобы избежать потерь тепла. В углах зданий создают зубчатое зацепление во избежание возникновения мостиков холода.
Очерёдность монтажа трёхслойной кирпичной стены с пенопластом
Утепление стен пенопластом под сайдинг
Проводится в следующей последовательности:
Демонтируются все водостоки, ставни, наличники, зачищается поверхность всех стен от грязи, неровностей, выступов.
Уже на очищенную поверхность прикрепляют слой пароизоляции. Лучше с помощью строительного степлера. Слой пароизоляционной мембраны-крепят шероховатой поверхностью к стене.
Монтируется обрешётка-именно вертикальная-из дерева, или металла на расстоянии от стены, несколько меньшем, чем толщина утеплителя, для плотного прилегания. Крепёжные элементы-гвозди или саморезы,для работ по дереву или металлу.
Пенопласт закрепляется между деревянными или металлическими рейками. Для дополнительного крепления можно применять пластиковые дюбель-грибы с широкой шляпкой.
Пенопласт плотно укрывается гидроизоляционной плёнкой,края её подгибают к стене.
На рейки обрешётки монтируют древесный или металлический каркас, к которому впоследствии крепится сайдинг.
Если сайдинг монтируется вертикально, обрешётку нужно крепить горизонтально, и наоборот, если сайдинг монтируется горизонтально, обрешётка крепится вертикально.
Если для каркаса обрешётки берётся дерево, то поверхности его необходимо обрабатывать антисептиком и огнезащитным составом. Самое эффективное утепление фасада-двухслойное. Второй слой кладётся поверх стыков первого слоя. В результате получаем ликвидацию всех мостиков холода.
Схема утепления стен под сайдинг
Вот примерно как это выглядит в реальности:
Вот что получается в конечном итоге:
Утепление стен пенопластом под штукатурку (оштукатуриваемый фасад)
Здесь мы рассмотрим не трёхслойное утепление стен, а утепление стены с наложением на неё пенопласта с последующим нанесением штукатурки.
Здесь в разрезе мы видим основные элементы , из которых состоит система оштукатуриваемого фасада. Это наружняя стена,на которую крепится пенопласт с помощью клея для пенопласта и фасадных дюбелей (пластиковых дюбель-грибов с большой шляпкой), армирующей сеткой , слоем штукатурки и финишной шпаклёвки. Финишная шпаклёвка на этой фотографии на представлена, но она всегда присутствует в так называемой системе «мокрого» фасада с декоративной и защитной функцией.
Схема теплоизоляции стены методом оштукатуриваемого или «мокрого» фасада
Пенопласт ППС 16Ф или ПСБ-С 25Ф будет использоваться нами в качестве утеплителя в системе оштукатуриваемого фасада. Его плюсы- он недорог, обладает замечательными адгезивными свойствами, к нему хорошо прилипает штукатурка с армирующей сеткой. И он выдерживает немалый вес всей системы.
Рассмотрим основные этапы устройства теплоизоляции стен методом оштукатуриваемого или «мокрого» фасада.
Подготовка
Утепление стены начинается с её подготовки . Стены обязательно должны быть сухими, поэтому исключена работа в дождливый период, стены должны быть сухими по меньшей мере 7 дней. Далее-сезон должен быть тёплым.
Нужно тщательно зачистить стену. Всё что неплотно держится на стене-должно быть зачищено. Остаётся только то, что держится прочно. Краску-удаляют.
Стены нужно выровнять.Плиты пенопласта должны лежать на стене ровно, не образуя пустот. Глубокие выступы и ямы загладить штукатуркой для выравнивания., пред этим загрунтовать. Работа будет проходить легче на ровных поверхностях.
Монтаж подоконников, отливов , откосов
Все эти элементы устанавливаются до начала монтажа пенопласта на стены. Подоконник обычно делают выступающим на 30-40 мм за стеновую плоскость. Например, если толщина пенопласта 50 мм , подоконник нужен глубиной 90-100 мм, так как 50 мм пенопласт, 10 мм штукатурка плюс финишная шпаклёвка плюс 30-40 мм выступ подоконника. При установке подоконник нагружают тяжестью на 3-4 часа, перед этим укладывают пластины пенопласта, все пустоты заполняют монтажной пеной.
Откосы должны выступать за поверхность стены , без учёта толщины пенопласта, на 10 мм для обеспечения простоты стыковки с утеплением. Сажают откос на тот же клей для пенопласта. Пенопласт для откосов нужен толщиной 20-30 мм самое большое, иначе он «налезет» на стекло.
Отливы ставят между утеплителем и цоколем для того, чтобы вода не затекала внутрь дома. Это полоса оцинковки , окрашенная порошковой краской. Прикручивается к цоколю дюбелями или саморезами с промежутками в 200 мм. Длина одного отлива 2 метра, один кусок накладывается на другой на 100-150 мм.
Эти работы трудоёмки, сложны, но очень положительно сказываются на общем результате.
Монтаж пенопласта на стену
Технология монтажа пенопласта состоит в том, что сначала пенопласт приклеивается к стене, а потом для прочности крепления ещё и приколачивается пластиковыми дюбель-грибами. Клеят обычно с левого угла стены. Когда утепляют частный дом, то первый ряд слева ставят на уже установленный отлив, а когда проводят монтаж «мокрого» фасада в высотном жилом доме, например панельном, устанавливают пенопласт на так называемую стартовую планку. Если её не потсавить , пенопласт может «уйти вниз».
Необходимые инструменты и материалы
Это два шпателя, один широкий, другой узкий. Узкий нужен для выемки клея из ведра, где он налит. Широкий нужен для нанесения клея на стены. Очень вероятно, понадобится пила с мелком зубом для подрезки листов пенопласта.
Ещё понадобится сам клей. Именно для приклеивания пенопласта, а не какой-нибудь другой, дабы не разрушить структуру листа. Есть два вида клея: только для пенопласта и универсальный, которым можно ещё приклеить к листу армирующую сетку и создать выравнивающий слой. Первый значительно дешевле. Комбинация двух видов клея даст существенную экономию денежных средств.
Клеем приклеивают пенопласт на откосы и к стене, мажут стыки листов пенопласта, промазывают дюбель-грибы сверху.
На углы , откосы , стены для приклеивания сетки и нанесения выравнивающего слоя нужен именно универсальный клей. Расход обоих видов клея может составлять 4-6 кг/м2 пенопласта. Или меньше, если стена изначально ровная.
Дюбель-грибы нужны, чтобы окончательно закрепить листы пенопласта на стене. При фасадном утеплении лучше применять дюбель-грибы с пластиковым, а не с металлическим стержнем в силу меньшей теплопроводности.
Для монтажа дюбель-грибов понадобятся молоток и дрель, для нанесения сетки и универсального клея-выравнивающего слоя нужен будет самый широкий шпатель-порядка 300-350 мм или ещё шире. Для шлифовки самого выравнивающего слоя понадобятся тёрка из пластика и наждачка с зерном 400-500.
Методика приклеивания пенопласта к стене
Клей заправляют водой по рекомендации производителя – размешивают миксером или дрелью со специальной насадкой. По мнению рабочих, легче работать с клеем, когда он погуще, чем рекомендует производитель. В случае сильных неровностей стены на выемки наносится больше клея , а на выступы соответственно-меньше.
Клей выкладывают на пенопласт примерно как на фотографии, отступая от краёв 30-40 мм.
Потом прикладывают пенопласт к стене и прижимают для фиксации, но не слишком сильно. Вылезший из под стыков листов клей следует подобрать для экономии и лучшего выравнивания.
При укладке второго ряда листы пенопласта кладут со смещением относительно первого ряда и так далее следующие ряды.
Работы лучше проводить участками, чтобы меньше передвигать подмостки и меньше держать пенопласт под воздействием ультрафиолета.
Приколачивание пенопласта
Прошло 3 суток с момента приклеивания. Пластиковыми дюбель-грибами соответствующей длины начинаем приколачивать к стене листы пенопласта. Длину дюбель-гриба выбираем учитывая то, что он должен зайти в стену на 40-50 мм.
На вершинах прямоугольных плит пенопласта (т-образные стыки) сверлят 4 дырки и одна в центре , итого 5 отверстий. Сверлятся они на 20-30 мм глубже требуемой глубины.
В отверстие, которое мы просверлили, вставляется дюбель-гриб и забивается молотком до плотного прилегания шляпки. Шляпка утапливается в пенопласт где-то на 1 мм для снижения расхода универсального клея на выравнивающий слой.
Обязательно заделать швы и шляпки дюбель-грибов
Если края пенопласта торчат , их нужно срезать перед заделкой. Если поверхность пенопласта неровная , она ровняется специальными тёрками для пенопласта. Чтобы исключить попадание холодного воздуха в швы между плитами, их затирают. Можно обычным клеем для пенопласта. Шляпки грибов тоже замазываются клеем на один уровень с поверхностью пенопласта. Клей не должен выступать нигде. Если выступает, стереть наждачной бумагой 400-500 зерно, исключительно высохшую поверхность.
Этап армирования и штукатурки пенопласта
Для армирования используется фасадная сетка плотностью 140-160 г/м2. Углы армируют все без исключения. ИСКЛЮЧИТЕЛЬНО УНИВЕРСАЛЬНЫМ КЛЕЕМ!!! Важно не забывать об этом. Опытные мастера советуют разводить клей водой чуть жиже. чем в рекомендациях производителей для лёгкого продавливания сквозь сетку. Для армирования использовать готовый угол с сеткой, или сделать самому , продавив сгиб сетки шпателем и вставив внутрь уголка.
На угол наносится с двух сторон по полосе клеевого раствора шириной 60-70 мм и толщиной 2-3 мм. Если клеится не готовый угол, а полосы сетки, то длина слоя раствора должна быть 930-950 мм (примерно на 50-70 мм короче отрезанного куска).
Сверху накладывается угол или кусок согнутой армирующей сетки . И шпателем вдавливают сетку в клей, движениями ёлочкой вверх-вниз и в стороны.
Часть сетки по бокам останется без клея. Ничего страшного-так легче стыковать сетку с армированием полистирола в стеновой плоскости. Без клея получается остаётся и полоса сетки сверху, при поклейке из кусков. На пустую сетку наносится клей сверху прикрываем слой нанесённого клея следующим куском. Так мы выравниваем стыки в одной плоскости. Для формирования угла, делаем его ровным. Для этого работаем угловым шпателем, ведя его сверху вниз.
Армируем пенопласт на стене
Пенопласт упрочняют наложением армирующей сетки, вдавливая её в клеевой состав.
Алгоритм такой:
Широким шпателем (не менее 350 мм) наносят на пенопласт универсальный клей. Полоса клея должна быть уже сетки 50-70 мм.
Раскручивают сетку сверху вниз, чтобы справа край был свободен от клея на 50-70 мм.
Шпателем вдавливают сетку в клей, стараясь сделать поверхность ровной.
Следующую полосу клея накладывают на участок «пустой» сетки. Следующий кусок сетки накладывается на уже уложенный вплотную, но толщина клея как и везде ранее.
Приклеенная сетка сохнет сутки. Потом она тёркой и наждаком доводится до полного выравнивания.
Оштукатуривание пенопласта
Штукатурная смесь обязательно должна быть жидковатой, пожиже , чем при приклеивании сетки. А так методика нанесения штукатурного слоя не отличается от стандартной. Исходя из предыдущего опыта определяется толщина нанесения штукатурного слоя, вплоть до нескольких миллиметров , если до этого всё наносилось ровно.
Затем нанесённый слой сохнет до полного высыхания, потом обрабатывается потёртым наждаком, если потом стена будет краситься, если под декоративную штукатурку-можно и обработать новой наждачкой.
Далее идут отделочные работы. Ну вот собственно и всё.
Утепление многослойных стен дома: колодезная кладка
Колодезной называется кирпичная (каменная) кладка, которая ведется не сплошным слоем, а с полостями внутри стены, куда, как правило, закладывается теплоизоляционный материал. Основное преимущество такого способа укладки стены состоит именно в наличии теплоизоляции внутри конструкции. Такая стена очевидно теплее, чем стена, состоящая исключительно из основного строительного материала стены.
Кроме того, колодезная кладка дает существенную экономию стройматериалов. Так, например, теплоизоляция позволяет в несколько раз сократить толщину стены по сравнению со сплошной кирпичной стеной. Это объясняется гораздо более высокой теплозащитной способностью теплоизоляционного материала по сравнению с основным. Для примера сравним коэффициенты теплопроводности экструзионного пенополистирола, из которого изготовлены теплоизоляционные плиты ПЕНОПЛЭКС® и кирпичной кладки. У первого этот показатель будет равен 0,033 Вт/м∙К, у кладки из пустотного кирпича плотностью 1000 кг/м³ (брутто) на цементно-песчаном растворе — 0,52, у кладки из кирпича глиняного обыкновенного на цементно-песчаном растворе — 0,81, у кладки из силикатного на цементно-песчаном растворе — 0,87. В реальных условиях с учетом различных факторов применение ПЕНОПЛЭКС® позволяют сократить толщину кирпичной стены в 3—4 раза для достижения заданных параметров термического сопротивления конструкций.
В частном домостроении колодезная кладка целесообразна при возведении зданий из кирпича и газобетона. Она состоит из нескольких слоев — см. на схемах.
Роль утеплителя в составе колодезной кладки не ограничивается сохранением тепла в доме. При наружном утеплении ПЕНОПЛЭКС® защищает стену дома от промерзания и тем самым продлевает срок службы кирпича и газобетона.
Особенности утепления стен дома с колодезной кладкой
Теплоизоляционные плиты ПЕНОПЛЭКС® крепятся на стену в два этапа. На первом приклеиваются с помощью эффективного клеевого состава. В качестве такового рекомендуется использовать ПЕНОПЛЭКС® FASTFIX® на полиуретановой основе — состав, специально разработанный для монтажа теплоизоляции ПЕНОПЛЭКС®.
После приклеивания теплоизоляционные плиты закрепляются с помощью дюбельных комплектов. В состав комплекта входит тарельчатый дюбель, изготовленный из синтетического материала с низкой теплопроводностью во избежание мостиков холода, а также базальтопластиковые грибки. Дюбельные комплекты обычно устанавливаются ближе к углам плит из расчета 6 штук на 1 м2.
Колодезная кладка. Стена из кирпича
- Кирпичная стена
- Клеевой состав
- Дюбельный комплект
- ПЕНОПЛЭКС®СТЕНА или ПЕНОПЛЭКС КОМФОРТ®
- Защитная декоративная кладка.
Колодезная кладка. Стена из газобетона
- Газобетон (пенобетон)
- Клеевой состав
- Дюбельный комплект
- ПЕНОПЛЭКС®СТЕНА или ПЕНОПЛЭКС КОМФОРТ®
- Защитная декоративная кладка.
Инструкция по утеплению многослойных стен дома
- Шаг 1. Крепление теплоизоляционных плит к внутренней несущей стене осуществляется при помощи специального полиуретанового клея для ПЕНОПЛЭКС® — ПЕНОПЛЭКС® FASTFIX®. Также в качестве клея для ПЕНОПЛЭКС® можно использовать различные сухие смеси на цементной основе. Теплоизоляция кирпича плитами ПЕНОПЛЭКС® обеспечит защиту от промерзания, тем самым продлив срок службы стеновых конструкций и здания в целом. Наружная теплоизоляция всегда является более предпочтительной, чем внутренняя, поскольку при наружной теплоизоляции строительные конструкции не подвергаются промораживанию, что значительно продлевает их срок службы.
- Шаг 2. Внутренняя и наружная части трехслойной кладки связываются меду собой специальными закладными деталями – вязальной проволокой с шагом 750мм или гибкими связями из стеклопластика.
- Шаг 3. Рихтовочный зазор между внешней кладкой и утеплителем заполняется сухим песком.
Тонкости кирпичной кладки с утеплителем
Опубликовано:
03.08.2015
Актуальность этого типа укладки
На сегодняшний день во всем мире бурными темпами развивается такая отрасль народного хозяйства, как строительство. Ежегодно строятся сотни новых зданий и сооружений. Наиболее любимыми и распространенными строительными материалами являются следующие: бетон, железобетон, пластик, металлочерепица, металлопластик, кирпич. Кирпич, несомненно, самый практичный из них. В настоящее время кладка кирпича постоянно модернизируется, появляются все новые и новые ее способы. Для этих целей применяется кирпич разного типа: полнотелый, пустотелый, одинарный полуторный, двойной. Наиболее часто кирпич используется для строительства жилых и общественных зданий, где самое важное – это поддержание оптимального микроклимата внутри помещений.
Для утепления кирпичной кладки, можно воспользоваться несколькими вариантами – шлаком, минеральной ватой, стекловатой, бетоном. Кладка осуществляется несколькими способами – трехслойная с воздушным зазором и без него или колодцевая.
На сегодня очень актуальна стала кладка кирпича с утеплителем. Возникла она еще в середине прошлого века. Тогда в качестве утеплителя применяли мох, опилки, торф. В современном мире они уже неэффективны и заменены на более современные материалы. Утеплителем можно пользоваться практически при любых видах строительства, где применяются в качестве ограждающих конструкций лесоматериалы, бетонные панели, кирпичные стены. Последний вариант наиболее актуален. Рассмотрим более подробно, как проводится кирпичная кладка с утеплителем, техника кладки, преимущества данного метода.
Виды утеплителей и требования
Кладка кирпича – довольно серьезное и сложное занятие.
Наиболее часто утепление внутри кирпичных конструкций осуществляется с применением минеральной ваты, пенополистирола, стекловаты.
Схема кладки стены с утеплителем, по технологии СНиП
Некоторые мастера заполняют пространство между стенами бетоном или засыпают шлаком. Данный вариант тоже имеет свои преимущества, главное из них в том, что при этом способе кладки увеличивается прочность и стойкость конструкции. Любой утеплитель должен соответствовать следующим специальным требованиям.
Во-первых, он должен быть устойчивым к деформации. Это свойство особенно важно. Так, при действии каких-либо природных факторов, а также под силой тяжести он может измениться в размерах и форме.
Во-вторых, это влагостойкость. Несмотря на то что утепление проводится внутри конструкции, вовнутрь может попадать влага, которая нередко приводит к деформации и разрушению материала. А последнее, в свою очередь, повлияет на теплоизоляционные свойства ограждающей конструкции. Утепление проводится только теми материалами, которые не пропускают и не впитывают в себя влагу. Кроме того, излишняя влага может вызвать образование конденсата. Стеклопластик наиболее оптимален для гибких связей между ограждениями, так как он обладает низкой теплопроводностью, высокой прочностью и не пропускает влагу. Есть еще один универсальный утеплитель – это воздух.
Колодцевая кладка
Схема колодцевой кладки
Утепление стен нередко применяется при облегченной кладке кирпича. При этом снижается основная нагрузка на здание. Кроме того, такой способ позволяет сэкономить материалы, повысить процент звукоизоляции и теплоизоляции. Утепление в этом случае бывает двух видов. В первом случае проводится возведение двух стен из кирпича, а пустоты между ними ровным слоем заполняются утеплителем. Во втором случае делают только одну стену, а затем к ней крепят утеплитель. В настоящее время наиболее часто используется колодцевая кладка. Она осуществляется следующим образом: сперва возводится внутренняя несущая стена обычным кирпичом, после этого строится наружная стена толщиной в полкирпича.
Следующий шаг – установка перевязок в несколько рядов. Для этого можно использовать металлические стержни. Можно применять и другой вид кладки, при котором пустоты заполняются шлаком или бетоном. Стены возводятся толщиной в половину кирпича. При этом шлак должен отлежаться какое-то время (полгода).
Трехслойная кладка с зазором и без него
Схема трехслойных стены с утеплителем в внутреннего слоя.
При этом способе теплоизоляционные панели укладывают рядами между несущими конструкциями, фиксируются они с помощью анкеров, которые вмонтированы в стену. Для предотвращения образования конденсата в этом случае понадобится паробарьер. Лицевой слой выкладывается из обычного облицовочного кирпича или камня. Есть и другой способ, при котором делается воздушный зазор. Данный способ наиболее оптимален, так как в большей степени позволяет предотвратить образование конденсата. Вентиляционный зазор способствует высыханию утеплителя. При этом способе сперва возводится несущая внутренняя стена из обычного кирпича. Теплоизоляционные материалы насаживаются на анкеры, вмонтированные в стену.
В этом варианте применяются гибкие связи с фиксаторами, которые нужны, чтобы связать панели утеплителя со стеной и создать воздушный слой. В роли фиксаторов используют шайбы с нержавеющим покрытием. Недостатком этого способа является то, что он очень трудоемкий.
Оборудование и инструменты
Схема утепления кирпичной кладки пенополистиролом.
Утепление кирпича потребует инструментов. Утеплить ее внутри можно, имея в наличии утеплитель (вату, шлак или бетон). Кроме того, понадобится парозащитный слой. Для самой кладки важно иметь в наличии раствор на основе песка и глины или цемента, кирпичи, емкость для смешивания, строительный уровень, мастерок, соколок, лопатки. Может понадобиться лестница или болгарка для резки кирпича. Утепление кирпича желательно проводить в сухое и теплое время года во избежание попадания влаги, которая может скопиться между стенами. Утеплить стену можно как самому, так и нанять для этого бригаду специалистов.
Как уже было сказано выше, внутри стены может скапливаться влага, поэтому важно использовать только влагонепроницаемые материалы. Наиболее дешевыми из них являются стекловата или шлак. Утеплитель следует класть ровно.
Выводы и рекомендации
На основании всего вышесказанного можно сделать заключение о том, что при кладке кирпича оптимальнее всего применять утеплитель. Он должен соответствовать следующим требованиям: быть влагостойким и устойчивым к деформациям. Он должен быть внутри конструкции, между несущими стенами. Утеплить стены можно различными материалами: минеральной ватой, шлаком, бетоном, стекловатой. Есть и еще один очень хороший утеплитель – это воздух. Кладку следует осуществлять несколькими способами. Наиболее распространенные из них – это колодцевая, трехслойная с воздушным зазором и без него.
В любом случае между стенами делается перевязка, осуществляется она с помощью металлических штырей, которые крепятся на анкеры. Пространство между стенами ровным слоем заполняется материалом. Чтобы утеплить стену, понадобится оборудование и инструменты. Приобрести их можно в любом специализированном магазине. Поэтому утепление кирпичной стены и теплоизоляция – несложное, но требующее определенных знаний и умений занятие.
Заливка ППУ стен и пустот
При строительстве малоэтажного жилья применяется кирпичная кладка в 1,5 или 2 или 2,5 кирпича:
- сплошная однослойная и сплошная двухслойная;
- облегченная двухслойная, она же колодезная.
В любом случае пенополиуретан будет полезен для увеличения сопротивления теплопередаче стен дома. Иными словами, летом будет прохладно, а зимой — тепло, помимо того, применение ппу между стен уменьшает расход стройматериалов, снижает нагрузки на фундамент и перекрытия.
На фото показана установка и компоненты для заполнения межстенного пространства пенополиуретаном.
Рассмотрим подробнее, как это работает. Но сначала немного теории, чтобы понять, зачем нужен ППУ в межстеновом пространстве. Если теория не требуется, то переходите сразу к вопросу, как заполнить стены пенополиуретаном.
Пустоты между стенами сплошной и облегченной кирпичной кладки
Времена, когда использовали однослойную сплошную кирпичную кладку, которая показана на рисунке слева, прошли.
Ибо в соответствии со СНиП II-3-79 СТРОИТЕЛЬНАЯ ТЕПЛОТЕХНИКА с изменениями и дополнениями от 2014 года, сопротивление теплопередаче стены должна быть не менее 2,66 [м2 х град.К / Вт]. А это значит, что толщина кирпичной стены должна быть не менее 1,2м, т.е. почти в 5 кирпичей, что нереально.
Стены в 2,5 кирпича — это максимум. Если больше, то увеличивается стоимость строительства. Не только потому, что кирпича требуется в 2 раза больше, но и потому, что стены тяжелее, следовательно увеличивается нагрузка на фундамент и перекрытия. Следовательно фундамент будет более монументальным, глубоким, дорогим и т.д.
Чтобы увеличить теплоизоляционные свойства сплошной кладки, т.е. увеличить её сопротивление теплопередаче, её стали делать двухслойной: внутренняя, основная стена и внешняя в половину облицовочного кирпича. Таким образом, между ними формируются воздушный зазор 50…150мм. У сплошной двухслойной кладки нет рёбер жесткости из кирпича между внутренней и внешней стенами. Они связываются между собой посредством арматуры или сетки или анкеров.
В домах, построенных до 2000-х годов на Юге и в Европейской части России этот зазор чаще всего ничем не заполняли. Воздух между стенами выполнял функции утеплителя, по аналогии с воздухом между стеклопакетами. Помимо этого, благодаря воздушному зазору осуществляется вентиляция стены, не допускается конденсат, когда тёплый воздух диффундирует через стену наружу.
Но если говорить о теплоизоляционных свойствах такой конструкции, то они напрямую зависят от качества кладки обоих стен: и внутренней сплошной и наружной облицовочной. И, если качество кладки не идеально, то вентиляционный зазор может быть причиной промерзания обоих стен. В теплых регионах России этот аспект до поры до времени не учитывался, но на Севере, Урале и Сибири давно применяют сплошную двухслойную кладку с внутренней теплоизоляцией, которая показана на рисунках ниже (кликабельно, нажмите, чтобы увеличить).
Для такой конструкции между сплошной стеной и облицовочной укладывают различные плитные утеплители, при этом вентилируемый зазор уменьшается до 20…50мм.
Сегодня сложно найти домовладельца, который уже на этапе строительства не думает, сколько будет платить за отопление зимой. Даже, если дом строится в Краснодарском крае, где тепло: думают, считают, планируют. Поэтому сплошная кирпичная кладка с вентиляционным зазором без утеплителя означает, что хозяин очень богат либо он не контролировал ход строительства.
В частном домостроении, если высота не более двух этажей, на смену двухслойной сплошной кладке с утеплителем и вентиляционным зазором пришла облегченная двухслойная кладка. Её ещё называют колодезной или стеной с заполнением.
Внешняя облицовочная и внутренние стены в пол-кирпича или внутренняя, максимум 250мм. При этом обе стены соединяются перемычками из кирпича. И тогда, если смотреть сверху, то пустоты, образованные внешней и внутренней стеной и поперечными переборками похожи на колодцы. Отсюда и название — колодезная кладка.
Колодезная кладка подразумевает заполнение всего пространства утеплителем. Причем, очевидно, что листовые или рулонные теплоизоляционные материалы здесь не подходят. Используются сыпучие либо жидкие составы. Воздушных зазоров нет. И такая конструкция экономически эффективнее: стены тоньше (расходы на строительство меньше) сплошной утеплитель толще (расходы на отопление меньше).
Следует отметить, что внутренняя стена не обязательно выполняется из кирпича. Это могут быть газосиликатные блоки или камни из пенобетона или керамзитобетона или монолит. Но если внутренняя и внешние стены соединены перемычками из кирпича (или иного камня), то правильно говорить об облегченной двухслойной стене (колодезной кладке). Если же соединены анкерами, арматурой, сеткой, то это сплошная двухслойная стена.
Заливка пенополиуретана в межстеновое пространство колодезной кладки
Исходя из конструкции и самого определения стены с заполнением (колодезной кладки) следует, что пустоты можно и нужно заполнить утеплителем на этапе строительства. Полости либо засыпают либо набивают либо заливают.
Про засыпки и забивки, как-то: керамзит, перлит, эковата, опилки и пр., на сайте poliuretan.ru ничего не рассказывается, т.к. у нас есть три материала и технологии для ЗАЛИВКИ в стены утеплителя:
- Пенобетон, для производства которого мы предлагаем пеногенераторы для получения биологической пены.
- Пеноизол (торговая марка фирмы НСТ с 2002 года для обозначения карбамидно-формальдегидного пенопласта), для производства которого на стройплощадке мы предлагаем с 2001 года установки ПЕНА-2000 и ПЕНА-2003.
- Пенополиуретан, для заполнения которым стен мы предлагаем 4 модели оборудования низкого давления: ПЕНА-10, ПЕНА-15, ПЕНА-20 и ПЕНА-25.
Т.к. данная статья посвящена заливке в полость ППУ, то не касаемся на этой странице технологии утепления пеноизолом и пенобетоном. Об этих двух материалах читайте в других разделах poliuretan.ru.
Заливка пустот пенополиуретаном в последние десять лет является востребованным видом работ, что обусловлено:
- не снижаемыми темпами строительства малоэтажного жилья, где нет альтернативы колодезной кладке или двухслойным стенам;
- увеличением применения стен с заполнением для многоэтажного строительства;
- ростом тарифов на энергоресурсы и отопление;
- подорожанием всех стройматериалов.
С другой стороны, в последние годы оборудование и материалы были приспособлены для выполнения таких работ:
- установки ПЕНА-15, ПЕНА-20 и ПЕНА-25 комплектуются специальным электронным пультом и насадками на распылители для заливки ППУ в пустоты и межстеновое пространство;
- специальные ППУ компоненты, которые позволяют получить пенопласт с малой плотностью и хорошей прочностью, стократным вспениванием и длинным временем старта, отлично подходит для заполнения полостей.
Оборудование и химия фирмы НСТ позволяют заполнить пенополиуретаном все пустоты в межстенном пространстве, запечатать даже мельчайшие трещины и щели. Все недостатки каменной кладки устраняются, если закачать в полость жидкий утеплитель.
На этапе строительства заливка ППУ в стены осуществляется сверху вниз, т.е. в открытую полость. При реконструкции, когда требуется утеплить уже построенный дом, заливку ППУ в межстеновое пространство выполняют через отверстия в кладке:
- если между внутренней и облицовочной стеной был оставлен воздушный зазор от 50 до 150мм
- если внутренняя стена была утеплена и оставлен вентиляционный слой до 50мм;
- если колодезная кладка была заполнена неким утеплителем, который со временем осыпался, съёжился, скукожился, сполз, упал, опал, исчез, сдулся и т.д. и т.п.
К слову, о том, почему со временем появляются или увеличиваются пустоты в среднем слое, ранее заполненном утеплителем, рекомендуем к прочтению:
Как залить пенополиуретан в открытую полость
Производится на этапе возведения стен дома. Используется стандартные установка и распылитель ППУ. Далее — два варианта. Визуальный контроль заполнения межстеновой полости в обоих случаях.
Вариант 1. На выходе пистолета устанавливается шланг Ду 12…16мм и L 0,3…0,5м, используются компоненты для заливки легкого ППУ (открытая ячейка, плотность 10…20 кг/м3) с длинным временем старта (30…40 секунд). Четыре следующих фото являют собой наглядную демонстрацию данного способа заливки ППУ в открытую полость.
Процесс заливки пенополиуретана установкой ПЕНА-20 в полости на объекте |
Вариант 2. На выходе пистолета устанавливается труба или жесткий шланг Ду 25…32мм L 1м, используются компоненты для напыления легкого ППУ (открытая ячейка, плотность 10…20 кг/м3) с коротким временем старта (5…7 секунд). В таком случае правильно говорить о заполнении пустот между стенами путем напыления ППУ.
Для лучшего восприятия посмотрите видео ниже, каким образом подобную работу выполняет партнер НСТ в Башкортостане.
Заполнение пустот колодезной кладки легким напыляемым пенополиуретаном |
Как залить ППУ в межстенное пространство через отверстия
Если же дом уже построен, но требуется закачать утеплитель в полости и пустоты, то речь идет о заливке ППУ в закрытое межстеновое пространство через отверстия.Причем, отверстия могут быть, как во внешней, так и во внутренней стене.
Если в доме 1-2-3 этажа, то заливка, понятно, будет через отверстия во внешней стене. Аналогичным образом, если дом уже эксплуатируется, т.е. уже имеет место внутренняя отделка. В таких случаях заливка ППУ между стенами осуществляется снаружи.
Когда возводится многоэтажное здание, то даже на этапе строительства заливку сверху в открытую полость не практикуют. Поднимают внутренние и внешние стены и лишь потом заполняют пустоты утеплителем. И так как заливать снаружи на высоте: и сложно, и неудобно, и рисковано и т.д., то жидкий пенополиуретан заливают через внутреннюю стену. Панельное домостроение, по понятным причинам не рассматривается (предполагается, что утеплитель уже заложен в панели).
Если внутренние стены из пенобетона, полистиролбетона, газобетона и т.п., то сделать в них отверстия несложно. Если же внутренняя стена — монолит, то в ней изначально предусматривают технологические отверстия.
Сколько необходимо сделать отверстий? Сколько жидкого ППУ можно и нужно подать через отверстие?
Время заливки компонентов через отверстие ограничено временем старта сырья. Время старта — это то количество секунд, которое проходит с момента смешивания компонента «А» (полиол) и компонента «Б» (изоционат) в распылителе, и моментом, когда жидкая смесь «стартует», т.е. начинает подниматься, увеличиваться в объеме. Типичные параметры сырья для заливки пустот пенополиуретаном:
- время старта 30 секунд;
- плотность свободного вспенивания 10 кг/м3;
- соотношение по объему «А» к «Б» составляет 100 к 100.
Таким образом, вливать жидкий ППУ через отверстие в полость можно не более 30 секунд.
Производительность любой установки, задействованной для заливки в полость, должна быть на максимуме:
- ПЕНА-10, ПЕНА-15, ПЕНА-20: 5кг/мин, и тогда за 30 секунд можно залить через отверстие 2,5кг сырья.
- ПЕНА-25: 6 кг/мин, и тогда за полминуты успеем подать 3 кг смеси «А» + «Б».
Максимальная фактическая плотность полиуретанового пенопласта в стене составляет 20кг/м3, т.е. она может быть в 2 раза больше, чем плотность свободного вспенивания. А это значит, что:
- 2,5кг жидкого сырья при вспенивании заполняют пустоту, объемом не менее 125 литров.
- 3,0кг жидкого сырья после старта и застывания заполняют полость, объемом не менее 150 литров.
Поэтому для начала необходимо прикинуть, какой объём между стенами предстоит заполнить? Первый ряд отверстий 12…18мм готовим на высоте 0,3м от нижней точки заполнения. Расстояние между отверстиями от 0,5 до 1,0м:
- чем меньше зазор между стенами, тем больше расстояние.
- чем больше зазор между стенами, тем меньше расстояние между отверстиями.
Второй ряд отверстий выше первого на 0,3 … 0,5м, но со смещением вбок на половину расстояния между отверстиями первого ряда, т.е. в шахматном порядке.
Для оценки заполнения пустоты между стенами необходимо сделать контрольные отверстия малого диаметра (5…7мм). Их высверливают также в шахматном порядке и располагают на половине высоты первого ряда заливочных отверстий, со смещением вбок на расстояние половины расстояния между заливочными отверстиями. Заранее готовят затычки (деревянные колышки или пробки из ППУ или иного материала), чтобы забивать в контрольные отверстия, когда из них полезет пена.
Заливку начинают через отверстия первого уровня и проверяют заполнение через контрольные отверстия, последовательно поднимаясь выше. Если появляются сомнения, заполнила ли пена тот или иной участок, необходимо сделать контрольное отверстие и вставить туда щуп.
Для лучшего представления вышеизложенного, рекомендуем следующее видео. Здесь наглядно показана и установка ПЕНА-20, используемая для подачи компонентов, и пистолет с насадкой. Но главное, на видео показана полость изнутри, поэтому хорошо видно, как пенополиуретан через отверстие попадает внутрь, стекает вниз, а затем увеличивается в объеме и заполняет всё межстенное пространство.
Напыление и заливка в полость ППУ на оборудовании ПЕНА-20 |
Пенополиуретан обладает превосходной адгезией к кирпичу, бетону, металлу. Поэтому утеплитель в стене является не отдельным слоем, а формирует с ней единый контур. Такая теплоизоляция не дает усадку, не разрушается со временем, даже, если имеют место подвижки конструкции дома. ППУ достаточно эластичен и не разрушается при подобных напряжениях. Коэффициент теплопроводности остаётся неизменным.
Вспениваясь в полости или пустоте межстенового пространства, пенополиуретан формирует жесткий, бесшовный и герметичный теплоизоляционный барьер без единого мостика холода. Сопротивление теплопередаче стены дома возрастает в разы.
Остались вопросы? Спросите нас:
тел. 8 800 250-11-05 (звонок бесплатный для России), e-mail: [email protected]
Инженеры фирмы НСТ проконсультируют, как правильно залить пенополиуретан между стен, помогут подобрать оборудование, подскажут, какое купить сырьё. НСТ — опыт ППУ с 1997 года.
Утеплитель для стен — слоистая кладка. Утеплитель для дома.
Теплоизоляция наружных стен зданий из кирпича всегда была и остается одним из важнейших требований в строительстве. В последнее время нормативные значения толщины стен стали даже больше, чем ранее. Например, теперь требуется, чтобы толщина кирпичной кладки наружной стены в доме из пустотелого кирпича составляла не менее 1,5 метров, если же кирпич цельный, то толщина стены должна быть увеличена до 2 метров. Такие требования делают строительство ограждающих стен из кирпича совершенно экономически невыгодным. Как всегда, при поиске решения этой задачи, специалисты нашли вариант, который не только полностью устраняет проблему толстой дорогостоящей кирпичной кладки, но и имеет значительные преимущества. Этим решением оказалась многослойная кладка, которая состоит из тонкой кирпичной стены, слоя теплоизоляции и облицовочного кирпичного слоя. Эта многослойность имеет прекрасный внешний вид, не требует много времени для возведения, а стоит дешевле, чем другие варианты строительства теплых наружных стен.
Эта многослойная конструкция, ее еще называют колодцевой кладкой, имеет три основных слоя:
- Кирпичная стена, которая является несущей и называется внутренней верстой.
- Утеплитель для стен.
- Декоративная стена, выполненная из облицовочных фасадных материалов, которая называется наружной верстой.
Соединение наружной и внутренней стены производится с помощью специальных закладных. Они представляют собой гибкие арматурные соединения из прочной стали или пластика на основе базальта или стекла, который не подвержен негативному воздействию щелочей.
Уже давно в частном жилищном строительстве самым популярным материалом для возведения несущих стен является красный кирпич. Его кладут на раствор из песка и цемента, толщиной в 1,5-2 кирпича. В последнее время традиционный красный кирпич заменяют крупными блоками, которые также производятся из обожженной глины, но имеют большие размеры. Также вместо кирпича используют сверхплотные газоблоки. Несущая способность стен из этих материалов очень хорошая, ее вполне хватает для частных домов. Кроме того, такие стены имеют более высокую степень теплозащиты. Однако, основная функция несущих стен – удерживать конструктивные элементы дома. Функция теплоизоляции принадлежит утеплителям, обычно утеплитель для дома — это плиты из базальтовой ваты.
Также для заполнения прослойки утепления применяют пенополистирол (пенопласт), минераловатный утеплитель и мелкозернистые сыпучие материалы, такие как эковата из бумаги или вата в гранулах. Рассмотрим преимущества и недостатки различных утеплителей.
1. Сыпучий или засыпной утеплитель для стен. Им заполняют пространство между несущей стеной и облицовкой при помощи специального оборудования, создающего давление. Такой способ не застрахован от появления полостей, не заполненных утеплителем, из-за зависания ватных гранул у стен. При засыпании нет гарантии заполнения полости одинаковой плотности утеплителем, от этого вата проседает и образуются не утепленные участки. Если произошло неравномерное заполнение, то исправить положение дел будет практически невозможно.
2. Пенопласт. Этот недорогой материал часто используют в качестве утеплителя именно из-за его невысокой цены. Также используется экструдированный пенополистирол, цена которого выше. Однако, оба этих вида пенополистирола не имеют защиты от огня и выделяют токсические вещества при горении. Еще одним недостатком пенопласта является отсутствие влагопроницаемости, что ведет к сырости стен и росту плесневых грибков.
3. Плиты из минеральной ваты. Это материалы, изготовленные на основе базальта, к ним относятся ЭКОВЕР СТАНДАРТ, ИЗБА СТАНДАРТ, ТЕХНОБЛОК СТАНДАРТ. Обладают неоспоримыми преимуществами по сравнению с другими утеплителями. Они пожароустойчивы и гидрофобизированы. Утеплитель для дома из минеральной ваты базальтового происхождения не накапливают влагу, имеют высокую плотность, которая не дают им возможность деформироваться. Эти плиты на протяжении всего срока эксплуатации не проседают. При необходимости их можно поджать, защищая стену от потоков холодного воздуха, проходящего через щели.
Мы дали рекомендации в отношении утеплителя наружных стен, теперь поговорим о технологии возведения стены слоистой конструкции. При создании слоя облицовки из кирпича, его необходимо армировать и скреплять с несущей стеной гибкими закладными. Установка закладных производится при возведении стены, они укрепляются в несущей части стены в углублениях до 90 мм на расстоянии не более 60 см в горизонтальном направлении и не более 50 см – в вертикальном. На 1 кв.м. размещается 4 штыря. Связующие элементы из базальто- или стеклопластика более предпочтительны, чем стальные, поскольку последние создают мостики холода в стене и подвержены коррозии.
Когда связи закреплены, можно укреплять утеплитель для стен ЭКОВЕР СТАНДАРТ, ИЗБА СТАНДАРТ, ТЕХНОБЛОК СТАНДАРТ. Их нужно устанавливать вразбежку с зацеплениями в угловых частях дома. Это позволяет избежать образования мостиков холода. Связи желательно снабдить шайбами-фиксаторами из пластика, которые не дадут возможности образоваться не вентилируемым влажным местам. Воздушный слой должен достигать мм в толщину. Далее, после отступа этого расстояния от минераловатного утеплителя, возводится стена из облицовочного кирпича. Эта стена является самонесущей, до 2 этажа опирающейся на фундамент, а далее – на несущий пояс основной несущей стены. Облицовочная стена должна иметь отверстия для свободной вентиляции в каждых 20 кв.м. поверхности стены. Это обеспечивается за счет не заполнения некоторых вертикальных швов раствором или установкой специальных вентиляционных коробок. Через отверстия, находящиеся в нижней части стены также отводится образующийся конденсат.
Ваш дом будет действительно теплым, если его слоистые наружные стены будут возводить профессионалы с применением высокотехнологичных качественных утеплителей ЭКОВЕР, ИЗБА и ТЕХНОНИКОЛЬ. Эти материалы продлят срок службы Вашего дома, а также обеспечат его теплозащиту и экономию энергии на обогрев в холодное время года. Кроме того, утеплитель для дома из минераловатных плит надежно защищает несущую стену дома, не давая к ним проникать влаге, закрывая от воздействия ветра и других неблагоприятных атмосферных воздействий. Этот утеплитель имеет незначительный вес и не утяжеляют конструкцию, освобождая фундамент от избыточной нагрузки.
← Назад к списку готовых решений
Как установить крафт-изоляцию
Утеплитель с крафт-облицовкой или бумажной облицовкой выпускается в виде войлока и длинных рулонов. Войлок предварительно вырезан, чтобы поместиться в полости на стандартных стенах высотой 8 футов. Рулонная изоляция лучше всего подходит для полов, потолков и крыш с длинными балками или стропильными пролетами, а также для высоких стен. Любую изоляцию с крафт-облицовкой легко разрезать острым канцелярским ножом или изоляционным ножом. Облицовка имеет выступ (называемый фланцем), идущий вдоль каждого бокового края изоляции. При установке изоляции в конструкции деревянного каркаса вы откидываете фланец и прикрепляете его к боковой (или переднему) кромке каркаса, чтобы закрепить изоляцию.Крафт-изоляция также может быть просто вставлена трением в полости каркаса и не прикреплена скобами, если это разрешено местными строительными нормами.
Назначение изоляционной облицовки
Облицовка крафт-утеплителя выполнена из крафт-бумаги с асфальтовым покрытием, которое делает бумагу непроницаемой для водяного пара. Бумага создает пароизоляцию, которая помогает удерживать водяной пар в теплом, влажном, нагретом воздухе в помещении от миграции наружу в стену или другую конструкцию.По этой причине облицовочный утеплитель обычно устанавливается на «теплой зимой» стороне стены. Иными словами, облицовка обычно обращена в сторону жилого помещения (или в чердак или подвал, в недостроенных чердаках и подвалах).
Поскольку облицовка служит собственной пароизоляцией, которая задерживает влагу внутри здания, ее не следует использовать с дополнительными пароизоляционными материалами.
Как установить крафт-изоляцию
Всегда следуйте инструкциям производителя по установке изоляции и обязательно соблюдайте местные строительные нормы и правила.Правила в некоторых областях могут потребовать, чтобы вы скрепили изоляционные фланцы на передней (открытой) стороне каркаса, чтобы создать непрерывный пароизоляционный слой. В очень влажном климате строительные нормы и правила могут вообще не допускать облицовочную изоляцию.
Основные этапы монтажа одинаковы для стен, потолков, полов и крыш в каркасных домах:
- При необходимости обрежьте изоляционный рулон или войлок по длине полости каркаса. Положите изоляцию лицевой стороной вниз на кусок фанеры.Установите Т-образный угольник или металлическую линейку на изоляцию и плотно прижмите ее. Разрежьте канцелярским ножом по краю квадрата, разрезая изоляционный материал и бумажную облицовку.
- Установите изоляцию в полость каркаса, начиная сверху (для стен) или с одного конца (для потолков / полов / крыш). Осторожно вдавите изоляцию в полость, но не прикладывайте к ней силу и не сжимайте, так как это снижает ее изоляционные свойства. Изоляция должна плотно входить в полость без зазоров и промежутков, заполняя ее сверху вниз (или из конца в конец).
- Отогните бумажный фланец вдоль одной стороны изоляции. Поместите фланец ровно на боковую поверхность каркаса стены (или балки перекрытия или стропила) так, чтобы край фланца был заподлицо с внутренним краем стойки, балки или стропила. Прикрепите фланец к стороне каркасного элемента скобами, расположенными на расстоянии около 12 дюймов друг от друга (или в соответствии с указаниями производителя). Повторите эти действия, чтобы закрепить другой боковой фланец.
Примечание: Некоторые строительные нормы и правила могут требовать, чтобы фланцы загибали передний край рамы и прикрепляли их скобами к переднему краю.В этом случае вы перекрываете фланцы утеплителя в соседних полостях каркаса. - Изолируйте за водопроводными трубами или электропроводкой, проходящей через полость, сняв изоляцию на два слоя. Поместите облицованный слой позади трубы или проводки, затем поместите облицованный слой поверх трубы или проводки. Если в полости есть электрическая коробка или водопроводная арматура, вырежьте облицовочный слой (включая лицевую бумагу), чтобы он плотно прилегал к препятствию.
R-Value и изоляция с крафт-покрытием
На эффективность изоляции указывает ее рейтинг R.Чем выше значение R, тем лучше изоляция сопротивляется передаче тепла через изоляцию. Распространено заблуждение, что изоляция добавляет тепла изолированному пространству. На самом деле все, что он делает, — это замедляет перенос тепла с теплой стороны изоляции на холодную. Значение R теплоизоляции из крафт-бумаги обычно печатается на облицовке из крафт-бумаги.
ИЗОЛЯЦИОННЫЕ БЕТОННЫЕ СТЕНЫ — NCMA
ВВЕДЕНИЕ
Разнообразие конструкций стен из бетонной кладки предусматривает ряд изоляционных стратегий, в том числе: внутренняя изоляция, изолированные полости, изоляционные вставки, вспененная изоляция, гранулированная заливка в пустотах блоков и системы внешней изоляции.Каждая конструкция каменной стены имеет разные преимущества и ограничения в отношении каждой из этих стратегий изоляции. Выбор утеплителя будет зависеть от желаемых тепловых свойств, климатических условий, простоты строительства, стоимости и других критериев проектирования.
Обратите внимание, что положение изоляции внутри стены может повлиять на расположение точки росы и, следовательно, повлиять на потенциал конденсации. См. TEK 6-17A, Контроль конденсации в бетонных стенах (ссылка 1) для получения более подробной информации.Точно так же некоторые утеплители могут действовать как воздушный барьер при непрерывной установке и с герметичными стыками. См. TEK 6-14A, Контроль утечки воздуха в бетонных стенах, (ссылка 2) для получения дополнительной информации.
КЛАДКА ТЕПЛОВЫЕ ХАРАКТЕРИСТИКИ
Тепловые характеристики кирпичной стены зависят от ее стационарных тепловых характеристик (описываемых значением R или U-фактора), а также от характеристик теплоемкости (теплоемкости) стены.На устойчивое состояние и массовые характеристики влияют размер и тип кладки, тип и расположение изоляции, отделочные материалы и плотность кладки. Конструкции из бетонных смесей с меньшей плотностью приводят к более высоким R-значениям (т. Е. Более низким U-факторам), чем бетоны с более высокой плотностью.
Термическая масса описывает способность материалов накапливать тепло. Из-за своей сравнительно высокой плотности и удельной теплоемкости кладка обеспечивает очень эффективное аккумулирование тепла. Стены из кирпичной кладки остаются теплыми или прохладными еще долгое время после отключения отопления или кондиционирования воздуха.Это, в свою очередь, эффективно снижает нагрузку на отопление и охлаждение, смягчает колебания температуры в помещении и переносит нагрузку на отопление и охлаждение на непиковые часы. Благодаря значительным преимуществам собственной тепловой массы бетонной кладки, здания с бетонной кладкой могут обеспечивать такие же характеристики, что и каркасные здания с более сильной изоляцией.
Преимущества тепловой массы были включены в требования энергетического кодекса, а также в сложные компьютерные модели. Энергетические нормы и стандарты, такие как Международный кодекс энергосбережения (IECC) (исх.5) и Стандарт энергоэффективности для зданий, за исключением малоэтажных жилых домов, Стандарт ASHRAE / IESNA 90.1 (ссылка 6), допускают, чтобы бетонные стены из каменной кладки имели меньшую изоляцию, чем системы каркасных стен, для удовлетворения энергетических требований.
Хотя термической массы и присущего R-value / U-фактора бетонной кладки может быть достаточно, чтобы соответствовать требованиям энергетического кодекса (особенно в более теплом климате), бетонные стены кладки часто требуют дополнительной изоляции. Когда они это сделают, существует множество вариантов изоляции бетонных каменных конструкций.При необходимости бетонная кладка может обеспечить стены с R-значениями, превышающими минимальные нормы (см. Ссылки 3, 4). Однако для общей экономии проекта отрасль предлагает параметрический анализ для определения разумных уровней изоляции для элементов ограждающих конструкций здания.
Эффективность тепловой массы зависит от таких факторов, как климат, конструкция здания и положение изоляции. Влияние положения изоляции обсуждается в следующих разделах. Однако обратите внимание, что в зависимости от выбранного метода соответствия нормам положение изоляции может не отражаться в конкретных нормах или стандартах.
Существует несколько методов соответствия требованиям IECC к энергии. Один из вариантов, предписываемые значения R IECC (таблица IECC 502.2 (1)), требует «непрерывной изоляции» бетонной кладки и других массивных стен. Имеется в виду изоляция, не прерываемая обшивкой или стенками бетонных блоков. Примеры включают жесткую изоляцию, приклеенную к внутренней части стены с помощью каркаса и гипсокартона, нанесенного на изоляцию, непрерывную изоляцию в каменной полой стене и системы внешней изоляции и отделки.Если бетонная стена из каменной кладки не будет включать непрерывную изоляцию, есть несколько других вариантов соответствия требованиям IECC — бетонные стены из каменной кладки не обязательно должны иметь непрерывную изоляцию, чтобы соответствовать требованиям IECC. См. TEK 6-12C, Международный кодекс по энергосбережению и бетонной кладке, и TEK 6-4A, Соответствие энергетическому кодексу с помощью COMcheck (ссылки 7, 8).
ВНУТРЕННЯЯ ИЗОЛЯЦИЯ
Внутренняя изоляция — это изоляция, нанесенная на внутреннюю сторону бетонной кладки, как показано на Рисунке 1.Изоляция может представлять собой жесткую плиту (экструдированный или пенополистирол или полиизоцианурат), пенополиуретан с закрытыми порами, пеностекло, волокнистый войлок или волокнистую выдувную изоляцию (однако следует учитывать, что волокнистая изоляция чувствительна к влаге). Внутренняя поверхность стен обычно отделывается гипсокартоном или вагонкой.
Внутренняя изоляция позволяет использовать открытую кладку снаружи, но изолирует кладку от внутренней части здания и, таким образом, может уменьшить воздействие тепловой массы.
В случае жесткой теплоизоляции из плит используется клей, чтобы временно удерживать изоляцию на месте, пока применяются механические крепления и защитная отделка. Можно использовать мехи и удерживать их от лицевой стороны кладки с помощью распорок. Пространство, создаваемое распорками, обеспечивает защиту от влаги, а также удобное и экономичное место для дополнительной изоляции, проводки или труб.
В качестве альтернативы можно установить деревянную или металлическую обшивку с изоляцией между обшивкой.Размер обшивки определяется типом изоляции и требуемым коэффициентом сопротивления теплопередаче. Поскольку обрешетка проникает в изоляцию, ее свойства необходимо учитывать при анализе тепловых характеристик стены. Проходы стали через изоляцию значительно влияют на тепловое сопротивление, проводя тепло от одной стороны изоляции к другой. Несмотря на то, что он не такой проводящий, как металл, термическое сопротивление древесины и площадь поперечного сечения проникновения деревянной опалубки следует принимать во внимание при определении общих значений R.Для получения дополнительной информации см. TEK 6-13A, Мосты холода в стеновых конструкциях (ссылка 9).
Пенополиуретан с закрытыми порами обычно устанавливается между внутренней обшивкой. Пена наносится в виде жидкости и расширяется на месте. Правильное обучение помогает обеспечить качественный монтаж. Пена устойчива к пропусканию воздуха и водяного пара.
При использовании внутренней изоляции в бетонную кладку можно укладывать как вертикальное, так и горизонтальное армирование с частичной или полной затиркой без нарушения изоляционного слоя.
Прочность, стойкость к атмосферным воздействиям и ударопрочность внешней части стены остаются неизменными с добавлением внутренней изоляции. Ударопрочность внутренней поверхности определяется внутренней отделкой.
Рисунок 1 — Примеры внутренней изоляцииИНТЕГРАЛЬНАЯ ИЗОЛЯЦИЯ
На рисунке 2 показаны некоторые типичные интегральные изоляционные материалы в одинарных кирпичных стенах.Интегральная изоляция — это изоляция, помещенная между двумя слоями термической массы. Примеры включают изоляцию, помещенную в бетонные ядра кладки и непрерывную изоляцию в стене с полостью кладки (обратите внимание, что изолированная стена с полостью кладки также может рассматриваться как внешняя изоляция, если не принимать во внимание тепловое воздействие массы шпона).
Со встроенной изоляцией некоторая часть тепловой массы (кирпичной кладки) непосредственно контактирует с воздухом в помещении, что обеспечивает отличные преимущества тепловой массы, позволяя использовать открытую кладку как снаружи, так и внутри.
Многослойные полые стены содержат изоляцию между двумя слоями кладки. Сплошная изоляция полости сводит к минимуму тепловые мосты. Ширину полости можно изменять для достижения широкого диапазона значений R. Изоляция полости может быть жесткой плитой, пенополиуретаном с закрытыми порами или насыпным заполнителем. Для дальнейшего повышения тепловых характеристик жилы резервного провода можно изолировать.
Когда в полости используется изоляция из жестких плит, обычно в первую очередь завершается внутренняя кладка.Изоляция предварительно надрезана или надрезана производителем, чтобы облегчить установку между стяжками. Изоляция плит может быть прикреплена с помощью клея или механических креплений. Плотные стыки между изоляционными плитами максимизируют тепловые характеристики и уменьшают утечку воздуха. В некоторых случаях стыки между досками заделываются в расширяемый валик герметика, либо заделываются, либо заклеиваются лентой, чтобы действовать как воздушный барьер.
Интегральная изоляция, помещаемая в сердечники кладки, обычно представляет собой вставки из формованного полистирола, пенопласт или вспененный перлит или гранулированный вермикулит.Что касается опалубки, используемой для внутренней изоляции, при определении тепловых характеристик стены следует учитывать термическое сопротивление бетонных стенок кладки и любых заполненных цементным раствором (см. ТЭК 6-2C, ссылка 3, табличные значения R для стены с утеплителем). При использовании изоляции жилы изоляция должна занимать все незакрепленные пространства жилы (хотя некоторые жесткие вставки сконфигурированы для размещения арматурной стали и цементного раствора в одной ячейке).
Пенопластовая изоляция устанавливается в сердцевину кладки после завершения стены.Установщик либо заполняет стержни сверху стены, либо закачивает пену через небольшие отверстия, просверленные в кладке. Пена может быть чувствительной к температуре, условиям смешивания или другим факторам. Поэтому следует тщательно соблюдать инструкции производителя, чтобы избежать чрезмерной усадки из-за неправильного смешивания или размещения пены.
Вставки из полистирола могут быть помещены в сердцевину обычных каменных блоков или использованы в специально разработанных элементах. Вставки доступны во многих формах и размерах, чтобы обеспечить диапазон значений R и приспособиться к различным условиям конструкции.В предизолированную кладку вставки устанавливаются производителем. Также доступны вставки, которые устанавливаются на строительной площадке.
Специально разработанные бетонные блоки для каменной кладки могут включать перегородки уменьшенной высоты для размещения вставок в сердцевинах. Такие полотна также уменьшают образование тепловых мостиков через кладку, поскольку уменьшенная площадь полотна обеспечивает меньшую площадь поперечного сечения для теплового потока через стену. Чтобы еще больше уменьшить тепловые мосты, некоторые производители разработали бетонные блоки с двумя поперечными перемычками, а не с тремя.
Вертикальная и горизонтальная арматура, залитая в сердцевины бетонной кладки, может потребоваться для структурных характеристик. Заливаемые сердечники изолируются от изолируемых сердечников путем нанесения раствора на перемычки, чтобы ограничить затирку. Гранулированная или поролоновая изоляция помещается в незацементированные стержни внутри стены. Затем определяется тепловое сопротивление на основе среднего значения R площади стены (пояснения и пример расчета см. В TEK 6-2C, ссылка 3). Некоторые жесткие вставки сконфигурированы для размещения арматурной стали и цементного раствора для обеспечения как тепловой защиты, так и конструктивных характеристик.При использовании вставок в залитой заделкой конструкции должны соблюдаться требуемые нормами минимальные размеры пространства для затирки (см. TEK 3-2A, ссылка 10).
Зернистые засыпки закладываются в ядра кладки по мере укладки стены. Обычно заливки заливаются прямо из пакетов в стержни. Обычно происходит небольшая осадка, но она относительно мало влияет на общую производительность. Гранулированный наполнитель имеет тенденцию вытекать из любых отверстий в стеновой системе. Следовательно, дренажные отверстия должны иметь изнутри некоррозионные экраны или фитили, чтобы удерживать наполнитель и позволять дренаж воды.Пчелиные ямы или другие щели в швах раствора следует заполнить. Кроме того, просверленные анкеры, устанавливаемые после изоляции, требуют специальных процедур установки, чтобы предотвратить потерю гранулированного наполнителя.
Рисунок 2 — Примеры интегральной изоляцииНАРУЖНАЯ ИЗОЛЯЦИЯ
Наружные утепленные каменные стены — это стены, которые имеют теплоизоляцию с внешней стороны от тепловой массы.В этих стенах сплошная внешняя изоляция окружает кладку, сводя к минимуму влияние тепловых мостов. Это помещает тепловую массу внутрь изоляционного слоя. Наружная изоляция удерживает кирпичную кладку в непосредственном контакте с внутренним кондиционированным воздухом, обеспечивая наибольшее преимущество тепловой массы из трех стратегий изоляции.
Наружная изоляция также снижает потери тепла и движение влаги из-за утечки воздуха при герметизации стыков между изоляционными плитами. Наружная изоляция сводит на нет эстетическое преимущество открытой кладки.Кроме того, изоляция требует защитного покрытия для сохранения прочности, целостности и эффективности изоляции.
При наружной штукатурке применяется армирующая сетка для усиления финишного покрытия, повышения трещиностойкости и ударопрочности. Для этого используется стекловолоконная сетка, нержавеющая тканая проволочная сетка или металлическая обрешетка. После того, как сетка установлена, через изоляцию вводятся механические крепления, которые надежно закрепляются в бетонной кладке.Механические застежки могут быть металлическими или нейлоновыми, хотя нейлон ограничивает теплопотери через застежки.
После механического крепления утеплителя и армирующей сетки к кладке на поверхность притирается финишное покрытие. Эта поверхность придает стене окончательный цвет и текстуру, а также обеспечивает устойчивость к погодным условиям и ударам.
Рисунок 3 — Пример внешней изоляцииЗАЯВКИ НИЖЕГО СОРТА
Каменные стены ниже уровня грунта обычно используют одинарную конструкцию стены, которая может обеспечивать внутреннюю, интегральную или внешнюю изоляцию.
Наружная или встроенная изоляция эффективна для снижения внутренней температуры и для смещения пиковых энергетических нагрузок. Типичная обшивка, используемая для внутренней изоляции, обеспечивает место для прокладки электрических и сантехнических линий, а также удобна для установки гипсокартона или другой внутренней отделки.
При использовании стратегии внешней или интегральной изоляции, архитектурные бетонные блоки из каменной кладки обеспечивают законченную поверхность внутри. Использование гладких формованных элементов у основания стены облегчает стяжку плиты.После заливки плиты формовочная полоса, также служащая дорожкой качения, может быть размещена напротив гладкого первого слоя. Остальная часть стены может быть построена из гладких, разрезных, ребристых, шлифованных, рифленых или других архитектурных бетонных блоков.
Изоляция на внешней стороне нижних участков стены временно удерживается на месте с помощью клея до тех пор, пока не будет засыпана засыпка. Та часть жесткой доски, которая выступает над уровнем земли, должна быть механически прикреплена и защищена.
Список литературы
- Контроль конденсации в бетонных стенах, TEK 6-17A. Национальная ассоциация бетонщиков, 2000.
- Контроль утечки воздуха в бетонных стенах, TEK 6-14A. Национальная ассоциация бетонных каменщиков, 2011.
- Значения R и коэффициент теплопередачи для одинарных бетонных стен из кирпича, TEK 6-2C. Национальная ассоциация бетонщиков, 2013.
- Значения R для бетонных стен с несколькими витками, TEK 6-1C.Национальная ассоциация бетонщиков, 2013.
- Международный кодекс энергосбережения. Совет Международного кодекса, 2003, 2006 и 2009 годы.
- Стандарт энергоэффективности для зданий, кроме малоэтажных жилых домов, стандарт ASHRAE / IESNA 90.1. Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха и Общество инженеров по освещению, 2001, 2004 и 2007 годы.
- Международный кодекс энергосбережения и бетонная кладка, TEK 6-12C. Национальная ассоциация бетонщиков, 2007. Соответствие энергетическому кодексу
- с использованием COMcheck TEK 6-4A. Национальная ассоциация бетонщиков, 2007.
- Тепловые мосты в стеновых конструкциях, ТЭК 6-13А. Национальная ассоциация бетонных каменщиков, 1996.
- Заливка бетонных стен, ТЭК 3-2А. Национальная ассоциация бетонщиков, 2005.
NCMA TEK 6-11A, доработка 2010 г.
NCMA и компании, распространяющие эту техническую информацию, не несут никакой ответственности за точность и применение информации, содержащейся в этой публикации.
Кирпич и облицовка кирпичами R-значения по сравнению с
Что означает значение R?
Изоляционные свойства строительных материалов могут быть выражены как R-значение на дюйм, которое указывает степень термического сопротивления на дюйм толщины. Однако для таких продуктов, как изоляция из стекловолокна, принято указывать общее тепловое сопротивление как единое значение R на упаковке.
Например, обычная изоляция из стекловолокна имеет R-Value около 3 на дюйм.Таким образом, изоляция из стекловолокна толщиной 3,5 дюйма имеет полное R-значение R-11. Значение R является линейным значением, поэтому, если вы удвоите толщину, значение R удвоится.
Эти значения, конечно, зависят от материала, установленного в соответствии с инструкциями производителя. Вы не можете втиснуть два ватина толщиной 3,5 дюйма в пространство 3,5 дюйма и рассчитывать на получение R-22. Фактически, если бы вы сделали это, вы, вероятно, получили бы меньшее тепловое сопротивление, чем у оригинального R-11 одного ватина.
R-ценность обычных строительных материалов
Вот список R-значений с округлением на дюйм для различных обычных строительных и изоляционных материалов, а также общий R-Value продуктов, изготовленных из этих материалов:
Кирпич — 0,2 на дюйм — 0,72 R для общей кирпичной стены
Дерево — 1 на дюйм — R-3,5 для стойки 2 x 4
Стекловолокно или целлюлоза — 3 на дюйм — R-11 для 3,5 дюймов
Сжатое стекловолокно — 4 на дюйм — R-14 для 3,5 дюймов
Сравнение термостойкости кирпичных и кирпичных стен из шпона
Как видите, кирпич сам по себе не лучший изолятор.Обычный кирпич толщиной 3,625 дюйма даже не достигает R-1. Кирпичные дома обычно строятся из двух стен с воздушным пространством между ними для отвода влаги. Воздух — лучший изолятор, чем кирпич, но ненамного. Дюйм неподвижного воздуха обеспечивает R-0,44.
Следовательно, двойная кирпичная стена с 2 дюймами воздуха между ними и внутренней штукатуркой обеспечит изоляцию не более R-3. Кирпич имеет и другие желательные свойства — он красивый, долговечный и не требует ухода, но в качестве теплового барьера он не справляется.
Установка кирпичного шпона может дать вам возможность повысить энергоэффективность
Когда облицовка кирпичом установлена, у домовладельца есть прекрасная возможность увеличить общую R-ценность внешних стен после удаления старого сайдинга. Изоляционные листы из полиизоцианурата, облицованные фольгой, можно укладывать непосредственно на субсайдинг. Этот тип изоляционной плиты бывает толщиной от половины до 2 дюймов. Каждый дюйм толщины обеспечивает дополнительную изоляционную способность R-6.5.Даже менее дорогой, более тонкий лист пенопласта с закрытыми ячейками, облицованный фольгой, под кирпичным шпоном, значительно повысит тепловое сопротивление дома.
Некоторые из самых популярных вариантов облицовки кирпичом:
Если вы хотите узнать больше о тонком кирпичном шпоне, посетите один из наших представительств или прочитайте дополнительную информацию здесь.
Модернизация внутренней изоляции каменных стен
ВведениеСнижение энергопотребления в зданиях становится все более настоятельной необходимостью из-за сочетания требований энергетической безопасности, роста затрат на энергию и необходимости снижения экологического ущерба от потребления энергии .В результате значительного объема исследований были разработаны руководства и технологии, которые помогут проектировщикам и владельцам значительно снизить потребление энергии в новых зданиях. Однако существует огромное количество существующих зданий, подавляющее большинство которых имеют плохо изолированные ограждения. Повышение энергоэффективности этого фонда зданий станет очень важной частью перехода Северной Америки от региона, зависящего от импорта ископаемого топлива, к низкоуглеродной самодостаточной экономике.
Модернизация, реконструкция и переоборудование зданий для новых целей связаны с множеством проблем.Социально, культурно и экономически важный класс зданий — это несущие здания из кирпичной кладки, построенные, как правило, до Второй мировой войны. Добавление изоляции к стенам таких каменных зданий в холодном, особенно холодном и влажном климате может в некоторых случаях вызвать проблемы с производительностью и долговечностью. Многие из тех же принципов применимы к внутренней изоляции стен CMU с каменной облицовкой, широко используемой в течение десятилетий после Второй мировой войны.
В данном дайджесте рассматриваются принципы контроля влажности, которым необходимо следовать для успешной утепленной модернизации сплошной несущей кирпичной стены.Представлены и сопоставлены различные возможные подходы к модернизации таких стен.
Влажный балансОсновной проблемой при изоляции старых несущих каменных зданий в холодном климате является возможность повреждения кирпичной кладки от замерзания и гниения любой заделанной деревянной конструкции. Обе проблемы связаны с избыточным содержанием влаги, и поэтому уместно провести анализ влажности в ограждающих конструкциях здания.
Чтобы возникла проблема, связанная с влажностью, должны быть выполнены как минимум пять условий:
должен быть доступен источник влаги,
должен быть маршрут или средства для перемещения этой влаги,
должна присутствовать некоторая движущая сила, вызывающая движение влаги,
задействованные материалы должны быть подвержены повреждению от влаги, и
содержание влаги должно превышать безопасное содержание влаги в материале в течение достаточного периода времени. .
Чтобы избежать проблем с влажностью, теоретически можно было бы исключить любое из перечисленных выше условий. В действительности практически невозможно удалить все источники влаги, построить стены без изъянов или устранить все силы, движущие движением влаги. Также неэкономично использовать только те материалы, которые не подвержены повреждениям от влаги. Поэтому на практике обычно учитываются два или более из этих предварительных условий, чтобы уменьшить вероятность превышения безопасного содержания влаги и время, в течение которого содержание влаги будет превышено.
Вся конструкция корпуса требует баланса смачивания и сушки (, рис. 1, ). Поскольку смачивание происходит в разное время, чем сушка, хранение сокращает время между смачиванием и сушкой. Если соблюдать баланс между смачиванием и сушкой, влага не будет накапливаться со временем, безопасное содержание влаги не будет превышено и проблемы, связанные с влажностью, маловероятны. Однако при оценке риска повреждения из-за влаги всегда следует учитывать емкость хранения, а также степень и продолжительность смачивания и высыхания.
Рисунок 1: Аналогия баланса влажности.
Четыре основных источника влаги для ограждения надземного здания: ( Рисунок 2 ):
осадки, особенно проливной дождь,
водяной пар в воздухе, переносимый диффузией и / или движение воздуха через стену (изнутри или снаружи),
встроенной и накопленной влаги и
жидких и связанных грунтовых вод.
Рисунок 2: Источники и механизмы влаги для произвольной стены ограждения.
Способность сборки к сушке является важным фактором при оценке ее уязвимости к проблемам влажности. Влага обычно удаляется из корпуса в сборе с помощью (, рис. 3 ):
испарение воды на внутренней и внешней поверхности, переносимой капиллярным всасыванием через микроскопические поры;
перенос пара путем диффузии (через микроскопические поры), утечки воздуха (через трещины и отверстия) или и того, и другого, наружу или внутрь;
дренаж через щели, щели и отверстия под действием силы тяжести; и
вентиляция (вентиляционная сушка), преднамеренный поток воздуха за облицовкой.
Рисунок 3: Механизмы отвода влаги.
Стены ограждающих конструкций многих старых зданий состоят из нескольких слоев кирпичной кладки, цемента, извести или цементно-известкового раствора. Внутри может быть открытая кладка, но часто она завершается деревянной обрешеткой и / или штукатуркой. В институциональных зданиях, особенно построенных позже в этот период, один или несколько слоев полой глиняной или терракотовой плитки могут быть добавлены в интерьер и отделаны штукатуркой.Полые внутренние перемычки обеспечивали как повышенную изоляцию, так и пространство для работы сантехнических служб. Начиная со Второй мировой войны, внутренний слой кладки часто состоял из бетонных блоков, соединенных с облицовкой наружной кладки.
Несущие кирпичные кирпичные здания обладают потенциалом долговечности — именно по этой причине многие из них все еще существуют и доступны для ремонта и переоборудования после срока службы от 50 до 100 лет. Однако реалии растущих затрат на электроэнергию, повышение стандартов комфорта пассажиров и неприемлемость экологического ущерба из-за чрезмерных потерь энергии на кондиционирование помещения означают, что современные ремонтные работы должны включать средства уменьшения теплового потока через ограждение.
Несущая кирпичная кладка прошлого имеет широкий спектр тепловых свойств, но можно предположить, что обычная кирпичная кладка средней плотности (от 80 до 110 фунтов на фут) обеспечивает R-значение от 0,25 до 0,33 рэнда на дюйм. Кирпич более высокой плотности (более 125 фунтов на квадратный фут) имеет более низкое тепловое сопротивление, около 0,15 / дюйм. Следовательно, стенка толщиной в три витка (12 дюймов) обеспечивает значение R от 3 до 4 плюс коэффициенты поверхностной теплопередачи («воздушные пленки») другого R1. Если кладка намокнет, показатель R снизится. Стена CMU с наружной облицовкой из кирпича имеет аналогичный уровень производительности.Этот уровень изоляции слишком низкий для многих практических целей и может даже привести к проблемам с конденсацией, если уровень влажности внутри помещения будет оставаться слишком высоким. Это особенно актуально, если использование здания изменено на музей или галерею. Однако даже переоборудование склада в квартиру на чердаке может изменить внутренние условия в достаточной степени, чтобы вызвать проблемы. Следовательно, по многим причинам часто принимается решение добавить изоляцию к стенам во время переоборудования и ремонта, поскольку в настоящее время это возможно с наименьшими нарушениями.
Чтобы обеспечить достижение целей комфорта, энергоэффективности и долговечности, окна, крыши, подвалы и воздухонепроницаемость также должны быть включены в любую оценку потенциала модернизации здания. Значительные улучшения производительности этих других компонентов ограждающих конструкций здания могут значительно улучшить общие характеристики здания.
Во многих случаях добавление теплоизоляции, уменьшение утечки воздуха и высокоэффективные окна не только сокращают потребление энергии, улучшают комфорт и предотвращают конденсацию на внутренней поверхности, но также позволяют создавать меньшие, менее архитектурно интрузивные и менее дорогие системы ОВК. быть установлен.
Модернизация внешней изоляции
С точки зрения строительной науки, модернизация внешней изоляции предлагает самый простой, самый большой и минимальный подход к повышению термического сопротивления корпуса, воздухонепроницаемости и сопротивления проникновению дождя. В то же время, модернизация внешнего ограждения увеличивает долговечность существующей стены больше, чем любой другой подход (поддерживая постоянную температуру и устраняя все источники увлажнения), и обеспечивает непрерывность всех контрольных слоев.По сути, любой уровень производительности может быть достигнут с помощью внешней модернизации, поскольку существующий корпус используется просто как опорная конструкция.
Однако существует множество причин, по которым нельзя использовать модернизацию внешней изоляции, включая, конечно, необходимость защиты эстетической ценности внешнего фасада здания.
Рис. 4: Модернизация внешней теплоизоляции является предпочтительным решением для строительной науки.
Ремонт любой стены может нарушить баланс влажности, и на практике есть примеры, когда это нарушение привело к повреждению или проблемам с производительностью. Механизмы повреждения, вызывающие озабоченность, — это в первую очередь замораживание-оттаивание и субфлуоресценция соли. Оба эти механизма представляют собой проблему только в холодную погоду, а наиболее опасный из них, замораживание-оттаивание, может возникать только при температурах значительно ниже нуля, когда кирпичная кладка практически насыщена.Во избежание повреждений, связанных с влажностью, баланс следует четко учитывать в процессе проектирования модернизации (Straube et al 2012).
Добавление теплоизоляции к внутренней части несущей кирпичной стены снизит температурный градиент по каменной кладке и уменьшит разницу температур между каменной кладкой и наружным воздухом (Рисунок 5). Оба эти изменения снижают сушильную способность кладки (в частности, снижается способность диффузионной сушки через кирпичную кладку, и может замедляться поверхностное испарение.) Однако капиллярный поток, безусловно, является наиболее мощным механизмом перераспределения влаги, и на него практически не влияет изоляция.
Вода, которая попадает на внутреннюю поверхность теперь изолированной внутренней поверхности кладки, все еще может испаряться с этой поверхности во внутреннюю часть через внутреннюю изоляцию и отделку в более теплую погоду (если паропроницаемость этих внутренних слоев позволяет это).
Поскольку снижение сушильной способности может привести к более высокому содержанию влаги (не обязательно небезопасным уровням, но часто не известно безопасный уровень с какой-либо точностью), было бы разумно одновременно уменьшить смачивание стены (в идеале, эквивалентное или большее количество) для восстановления баланса влажности.Следовательно, модернизация внутренней изоляции каменного здания требует тщательной оценки механизмов увлажнения. Преимущество внешнего переоборудования в долговечности можно оценить, сравнив результирующий температурный градиент (рис. 6).
Рисунок 5: Изменение температурного градиента из-за внутренней изоляции.
Рисунок 6: Изменение температурного градиента из-за внешней изоляции.
В последнее десятилетие оценка морозостойкости кирпичных и каменных кладок значительно расширилась.Результатом исследовательской работы стали методы тестирования и моделирования, позволяющие количественно оценить степень устойчивости к замораживанию-оттаиванию (Mensinga et al 2010, 2014, Lstiburek 2011). Тестирование и оценка позволяют группе количественно оценить риск повреждения при замораживании-оттаивании в процессе эксплуатации после внутренней модернизации и в настоящее время регулярно проводятся лабораториями RDH Building Science Laboratories.
Механизмы смачивания и их контрольСмачивание, как описано выше, может возникать в результате смачивания дождем (особенно при плохих характеристиках дренажа поверхности), естественного увлажнения (из-за земли, таяния снега, плохого дренажа поверхности).После утечки изолирующего воздуха конденсация и диффузионная конденсация пара могут стать важными. Все необходимо учитывать (Рисунок 7).
Рисунок 7: Обычные механизмы смачивания сплошных каменных стен.
Наибольшее и наиболее интенсивное увлажнение, которое обычно получает существующее здание, связано с выпадением и концентрацией проливного дождя. Места с самой высокой интенсивностью увлажнения (часто в диапазоне от 10 до 100 галлонов на квадратный фут в год в северо-восточной части Северной Америки) — это нижние углы оконных проемов (поскольку окна стекают и концентрируют воду в нижних углах. ) и на уровне (если дренажные детали не предусмотрены должным образом).Контроль потока дождевой воды с поверхности является наиболее важным аспектом контроля влажности кладки. Следовательно, уменьшение смачивания в этих местах за счет использования выступающих подоконников и дренажа основания часто может уменьшить смачивание наиболее критических областей в гораздо большей степени, чем уменьшение высыхания, вызванное изоляцией. Нельзя недооценивать роль выступов (выступы всего лишь на 1 дюйм существенно влияют на смачивание), полос ленты и выступающих краев капель вдоль подоконников и вершин пилястров.
Добавление теплоизоляции в интерьер также увеличивает потенциал для нового механизма увлажнения — конденсации из-за утечки воздуха. Поскольку любая изоляция или новая внутренняя отделка снизят температуру внутренней поверхности кладки зимой, любой внутренний воздух, который контактирует с этой поверхностью, может конденсироваться (см. Рисунок 5).
При достаточной утечке воздуха и достаточно высокой относительной влажности в помещении этот конденсат может накапливаться быстрее, чем высыхать, и внутренняя поверхность кладки станет насыщенной, в то время как внутренняя поверхность часто опускается ниже точки замерзания.Чтобы предотвратить возможное повреждение от влаги, в том числе повреждение при замораживании-оттаивании, внутри изоляции должен быть предусмотрен воздухонепроницаемый слой.
Наконец, изоляционная кладка внутри может увеличить вероятность конденсационного смачивания, вызванного диффузией. Некоторый контроль диффузии пара необходим, если используется как теплоизоляция с высокой паропроницаемостью, так и влажность внутреннего пространства становится слишком высокой в холодную погоду (от 30% до 40% относительной влажности в холодном климате). Однако в большинстве случаев обычно указываемый пародиффузионный барьер менее 1 перм. США не требуется.Фактически, внутренняя отделка и барьеры с низкой проницаемостью могут отрицательно сказаться на эксплуатационных характеристиках, поскольку такие барьеры для пара препятствуют или исключают возможность высыхания внутри.
Требуемый контроль диффузионного смачивания паров обычно может быть обеспечен с помощью типичной латексной краски, полупроницаемых изоляционных материалов, умных замедлителей парообразования (продуктов, которые снижают паропроницаемость зимой и увеличивают ее на порядок летом) и других подобных материалы. В общем, оптимальный уровень требуемого контроля паров может быть легко рассчитан для конкретных условий воздействия в здании и климата с использованием методов динамического одномерного гигротермического анализа.(Мы обнаружили, что наиболее точным и подходящим инструментом часто является WUFI).
Проблемные стратегии модернизацииОбычная схема включает гипсокартон на стене со стальной стойкой, заполненной изоляционным войлоком (рис. 5). Небольшой (от ”до 2”) воздушный зазор может быть намеренно установлен на внутренней стороне существующей каменной стены или может образоваться случайно из-за вариаций размеров, присущих существующим каменным зданиям. Отделка гипсокартона часто действует как воздушный барьер в этой ситуации, а краска, крафт-облицовка, полиэтиленовый лист или основа из алюминиевой фольги действуют как пароизоляционный слой.(Обратите внимание, что многослойная кладка обычно достаточно воздухопроницаема и сама по себе недостаточна в качестве слоя контроля воздуха). Такой подход сопряжен с множеством серьезных проблем.
Во-первых, высока вероятность образования конденсата и плесени в стене. Как видно из рисунка 9, если внутренние условия меняются от 68 F / 25% RH до 71 F / 35% RH, температура точки росы будет варьироваться от 30 до 40 F. Следовательно, когда тыльная сторона кладки опускается ниже этих значений. При высоких температурах (которые вероятны в холодную погоду) конденсация может произойти, если будет происходить поток воздуха за кладкой.Если наблюдается более высокая влажность в помещении и более низкие температуры наружного воздуха, вероятна серьезная конденсация даже при очень небольших утечках через воздушный барьер гипсокартона. Эту озабоченность усугубляет обычная склонность повышать давление в коммерческих и институциональных зданиях. Эта практика предназначена для предотвращения проблем с комфортом из-за сквозняков из-за неконтролируемых утечек воздуха, но она также гарантирует, что воздух будет вытекать наружу в достаточных объемах, чтобы вызвать опасное количество конденсата на обратной стороне холодно изолированной кладки.
Рис. 8: Концептуальный чертеж внутренней переоснащения шипами и обрешетками.
Если используются стальные шпильки, такой подход не обеспечит изоляцию до желаемого уровня. Стальные стойки представляют собой мосты холода, и в данном сценарии теоретически способны обеспечить только около R-6 (меньше, если включены плиты перекрытия). На практике установка войлока между стойками без подкладки очень трудна, и почти наверняка они не будут установлены должным образом.Наконец, воздух может циркулировать внутри изоляции через воздушный зазор между каменной кладкой и войлоком, еще больше снижая R-значение и способствуя конденсации.
Следовательно, эта схема страдает рядом ограничений — она не обеспечивает разумного уровня теплоизоляции, она увеличивает зимнее увлажнение в самую холодную погоду (тот же период, в течение которого существует риск повреждения от замерзания-оттаивания) и создает плесень и риск для качества воздуха в помещении. Учитывая серьезные ограничения и сомнительные преимущества этой схемы, ее нельзя рекомендовать для модернизации внутренней изоляции.
Рисунок 9: Температуры, при которых может происходить конденсация.
Полупроницаемая пенная изоляцияБолее успешный подход включает распыление воздухонепроницаемой изоляционной пены непосредственно на тыльную сторону существующей кладки (Рисунок 10). Внутренняя отделка должна иметь высокую паропроницаемость или иметь обратную вентиляцию. Преимущество такой модернизации состоит в том, что вся конденсация утечки воздуха строго контролируется, а кирпичные стены неровные и неровные.Использование аэрозольной пены также действует как барьер для влаги, поскольку любое небольшое случайное проникновение дождя будет локализовано и контролироваться. Таким образом, внутренняя отделка будет защищена, поскольку вода не будет стекать и скапливаться на полу, проникая через изоляцию. Вода, которая впитывается в кладку, может вытекать наружу (где она будет испаряться) или проникать внутрь, где она будет диффундировать через полупроницаемую аэрозольную пену и внутреннюю отделку.
Нанесение пенопласта толщиной от 2 до 4 дюймов после установки стены из стальных каркасов выполняется просто.Пустое пространство для стоек идеально подходит для распределения услуг и позволяет легко наносить отделку гипсокартоном (требуется для обеспечения огнестойкости пенопласта). Стальные шпильки следует удерживать на расстоянии более 1 дюйма от стены (рекомендуется 3 дюйма), чтобы позволить пенопласту укладываться и прилипать к кирпичной кладке во всех точках, а также контролировать тепловые мосты и наноклимат влаги, испытываемый внешним фланцем корпуса. шпильки.
Рис. 10: Концептуальный чертеж модернизации распыляемой пеной.
Использование этого подхода поднимает вопрос о выборе внутренней паропроницаемости для пены.Как правило, внутренние слои следует выбирать так, чтобы они имели максимально возможную паропроницаемость, а также избегали смачивания диффузионной конденсацией в зимний период. Эта стратегия обеспечивает максимальный уровень внутренней сушки в теплую погоду. Распыляемая пена с закрытыми ячейками также обладает достаточным сопротивлением диффузии пара, чтобы управлять конденсацией в холодную погоду на границе раздела кирпич-пена и контролировать потенциально опасный входящий поток пара во время солнечного нагрева влажной кладки. Пенополиуретан с закрытыми ячейками, как правило, является хорошим решением для более тонких применений (2 дюйма полиуретановой пены с закрытыми ячейками 2 pcf имеет проницаемость около 1 доп. 5 ”имеет проницаемость около 13 перм и тепловое сопротивление почти R-20) может быть приемлемым выбором для большей толщины, если в помещении зимой поддерживается низкая влажность и температура наружного воздуха не слишком низкая.Гигротермическое моделирование можно использовать для определения материалов, подходящих для конкретного применения.
Во многих случаях для внутренней модернизации использовалась изоляция из жесткого пенопласта различных типов. Для тонких слоев изоляции можно использовать полупроницаемый пенопласт, такой как экструдированный полистирол или необработанный полиизоцианурат, но для более толстых слоев предпочтительнее использовать более проницаемые пенополистирольные плиты. Этот метод использовался успешно, но его сложнее построить, поскольку он требует большой осторожности при обеспечении плотного контакта плиты с кладкой (любые зазоры могут позволить конвективным петлям переносить влагу и тепло) и что полный воздушный барьер формованные (проклеенные и / или герметичные соединения).
Устранение проникновений в конструкцииКонструкция пола неизбежно проникает внутрь каменных стен этих зданий и опирается на них. Иногда это происходит на пилястрах, но чаще большие деревянные балки или бетонные плиты переносят нагрузки пола на стены. Эти проникновения нарушают непрерывность регулирования температуры, воздуха и воды. Самые большие опасения связаны с потенциальным воздействием на прочность пола после утепления стен (Ueno 2015).
Когда структурное соединение осуществляется через бетонные плиты, реальных проблем с долговечностью нет. Однако проводящий бетон может вызывать значительные потери тепла, чтобы сделать внутренние поверхности бетона холодными. В зависимости от внутренней отделки, наружной температуры и относительной влажности в помещении конденсация на поверхности может стать проблемой. Существует ряд решений, если тепловые мосты становятся проблемой, включая актуальное и целевое применение тепла и / или снижение внутренней влажности, а также стратегии изоляции.Двухмерный анализ теплового потока — бесценный инструмент для оценки влияния температуры поверхности и теплового потока.
Самым сложным сценарием является сценарий, при котором деревянные балки проникают в новую внутреннюю отделку и попадают в карманы в кладке. Цель должна заключаться в уменьшении всех утечек воздуха, которые переносят влагу в этот карман холодного луча. Обеспечение вентиляции этого пространства почти наверняка вызовет конденсацию, но не предотвратит ее. Тем не менее, желательно позволить небольшому количеству тепла поступать в это пространство, так как это высушит древесину по сравнению с более холодной (поскольку она лучше изолирована) кладкой вокруг нее.Если балки расположены нечасто на расстоянии 6 или 8 футов, то рекомендуется подход, показанный на Рисунке 7, то есть герметизация с помощью воздушного уплотнения и пена вокруг балки, и в этом месте будет использоваться более тонкая внутренняя изоляция. В некоторых случаях небольшие источники тепла могут быть предусмотрены в карманах для балок с помощью металлических клиньев с высокой проводимостью, установленных рядом с балками.
Альтернативные методы Изоляция из минерального волокнаИспользование полупроницаемой вспененной изоляции, контактирующей с обратной стороной существующей кладки, является наиболее распространенной успешной стратегией модернизации внутренней изоляции.Однако по многим причинам может быть необходимо или желательно использовать изоляцию из минерального волокна. Опыт использования этого метода менее успешен, но новые материалы и методы открывают потенциал для модернизации с низким уровнем риска и с высокими эксплуатационными характеристиками. Один из рекомендуемых подходов показан на рисунке 11.
Наносимый жидкостью паропроницаемый воздух и водный барьер обычно следует наносить на обратную сторону кладки, когда используется изоляция плит, особенно плиты из минерального волокна, потому что изоляция не является способен остановить миграцию жидкой воды.Приклеенная мембрана предотвращает проникновение, слив и накопление любой небольшой и локальной утечки воды в местах проникновения в пол. Мембрана, наносимая жидкостью, также действует как первичный воздушный барьер, будучи достаточно паропроницаемой, чтобы водяной пар мог двигаться в любом направлении.
Полужесткая изоляционная плита может быть прикреплена с помощью клея или механических приспособлений (например, штифтов или винтов с изоляционной шайбой). Если используются клеи, плиты следует прикреплять с помощью непрерывных горизонтальных канавок, чтобы ограничить конвекцию.
Рис. 11: Внутреннее переоборудование с использованием изоляции из минерального волокна.
Сопротивление внутреннему потоку воздуха также необходимо для контроля риска естественной конвекции. Достаточно плотная изоляция из минерального волокна, плотно прижатая к кирпичной кладке, позволяет избежать зазоров, но стыки между досками по-прежнему оставляют путь (что можно решить, используя два слоя изоляции со смещенными стыками между слоями). Если изоляция слишком плотная, она не будет сжиматься вокруг неизбежно шероховатой поверхности обнаженной кладки (иногда кладку можно сделать гладкой, нанеся известковый раствор или плотно прилегающий водовоздушный барьер).
Контроль диффузии пара также является проблемой при модернизации этого типа. Изоляция из минерального волокна имеет очень низкое сопротивление диффузии пара. Без дополнительной паростойкости в холодную погоду, скорее всего, произойдет конденсация на внутренней стороне кладки. Можно купить плиты, облицованные алюминиевой фольгой, но они имеют настолько низкую паропроницаемость, что конденсация на обращенной наружу обратной стороне фольги (часто на бумажной основе и отличная пища для форм) представляет собой реальный риск нагрева влажной кладки под воздействием солнечных лучей.
Идеальным решением является использование умного замедлителя парообразования: такую мембрану можно наклеить лентой и сделать непрерывной в качестве конвекционного барьера (который будет подвергаться умеренным перепадам давления), контролирует внешнюю диффузию в зимнюю погоду и, тем не менее, позволяет сушить внутрь в летних условиях (при условии использования проницаемой или вентилируемой внутренней отделки).
ДренажВ некоторых случаях кладка может быть повреждена настолько, что можно ожидать проникновения дождя.Если внешний ремонт и перенаправление не могут контролировать этот тип утечки дождя, в исключительных случаях может потребоваться дренажное пространство за несущей кладкой. Образовать дренажный зазор и установить дренажную плоскость несложно, но достижение требуемых и критически важных деталей гидроизоляции может стать серьезной проблемой (особенно вокруг проемов в конструкционных перекрытиях). При таком подходе по-прежнему важно обеспечить очень хорошую воздухонепроницаемость, а также избежать конвекции воздуха во внутреннюю часть, несмотря на намеренно введенный дренажный зазор.
Рис. 12: Внутреннее дооснащение с дренажем.
Дренаж области стены легко осуществить, но собрать и слить любую собранную воду очень сложно: задача собрать воду в водосливной ванне и направить ее наружу через дренажные отверстия влечет за собой высокий риск поломки. В большинстве случаев переоборудование несущей стены в дренированную стену не рекомендуется из-за риска и трудностей. Внутренние водные барьеры и внешние детали должны быть в центре внимания для предотвращения проникновения дождя.
Активные решения для высокой влажностиДля применений, где требуется высокая (более 40%) относительная влажность зимой, может потребоваться регулирование воздушного потока путем создания давления в пространстве между изоляцией и внутренней отделкой с низкой влажностью воздух (Рисунок 13). Это также позволяет наносить более тонкие слои изоляции (поскольку воздушный поток гарантирует, что внутренняя отделка будет иметь внутреннюю температуру, независимо от теплового потока через стену).Поскольку воздух рядом с изоляционным слоем очень сухой, он позволяет выбрать изоляцию из минерального волокна с высокой паропроницаемостью и способствует испарительной сушке внутри в течение всего года, а не только летом. Наиболее распространенным выбором подачи воздуха для этого применения является наружный воздух в холодную погоду, нагретый до внутренней температуры: механическое осушение дорого, а создание низкой влажности в холодную погоду является проблемой, тогда как нагрев наружного воздуха дает очень сухой воздух очень недорого.Подача нагретого воздуха используется только тогда, когда температура точки росы на улице ниже температуры точки росы комнатной температуры.
Этот метод внутреннего переоборудования является наиболее сложным, самым дорогим и наиболее энергоемким. Однако его выбирают в некоторых случаях, потому что он также обеспечивает максимальную внутреннюю сушку и меньше всего изменяет баланс влажности, в то же время допускает то, что в противном случае было бы опасно высокой влажностью внутри. Тот же подход можно использовать для окон, добавив однослойное внутреннее штормовое окно, что полностью предотвратит образование конденсата и обеспечит комфорт в помещении.
Рис. 8: Концептуальный чертеж внутренней модернизации с регулируемым давлением для работы с высокой влажностью. Резюме
Изоляция несущих кирпичных зданий внутри в холодном климате часто требуется для удовлетворения требований к комфорту человека, экологических целей и целевых затрат. Многие такие внутренние переоборудования уже были успешно завершены в холодном климате за счет использования непрерывного изоляционного слоя в сочетании с вниманием к внутренней воздухонепроницаемости и наружным деталям защиты от дождя.
Использование полупроницаемой пенопластовой изоляции с полным контактом (или приклеиванием) к обратной стороне существующей кирпичной кладки является наиболее распространенной успешной стратегией модернизации внутренней изоляции в Северной Америке с отличным послужным списком успеха. Этот метод также имеет то преимущество, что он является одним из наиболее практичных в полевых условиях. Использование воздухо- и паропроницаемой полужесткой теплоизоляции из плит (пенопласт или минеральное волокно) может быть успешным, если достигается превосходная воздухонепроницаемость и подавляется конвекция, и часто требуется паропроницаемый водо-воздушный барьер, наносимый жидкостью на внутреннюю кладку. поверхность.
Чтобы обеспечить достижение целей комфорта, энергоэффективности и долговечности, окна, крыша, подвал и воздухонепроницаемость также должны быть включены в стратегию модернизации здания. Значительные улучшения характеристик этих компонентов ограждающих конструкций здания могут значительно улучшить общие характеристики здания.
Чтобы еще больше снизить вероятность проблем с влажностью в ограждении здания, механические системы должны быть спроектированы и введены в эксплуатацию так, чтобы избежать любого положительного давления в здании.Влажность в помещении также необходимо контролировать, особенно в холодную погоду и более холодный климат.
Источники
Лстибурек, Джо. «Building Science Insight # 047: Толстый, как кирпич», май 2011 г. Доступно по адресу http://www.buildingscience.com/documents/insights/bsi-047-thick-as-brick
Mensinga, P., Straube, JF, Schumacher, CJ, «Оценка морозостойкости глиняного кирпича для проектов модернизации внутренней изоляции», Proc. Buildings XI , Клируотер-Бич, Флорида, декабрь 2010 г.
Mensinga, P., DeRose, D., Straube, JF. «Метод испытаний для определения начала разрушения кладки при замораживании-оттаивании», ASTM STP 1577 , Ed. Майкл Тейт, Западный Коншохокен, Пенсильвания, 2014.
Штраубе, Джон Кохта Уэно и Кристофер Шумахер. «Внутренняя изоляция каменных стен: Руководство по окончательным мерам». Отчет Министерства энергетики США по строительству в Америке, июль 2012 г. Доступно по адресу: http://www.nrel.gov/docs/fy12osti/54163.pdf
Ueno, K., Straube, JF , vanStraaten, R., «Полевой мониторинг и моделирование исторического здания с массивной кладкой, модифицированного внутренней изоляцией», Proc.Of Buildings XII , Клируотер-Бич, Флорида, декабрь 2013 г.
Уэно, К. «Полевой мониторинг деревянных элементов в изолированных каменных стенах в холодном климате», BEST Conference Building Enclosure Science & Technology 4 , Kansas City April 2015.
Как изолировать внешнюю сторону стены из бетонных блоков | Home Guides
Слово «изоляция» обычно ассоциируется с высокими тканями из стекловолокна, жестких пенопластовых панелей и выдувной целлюлозы.На протяжении десятилетий лучший способ изолировать бетонный блок находился внутри стены, что требовало создания еще одной стены напротив бетона и изоляции между стойками. Сегодня, используя системы внешней изоляции и отделки (EIFS), вы можете добавить R-ценность вашей бетонной стене снаружи. С 2012 года применение EIFS, которое придает стене эффектный вид, доступно только через сертифицированных подрядчиков EIFS.
Подготовка
Проконсультируйтесь с местным строительным управлением, прежде чем применять EIFS к внешней стороне вашего дома или здания.Большинство местных норм требуют разрешения на строительство перед изменением размеров внешней конструкции, а применение EIFS добавит около 3 дюймов к внешней стороне стены. Если в существующей стене есть трещины или неплотные блоки, отремонтируйте перед установкой EIFS.
Установка
Подрядчик наносит слой клея на поверхность бетонных блоков, а затем устанавливает поверх него пароизоляцию и изоляцию из жесткого пенопласта высокой плотности. Следующий слой стальной сетки или сетки крепится механическими крепежами, просверленными в бетонных блоках.Затем следует полутвердое базовое покрытие, содержащее пенополистирол (EPS), а затем — финишное покрытие. Вы можете выбрать цвет верхнего покрытия или настроить его, добавив заполнитель.
Деформационные швы
Деформационные швы могут потребоваться для контроля будущего движения стены. Количество и расположение этих швов варьируется, но обычно они располагаются над существующими компенсационными швами в стене из бетонных блоков, на больших площадях EIFS и там, где EIFS упирается в другие типы внешней облицовки, такие как кирпич или камень.Деформационные швы проходят от поверхности облицовки до бетонной стены, поэтому они должны быть герметизированы, чтобы предотвратить попадание влаги в швы.
Рекомендации
Как и другие типы сайдинга, EIFS не должен контактировать с почвой. Местные нормы и правила определяют минимальное расстояние между уровнем почвы и дном EIFS, которое обычно составляет около 6 дюймов. Одним из недостатков EIFS является невозможность заделать трещины или сколы без необходимости переустановки основы и верхнего покрытия от стены к стене.Это делает нецелесообразным установку системы на стене из бетонных блоков, которая часто трескается из-за оседания или движения почвы или фундамента.
Ресурсы
Писатель Биография
Гленда Тейлор — подрядчик и писатель, специализирующийся на строительных работах. Ей также нравится писать статьи о бизнесе и финансах, о еде и напитках, а также о домашних животных. Ее образование включает маркетинг и степень бакалавра журналистики Канзасского университета.
Полнотелый кирпич против кирпичного шпона
Полнотелый кирпич против кирпичного шпона
Есть два способа возвести здание из кирпича: сплошная кладка и облицовка кирпичом.Один лучше другого? Если да, то почему?
Каменная кладка
Сплошная кладка — это старая добрая кирпичная кладка, которая была довольно распространена до середины 1900-х годов. Это также известно как «двойной кирпич», «полнотелый кирпич» или «кирпич и блок». Эта форма кирпичной кладки использует несколько слоев (слоев) кирпича с верхним кирпичом, чтобы удерживать их вместе. Некоторые каменные стены, построенные до 1900 года, имели толщину более 20 дюймов! Поскольку внутреннюю часть не видно снаружи, ее обычно заменяли бетоном или шлакоблоком.Иногда металлические стяжки встраивались в сплошные каменные стены. К сожалению, в старых прочных стенах с этими стяжками не использовались стяжки из горячего окунания или стяжки из нержавеющей стали, поэтому большинство этих оригинальных стяжек заржавели.
Сплошная кладка, несомненно, была надежным способом строительства. При толщине стенки 8 дюймов и более они составляли
.может поддерживать самые разные кровельные конструкции. Плотники часто работали вместе, чтобы встраивать балки пола в стены, в то время как кирпич поднимался вверх.
На приведенном ниже рисунке показаны некоторые из распространенных типов массивных стен из каменной кладки.
Кирпичная облицовка (пустотелая стена)
Самая большая разница между облицовкой и полнотелым кирпичом — это основная опора здания. Массивная кладка — это структурная опора здания. В случае облицовки кирпичом структурная опора состоит из бетона, стали или дерева, составляющих опорную стену, а кирпич находится снаружи в эстетических целях. Кирпичная облицовка состоит только из одного слоя, в отличие от цельного кирпичного здания, которое состояло бы из нескольких слоев.Между кирпичом и опорной стеной имеется открытая полость, в которую можно добавить изоляцию и материал для сбора раствора. Стены из кирпичного шпона должны быть спроектированы с использованием надлежащих устройств для гидроизоляции и гидроизоляции, которые позволяют воде выходить из полости наружу здания. Стены полостей можно найти в древних постройках, и они были возвращены в использование в Великобритании в конце 1800-х годов, но на самом деле не пользовались популярностью до середины 1900-х годов.
Различия между массивной кладкой и кирпичной кладкой из шпона
Энергоэффективность : Существенная разница между кирпичным шпоном и полнотелым кирпичом заключается в уровне теплопередачи.Кирпич по своим тепловым свойствам не является эффективным изолятором. В стенах с полыми стенками из шпона между внешней облицовкой и опорной стеной остается место для добавления отдельного изоляционного материала. Стены, облицованные кирпичом, более энергоэффективны.
Канализация: Кирпич не является водонепроницаемым материалом. Оба типа кирпичных стен полагаются на связь между строительным раствором и каменными блоками, чтобы ограничить проникновение воды. Массивные стены из кирпича полагаются на свою большую массу, чтобы поглощать воду, которая поступает извне.Старые здания с каменными стенами не кондиционировались, а для внутренней отделки часто использовалась цементная штукатурка, которая не подвержена повреждениям от воды, как гипс, который используется сегодня. Отсутствие теплоизоляции сохраняло тепло сплошной кирпичной стены изнутри, уменьшая колебания температуры. Уход за более старыми каменными стенами имеет решающее значение (при необходимости вывертывание) Полые стены полагаются на водоотводящие системы, которые отводят воду из-за кирпичей наружу.
Конструкция: Стены из массивной каменной кладки — это несущие стены.Стены из кирпичного шпона крепятся к несущим подпорным стенам и не являются конструктивными.
Стоимость: Стены из массивной кирпичной кладки намного дороже в производстве, чем стены из кирпичного шпона.
Опорные стены из кирпичного шпона
Большинство жилых домов построено с деревянным каркасом, в то время как более крупные здания построены с использованием стального каркаса, бетона или резервных копий CMU. Для разных вспомогательных материалов требуются разные анкеры для облицовки кирпичной кладкой для крепления внешнего кирпича к внутреннему опорному материалу.
Например, анкеры из гофрированного листового металла можно использовать только с деревянными опорами с воздушным пространством в 1 дюйм между материалами. Для любого большего пространства потребуются анкеры для листового металла. Регулируемые анкеры, с другой стороны, могут быть эффективны в опорах из дерева, стали, кирпичной кладки или бетона. Резервные копии бетонных и стальных шпилек должны использовать регулируемые анкеры из-за возможных проблем с прогибом.
Восстановление массивных стен из кирпича
Если за кирпичными стенами не ухаживать должным образом, влага будет проникать за кирпичи, и они начнут выскакивать и опадать.Во многих случаях спиральные стяжки действуют как винт и могут буквально ввинтить стену на место. В некоторых случаях внешняя сторона снимается и прикрепляется небольшими анкерами из гофрированного шпона из нержавеющей стали с расширением около 2 дюймов, закрепленными в кирпиче позади. В других случаях кирпичный шпон добавляется к внешней стороне существующей массивной каменной стены путем добавления гидроизоляции и изоляции к наружной массивной каменной кладке, добавления воздушного пространства и создания нового кирпичного шпона с надлежащими влагопотоками и каплями раствора.
Не все кирпичные здания сделаны одинаково. Строительство из кирпичной кладки высочайшего качества обеспечит долговечность любого проекта. У Heckmann Building Products есть подходящие анкеры и аксессуары для кирпичной кладки для каждого проекта.
Безопасная изоляция исторических каменных зданий: чем может помочь WUFI
С ростом популярности пассивного дома и ремонта EnerPHit при ремонте кирпичной и кирпичной кладки в США и Канаде снова и снова возникает вопрос: какие уровни изоляции необходимы для создания эффективной конструкции, и насколько далеко мы должны и можем ли мы продвинуться. Уровни внутренней изоляции без проблем? Один из инструментов, который мы можем использовать, — это программа для гидротермического моделирования WUFI.Компания 475 может предоставить анализ WUFI для ваших проектов с использованием полной системы герметичности Pro Clima.
Первоначальная герметичность *
Но перед WUFI первым элементом, который необходимо понять, является то, что правильная и надежная герметизация оболочки здания делает это здание намного более энергоэффективным (скорректируйте результаты теста воздуходувки в PHPP, чтобы увидеть, какой эффект это имеет …). Что еще более важно, внутренняя воздухонепроницаемость предотвращает попадание влажного воздуха в изоляцию и создание проблем при контакте с холодными поверхностями (например, кирпичной стеной).Это причина того, что детали, разработанные и опубликованные 475 для внутренней изоляции исторической каменной конструкции, основаны на внутреннем воздушном барьере, изготовленном из интеллектуального пароизолятора INTELLO компании ProClima вместе с лентой TESCON VANA, чтобы поддерживать кондиционированный воздух там, где он должен быть — на внутри, сохраняя изоляцию сухой и комфортной внутри. И использование служебной полости, чтобы гарантировать практическое достижение герметичных результатов.
* Конечно, проливаем воду, восстанавливая карнизы, водостоки, поводки и т. Д… не допустить насыщения кирпича — главный приоритет, но воздухонепроницаемость важнее изоляции.
Переменные: климат, кирпич, изоляция
В WUFI существует множество переменных (что делает чрезвычайно важным надлежащее обучение пользователей WUFI). Но вот некоторые из основных переменных для следующих примеров. Местоположение — Олбани, штат Нью-Йорк, выбрано, потому что он находится в пятой климатической зоне. Мы используем стену наихудшего варианта (выходящая на север, поэтому прямая солнечная радиация отсутствует на сухой стене внутрь и наиболее подвержена атмосферным осадкам), умеренная влажность внутри зимой (30-40% по EN 15026) и небольшая утечка воздуха в салоне в каждой сборке.
Стена трехслойная кирпичная. Лицевой кирпич в большинстве случаев относительно не впитывающий и прочный, и был помещен туда добросовестными архитекторами / строителями, которые хотели, чтобы их здания оставались долговечными. Это можно наблюдать в полевых условиях — неотапливаемые постройки без повреждений — хороший тому пример. Это также подтверждается публикациями, которые определили то же самое (Badami, 2011, Ananian, 2014). Это не означает, что нагрузка на стены внешней и / или внутренней влажностью не приведет к проблемам.Хороший дренаж, свесы, карнизы и т. Д. Обычно заботятся о внешних элементах исторических зданий, если они содержатся в хорошем рабочем состоянии. Наружная поверхность кирпича, вероятно, замерзает несколько раз в год, но, поскольку облицовочный кирпич обычно бывает хорошего качества, более частое его охлаждение, скорее всего, не приведет к большему ущербу от замерзания-оттаивания. Большее беспокойство вызывает кирпич для внутреннего наполнения — этот кирпич обычно не такого высокого качества, он станет холоднее из-за внутренней изоляции и, если внутренняя влажность не контролируется, и может быть склонен к конденсации.Следовательно, любая дополнительная влажность может увеличить как вероятность роста плесени, так и замораживания-оттаивания.
Глубина и тип изоляции также могут играть важную роль, как мы рассмотрим ниже. Мы рекомендуем вам не использовать пену, потому что пена не работает, однако стекловолокно, минеральная вата и целлюлоза — все это приемлемые варианты.
WUFI и пороги безопасности
Существуют пороги безопасности, по которым существует общее мнение — и эти пороги не следует пересекать, чтобы гарантировать, что сборка сохранит запасы сушки и большую упругость в случае дальнейшего непредвиденного смачивания.
Для предотвращения проблем с плесенью мы используем следующие пороговые значения:
- ProClima рекомендует постоянно поддерживать относительную влажность на поверхности конденсации ниже 92%.
- ASHRAE 160P устанавливает критерий, согласно которому для заданных 30-дневных средних значений относительная влажность не может быть выше 80%, а температура — выше 41 градуса по Фаренгейту.
WUFI позволяет нам сравнительно понять, представляет ли какой-либо узел больший или меньший риск в отношении этих пороговых значений и устойчивости корпуса.Корреляция между каждым порогом безопасности показывает, что использование любого из них приводит к схожим выводам, и, придерживаясь обоих, нужно иметь уверенность в том, что сборка работает (при условии, что используются правильные материалы, климат и ориентация).
Стекловолокно с «воздухонепроницаемым гипсокартоном»
Большое количество зданий по кодовым причинам имеет внутреннюю изоляцию, часто с использованием стекловолокна, и большинство из них не имеет проблем. Это неудивительно, поскольку в ограждении обычно пропускается столько воздуха, что утечки снижают ценность изоляции, и кирпич остается более теплым.Однако, если кто-то попытается использовать подход ADA / воздухонепроницаемого гипсокартона для герметизации изоляции (см. Этот пост в блоге, чтобы узнать, почему ADA неэффективен), мы увидим следующее моделирование WUFI:
На этом графике видно, что в первые холодные осенние дни влага начинает нагружать кирпич. Эта влажность достигает максимума при достижении точки насыщения кирпича свободной водой или около 95% относительной влажности, в отличие от более высокого уровня насыщения, достижимого в вакууме. Это означает, что возможна значительная влажность изнутри.(** См. Примечание к Scrit внизу сообщения.)
(Примечание: и эта стена, и стена ниже не соответствуют нормам / закону в климатической зоне 5, так как внутренний замедлитель парообразования (класс I или II) требуется в соответствии с IRC R702.7 для замедлителей парообразования).
Целлюлоза
Целлюлоза гигроскопична. Он может удерживать определенное количество влаги, которая в противном случае могла бы конденсироваться и накапливаться на первой холодной конденсирующейся поверхности. Тем не менее, это не панацея от всех болезней для ограждений. При использовании необходимо учитывать, что целлюлоза открыта для пара, и, хотя она может перераспределять нагрузку влаги намного лучше, чем другие волокнистые изоляционные материалы, остаются вопросы о том, насколько лучше и чего достаточно для отопления с преобладающим климатом при различных уровнях изоляции.WUFI показывает, что с 4-дюймовым слоем целлюлозы внутри («воздухонепроницаемого») гипсокартона уровни влажности превышают как 92% пороговое значение ProClima, так и 30-дневное текущее среднее максимальное значение ASHRAE, равное 80% относительной влажности и 41 ° F.
Этот график показывает, что стена получит дополнительную влажность (92% плюс шипы) изнутри, потому что в ней отсутствует требуемый код замедлитель парообразования, а также она подвержена воздействию таких уровней влажности, которые могут привести к появлению встроенных деревянных элементов, таких как гвоздезабиватели, блокировки и т. Д. балка ухудшается (относительная влажность более 80%, когда 30-дневная температура превышает 41 ° F).
Целлюлоза с интеллектуальной воздухонепроницаемой системой INTELLO Plus — Pro Clima
Когда мы вводим интеллектуальный замедлитель парообразования INTELLO компании ProClima на внутреннюю часть изоляции, эти проблемы исчезают, поскольку влажность, производимая в помещении зимой (при дыхании, приготовлении пищи, принятии душа и т. Д.), Сохраняется внутри. Это обеспечивает комфортную относительную влажность в помещении на уровне 35% + даже при работающем вентиляторе с рекуперацией тепла (HRV). Не менее важно, чтобы влажный воздух не попадал на холодные конденсирующие поверхности с другой стороны изоляции, поскольку INTELLO образует прочный воздушный барьер и пароизоляционный слой.
С INTELLO и целлюлозой, как высоко мы можем безопасно подняться?
Мы часто слышим вопрос: мы используем окна с коэффициентом теплопередачи 0,15 или выше (> R-7), поэтому не будет ли выгодно расположить стойки подальше от кирпича и повысить уровень изоляции? Итак, давайте посмотрим, что произойдет, если мы увеличим изоляцию до 6 дюймов из целлюлозы:
Это все еще можно считать нормальным — нет скачков выше 92% или длительных периодов более 80% относительной влажности, когда температура стены также не ниже 32F.Учтите, что это происходит только после того, как первоначальная строительная влага высохнет внутрь первой весной. Это сделано для того, чтобы показать наихудший сценарий, при котором мы начинаем расчеты WUFI в октябре со всеми материалами с относительной влажностью 80% — как раз тогда, когда начинается холодная погода.
Переход на целлюлозу 8 дюймов (R-30) приводит к следующему графику:
Сейчас мы действительно превышаем 80% в течение более длительных периодов времени, но только тогда, когда внутренняя поверхность кирпича ниже точки замерзания. Это не сразу тревожный сигнал, но мы начинаем исчерпывать резервы стен, и требуется тщательное рассмотрение и исследование, чтобы убедиться, что этот подход действительно безопасен и надежен.Сборка также очень кратковременно достигает пика выше 92%, хотя с годами этот пик заканчивается. Чтобы определить, можно ли рекомендовать такое количество изоляции, следует предпринять следующее: лабораторные испытания кирпича, дополнительное моделирование гигротермического поведения стены для каждой ориентации и дополнительные меры по сохранению стены сухой (например, повышенная герметичность, свесы, обработка кирпича).
Обратите внимание, что в рядных домах или компактных / прямоугольных отдельно стоящих зданиях гораздо меньше R-30 может быть достаточно для получения сертификата EnerPHit при наличии хороших окон, надлежащих деталей установки, высокоэффективного HRV и отсутствия больших тепловых мостов.Не стоит рисковать прочностью сборки / конструкции / здоровья пассажиров, просто чтобы увеличить экономию энергии сверх безопасных уровней изоляции.
Тем не менее, некоторые владельцы / архитекторы все еще стремятся к лучшей теплоизоляции. Мы сделали 12-дюймовую модель из целлюлозы, которая дает вам новую конструкцию, подходящую для пассивного дома с уровнем R-45. Однако, как показано на окончательном графике ниже, всплески влажности теперь достигают 92%. Кроме того, относительная влажность весной остается выше 80 %, в то время как стена в конце весны превышает 41F в течение нескольких недель, даже на пятый год.Запасы этой стены теперь явно исчерпаны, и любая дополнительная (непредвиденная) влажность или проникновение влаги изнутри или снаружи приведет к ситуациям, которые больше не могут быть смягчены ни буферизацией целлюлозы, ни внутренней или внешней сушкой. На наш взгляд, это слишком рискованно.
Заключение
Исторические здания не могут игнорировать меры по смягчению последствий изменения климата. Мы можем и должны безопасно сделать наши исторические каменные стены более энергоэффективными.WUFI — отличный инструмент для изоляции с приемлемым уровнем риска в сочетании с комплексным подходом к модернизации корпуса. Наша бесплатно загружаемая электронная книга Smart Enclosure, Historic Masonry Retrofits, — еще один полезный инструмент. Но всегда действуйте осторожно.
** Примечание к скриту
Сохранение низкого уровня влажности изнутри также предотвратит достижение кирпичной кладкой опасного уровня влажности, который может привести к замораживанию и оттаиванию — не только в наружной части, но и в самой холодной (внешней) части кладочного кирпича.Этот заливочный кирпич будет немного теплее и меньше подвержен воздействию дождя, но поскольку для заливки использовался менее твердый кирпич, эти значения ниже, чем для лицевого кирпича. Этот критический уровень влажности называется S крит, и представляет собой уровень влажности по сравнению с вакуумным насыщением кирпича. Если для конкретного кирпича этот порог превышен (см. Эту статью ASHRAE), а температура будет ниже 23 ° F, вероятно, произойдет повреждение при замораживании и оттаивании. Если уровень влажности остается ниже этого уровня, кирпич может замерзнуть без повреждений.Для исторического лицевого кирпича, на котором были обнаружены какие-либо повреждения, особенно если здания какое-то время не отапливались, или для кирпича, который был протестирован на Scrit, эти значения могут достигать 0,80. Для насыпного кирпича значения могут быть намного ниже и составлять 0,4 или 0,3. Это испытание кирпичной кладки представляет собой гораздо более сложное мероприятие, чем надлежащая гидроизоляция, визуальный осмотр, испытание карстеновских трубок и т. Д., И оправдано, когда присутствуют повреждения, требуются более высокие значения изоляции, присутствуют другие опасения по поводу конструкции или сочетание таких факторов.
Как показано на графиках ниже, влажность кирпича в кирпиче в значительной степени зависит от типа используемой изоляции, ее толщины и того, установлен ли интеллектуальный замедлитель парообразования INTELLO компании ProClima. Если значение Scrit превышено, это зависит от типа кирпича, но очевидно, что нагрузка на стену изнутри может добавить значительное количество влаги в исторические стены и увеличить вероятность повреждения при замораживании и оттаивании. На этом графике показано содержание влаги в наружном 3/8-дюймовом слое заполнителя.
.